

CI report tracking solution

Thesis

Häme university of applied sciences, Information and Communication Technology

Spring, 2019

Veli-Ville Elis Hietanen

ABSTRACT

Information and Communication Technology
Riihimäki

Author Veli-Ville Hietanen Year 2019

Subject CI report tracking solution

Supervisors Pekka Ahonen, Petri Kuittinen

ABSTRACT

In this thesis I will go through a method of implementation for enabling
continuous integration tracking, follow-up, management and how to make
best use of the data generated in the process. When I go through each type
of software used, I will first explain how they are used and give some ad-
vanced practical examples.

The thesis project was based on a radio network software test report dash-
board that is used to oversee the continuous integration process and the
changes made to it during its introduction. Because of a confidentiality
agreement I will keep the practical examples brief and to the point.

A Web application was implemented using the Django web-framework and
a PostgreSQL database. In the Django chapter of this paper I will explain
how to setup a Django web application relying on practical examples from
literature in the field, internet and Nokia Corporation. Please keep in mind
that some of the examples are done in the Python version 2.7 and the
Django version 1.10 though I will mostly focus on newer Python 3 and
Django 2 versions. I will also introduce some competitive solutions.

Lastly, I explain how to manipulate and use the test data reported to the
management web application in the PowerBI. This enables the creation of
a live big picture using the PowerBI in combination with Django application
API.

Keywords Continuous integration, Django, Microsoft PowerBI, Python.

Pages 27

TIIVISTELMÄ

Tieto- ja viestintätekniikka
Hämeen ammattikorkeakoulu

Tekijä Veli-Ville Hietanen Vuosi 2019

Työn nimi CI report tracking solution

Työn ohjaaja/t Pekka Ahonen, Petri Kuittinen

TIIVISTELMÄ

Tässä opinnäytetyössä käyn läpi yhdenlaisen toteutuksen jatkuvan inte-
graation mahdollistamiseen, seurantaan ja siitä saadun datan
hyödyntämiseen hallinnossa. Käyn ensin läpi käytetyn tekniikan, jota
seuraa esimerkkejä käytännön toteutuksista.

Opinnäytetyö perustuu Nokia Networks liiketoimintayksikön radioverkko-
ohjainten ohjelmistotestauksen jatkuvan integraation valvontaohjelmis-
toon, sekä siihen tehtyihin muutoksiin. Salassapitosopimuksen takia joltain
osin käytännön esimerkit ovat pintaraapaisuja joista selviää vain haluttu
käyttötarkoitus.

Valvontaohjelmisto on tehty käyttäen Django web-kehystä, sekä Post-
gresql tietokantaa. Django osiossa selitetään Django verkko-sovelluksen
luonti tukeutuen käytännön esimerkkeihin internetistä sekä Nokialta. Hu-
omioitavaa on, että jotkin esimerkit ovat Python 2.7 versiota ja osa 3.0 tai
sitä uudempia, mutta pyrin keskittymään työssä Python 3.0 ja Django 2.0
versioihin. Esittelen myös kilpailevia ratkaisuja sekä perustelen miksi juuri
Django/Postgresql on käytössä.

Viimeiseksi syvennyn valvontaohjelmistoon raportoidun datan
hyväksikäyttämiseen isomman reaaliaikaisen kuvan luomisessa
hyödyntäen valvontaohjelmiston ohjelmointirajapintaa, sekä Microsoft
PowerBI ohjelmiston raportteja ja ”kojelauta” näkymää.

Avainsanat Continuous integration, Django, Microsoft PowerBI, Python.

Sivut 27

CONTENTS

1 INTRODUCTION ... 1

2 COMISSIONER .. 1

3 CONTINUOUS INTEGRATION ... 2

3.1 Unit testing .. 3

3.2 Component testing .. 4

3.3 Integration testing ... 5

3.4 System testing ... 6

3.5 Acceptance testing .. 7

4 DJANGO ... 7

4.1 Other options .. 7

4.2 Editor and integrated development environment .. 7

4.3 PyPi (Python Package Index) ... 8

4.4 Virtual environments .. 8

4.5 Underlying structure of the Django web framework .. 9

4.6 Database structure models ... 13

4.7 Django REST framework .. 13

4.8 Testing of Django functionalities .. 16

5 MICROSOFT POWERBI ... 17

5.1 Using testing data to enhance management level decision making 17

5.2 Using power BI in conjunction with Django REST API 18

5.3 Report making and publishing using the PowerBI desktop 21

5.4 Keeping data up to date .. 22

6 CONCLUSION ... 23

REFERENCES .. 26

1

1 INTRODUCTION

This thesis was commissioned by Nokia corporation. The target was to in-
troduce a tool that would illustrate the product testing progress. It is used
to visualize the results reported by radio network controller software test-
ers. The application was originally developed for LTE network testing so
upgrading and modifying the application were necessary.

After the initial changes there was a migration from the Eucalyptus cloud
services to Openstack. When the migration was completed I continued the
integration adding new features that were requested by my line manager.
These features and integration objectives included, though were not lim-
ited, to the following:

- Migrating from Eucalyptus to Openstack cloud platform and updating

related documentation in the process

- Planning and creating new features requested by the CI-manager.

- Modifying Admin and API views to comply with the release changes

and PowerBI.

- Working with test automation teams helping them to setup test auto-

mation reporting.

- Changing unit tests to comply with the new features.

- Different bug fixes

2 COMISSIONER

Nokia corporation started as a paper mill in 1865 and steadily grew until it
faced its first bankruptcy in 1910, Nokia was saved when neighbouring Su-
omen gummitehdas bought the company to secure its energy supply. The
name Nokia originally comes from the name of the municipality, where the
factory of Suomen Gummitehdas was situated.

Nokia took its current form when three companies Suomen kumitehdas,
Suomen kaapelitehdas and Nokia Ltd. were fused into one company called
OY Nokia Ab. Nokia unveiled its first VHF-phone in 1964 and its first NMT-
phone in 1982. As a Joint venture with Finnish government they started to
develop mobile networks from the year 1977 in a company named Televa.

2

After Microsoft bought Nokia telephone operations in 2013 Nokia refo-
cused on Mobile networks and acquired Alcatel-Lucent to boost its know-
how in this sector, timeframe for this and other acquisitions can be found
from Figure 1. (Nokia, 2018)

Figure 1. History of Nokia Corporation (Nokia, 2018).

3 CONTINUOUS INTEGRATION

Continuous integration is a software development technique where a
team of developers share one repository that they integrate code into.
These integrations are always verified by automation allowing bugs to be
caught earlier, this in turn allows developers to handle faults earlier de-
creasing development cycle time and increasing product quality.

In practise basic workflow follows these steps. At first a developer checks
out a working copy from the repository and makes the changes needed.
After making the changes its important to take into consideration unit tests
and update them if needed. When the developer is ready to push the code
back to the repository an automated build is run on the developer’s com-
puter, if this succeeds the build is ok to be pushed back into the repository
where it is automatically built and tested one more time.

If another developer has pushed changes to the repository while the other
developer is still working on the code causing a conflict in the push it is the
responsibility of the developer, whose build fails, to fix the build and re-
solve merge conflicts. All this aims to make integrating new changes to
code mundane as everyone has the newest codebase and the integration
is done daily (Fowler, 2006).

3

Testing levels are used to clarify and structure major software testing en-
vironments to counter testing repetition and overlap. The structure also
helps to identify untested or poorly tested areas. Every testing level repre-
sents a phase in a basic software development life cycle (Tryqa, what are
software software testing levels, 2018). Figure 2 illustrates different soft-
ware testing methods and their related software delivery steps.

Figure 2. Difference in CI/CD/DevOps visualized (Baker, 2016).

3.1 Unit testing

Unit testing includes the smallest batch of code that can be executed on
its own. These test cases are usually created and executed by the devel-
oper of that block of code. This in turn streamlines the debugging process
by identifying the function where the problem occurs.

To make unit testing work the developers need to make code functions
that minimize interdependency which means new code does not break leg-
acy codes that often. In short unit testing is used to test against program
specifications (Tryqa, Unit testing, 2017). Figure 3 shows the steps needed
for running successful unit tests.

4

Figure 3. Unit testing and component testing life cycle diagram (Tutorial
Point, n.d.).

However excessive unit testing is not recommended as it increases the
load for developers and can easily result in a situation where the developer
uses same or even more time writing the unit tests then the actual code.
There have not been any large-scale studies that finds this type of devel-
opment (Test Driven Development) to lower the amount of errors or the
development time in any given software (Coplien, n.d.).

3.2 Component testing

When you test a bigger functions or modules using code blocks that are
individually developed and unit tested it is called component testing. In a
software which has all its basic functions you can do component testing
without stubs, but when there still are some unfinished dependencies.
Component testing can be isolated by simulating the input or the function
needed (Tryqa, Component testing, 2017).

5

As an example, a function that sends an email notification, when a soft-
ware build is promoted, is tested solo by simulating a trigger without func-
tion i.e. instead of sending an email with some very basic content you re-
place it with a log file input or indicate test successful in some other way if
the email function runs successfully.

3.3 Integration testing

Integration testing includes testing interaction between two or more com-
ponents. This is a vital testing area which every tester is recommended to
have good knowledge about. Integration testing is done by team of testers
or an individual tester.

As an example, you need integration testing to test functionality between
different modules in a webstore (user login, cart, billing etc.) developed by
different people. Integration testing is used for testing against technical
specifications. International software testing qualifications board states
three integration testing methods: Big Bang, top down integration and bot-
tom up integration.

When all the different modules are integrated and tested together at the
same time, as illustrated in figure 4, it is called the Big bang testing. This is
not generally used, especially in bigger projects, because it is time consum-
ing and it is hard to determine which of the modules are failing and why
they are failing. For smaller projects this is the fastest way to verify that
everything works as intended.

Figure 4. Diagram of Big bang testing (Patil, 2017).

6

Top down integration follows real life functionality where you are testing
one module at a time. Modules that are not being tested but are needed
for functionality are replaced with stubs. The biggest drawback of this
method is the verification of full basic functionality later in the develop-
ment and testing cycle. Examples of testing layers are shown in figure 5.

Figure 5. Top-down integration (Slideplayer, n.d.).

Bottom up integration is similar to top down testing but follows opposite
architectural structure and uses drivers to simulate the code which calls
lover modules. This allows development and testing to be done parallel to
one another and modifying modules to a client’s needs without compro-
mising higher level modules. The biggest drawback is seeing interface
problems later in development. (Tryqa, Integration testing, 2017)

3.4 System testing

System testing is done when you verify the whole product or the system
functionality. The scope of the testing depends on what the product is be-
ing tested for, such as risks, use cases, requirement specifications or sys-
tem behaviour which are determined in functional specification (Tryqa,
System testing, 2017).

System testing uses real life production environments and test teams sep-
arated from developers to minimize any biases. The code base needs to be
passed through all the phases above before entering the system testing. A
successful system testing or a functional testing phase needs to be planned
out before it is started by specifying the testing times, the setups and the

7

areas where testing needs to be done more specifically than in other areas
i.e. risk areas (ISTQB, 2015).

3.5 Acceptance testing

The acceptance testing includes Alpha and Beta testing, of which the Alpha
testing is done by the developers and the Beta testing is done by the cus-
tomer who is acquiring the product.

By integrating acceptance testing into CI loop you have a DevOps type en-
vironment setup which loops customer reported bugs back into develop-
ment cycle lowering the time it takes to fix them. (Tryqa, Acceptance
testing, 2017)

4 DJANGO

Django is a free web framework that enables developers to get rid of most
of the web development related hurdles by streamlining the development
and allowing you to focus on writing the actual application (Django project,
2018). For the last two decades most of the professional web projects have
been done with some web framework (Makai, 2019).

4.1 Other options

Django is one of many Python-based web frameworks, other notable web
frameworks include Flask and Pyramid which I will briefly introduce.

Flask differs from Django by being a smaller microframework which is fast
and simple to setup. Microframework means it does not use components
in which pre-existing external 3rd party libraries are providing basic func-
tions. The most commonly used database is MongoDB (Python software
foundation, 2018).

Pyramid is a Ruby-on-rails influenced web framework which was created
when BFG was included in the pylons project (Chrism, 2010). It is inte-
grated with wide range of SQL and NoSQL databases and makes wide use
of 3rd party tools (Pylons project, 2019).

4.2 Editor and integrated development environment

Nano was my main editor during the project. I added the syntax highlight-
ing to it by linking the files from /usr/share/nano/ to /.nanorc . An exam-
ple output for cat ~/.nanorc on my environment:

include /usr/share/nano/python.nanorc

8

include /usr/share/nano/html.nanorc
include /usr/share/nano/css.nanorc

With these enabled I got syntax highlighting for my user for CSS, HTML and
Python files.

For more complex functions I imported the files to JetBrains PyCharm. It
was also discussed that this would be used to set up a more streamline
development environment with integrated GIT however, because of time
constraints this idea was ultimately dropped.

When I worked on the in-house testing software UI I ran the software on
my Windows 10 laptop and worked on the code with Visual studio.

4.3 PyPi (Python Package Index)

The official third-party repository for Python is the Python package index.
It allows Python users access to over 110 000 third party packages. PyPi is
used as a default source by many package managers such as PIP.

PyPi was born out of the need to make installing third-party packages eas-
ier and more centralized. It was first introduced in the Python release 1.6.1
in September 2000. (PyPi, n.d.)

4.4 Virtual environments

Virtual environments are used to differentiate global site packages from
site packages. This enables running multiple Django projects on the same
hosts without version dependencies causing compatibility errors this is il-
lustrated in figure 6.

When a virtual environment is made directories are created to store all the
packages. After activating the virtual environment, PIP or some other Py-
thon package manager can be used to install the packages in to the virtual
environment. Install and active the virtual environment using the following
commands.

pip install virtualenv

mkdir venv
cd /venv

virtualenv your_venv_name

To activate the created environment, you need to run the activate script
with the following bash line.

9

source /venv/yourvenv/bin/activate

After this your bash line should show the name of your virtual environment
indicating where the PIP is installing python packages.

(your_venv_name) [user@yourhost ~]#

Figure 6. Virtual environments function visualized. (Batta, 2015)

4.5 Underlying structure of the Django web framework

10

Figure 7. Basic structure of Django (Django book, 2018).

Django is built around managing these three sections, model, template,
and view independently which is why this framework uses loose coupling
and it is called MVC (Model, view, controller) framework as seen in figure
7. Loose coupling means that the application components have little or no
info about the definitions of other components. (Django book, 2018)

The model is used to provide an interface with the database that houses
all the data used by the application using ORM (object-relational mapping).
The Django ORM tool is used for getting around using SQL that can hard to
write and it can take your mind of the language you are actually writing
your application in. When using ORM the database is mapped with objects
as seen the figure 8 (Django-tutorials, n.d.).

Figure 8. Django ORM diagram (Django-tutorials, n.d.).

Here is an example of a more complex model, the table generated can be
found from figure 9:

class Test(models.Model):

date = models.DateTimeField(null=True, default=timezone.now)

name = models.CharField(max_length=420, null=True)

result = models.CharField(max_length=300, default=None, null=True)

execution = models.IntegerField(default=0, null=True)

more_info = models.CharField(max_length=2000, default='{}', null=True)

user_info = models.CharField(max_length=2000, default="", blank=True)

network_elements = models.CharField(max_length=2000, default='{}', null=True)

build = models.ForeignKey(Build, related_name='tests')

testline = models.ForeignKey(Testline, default="", null=True, blank=True)

11

Figure 9. The table generated from the ORM above viewed in phpPgAd-
min page.

The Django templates allow the separation of design from logic. This is es-
pecially important in bigger projects where programming and designing
can be done by a different group of people. Usually they are written in
HTML, but they support a multitude of text formats.

Using the Django templates allows web designers to create the frontend
with placeholders for data, so web developers can add right Django varia-
ble tags after the backend is ready. This also makes it possible to use HTML
pages that other people have designed allowing you to keep your focus on
coding instead of designing. (Django-tutorials, n.d.)

An example template for a popup window:

{% block title %}

{{build.rlabel}}

{{build.date}}

{{release}}

{% endblock title %}

{% block content %}

 {% if build|build_has_nomination:"_release" %}

 {% if product1 in product or product2 in product %}

 <a href='http://linktoreleasenotes/release_notes?prod-

uct={{build.product}}&branch=trunk&release_name={{build.rlabel}}' tar-

get='blank' ><i class='glyphicon glyphicon-book'></i> ReleaseInfo

 {% endif %}

 {% endif %}

 {#monkeyfix!#}

{%if "product1" == build.product.name or "product2" == build.product.name

or "product3" == build.product.name %}

<i class='glyphicon glyphi-

conbook'>

</i>Build location

 {% endif %}

 <i class='glyphicon glyphicon-

share-alt'>

</i>Build URL

 {{build.id|build_popout_info}}

{% endblock content %}

{% endspaceless %}

12

The template from the projects testing environment above populates a
popup window, as seen in figure 10, with important release links and other
information. The Django version used is older, so you must go through
each variable instead of just declaring them and doing the comparison in
one go i.e. if “foo”, “bar” in “foobar”. Because advanced logic is a security
issue it is disabled in Django templates along with executing any Python
code and assigning a value to a variable.

Figure 10. Popup window generated from the example template
above.

The Django templates also employ parent child relations, so you do not
have to repeat the HTML code. For example, if you use the same top navi-
gation bar for all your subpages, they can inherit the same top navigation
bar from one HTML file , an example of this can be found from figure 11,
making maintaining and modifying it more convenient (Django-tutorials,
n.d.).

Figure 11. With a parent child relation, you can inherit parts of the web-
site from the parent HTML file (Django-tutorials, n.d.).

13

Views are used to get data for your templates from a database or some
other external data sources. Decisions are made in views about what data
is or is not displayed in templates based on input or some other logic.
Django build in views include 404, 500, 403 and 400 error display pages.
Views as over simplified define what your application URLs file is pointing
to (Django-tutorials, n.d.).

Figure 12. The views function simplified (Django-tutorials, n.d.).

4.6 Database structure models

Databases officially supported by Django are PostgreSQL, MySQL, SQLite
and Oracle. Other databases can be connected to it with some third-party
applications, it is however recommended to use the officially supported
databases if possible (Big-nige, n.d.).

The Postgres database was inherited to my project from the original appli-
cation that was used to visualize 4G testing status. It was probably origi-
nally chosen because it has the best compatibility with Django out of all
the officially supported databases (David, 2012).

4.7 Django REST framework

REST (Representational State Transfer) is a design architecture used in
API’s originally defined by Roy Fielding in 2000. The advantage for using
REST API is that it supports any content-type, though JSON or XML are the
most popular choices. REST API provides unparallel flexibility compared to
other SOAP or RPC (Remote Procedure Calls) APIs (MuleSoft, n.d.). Differ-
ences between these API’s are more closely specified in table 1. Pure REST
API’s are built around six constraints:

14

Table 1. Comparison of the strengths and weaknesses of the three most
popular API, REST being the most popular one followed by SOAP
and RPC (Stowe, 2015).

Stateless means no client session state is ever kept in the server but in-
stead it its always stored in the client side and is transferred with it hence
the ST (State Transfer) in the acronym REST. This allows the service to be
viably scaled to millions of users because resources are not spent on man-
aging user sessions.

A Client-server is a concept of separating the client side from the server
side allowing them to be developed independently. This means having the
ability to make changes to the database or data structure without it effect-
ing client-side templates and vice versa (MuleSoft, n.d.).

Caching is used on all cacheable data on client side. Responses are used to
inform the client whether the data can be cached for later use or not. This
allows you to lower the load on your server.

Layered System means you can use the layers to encapsulate older parts
of the service from newer more used parts which in turn allows effective
use of load balancing. When all the layers are properly secured a sys-
temwide compromise is not that plausible.

Uniform interface means you don’t change the communication interface
between the client and the server instead of committing to using some-
thing like HTTP requests and JSON.

Code on demand is the only optional constraint out of the six for REST as
defined by Roy Fielding in his doctoral dissertation. The idea here is to al-
low user to move code snippets via API. This is the least applied constraint

15

because it is optional and introduces some security issues with it. (Stowe,
2015)

The Django rest framework allowed me to make use of a flexible and pow-
erful API based on the models of the application. It was used to exchange
data between our in-house testing software and with PowerBI.

The REST framework was used to fetch correct software build and test re-
lated names when reporting testing status, as seen in figure 13, to the
management application. This negated any change for case sensitive data
to be typed wrongly by the tester.

Figure 13. A window for reporting the test case status to the Manage-
ment application.

16

4.8 Testing of Django functionalities

Test cases for this project were done before I started working with it, so I
only did modification to existing tests. Because they were unit tests a
model mommy library was used to create missing data before running the
tests, such as adding a new build to the application via rest framework API.

class NewTestInstanceCreationTest(APITestCase):

 """

 Ensure we can create a new Integration object.

 """

 def setUp(self):

 p = mommy.make(Product, id=1, name='product_name')

 r = mommy.make(Release, id=1, name='release_name')

 t = mommy.make(Testline, id=1, name='test_Line', product=p)

 b = mommy.make(Build, id=1, rlabel=build_Name',

 product=p, release=r, result='unstable')

 def test_create_test_run(self):

 url = reverse('api:test-list')

 data = {

 "name": "test_1",

 "result": "passed",

 "testline": "test_Line",

 "path": "/path/0/",

 "more_info": {},

 "network_elements": {},

 "execution": 0,

 "rlabel": "build_Name",

 "date": "2016-02-15 12:10:58.168992",

 }

 response = self.client.post(url, data, format='json')

 self.assertEqual(response.status_code,

status.HTTP_201_CREATED, response.data)

 self.assertEqual(Test.objects.count(), 1)

 self.assertEqual(Test.objects.get().name, 'test_1')

Above there is a code snipped from a test used to make sure that you can
add a new test via the API. The setUP function creates a build completed
with Product and Release and to which the test is reported to.

The test_create_test_run function determines what data is sent to the API
and what is the desired response from it. Fetching the created object is
also tested with Test.objects.get().

17

5 MICROSOFT POWERBI

Figure 14. An example of a financial chart generated with Power BI
(Microsoft, 2018).

Power BI is a Microsoft business intelligence tool used for visualizing data
derived from big datasets. Even though its most common use is financial
services as seen in figure 15, it also has some great use cases in CI manage-
ment as well. You can either connect it straight to the database for a live
connection or make use of the API to fetch the data you need.

5.1 Using testing data to enhance management level decision making

There are a few choices, either using libraries such as PyChart to generate
data visualisation on the web application itself or by importing the re-
ported data to a trusted 3rd party program that is already widely used and
supported in your organization, in our case it is PowerBI.

The reason we leaned towards using Power BI was the fact that it would
save a lot of development time while keeping the report quality and usa-
bility high. PowerBI is also integrated with the other Office 365 applica-
tions, so it was the obvious choice for us. We could create teams for appli-
cations and publish the reports to the right people easily.

18

5.2 Using power BI in conjunction with Django REST API

Because of network restrictions and problems related to PostgreSQL data-
base access I opted to do the MVP (minimum viable product) with The
Django rest API and the get data from web feature of PowerBI. This com-
bination worked out great but, as the dataset grows it will probably be
changed to a straight database connection to deal with the refresh speed
issues and allowing live data review.

Before being able to create any reports, we need data. Getting data from
a web page using PowerBI is straight forward. Some basic knowledge of
DAX and PowerBI power query editor is all you need. All the reports were
done using Power BI desktop, so I didn’t need an on-premises-data-gate-
way until they were published to the PowerBI web application (Zhang,
2016).

Figure 15. An example output from the Django REST framework API.

Having a well-planned Django REST framework to work with made this pro-
cess even easier to complete. Our CI management tool API displays data in
JSON format across multiple pages. I had to do a function that would go
through all the pages and stop when the page request returns null and a
PowerBI query to invoke it.

19

The GetData function (Masson, 2014) :

(page as number) as table =>

let

 Source =

Json.Document(Web.Contents("webapp/api/builds/?",

 [Query=[page=Number.ToText(page)]])),

 results = Source[results],

 #"Converted to Table" =

 Table.FromList(results,

 Splitter.SplitByNothing(),

 null,

 null, ExtraValues.Error)

in

 #"Converted to Table"

The GetData function works by giving it a page number that it fetches and
transforms to a database table, allowing me to manipulate and filter the
data that I need. The Json.document source is used because the web ap-
plications REST API serves the data in JSON format as seen in figure 16.
There was a problem with using dynamic URIs (Uniform Resource Identifi-
ers) because the PowerBI needs to validate the URI when committing it to
the data sources refresh. This is why the query part is separated from the
URI on line 3 (Varga, 2018).

The query that calls GetData function (Youtube Video, 2018):

let

 Iterate_pages = List.Generate(()=>

 [Result= try GetData(1) otherwise null,

Page=1],

 each [Result] <> null,

 each [Result = try GetData([Page]+1) other-

wise null, Page =[Page]+1],

 each [Result]),

in

 Iterate_pages

The Query function calls the GetData function with do-while-loop that it-
erates over the pages until it gets a null response. This means all the pages
are fetched as a list of all the JSON data found inside the web page.

Calling the function with the query returns a list of all the pages. Expanding
the pages allows me to pick the data I want to use and connect it with other
data from the API using Power Query Editor and the manage relationships
tool.

20

Figure 16. A sample output from the GetData query.

Remodelling is the biggest problem when using a web data source. If this
data would have been fetched using straight connection to the web appli-
cations Postgresql database, it would have copied the relationships used
in the database structure. But this method allows us to modify the dataset
based on exactly what we need, starting point for the modifications is
shown in figure 16 and the end result is shown in figure 17.

Figure 17. A list of extracted software build information after modifying
the dataset.

Modifying and connecting the collected data is the most import part of
using PowerBI. This will dictate how well your reports function, load and
how fast they refresh.

21

5.3 Report making and publishing using the PowerBI desktop

Things that you want to monitor closely in a CI environment are the total
time it takes to go through one CI loop, the number of uncovered errors
and success/failure rates. The first software build status overview report I
made had the general test statistics on one page. These statistics included
how the builds performed and how long in the average it took for the CI
loop to complete.

The Biggest hurdle when modifying the data to comply with my needs was
calculating how long it took for any one of the three CI loop phases to pass.

Figure 18. The function used to calculate total CI loop time.

This DAX function, shown in figure 18, returns the amount of time passed
from adding the build to giving the build a promotion indicating that the CI
loop is completed. The function returns a fixed decimal indicating how
many hours have passed. If for example the output is 32.50 it means that
it took 32 hours and 30 minutes to complete the loop. This in turn can now
be used in different visualisations and comparisons that weren’t earlier
possible with only the dates. The visualization of this data is shown in fig-
ure 19.

With this info we can already see where exactly the problems in the CI loop
are if there are any. We can compare the test teams against each other
and figure out if there is a need to cut down on the teams automated test-
cases or room to add more. You can add more test cases as long as the
average test time stays inside constraints. Also take into consideration how
much time constraints effect error finding. It can be quite hard to find the
middle road between catching all the software errors and staying inside
the set timeframe.

22

Figure 19. A visualization of the data fetched by Build_test_time func-
tion.

After the report is ready with the desired data and visuals it needs to be
published from the PowerBI desktop to the PowerBI app space, so that the
reports can be shared and viewed by others. I first made an empty appli-
cation workspace and added a few colleagues to the group. It is important
to review everyone’s editing rights before adding anything to the applica-
tion workspace to minimize changes for a mistake (Microsoft, 2018). After
the application workspace was all set up and everyone had sufficient edit-
ing rights, I published the report from the PowerBI desktop to the app
workspace (Microsoft, 2018).

5.4 Keeping data up to date

For this data to be valid it needs to be frequently updated. Because this
dataset is inside a protected network a on-premises data gateway is
needed when connecting to the API. An On-premises data gateway uses
the computer it runs on as a port to connect to a dataset it has been as-
signed to implementing transport encryption and data compression on all
levels. Simplified basic function diagram for the data gateway is shown in
figure 20 (Microsoft, 2018)

23

Figure 20. Data gateways basic function visualised by Microsoft docs
(Microsoft, 2018).

There are some recommendations about installing a data gateway. It
shouldn’t be installed on a laptop because when the laptop is turned off or
in sleep mode the gateway does not function causing scheduled refreshes
to fail. Wi-Fi network can slow down refresh time and both personal and
standard gateways require a 64-bit windows OS to work.

After I had a on-premises data gateway setup I could add scheduled refresh
to my datasets after linking them to the gateway. If credentials are needed
to access some of the data sources they are always sent encrypted. If a
straight connection to Postgresql or any other database is used it is possi-
ble to have live data that is refreshed each time it is requested by the user.
(Microsoft, 2018)

6 CONCLUSION

To save costs Nokia moved from the Eucalyptus to the Openstack environ-
ment and that meant migrating all the processes running in the old cloud
to a new cloud environment including our CI management application. This
was not a major change since there already was some documentation on
setting up the application, the biggest difference being moving from the
RHEL to Centos.

The migration took two weeks to complete because of my limited experi-
ence with the Django, Openstack cloud environment and because of some
setup problems. For the end user the migration did not show in any way. I
really got familiar with Openstack UI and its features by using a sandbox

24

version before doing the migration of our application. Also doing the setup
for the Django application refreshed my bash skills.

The new features were planned by my CI-manager and most of these fea-
tures were first raised by product managers and testers. My workflow re-
garding the new features started at a meeting with the CI-manager. He
outlined what he wanted the feature to do and I implemented this to the
sandbox version and tested it. If everyone was happy with the way it
worked, it was to be implemented to the official version and the changes
were committed to GIT.

Each new feature nearly always required changes in the application´s own
unit tests. These tests came with the software and were augmented by me
to comply with the changes.

Supporting test automation teams with the application was a constant ef-
fort during the whole project. It mostly involved fixing curl syntaxes and
helping with Jenkins job configurations. I also maintained a confluence
page with all the essential documentation.

I also worked with the in-house test application front-end development
team to enhance its use with the management application. The problem
was with the test reporting UI that allowed testers to modify the names of
the tested software builds and other case sensitive fields resulting in false
test statuses and errors with the API. This was solved by fetching all the
case sensitive data (software build names, test names) from the API and
restricting the ability to change the fields.

My limited knowledge of JavaScript did create one major fault in the re-
porting process. Because JavaScript executes asynchronously it caused a
situation where data is sent in a wrong sequence resulting in faulty test
status emails. This was fixed by the team working on the software by in-
stating a restriction that forced the data to be sent in a right order every
time.

This project boosted my teamwork skills and got me familiar with a major
software release related workflow. Modifications were made in JavaScript
which I had not used for a long time.

Another goal was to be able to use this data at management level decision
making. The tool chosen for this was PowerBI which is part of the Microsoft
365 software family. It has great visualization tools that can be used in the
reports to display how different software products perform and how long
it takes to test them.

Working with PowerBI also required some changes to how and in what way
Django REST API displayed data. This part of the project got me familiar

25

with the REST principles and I got to know the Django REST framework
more closely.

Working on this thesis allowed me to get more familiar with the radio net-
work controller software testing and web frameworks, both of which I
found very interesting. It also grew my software development and inde-
pendent working skills.

The project and everything related to it was a big jump into the unknown
for me. I did not have very much experience in the Django development
before starting at Nokia. Challenges especially at the beginning were great
but I rose to the required level with the help of great colleagues and my
own interest. The In-house learning tool was also helpful allowing me to
go through courses on my own.

The work I did for Nokia and the work I did during the software develop-
ment courses at school were quite different. There was no unit testing
done or even planned at any level during my courses also, neither was
there any version control software in use. This was surprising to me be-
cause its integration to the courses would not have been too complicated.
For me this project with Nokia was a great opportunity see what I lacked
in skills and I really focused on getting better at these skills.

The IT industry is so complex and broad that these kind of trainee periods
that challenge the student and give him enough responsibilities on real life
solutions while providing a learning network are important.

26

References
Baker, J. (2016, June 2). Powering Continuous Delivery With Feature Flags. Retrieved

from https://blog.launchdarkly.com/powering-continuous-delivery-with-
feature-flags/

Batta, A. (2015, august 5). Python virtual environment setup in ubuntu. Retrieved from
https://2.bp.blogspot.com/-
dDJh1jd8afc/WMbjQWZz3UI/AAAAAAAACB8/KBUg5Gngr38l843Cg2nnnGrf-
ReHg1oMACLcB/s1600/python-virtual-env.png

Big-nige. (n.d.). Django Overview. Retrieved from https://djangobook.com/django-
tutorials/django-overview/

Chrism. (2010, November 9). BFG-becomes-pyramid. Retrieved from plope:
https://web.archive.org/web/20101113024153/http://plope.com/bfg-
becomes-pyramid

Coplien, j. O. (n.d.). https://rbcs-us.com/. Retrieved from Why-Most-Unit-Testing-is-
Waste: https://rbcs-us.com/documents/Why-Most-Unit-Testing-is-Waste.pdf

David, S. (2012, March 2). which-database-engine-to-choose-for-django-app. Retrieved
from https://stackoverflow.com/questions/9540154/which-database-engine-
to-choose-for-django-app

Django book. (2018). django-structure. Retrieved from https://djangobook.com/mdj2-
django-structure/

Django project. (2018). Django project. Retrieved from
https://www.djangoproject.com/

Django-tutorials. (n.d., May 12). Django models. Retrieved from
https://djangobook.com/django-tutorials/django-overview/

Fowler, M. (2006, may 1). Continuous integration. Retrieved from
https://www.martinfowler.com/articles/continuousIntegration.html

ISTQB. (2015, June 30). system/functional testing. Retrieved from
https://www.getsoftwareservice.com/integration-test-strategies/

Makai, M. (2019). fullstackpython. Retrieved from web-frameworks:
https://www.fullstackpython.com/web-frameworks.html

Masson, M. (2014, November 10). Mat Masson PowerQuery blog. Retrieved from
https://www.mattmasson.com/2014/11/iterating-over-an-unknown-number-
of-pages-in-power-query/

Microsoft. (2018, August 6). Microsoft powerBI documents create workspaces. Retrieved
from https://docs.microsoft.com/en-us/power-bi/service-create-workspaces

Microsoft. (2018, May 6). Microsoft PowerBI documents on-premises data gateway.
Retrieved from https://docs.microsoft.com/en-us/power-bi/service-gateway-
onprem

Microsoft. (2018, June 23). Microsoft powerBI documents sample chart. Retrieved from
https://docs.microsoft.com/en-us/power-bi/sample-it-spend

Microsoft. (2018, November 28). Microsoft PowerBI documents what is powerBI.
Retrieved from https://docs.microsoft.com/en-us/power-bi/desktop-what-is-
desktop

MuleSoft. (n.d.). rest-api-design. Retrieved from
https://www.mulesoft.com/resources/api/what-is-rest-api-design

Nokia. (2018). Nokia history flowchart. Retrieved from
https://www.nokia.com/sites/default/files/inline-
images/history_nokia_no_title_3.png

27

Nokia. (2018). Our History. Retrieved from https://www.nokia.com/about-us/who-we-
are/our-history/

Patil, K. (2017, February 23). Integration-testing. Retrieved from
https://bitwaretechnologies.com/wp-
content/uploads/2017/02/bigbandimage.jpg

Pylons project. (2019). Pyramid Introduction.
PyPi. (n.d.). PyPi. Retrieved from https://pypi.org/
Python software foundation. (2018, May 2). Retrieved from Flask:

https://pypi.org/project/Flask/
Slideplayer. (n.d.). Retrieved from

https://images.slideplayer.com/34/8360467/slides/slide_8.jpg
Stowe, M. (2015). Undisturbed REST. San Francisco: MuleSoft.
Tryqa. (2017). Acceptance testing. Retrieved from Acceptance testing:

http://tryqa.com/what-is-acceptance-testing/
Tryqa. (2017). Component testing. Retrieved from http://tryqa.com/what-is-

component-testing/
Tryqa. (2017). Integration testing. Retrieved from http://tryqa.com/what-is-integration-

testing/
Tryqa. (2017). System testing. Retrieved from System testing: http://tryqa.com/what-is-

system-testing/
Tryqa. (2017). Unit testing. Retrieved from http://tryqa.com/what-is-unit-testing/
Tryqa. (2018). what are software software testing levels. Retrieved from

http://tryqa.com/what-are-software-testing-levels/
Tutorial Point. (n.d.). Unit testing.
Varga, S. (2018, February 17). Data inspirations blog. Retrieved from

http://blog.datainspirations.com/2018/02/17/dynamic-web-contents-and-
power-bi-refresh-errors/

Youtube Video. (2018, August 5). Retrieved from https://youtu.be/vhr4w5G8bRA
Zhang, E. (2016, March 6). PowerBI community forum. Retrieved from

https://community.powerbi.com/t5/Integrations-with-Files-and/Using-a-REST-
API-as-a-data-source/td-p/50400

