
D�ò�½ÊÖÃ�Äã Ê¥ CÊÄã®ÄçÊçÝ D�½®ò�Ùù
�ã M�Äã��« IÄÄÊò�ã®ÊÄ

Bachelor’s Thesis

Electrical and AutomaƟon Engineering

Valkeakoski

February 2019

Polina Rymshina

ABSTRACT

Electrical and AutomaƟon Engineering
Valkeakoski

Author Polina Rymshina Year 2019
Subject Development of ConƟnuous Delivery at Mentech InnovaƟon
Supervisor Mika Oinonen

ABSTRACT

The soŌware development standards of the modern world require the companies to
respond quickly to new opportuniƟes and build on top of feedback from customers.
To help the developer teams to adapt to the need of fast soŌware producƟon new
methods have been created. One of thesemethods is ConƟnuous Delivery - essenƟally
an automatedprocess of building, tesƟng and releasing soŌware. The aimof this thesis
project was to examine whether the concept of ConƟnuous Delivery would improve
the process of soŌware producƟon at the case company - Mentech InnovaƟon, - and
if so, how?

Mentech InnovaƟon is a health care technology startup aiming to improve the quality
of life of people with mental disabiliƟes. The developers at Mentech work on an emo-
Ɵon sensing and regulaƟon plaƞorm HUME, which in the end of 2019 will be turned
into producƟon grade soŌware. For that, automated quality assurance and reliable
and repeatable releases needed to be set up.

During the thesis project a literature research on the concept of ConƟnuous Delivery,
its benefits, disadvantages and risks was made. AddiƟonally, the ConƟnuous Delivery
soŌware deployment pipeline for the HUME website of Mentech InnovaƟon was cre-
ated to assess the feasibility of ConƟnuous Delivery usage for all soŌware at Mentech
InnovaƟon.

As a result of the work, the created deployment pipeline of the HUME website has
proved towork correctly. The benefits of the usage of the ConƟnuous Delivery concept
have been validated, as the concept improved the process of soŌware tesƟng and
release by making it fully automated, controlled and therefore reliable. AddiƟonally,
it saved Ɵme for the developers in that instead of manual tesƟng and releasing Ɵme
can now be spent on developing new features.

In conclusion, by examining literature sources and implemenƟng ConƟnuous Delivery
for the HUME website of Mentech InnovaƟon, it was proved that the concept of Con-
Ɵnuous Delivery can benefit the overall process of soŌware producƟon at Mentech
InnovaƟon by making the process fully automated, fast, repeatable and reliable.

Keywords ConƟnuous Delivery, pipeline, deployment, tesƟng
Pages 49 pages including appendices 2 pages

Contents

Glossary i

1 INTRODUCTION 1

2 ASSIGNMENT 2
2.1 Background . 2
2.2 DescripƟon of assignment . 2

2.2.1 Scope . 4
2.3 Problem definiƟon . 4
2.4 Research quesƟons and hypothesis . 5

2.4.1 Literature research quesƟons 5
2.4.2 Design quesƟons . 6
2.4.3 Hypothesis . 6

3 PROJECT APPROACH 7
3.1 Research methods . 7
3.2 Design and implementaƟon methods 7

4 LITERATURE RESEARCH 9
4.1 ConƟnuous Delivery rules . 9
4.2 Advantages and disadvantages . 10
4.3 Value stream map . 13
4.4 Deployment pipeline . 14

4.4.1 Types of tesƟng . 16
4.5 Risk management . 16
4.6 Deployment strategies . 19
4.7 Development workflows . 22
4.8 Conclusion . 27

5 DESIGN AND IMPLEMENTATION 29
5.1 HUME website descripƟon . 29
5.2 HUME website deployment pipeline . 29
5.3 SelecƟon of tools . 30

5.3.1 Version control . 30
5.3.2 ArƟfact repository . 30
5.3.3 ConƟnuous Delivery tool . 30
5.3.4 Commit stage . 33
5.3.5 IntegraƟon stage . 33
5.3.6 Acceptance stage . 34
5.3.7 Staging and ProducƟon . 34
5.3.8 Conclusion . 35

5.4 Seƫng up version control . 35
5.5 Seƫng up the ConƟnuous Delivery tool 35
5.6 Seƫng up the Commit stage . 37
5.7 Seƫng up the IntegraƟon stage . 38

5.8 Seƫng up the Acceptance stage . 38
5.9 Seƫng up Staging and ProducƟon environments 39
5.10 Conclusion . 39

6 VALIDATION 40

7 CONCLUSION 44

8 RECOMMENDATIONS 45

Bibliography 46

Appendix 1 HUME website 48

Appendix 2 Codefresh console 49

List of Tables

1 EvaluaƟon of advantages and disadvantages 13
2 Risk analysis . 18
3 Risk calculaƟon . 19
4 Summary of deployment strategies . 21
5 SelecƟon matrix for deployment strategies 22
6 Summary of workflows . 26
7 SelecƟon matrix for workflows . 27
8 Summary of ConƟnuous Delivery tools 31
9 SelecƟon matrix for ConƟnuous Delivery tools 32
10 Comparison of unit test tools . 34

List of Figures

1 Example of a deployment pipeline (Humble & Farley, 2011, 4) 3
2 IniƟal deployment pipeline at Mentech InnovaƟon 3
3 Comparison of ConƟnuous IntegraƟon and ConƟnuous Delivery 9
4 Value stream map before ConƟnuous Delivery 13
5 General deployment pipeline for Mentech InnovaƟon 15
6 Blue-green deployment - iniƟal state . 19
7 Blue-green deployment - final state . 20
8 Canary deployment - iniƟal state . 20
9 Canary deployment - small user set release 20
10 Giƞlow branching . 24
11 HUME website deployment pipeline . 30
12 Deployment pipeline steps . 36
13 Maturity Model (Humble & Farley, 2011, 419) 41
14 Value stream map with ConƟnuous Delivery 42
15 Codefresh console screenshot . 42
16 Hume website screenshot . 48
17 Codefresh console log example . 49
18 Codefresh email example . 49

i

Glossary

arƟfact By-product produced during the development of soŌware (e.g. project source
code, dependencies, binaries or resources). 2, 14, 15, 27, 30, 35, 39

container Unit of soŌware that contains an environment. i, 32, 35

Docker Container technology, allowing the developer to run the applicaƟon inside a cer-
tain environment. 32, 33, 35, 36, 38, 39

environment Libraries, tools, and other files necessary to be able to run the applicaƟon.
i, 3–5, 14, 15, 19–22, 27, 29, 32–40, 42

Git Version control system to track changes in the soŌware code. 4, 10, 22, 23, 29, 30

MoSCoWmethod A way of determining the importance of requirements for a project.
MoSCoW stands for Must haves, Should haves, Could haves, Won’t haves. 8

Nginx Web server to serve staƟc assets (for example send files to clients). 36

producƟon Environment where the soŌware is available to the customers. i, 2–4, 10,
11, 15, 19, 20, 27, 29, 34–37, 39

staging Environment made for soŌware tesƟng. Nearly exactly resembles a producƟon
environment. 2–5, 15, 27, 29, 34, 35, 37, 39, 42

web service HTTP server applicaƟon. Used for managing the data from clients and re-
ceiving analyƟc results from the sensors. 29, 36, 38, 39

web socket CommunicaƟons protocol enabling a two-way communicaƟon session be-
tween the user’s browser and a server. 29

Webpack Webpack bundles web assets (such as images, CSS and JavaScript files) for use
in a browser. 33, 35, 37, 39

In the following text the above menƟoned terms can be found, and in an electronic ver-
sion of the thesis on click the reader will be redirected to the glossary page for a term
definiƟon.

1

1 INTRODUCTION

In themodern soŌware development world the quality of the soŌware product of a com-
pany is as important as the company’s ability to respond quickly to newopportuniƟes and
issues. For all the soŌware development companies, big and small, especially for star-
tups, it is essenƟal to move fast, building on top of feedback from customers. AŌer all,
soŌware only brings value when it is in the hands of the user (Humble & Farley, 2011,
14).

In the past couple of decades the complexity of wriƩen soŌware as well as used tools has
increased. Newmethods were needed to help the developer teams to adapt to the need
of fast wriƟng, tesƟng and releasing of soŌware. One of these methods is the concept of
ConƟnuous Delivery - an important and trending idea in soŌware producƟon.

ConƟnuous Delivery, essenƟally, is an automated process of building, tesƟng and releas-
ing of soŌware. The teams pracƟsing ConƟnuous Delivery produce the soŌware in short
cycles and ensure that the soŌware can be released on demand of management or a
customer at any Ɵme (Chen, 2015, 50), whereas the convenƟonal methods of tesƟng,
packaging and releasing of soŌware can take from weeks to months to get the soŌware
in the hands of users, and the release process is not repeatable or even reliable (Humble
& Farley, 2011, 14).

The case company for this thesis isMentech InnovaƟon - a health care technology startup
based in Eindhoven, The Netherlands. Mentech InnovaƟon aims to impact the quality of
life and happiness of people with mental disabiliƟes. The developers at Mentech work
on an emoƟon sensing and regulaƟon plaƞormHUME, which reads body parameters and
outputs them in a form of a graph, simultaneously evaluaƟng the mood of a paƟent.

The aim of this thesis project was to examine the concept of ConƟnuous Delivery by per-
forming a research on its benefits and drawbacks, workflows, ways for risk management
and strategies of deployment. AddiƟonally, an implementaƟon of ConƟnuous Delivery
for the HUME website was needed to assess the feasibility of ConƟnuous Delivery usage
in the company. In the end, a conclusion whether the concept of ConƟnuous Delivery is
beneficial for Mentech InnovaƟon was made.

2

2 ASSIGNMENT

The assignment that was given to the thesis author is presented in this chapter. First,
the background of the assignment is described - the case company (commissioner) and
its products. Secondly, the thesis assignment descripƟon is given, with the main require-
ments described shortly. Then, a problem definiƟon is derived from the assignment de-
scripƟon. Finally, the hypothesis and the research and design quesƟons are defined.

2.1 Background

Mentech InnovaƟon is a health care technology company creaƟng emoƟon sensing pro-
ducts and services for a beƩermental health care. With its products, Mentech InnovaƟon
wants to impact the quality of life and happiness of people with a mental disability or
demenƟa. Mentech is a young company, a startup, currently in the state of feasibility
and market validaƟon.

The company develops an emoƟon sensing and regulaƟng plaƞorm called HUME. The
technology is based on the sensing of body parameters with wearables (EmoKit), the de-
tecƟon of emoƟonal arousal via smart models and deep learning algorithms (EmoRadar),
as well as the methodologies for emoƟon regulaƟon.

In the third and fourth quarters of 2018 Mentech InnovaƟon used the first version of
HUME to test the feasibility of general arousal sensing in carehouses. In the second quar-
ter of 2019 it is planned to present the second version of the product idenƟfying posiƟve
and negaƟve arousal.

Mentech InnovaƟon consists of three departments: hardware, soŌware and data science
teams. For this thesis assignment the student joined the soŌware team to work on the
automaƟon of the delivery process of the soŌware created in the department.

2.2 DescripƟon of assignment

As menƟoned before, Mentech InnovaƟon is developing a technology for emoƟon sen-
sing and recogniƟon in mentally disabled people and people with demenƟa. This tech-
nology includes a wearable with sensors, a data streaming plaƞorm, a website, a web
applicaƟon and a database. In addiƟon to this, Mentech develops soŌware for the com-
pany partner, En-Gager, including a mobile and a web applicaƟon.

During the second half of 2018, Mentech InnovaƟon has developed a prototype of its
product. In the second half of 2019 they want to turn it into a producƟon grade soŌ-
ware. For that they needed quality assurance and reliable and repeatable releases. At
the start of this thesis project the soŌware at Mentech InnovaƟon was delivered ad-hoc,
without standardisaƟon, automated tesƟng or security. As the tesƟng and delivery stages
of soŌware releasing were not automated, the soŌware and the deployments of it were
prone to human errors.

A possible soluƟon to the problem of faulty soŌware delivery would be the concept of
ConƟnuous Delivery, which could improve the process of tesƟng and deploying the soŌ-
ware through automaƟng it.

3

The convenƟonal way to release soŌware is to have a set date release. With this model
there is a concept of cycle Ɵme which is the Ɵme measured from deciding to make a
change in the soŌware Ɵll having it in producƟon. In many teams the one cycle can last
for weeks or even months, which can have an impact on the user saƟsfacƟon with the
product and cost the companymoney. AddiƟonally, having a set date for a releasemeans
that the days before the release are stressful, as the developers try to fix the possible
bugs in the last minute (Humble & Farley, 2011, xxiii). The concept of ConƟnuous De-
livery allows the company to avoid these problems, as the developers just release the
feature when they are done working on it and it gets automaƟcally tested. Further in the
document the other benefits of ConƟnuous Delivery are described and the decision is
made whether the transfer from the convenƟonal set date release model to ConƟnuous
Delivery model is beneficial.

The paƩern that is central to ConƟnuous Delivery is the deployment pipeline. It is, in
essence, an automated implementaƟon of the build, deploy, test and release process
(Humble & Molesky, 2011, 7). An example of such a pipeline can be seen in Figure 1.

Figure 1: Example of a deployment pipeline (Humble & Farley, 2011, 4)

The deployment pipeline that iniƟally was used at Mentech InnovaƟon can be seen in
Figure 2. Compared to the Figure 1 the iniƟalMentech pipeline lacks all the tesƟng stages,
except for unit tesƟng. AddiƟonally, the releasing of soŌware using this pipeline was not
automated.

Figure 2: IniƟal deployment pipeline at Mentech InnovaƟon

The aim of this assignment was to examine the concept of ConƟnuous Delivery, eva-
luaƟng the benefits and risks of it for Mentech InnovaƟon, as well as looking into the
ways of implemenƟng ConƟnuous Delivery for the Mentech InnovaƟon soŌware. Then
the ConƟnuous Delivery tools and the infrastructure of ConƟnuous Delivery should have
been configured for the Mentech InnovaƟon HUME website to assess the feasibility of
the ConƟnuous Delivery usage for all soŌware at Mentech InnovaƟon. The exact process
of work, including the work phases and steps, is described in chapter 3.

AddiƟonally, together with the Mentech InnovaƟon management and the lead engineer,
the thesis author had set up a list of requirements for the soŌware and the tool choices.
These requirements were used whenworking on ConƟnuous Delivery and choosing tools
and methods of implementaƟon for it.

4

The list of the created requirements can be seen below:

• Repeatability of the deployment process

• Cost of tools - preferably free, otherwise about 100 eur/month

• Preferably open source tools

• Manual code review should be possible

• Rollbacks should be possible

• Deployment should be done to staging environment (conƟnuously)

• Zero downƟme for applicaƟons

• StaƟc analysis for code formaƫng, common bugs and duplicate code should be set
up

• TesƟng should be possible to do before merging

• The tools and working methods should be compaƟble with Git

2.2.1 Scope

By definiƟon, ConƟnuous Delivery is a pracƟce to automaƟcally build, test code changes
and release the soŌware product to a producƟon-like environment (Halonen, 2017, 6).
Therefore this thesis work does not include the other steps of product releasing, such
as management-related decisions (such as opportunity assessments, meeƟngs, etc.), de-
ploying to producƟon, and post-deployment soŌware monitoring. This project focuses
solely on the research and implementaƟon of ConƟnuous Delivery: the build, test and
release (to non-producƟon) stages, configuraƟons and tools for them.

2.3 Problem definiƟon

As menƟoned before, the soŌware at Mentech InnovaƟon was iniƟally delivered with-
out automated tesƟng, standardisaƟon or security. The process of deployment was not
repeatable or reliable, which lead to human errors and Ɵme spent on fixing them. Ad-
diƟonally, the deployments were not documented so the informaƟon about the errors
was not saved. As the deployment processwas not automated, every deployment turned
into a Ɵme-consuming process, which was repeƟƟve and hard to test.

The lack of automated build-test-release process is a problem for several addiƟonal rea-
sons. Teams that do not pracƟce ConƟnuous Delivery have to either spend Ɵmeonmanu-
ally tesƟng the soŌware theywrite or hire extra people to perform that job, which wastes
Ɵme and money of the company. Manual tesƟng increases the Ɵme unƟl the release of
the end product whichmeans the clients do not get new features or bug fixes of the appli-
caƟon for a long Ɵme. The process of releasing of these new updates is manual as well,
therefore every Ɵme it is done, it might be different. The configuraƟon of the system,
the release process, even the soŌware update itself - it all might cause errors during the

5

release process, or, even worse, bugs released to the end users. The process of releasing
is not monitored, so the developers team will not be informed immediately when some-
thing goes wrong with the soŌware, and even then, the root cause of the problem will
be hard to track down. In addiƟon, without monitoring it is not possible to see how the
system behaves when the certain changes to the soŌware are introduced, or, for exam-
ple, when the amount of users increases or new servers are added. Without that, the
planning of the future improvements of the system to meet the demands of business
and customers is very hard. (Humble & Farley, 2011, 4-10.)

The system thatwould improve the situaƟonwith the soŌware releases atMentech Inno-
vaƟon should have solved the aforemenƟoned problems. The build-test-release process
should have been automated. So, by one push of a buƩon, the developers fromMentech
would be able to commit their changes, have them compiled, unit tested, staƟcally anal-
ysed for common bugs and duplicate code, then tested for compaƟbility with the other
parts of the system and capacity tested and aŌer that released to a staging environment.
Only then the soŌware could be released to the users on demand of the company man-
agement.

2.4 Research quesƟons and hypothesis

From the assignment described in chapter 2.2 several quesƟons were formulated with
the main one being:

Would the concept of ConƟnuous Delivery improve the process of wriƟng, tesƟng
and releasing soŌware at Mentech InnovaƟon and if so, how?

From this main quesƟon several subquesƟons and a hypothesis were derived. The sub-
quesƟons helped to answer the main quesƟon. They are listed in chapters 2.4.1 and
2.4.2. The hypothesis is presented in chapter 2.4.3.

2.4.1 Literature research quesƟons

The quesƟons that had to be answered during the literature research phase of the thesis
project were:

• What should the general structure of the deployment pipeline for the Mentech
InnovaƟon soŌware be?

• What are the methods of risk management for the pipeline?

• What are the strategies of deployment and which one suits Mentech InnovaƟon
best?

• Which development workflows exist nowadays and are compaƟble with ConƟnu-
ous Delivery?

6

2.4.2 Design quesƟons

The quesƟons that needed to be answered during the design and implementaƟon phase
of the thesis project were:

• What is the structure of the deployment pipeline for the HUME website?

• What are the best tools for the implementaƟon of the deployment pipeline for the
HUME website?

2.4.3 Hypothesis

The hypothesis that was to be proved or disproved during this research:

The concept of ConƟnuous Delivery will improve the process of soŌware releasing
at Mentech InnovaƟon by making it fast, frequent, repeatable and reliable.

7

3 PROJECT APPROACH

In this chapter the methods chosen for the research project are presented including the
Ɵme limits set for them. The project was divided into two phases. First, a literature
research was conducted to explore the concept of ConƟnuous Delivery, compare the de-
velopment workflows, deployment strategies etc. The literature research phase was fol-
lowed by a design and implementaƟon phase. During this phase the ConƟnuous Delivery
strategy was applied to the HUME website, which required a choice and configuraƟon of
all the necessary tools.

3.1 Research methods

The literature research phase lasted ten weeks. In this phase the problem and the basic
requirements for the ConƟnuous Delivery pipeline were defined. Based on this infor-
maƟon a literature base was created. Using the found literature the benefits and draw-
backs of ConƟnuous Delivery were evaluated. Then a general structure of a deployment
pipeline was drawn. A research was conducted on the risk management methods for the
pipeline and the developmentworkflows. The deployment strategieswere described and
had their advantages and disadvantages evaluated. The research phase concluded with
several decisions:

• A decision was made whether the concept of ConƟnuous Delivery is beneficial for
Mentech InnovaƟon

• A development workflow suitable for theMentech InnovaƟon soŌware developers
was chosen

• A deployment strategy for soŌware applicaƟons was chosen

3.2 Design and implementaƟon methods

The implementaƟon anddesign phase lasted nineweeks. For theworkmethod Scrumban
was chosen. Scrumban is an agile project management methodology. It is based on the
features of Scrum and Kanban - two other frameworks for managing knowledge work
(NikiƟna, Kajko-MaƩsson, & Stråle, 2012).

In Scrum, thework Ɵme is split in short fixed-length cycles called sprints. The deliverables
for each sprint are selected beforehand. The work is sorted by priority and relaƟve effort.
Then the sprint is ”locked” - new deliverables cannot be added during the sprint. AŌer a
couple of weeks - a usual duraƟon of a sprint - all the work of a sprint should be done.

In Kanban a visualisaƟon tool (e.g. a whiteboard) is used to illustrate the work phases, for
example ”ToDo”, ”Ongoing” and ”Done” as columns. Then all the deliverables of a project
are placed into these columns and are implemented according to their posiƟon. For in-
stance, an item can be in the ”To Do” column first when no work has been performed on
it. When the developer decides to implement it the item goes to the ”Ongoing” column.
When it is implemented the item is put to the ”Done” column. Items can be added to the
board if new ideas appear or issues arise. In Kanban the number of items in each column
can be restricted.

8

Scrumban has the features of both Scrum and Kanban. Applied to this project it meant
that a list of requirements and deliverables was made. These requirements and deli-
verables were prioriƟsed using the MoSCoW method. A board was used to visualise the
work phases - ”Open”, ”To Do”, ”Doing”, ”TesƟng” and ”Closed”. ”Open” column featured
all the deliverables and features for the project. ”To Do” included the deliverables that
were worked on in the nearest Ɵme. The items that were being worked on were in the
”Doing” column. The items that needed to be tested were in the ”TesƟng” column. The
deliverables that have been implemented were placed in the ”Closed” column. The list
of deliverables and features could be edited (added to) during the project. The thesis
author was working according to the requirements implemenƟng them one by one.

With Scrumban the flow of work is conƟnuous. There are no sprints, no Ɵme limits.
The deliverables are just implemented one by one and based on the feedback the new
features or issues can be addressed. Therefore, Scrumban is a good match with the idea
of ConƟnuous Delivery.

9

4 LITERATURE RESEARCH

In this chapter an analysis of literature informaƟon is given to answer the research ques-
Ɵons of chapter 2.4.1. For that the concept of ConƟnuous Delivery was examined, includ-
ing the deployment pipeline structures, ways for risk management, development work-
flows and the strategies of deployment.

Geƫng soŌware released to users is oŌen a painful, risky, and Ɵme-consuming process
(Humble & Farley, 2011). A proposed soluƟon for easing the process is ConƟnuous De-
livery. The concept of ConƟnuous Delivery emerged in 2010 when Jez Humble and David
Farley released a book called ConƟnuous Delivery (Sharma, 2018). It was proposed to be
an extension to an already exisƟng ConƟnuous IntegraƟon development pracƟce. The
difference between the two can be seen in Figure 3. ConƟnuous IntegraƟon takes the
soŌware from the phase where it is being wriƩen to the step where the soŌware is be-
ing tested. ConƟnuous Delivery goes even further and allows the developers to automat-
ically release the new soŌware updates.

Figure 3: Comparison of ConƟnuous IntegraƟon and ConƟnuous Delivery

ConƟnuous Delivery is similar to a tradiƟonal producƟon line: just like products, soŌware
needs to be assembled, tested, verified and packaged, and delivered to the users. This
should be automated. For example, if the general tests for soŌware have been wriƩen
beforehand, they can be applied automaƟcally to every release of soŌware to ensure it
works. Then the tesƟng of soŌware will turn into just one push of a buƩon.

4.1 ConƟnuous Delivery rules

There are no strictly defined rules to follow when implemenƟng ConƟnuous Delivery.
However, there are good pracƟces and recommendaƟons to follow to essenƟally achieve
the benefits of ConƟnuous Delivery within the company (Humble & Farley, 2011, 24-29;
see also Farcic, 2017). These principles are listed and shortly described below.

Automate the deployment pipeline All the steps of the deployment pipeline should be
automated. The only excepƟon from this rule is the possible manual tesƟng stage (show-
cases or exploratory tesƟng). All the other tesƟng stages as well as the commit and re-
lease stages should be performed automaƟcally.

Integrate frequentlyWith every implemented feature, integraƟon should be performed
with the rest of the project. This way the delivery of the new features can be conƟnuous.

10

Be Agile Agile teams deliver work in small increments, which results in faster value de-
livery. The requirements and feedback are evaluated conƟnuously to be able to quickly
respond to change.

Keep everything in version control All the code, test scripts, configuraƟons and docu-
mentaƟon for a project should be kept in version control. This is done to be able to start
up the project on any machine on demand and to be able to fallback to the previous
version if needed.

Fix bugs as soon as they appear The problem will be found and fixed faster while the
code is sƟll fresh in the developer’s mind. The developer is not supposed to work on
anything else unƟl the pipeline is finished.

PracƟce test-driven development Tests need to be present before the new code is com-
miƩed, otherwise the buggy code will go to producƟon. Tests can be wriƩen before the
changes to the code are made and they should be based on the user requirements. It is
also possible to write tests right aŌer the new code is wriƩen.

Have a fast deployment pipeline According to Farcic (2017), the average Ɵme for the
pipeline to complete should be 15minutes. Following this recommendaƟon will help the
developers to stay in focus. They are not supposed to work on the new features unƟl the
run of the pipeline is finished successfully. Otherwise it will not be possible to integrate
the new features frequently.

Commit only tomaster branch or short-lived branchesWhenworkingwith Git, if branch-
ing is abused and merging the feature branches with the master branch happens rarely
(less than once a day), then the integraƟon is postponed, and the company does not
pracƟce ConƟnuous Delivery. Ideally, if the deployment pipeline is trustworthy, and the
developers run the local version of the pipeline before commiƫng, it would be much
beƩer and faster to commit directly to master. However, it might be challenging as it
requires high discipline of the developers. It is easier to have short-lived branches and
ensure they are merged with the master as soon as work on them is done.

Run commit tests before merging new commits This can be done by either the deve-
loper manually or the ConƟnuous IntegraƟon server automaƟcally (as menƟoned before,
manual local tesƟng requires high discipline therefore it is challenging, so automaƟc run is
preferred). First, the developer should update their copy of a project by pulling from the
version control system. Then, a local build should be iniƟated and the tests should be run.
This is done to ensure that the developer has the latest version of the projectwhenhe/she
commits, so that the build will not run into merge issues when the developer pushes the
new updates to the version control system. AddiƟonally, it reduces the chance that the
developer introduces bugs in the central repository of version control.

4.2 Advantages and disadvantages

ConƟnuous Delivery advocates claim that, if implemented correctly, the concept can
make the soŌware releases a repeatable, reliable and predictable process (Chen, 2015,
50). However, implemenƟng and actually following the rules of the ConƟnuous Delivery
approach can be too challenging. Tomake a decisionwhether ConƟnuous Delivery is ben-
eficial forMentech InnovaƟon both the advantages and disadvantages of the concept had

11

to be listed and evaluated.

The advantages of ConƟnuous Delivery according to Chen (2015, 52) are:

+ Saving Ɵme and money If the tesƟng and releasing is being performed manually
the company has to hire a tesƟng (Quality Assurance) and deployment team or the
soŌware developers of the company have to spend their Ɵme tesƟng and releasing.
AutomaƟng of the test-release process will help the company save money on the
new employees and the soŌware developers can spend their Ɵme implemenƟng
new features and client requests instead.

+ Improved product quality With ConƟnuous Delivery implemented, aŌer the de-
veloper commits changes to the code the whole code base undergoes a series of
tests. These tests include checkingwhether all the funcƟons of an applicaƟonwork
as intended, as well as checking if the app is sƟll working well together with the
database or other applicaƟons, meets the requirements, etc. These tests help to
reduce the risk of bugs appearing because of human errors and manual configu-
raƟons. AddiƟonally, one of the rules of ConƟnuous Delivery is that if a test has
failed, the developer has to fix it immediately and not leave it for later. Because of
that, the amount of new features reaching producƟon will increase - they will not
anymore be put on a long waiƟng list for the items that need to be fixed.

+ StandardisaƟon The ConƟnuous Delivery pipeline standardises the procedures of
deploying the soŌware. Manual deployment processes are hardly the same be-
tween different updates, because it is very common that the deployment steps
are not well documented or memorised. Using an automaƟc deployment process
the tests, commands, tools used will be the same for each update to the soŌware.
AddiƟonally, each deployment process is automaƟcally documentedwith a deploy-
ment script.

+ No applicaƟon downƟmes With a manual deployment process it is easy to acci-
dentally push a bug to producƟon. In the worst case scenario this will break the
whole applicaƟon andwill result in a disappointment and loss of clients. With auto-
maƟc tesƟng enabled, an accidental push to producƟon is very unlikely to happen,
as tests will fail if there are bugs present in the code.

+ Stronger relaƟonship with the customers With the ConƟnuous Delivery rule of
commiƫng changes whenever a new requirement has been implemented the ap-
plicaƟon will be updated oŌen. The customer requests for new features can be
taken in account as soon as they arrive. Therefore the applicaƟon can follow the
user requirements as closely as possible. AddiƟonally the applicaƟon is always in
a running state. As customers can always see the new ideas and requests turn into
working features the relaƟonship between the company and the clients improves.

+ Lowering stress levelManual releases into producƟon are big events. They are usu-
ally surrounded with a lot of stress, because of the bugs that might occur, human
errors that went unnoƟced and configuraƟon and compaƟbility problems. Manual
releases require a lot of work of the tesƟng and deployment teams. If the release
can be performed automaƟcally by just one push of a buƩon and each release

12

is backed up by version control, then the stress level associated with releasing a
product reduces significantly. (Humble & Farley, 2011, 17-22.)

The disadvantages of ConƟnuous Delivery according to Chen (2015, 53) are:

- Challenging rules The rules of ConƟnuous Delivery (listed in chapter 4.1) can be
challenging to adopt. They require a lot of iniƟal work, team collaboraƟon, disci-
pline and Ɵme. However these rules need to be followed as only then can a team
deliver value to the clients conƟnuously.

- Very good team collaboraƟon needed A very good collaboraƟon and coordina-
Ɵon is needed in the team to successfully implement conƟnuous pracƟces (Shahin,
Babar, & Zhu, 2017, 3925). The team members involved in wriƟng soŌware have
to understand the concept and follow the rules, for instance invest Ɵme in wriƟng
tests, integraƟngwith every new requirement implemented and fixing the code im-
mediately aŌer any bugs appeared. AddiƟonally the teammembers need to know
what features have been implemented and what the status of the project is at all
Ɵmes. This should be visualised.

- LiƩle research on problem solving Very liƩle research has been done on how to
introduce ConƟnuous Delivery in a team (Chen, 2015, 53). This means that even
though there is a lot of advice on the internet on how to adopt the concept more
smoothly, there is no common strategy to ensure the acceptance and collabora-
Ɵon on ConƟnuous Delivery. If some complicaƟons arise there are no common
pracƟces to tackle them efficiently.

- Complicated implementaƟon The pracƟces associated with ConƟnuous Delivery
as well as the configuraƟon and usage of the ConƟnuous Delivery tools require a
set of soŌ and hard skills which are usually not taught in a university. Therefore
the learning curve of implemenƟng the conƟnuous pracƟces can be a boƩleneck.
The implementaƟon of ConƟnuous Delivery takes a lot of Ɵme andmoney, because
hiring a person skilled enough is expensive.

To compare the advantages and the disadvantages of the ConƟnuous Delivery approach a
comparison table was made (Table 1). The table features the benefits of ConƟnuous De-
livery on the leŌ and the drawbacks of it on the right. Each item in the table has a weight
to it. The weights are given based on the preference of the thesis author and they have
been approved by the lead engineer of Mentech InnovaƟon. Benefits have the weights
ranging from 1 to 5, drawbacks have the negaƟve weights from -1 to -5, where 5 is highly
favourable and -5 is highly unfavourable. Under each column the end score for the col-
umn is counted. AŌer that, the total score is counted by subtracƟng the negaƟve value
from the posiƟve value. If the resulƟng total score is posiƟve, then the advantages out-
weigh the disadvantages and the evaluated concept is generally profitable. Otherwise,
the concept is not recommended for use.

As we can see from Table 1 the total score is posiƟve, which means that the ConƟnuous
Delivery approach could theoreƟcally be beneficial to be used at Mentech InnovaƟon.

13

Table 1: EvaluaƟon of advantages and disadvantages

Pros Cons
Saving Ɵme and money +3 Challenging rules -4

Improved product quality +4
Very good team collaboraƟon
needed

-4

StandardisaƟon +3 LiƩle research on problem solving -2
No applicaƟon downƟmes +2 Complicated implementaƟon -3
Stronger relaƟonship with customers +3
Lowering stress level +2

End score: 17 End score: -13
Total score: 4

4.3 Value stream map

Value stream map is a visualisaƟon of the soŌware delivery process including the stages
the soŌware goes through and the Ɵme spent on these stages. CreaƟng a value stream
map is a low-tech process. It aims to depict the soŌware delivery process from a business
point of view starƟng with the concept stage and ending with the client stage (Humble &
Farley, 2011, 107-108).

In the case of Mentech InnovaƟon, creaƟng a value stream map was useful to visualise
the problem and in the end of this thesis work to compare the new value stream map
with the one created before the project. This helped to prove the hypothesis that the
concept of ConƟnuous Delivery is beneficial for Mentech InnovaƟon and improves the
process of soŌware releasing in the company.

Figure 4: Value stream map before ConƟnuous Delivery

The Figure 4 presents the value streammap made based on the informaƟon goƩen from
the developers ofMentech InnovaƟon responsible for the soŌware development, tesƟng
and delivery process as well as the business-decision-related informaƟon goƩen from
the management of the company. The value stream map has been made to depict the
process of delivery of a new feature to an applicaƟon, with the average relaƟve Ɵme
it takes for all the stages of delivery. As the whole process of delivery has been taken
as 100% we can clearly see which stages of delivery take the most Ɵme. AddiƟonally,
the Ɵme has been separated into value-added Ɵme and elapsed Ɵme. Value-added Ɵme
is the Ɵme when the actual work is being done - business meeƟngs or programming.

14

Elapsed Ɵme is the Ɵme spent on waiƟng for the next stage of the project to start. The
stages of the feature delivery are on the top of the Figure 4 - business-related in grey
colour and soŌware-development-related in white.

As we can see from the Figure 4, the total Ɵme spent on the business-related decisions
is much smaller than the Ɵme spent on the development of the feature. The biggest
percentage of Ɵme (30%) is spent between the business and the soŌware stages, but as a
communicaƟon problem it cannot be fixed by ConƟnuous Delivery. With the ConƟnuous
Delivery implementaƟon the author of this thesis aimed to improve the Ɵme spent on
the stages related to soŌware development. As we can see, due to the fact that Mentech
InnovaƟon is sƟll quite a small company and one feature is usually developed, tested and
deployed by the same person, the elapsed Ɵme between the development stages is not
so big. However, the system tesƟng and release stages take 28% (with the value-added
and elapsed Ɵmes included) of the total Ɵme. If the Ɵme spent on these two stages
could be decreased, the new features to the applicaƟon could be released faster, or the
developer could spend this Ɵme on the improvement of the feature or development of
a new one.

4.4 Deployment pipeline

As menƟoned in chapter 2.2 in ConƟnuous Delivery the deployment pipeline is a set of
stages that the soŌware has to go through automaƟcally to be released. These stages
include building the soŌware, tesƟng it and deploying it. For Mentech InnovaƟon such
pipeline had to be drawn to be further implemented later, taking in account the best
pracƟces and the requirements goƩen from the company management and the lead en-
gineer.

The pipeline created for Mentech InnovaƟon can be seen on Figure 5. It is an extended
version of the pipeline that can be seen in chapter 2.2. This pipeline is based on an ex-
ample pipeline from Humble and Farley (2011, 111).

The steps of the pipeline are in the order they are in because the deployment pipelines
are designed to fail fast. In case of failure, the whole pipeline should be terminated as
soon as possible. That is why unit tests, which execute fast are ran first. Longer running
tests come second. (Chang, 2013.)

The flow of work in the pipeline goes as follows:

1. The soŌware developer commits the code updates to version control

2. This source code goes from version control to the commit stage, where it gets com-
piled, unit tested, analysed and packaged. The output of this stage gets stored in
the ArƟfact repository, which acts like a storage for the package and the documen-
taƟon related to it.

3. Next stage is integraƟon. The environment gets configured with the seƫngs from
version control, and the package from the ArƟfact repository is performed inte-
graƟon tests on. The documentaƟon from this process is stored in the ArƟfact
repository.

15

4. The package is sent to the acceptance stage. Again, the environment gets con-
figured with the seƫngs from version control, and the package from the ArƟfact
repository is performed acceptance tests on. The documentaƟon from this process
is stored in the ArƟfact repository.

5. AŌer that the soŌware goes to several environments - user acceptance and capac-
ity stages - that can be run in parallel. The funcƟoning of these stages is similar to
the previous two stages.

6. Then the package is sent to the staging environment. This does not have to happen
automaƟcally, it can also be made as a manual step on demand from the manage-
ment. There the soŌware can be tested, possibly manually, in condiƟons similar
to producƟon.

7. Finally, the soŌware can be manually released to producƟon. The deployment
method for it is further described in chapter 4.6.

Figure 5: General deployment pipeline for Mentech InnovaƟon

The pipeline created above is a generalised version of a deployment pipeline that can
be used for all the soŌware products at Mentech InnovaƟon. However, depending on
an applicaƟon, the pipeline might need to be edited, as some stages of it might not be
necessary or applicable. AddiƟonally, the tools that are needed to implement the pipeline
and the configuraƟons for these tools can be reused from this project, however some
addiƟonal configuraƟons or tool choices might be needed depending on a project.

16

4.4.1 Types of tesƟng

For a full understanding of the methods of soŌware tesƟng, in this chapter the three
types of tests menƟoned in chapter 4.4 that are needed to ensure the delivery of a high
quality applicaƟon are described.

Unit tesƟng Unit tests test a parƟcular piece of code, a funcƟon within the applicaƟon
(Humble & Farley, 2011, 89). For example, an applicaƟon may contain a method to
check the validity of a format of a phone number. Then, an example of a unit test would
be to try to automaƟcally input different values (leƩers, numbers which are too short,
etc.) to see whether the aforemenƟoned method works correctly. Unit tests should run
independently from any outside sources, such as a database, a filesystem, any external
systems, etc.

IntegraƟon tesƟngDuring integraƟon tesƟng the soŌwaremodules are tested as a group.
The way the applicaƟon communicates with the database, filesystem or any other exter-
nal systems is tested (Humble & Farley, 2011, 89). An example of an integraƟon test
would be sending a request from the applicaƟon to the database to retrieve a list of the
company clients and checking whether the received list equals the predefined value.

Acceptance and capacity tesƟngAcceptance tests ensure that all the criteria for the func-
Ɵonality of the system, its usability and availability, are met (Humble & Farley, 2011, 85).
An example of an acceptance test would be checking whether the items are correctly
loaded on a page or whether the page is loaded within a certain Ɵme. Capacity tests are
a subcategory of acceptance tests. Capacity tesƟng is targeted at tesƟng whether the
applicaƟon can handle the amount of traffic it was designed to handle.

Automated tesƟng can provide the confidence for all the people involved in the project
that the soŌware product is working as it should. Performing unit tesƟng, integraƟon
tesƟng, and acceptance tesƟng on a soŌware product allows the engineers to thoroughly
check the funcƟonality of the applicaƟon, which results in fewer bugs, reduced support
costs and saƟsfacƟon and trust of clients. (Humble & Farley, 2011, 84.)

4.5 Risk management

ConƟnuous Delivery as a model of work might be challenging to adopt in a company. As
menƟoned in chapter 4.2, a lot of team collaboraƟon, discipline and Ɵme is needed. In
addiƟon, ConƟnuous Delivery has various rules that need to be followed (chapter 4.1). In
this subchapter the main project risks related to ConƟnuous Delivery are idenƟfied and
the miƟgaƟng strategies are described.

A common model of risk management (DeMarco & Lister, 2003) proposes a way to eva-
luate the risks by their impact and their likelihood. This model allows to assess each risk’s
severity. Based on this model Table 2 was created, as an extension of the model not only
accessing the individual risks’ severity but also calculaƟng the project’s risk percentage
(Table 3).

In Table 2 all the risks are listed (not in any parƟcular order). For each risk the chance it
might happen is given (on a scale from 1 to 5). AddiƟonally, the consequences of risks are
described and the factor of impact on the project is given (on a scale from 1 to 5). From

17

that for each risk a score is given which is the likelihood of happening mulƟplied with the
factor of impact. This score can serve as an indicator of the risk’s severity of impact on
the project.

In Table 3 the end calculaƟon for the risks is provided. The actual score for all the risks is
calculated as a sum of the scores of all the risks. AddiƟonally, as there are 13 risks, the
total maximum score is 325 (calculated as themaximum likelihood (5)mulƟpliedwith the
maximum impact (5) mulƟplied with the number of risks). From that the risk percentage
is calculated. As we can see, the resulƟng risk percentage - the chance that some risk
might happen during working with ConƟnuous Delivery - is at a medium level - 35%.

To prevent the risks listed in Table 2 from happening a miƟgaƟng strategy for the risks
should be put in place. AŌer an analysis of literature (Shahin et al., 2017, 3929-3930),
the thesis author has determined several rules to follow for risk miƟgaƟon. These rules
are listed below with the risks that they can help miƟgate menƟoned (as a number from
Table 2).

• Improve team communicaƟon and awareness (miƟgates risks 1, 2, 3, 4, 6, 7)
– Have regular meeƟngs about the project progress and the usage of ConƟnu-
ous Delivery

– Inform the team members about the outdated branches
– MeeƟngs with the management to discuss progress
– Everybody takes responsibility of their code

• Planning and documentaƟon (miƟgates risks 1, 2, 6, 12, 13)
– Implement a status board showing the status of each feature branch and the
person responsible

– Keep metrics of the developers’ integraƟons

• Improve team qualificaƟon (miƟgates risk 8)
– Provide the team with necessary literature on the topic of ConƟnuous Deli-
very

– Organise trainings and talks on the usage of the ConƟnuous Delivery concept
and tools

• Perform thorough research before choosing tools for usage (miƟgates risk 4)
– Whenever a new tool needs to be chosen, a thorough research should be
conducted and well documented, preferably using a selecƟon matrix (similar
to Tables 4 and 5)

• Pay aƩenƟon to the tesƟng stage (miƟgates risks 5, 8, 9, 10, 11, 13)
– PracƟce test-driven development
– Have a tesƟng workshop with the team
– Have a manual (or user) tesƟng stage
– Run the tests in parallel

The rules listed above propose a soluƟon to all the risks shown in Table 2 and it shows
that with proper communicaƟon within the team, control from the management and
lead engineers as well as group effort of the team it is possible to successfully pracƟce
ConƟnuous Delivery.

18

Table 2: Risk analysis

№ Risk
Likeli-
hood

Consequences Impact Score

1
The progress of the team
is slower than expected

2
The features are
released slower

3 6

2
Developers do not
integrate oŌen enough

4

The team does not
pracƟce ConƟnuous
Delivery, end product
is bad or delayed

4 16

3
It takes a long Ɵme
for the bugs to be
closed

3
The delivery of features
is not fast or
conƟnuous

4 12

4
Developers complain
about the usage of tools

3 Developers work slower 3 9

5 The commit stage breaks 1
The progress slows down,
the commit stage needs
to be fixed

3 3

6
It takes a long Ɵme
for the new features
to be deployed

2
The features do not get
to customer and do not
bring value

5 10

7
The team is not
collaboraƟng sufficiently

3

Possible problems with
the stages of ConƟnuous
Delivery process,
end product is bad
or delayed

4 12

8
The developers or testers
do not have sufficient
experience developing tests

3
The features are
released slower

3 9

9
The developers are working
without sufficient test
coverage

2
The untested
(possibly buggy)
code can be released

5 10

10
The developers do not
trust tests when they
reveal bugs

1

If the developers rewrite
tests to match the code,
the possibly buggy code
can reach producƟon

4 4

11
The tests take too long
to run

3
The developers get
distracted from
programming

2 6

12
IneffecƟve monitoring of
producƟon/staging
environment

2
The team does not know
if there are bugs to fix

5 10

13
The feedback of the
customers takes too long
to reach the developers

2
The customers are
not saƟsfied

4 8

19

Table 3: Risk calculaƟon

Score 115
Total score 325
Risk percentage 35%

4.6 Deployment strategies

The deployment stage is where the product is released to the clients. Therefore it is very
important for the best experience of the client to ensure that the applicaƟon they get
is of good quality. And it is essenƟal to be able to rollback a deployment in case some
problems arise. This will allow the users to get the working version of an applicaƟon back
while the developers are fixing the bugs in the new version.

There are several ways to deploy an applicaƟon. The end choice of the deployment stra-
tegy affects the way system should be configured, as well as the speed of releasing, im-
pact on users in case of bugs andways of fixing these bugs. The strategies for deployment
are listed and described below.

RecreaƟon deployment The recreaƟon strategy is one of the easiest ways to deploy an
applicaƟon (Humble & Farley, 2011, 260). During this type of deployment the old version
of the applicaƟon is turned off and then the new version of the applicaƟon is released.
Even though this strategy is easy to set up, the shuƫng down and then turning on the
applicaƟon implies downƟme between the turned off and on states.

Blue-green deployment For the blue-green deployment two idenƟcal producƟon envi-
ronments (called Blue and Green) are run. One of them - for example Green - is live, the
second one is idle (Figure 6). All the user traffic is in the Green environment.

Figure 6: Blue-green deployment - iniƟal state

The new version of the applicaƟon is released to the Blue environment, where it can be
tested. When the tesƟng is done, the router switches the users to the Blue environment
which becomes live. The Green environment becomes idle (Figure 7).
One of the benefits of this method is the absence of downƟme between the two versions
of the applicaƟon. The users get switched to the new version instantly. AddiƟonally, if
there are some bugs in the new version the user traffic can easily be switched back to the
old version. However, this strategy is harder to set up (because of database limitaƟons -
since both environments use the same database, the database needs to be compaƟble
with both versions of the soŌware) and it is more expensive. (Humble & Farley, 2011,
262.)

20

Figure 7: Blue-green deployment - final state

Canary deployment Similarly to the blue-green deployment, this strategy requires two
producƟon environments, one live and one idle (Figure 8). The whole user traffic is di-
rected to the live version.

Figure 8: Canary deployment - iniƟal state

To release the new applicaƟon the developers turn on the second environment and de-
ploy it there. Then, a small part of the user traffic gets routed to the second environment
(Figure 9). This way the second environment can be tested in the ”real world” condiƟons
to perform capacity tests of the applicaƟon and to ensure there are no bugs released
to the majority of users. In case the selected users report some problems with the new
version, these users can just be routed to the old version of the applicaƟon and the de-
velopers will have Ɵme to fix the issues.

Figure 9: Canary deployment - small user set release

AŌer it has been confirmed that the new version does not contain bugs or issues the rest
of the users can be routed to the environment with the new version of the applicaƟon
and the environment with the old version can become idle (the end state will be similar
to Figure 7). This way the risk of releasing of a new version of the applicaƟon can be
significantly reduced. (Humble & Farley, 2011, 262-265.)

A/B deployment This deployment strategy is similar to the canary deployment strategy.
A/B deployment also requires having two environments, onewith the old applicaƟon and
one with the new. While all the users are using the old version of the applicaƟon a small
subset of users gets routed to the new version. Once the user group confirms that the
applicaƟon funcƟons correctly, the rest of the users get routed to the new version.

21

The difference from the canary release method is that with the A/B deployment strat-
egy the small group of users is chosen based on a certain condiƟon. Some examples of
such condiƟons are geolocaƟon, language or a used technology type (operaƟng system,
browser version, screen size, etc.). (Humble & Farley, 2011, 264.)

ShadowdeploymentWith the shadowdeployment technique two environments are run,
for example A and B. All the user traffic is directed to the environment A. The user re-
quests and acƟons happening in the environment A get copied and sent to the environ-
ment B. This helps to capacity test the environment B. When the environment B passes
the tests and proves to be bug-free the user traffic gets routed from the environment A
to B.(Tremel, 2017.)

To summarise the informaƟon about the deployment strategies Table 4 was created. The
most leŌ column features the comparison parameters, the list of which has been created
based on the requirements received from Mentech InnovaƟon. These parameters have
been chosen as relevant for the way Mentech InnovaƟon deploys soŌware and the im-
pact it has on the end users.

Table 4: Summary of deployment strategies

RecreaƟon Blue-green Canary A/B Shadow
Zero
downƟme

No Yes Yes Yes Yes

Capacity
tesƟng

No No Yes Yes Yes

Targeted
users

No No No Yes No

Complexity
of setup

Easy, no
change
needed in the
release
configuraƟons

Hard, two
environments
are needed

Hard, two
environments
are needed

Very hard,
requires two
environments
and a filter
seƫng

Very hard,
requires two
environments
and seƫngs
to redirect
the requests

NegaƟve
impact
on user

Very high Average Low Low Low

User
feedback

Received
late. Cannot
be handled
fast

Received
late. Can be
handled fast

Received
fast. Can
be handled
fast

Received
fast. Can
be handled
fast

Received
fast. Can
be handled
fast

The comparison of the methods of deployment is presented in a form of a selecƟon ma-
trix (Table 5). The matrix has the same comparison parameters as Table 4. The scores
from 0 to 5 (where a higher figure is beƩer) are given to each deployment strategy based
on the answers in Table 4. AddiƟonally all the comparison parameters have a certain
weight (from 0 to 5, where more is more important) based on the importance of them
for Mentech InnovaƟon. In the boƩom of the table the end score for each deployment
strategy is calculated as a sum of all the parameters mulƟplied with their weights.

22

Table 5: SelecƟon matrix for deployment strategies

RecreaƟon Blue-green Canary A/B Shadow Weight
Zero downƟme 0 5 5 5 5 5
Capacity tesƟng 0 0 5 5 5 4
Targeted users 0 0 0 5 0 1
Complexity of setup 5 4 3 2 1 4
NegaƟve impact
on user

1 3 5 5 5 5

User feedback 1 2 5 5 5 3
Score: 28 62 97 98 89

The weights for the comparison parameters have a reasoning behind them. The user sa-
ƟsfacƟon with the product is very valuable for Mentech InnovaƟon. Therefore, Mentech
would benefit from a deployment strategy in which the soŌware errors or bugs would
impact the user the least and the users would always have a working version of the appli-
caƟon. AddiƟonally, the deployment strategy which allows to test the applicaƟon in the
condiƟons close to real environment with users (capacity test) would make the release
of the applicaƟon more reliable. The author of this thesis work did not have much ex-
perience with seƫng up a deployment strategy, therefore the setup of it should not be
complex, however this is not a hard requirement because a good deployment strategy is
worth invesƟng Ɵme in. The feedback from the users aŌer or during deployment would
be appreciated, however not necessary if the released soŌware is properly tested. Fi-
nally, the user targeƟng is an interesƟng possibility, however for Mentech InnovaƟon it
is not relevant because the product is sƟll in its early stages.

As we can see from the end scores the A/B strategy has goƩen the highest score of 98.
The second best is canary deployment strategy with the score of 97. However Mentech
InnovaƟon does not need the funcƟonality that the A/B method offers - releasing the
new applicaƟon only to the users under a certain condiƟon. Therefore since the A/B
strategy and the canary strategy scored very close results in the matrix the decision was
made to choose the canary deployment as the most suitable deployment method to use
at Mentech InnovaƟon.

4.7 Development workflows

So far in this document the flow of the development work has only been described from
a business posiƟon using a value streammap. AddiƟonally, the development pipeline has
been given depicƟng the flow of a soŌware update from the commit stage to release. But
what are the actual steps of a developer when he or she wants to update an applicaƟon?

To track the changes that are made to the code a version control system, Git, is needed.
This way the developers collaboraƟng on the code can see each other’s code updates,
experiment on new ideas without fearing to break the applicaƟon and record a mes-
sage with each change so other collaborators can understand the reason for changing.
(Blischak, Davenport, & Wilson, 2016, 1.) Basically, Git works so that the developer has
a copy of all the files for the applicaƟon on his or her computer in a folder called a local

23

repository. The changes the developer makes to these files are tracked by Git. Once the
changes to the files aremade the developer can commit them - put them to a staging area
(in this context, staging area refers to a file, which contains informaƟon of what is going
to be commiƩed to version control) ready to be sent to the remote (central) repository.
This remote repository is usually accessible through a website (e.g. GitHub or GitLab).
The developer has to send (push) the changes to the remote repository. Only aŌer that
the other collaborators can see the file updates via one of the aforemenƟoned websites.

There are several models of workflow based on the way the developer interacts with the
version control system: Centralised workflow, Feature Branch workflow (GitHub flow),
Giƞlow, Forking workflow and GitLab flow (ComparingWorkflows, n.d.). There is no stan-
dardised process on how to interact with Git, so these workflow models help to ensure
the soŌware changes in the version control are handled the same way throughout the
team. Themodels ofworkflowmenƟoned beforewill be further described and compared
in this subchapter.

Centralised workflow Centralised workflow uses one repository for all the project files
and changes to them. The default development branch is called master, and all the
changes are commiƩed to it.

The flow of work goes as follows:

1. Developer clones the central repository

2. Developer makes changes to the files in his/her local repository

3. Developer commits and pushes the changes to the central repository

Feature Branch workflow (GitHub flow) The core idea of the Feature Branch workflow is
that the development of each new feature should happen in a designated branch. This
way themain branch -master - never contains broken code. When the developer finishes
working on an update, he/she can create a pull request so the other developers will be
able to check/test the new code and then the head of the project can integrate it in the
main master branch.

The workflow of this method is described below:

1. Developer clones the master branch

2. Developer locally creates a new branch (based on master) with the name of a fea-
ture he/she is working on

3. Developer makes changes to the files on the feature branch

4. Developer commits and pushes the changes to the central repository and creates
a pull request

5. The updated branch gets tested by other developers and the head of the project
integrates the feature branch into the master branch

24

Giƞlow This workflow is similar to the Feature Branch workflow - it also involves having a
master branch and feature branches. In addiƟon to that, Giƞlow allows having separate
branches for preparing, maintaining and recording releases. In Figure 10 an example of
Giƞlow branching is presented. The master branch has the main version of the applica-
Ɵon and the developers are working on the develop branch, creaƟng feature branches
andmerging them back to develop. The feature branches never interact with the master.
When it is Ɵme to release a new version of the applicaƟon the release branch is used.

Figure 10: Giƞlow branching

The flow of work with the Giƞlow method is as follows:

1. The project leader creates the develop branch from the master branch

2. Developer clones the develop branch

3. Developer locally creates a new branch (based on develop) with the name of a
feature he/she is working on

4. Developer makes changes to the files on the feature branch

5. Developer commits and pushes the changes to the central repository and creates
a pull request

6. The updated branch gets tested by other developers and the head of the project
integrates the feature branch into the develop branch

7. When the features on the develop branch are ready for release, a release branch
is created from develop. It gets tested and merged with master once it is ready

Forking workflow With the Forking workflow instead of using one central repository,
every developer has their own. All the project files are sƟll stored in the main project
repository but the development does not happen there. Each developer working on the
project should fork (copy) the main project repository to their own account and develop
the new features there. Once the development of a feature is done, the developer can
file a pull request to themain project repository. AŌer that the project leader can pull the
changes to the master branch of the main repository. Forking workflow is very common
to use in open source projects.

Below is an example of the Forking workflow:

1. A developer forks the main project repository to his/her own account and clones
the project from there

25

2. Developer makes changes to the files of the project

3. Developer commits and pushes the changes to the repository on his/her account

4. Developer creates a pull request from his repository to the main project repository

5. The project leader checks the changes, approves and merges them into the main
project repository

GitLab workflow GitLab is a code hosƟng plaƞorm for version control, as well as a tool
for project planning, codemanagement, ConƟnuous IntegraƟon and Delivery. GitLab has
their own workflow model based on Giƞlow and Feature Branch workflow. Similarly to
these twoworkflowmodels, GitLab workflow proposes to have onemaster branch which
acts as a main releasable version of the applicaƟon and separate branches for all features
that are being worked on.

AddiƟonally to that, GitLab workflow has a set of rules helping to structure and sim-
plify the development process. For releasing created applicaƟons or features to public,
separate branch called producƟon can be used in addiƟon to master. All the commits
to all branches should be tested. The deployments of soŌware should be automated.
Generally, a lot of the rules of the GitLab workflow are set to incorporate the ideas of
ConƟnuous Delivery.

To compare the workflows and choose the onemost suitable forMentech InnovaƟon the
comparison parameters have been defined based on the thesis author’s opinion and the
requirements received from Mentech InnovaƟon. The parameters are defined based on
the author’s and company’s choice because to the best knowledge of the thesis author,
there is no academic research on any of the aforemenƟonedworkflows being beƩer than
the other workflows. AddiƟonally, the workflow to use is usually determined by the hu-
man preferences and team needs.

The comparison parameters were chosen as relevant because they would help to see if
a workflow is a good match with ConƟnuous Delivery. Table 6 has been created to sum-
marise the informaƟon about the workflowmodels based on the predefined parameters.

The comparison of the workflowmodels is presented in Table 7 as a selecƟonmatrix with
the same comparison parameters as Table 6. As well as in the comparison of deployment
strategies, scores from0 to 5 (where a higher figure is beƩer)were given to eachworkflow
based on the answers in Table 6. AddiƟonally, the comparison parameters have been
given theweights from0 to 5 (wheremore ismore important) based on the importance of
them forMentech InnovaƟon. In the boƩomof the table the end score for eachworkflow
is calculated as a sum of all the parameters mulƟplied with their weights.

The weights have been determined based on the following reasoning. The compaƟbility
of a workflow with the concept of ConƟnuous Delivery is the most important, because in
the future Mentech was planning to be using ConƟnuous Delivery. The parameters that
go hand in hand with ConƟnuous Delivery - code review, tesƟng and fast fixing of errors,
have also been considered important to have in a workflow for Mentech InnovaƟon. Ad-
diƟonally, the workflow model should be simple to encourage the team to use it and to
reduce the amount of possible errors and misunderstandings. As Mentech team is sƟll

26

growing, the workflow should scale with its size. Mentech InnovaƟon soŌware develo-
pers are working on several fairly complex applicaƟons therefore it is important that the
workflow model supports that and is typically used for that. The primary repository will
be used for deployment therefore it is preferable but not necessary to keep it clean and
always in a working state.

The resulƟng scores of the selecƟon matrix (Table 7) show that the most suitable and
beneficial workflow for Mentech InnovaƟon is the GitLab workflow.

Table 6: Summary of workflows

Centralised Feature Branch Giƞlow Forking GitLab

Simple
Yes, only
one branch

Only the
master branch
and feature
branches

Similar to
Feature
Branch but
with more
branches

Slightly
more work
because of
forking

Only the
master branch
and feature
branches
but more
branches
possible

Typical use

Small
projects
that don’t
change
oŌen

Large teams
or projects

Large teams
or projects

Open source
projects

Large teams
or projects
deploying
conƟnuously

Code
review

Not
promoted

Promoted
with merge
requests

Promoted
with merge
requests

Promoted
with merge
requests

Promoted
with merge
requests

Scaling
with
team size

Hard to
manage in
big teams

Easy to
manage, team
size does not
maƩer

Easy to
manage, team
size does not
maƩer

Easy to
manage, team
size does not
maƩer

Easy to
manage, team
size does not
maƩer

TesƟng
before
merging

Not
enforced

Promoted
with merge
requests

Promoted
with merge
requests

Promoted
with merge
requests

Promoted
as one of
the rules

Clean
primary
repository

No Yes Yes Yes Yes

CompaƟble
with
ConƟnuous
Delivery

Possible
to set up,
however
lacks support
for some
stages

Possible
to set up,
however
lacks support
for some
stages

Works with
release
and hoƞix
stages

Possible
to set up,
however
lacks support
for some
stages

Yes, takes in
account the
conƟnuous
tesƟng and
deploying

27

Table 7: SelecƟon matrix for workflows

Centralised Feature Branch Giƞlow Forking GitLab Weight
Simple 5 4 4 3 4 4
Typical use 2 4 4 3 5 3
Code review 0 5 5 5 5 4
Scaling with
team size

1 5 5 5 5 3

TesƟng before
merging

1 4 4 4 5 4

Clean primary
repository

0 5 5 5 5 3

CompaƟble with
ConƟnuous
Delivery

3 3 4 3 5 5

Score: 48 109 114 102 126

4.8 Conclusion

As a result of the Literature Research phase of the thesis project the goals that had been
set in the beginning of the phase were reached and the research quesƟons for this phase
could be answered.

The general structure of the deployment pipeline is presented in Figure 5. It features
all the steps a soŌware update has to go through to reach the users. The stages chosen
for the deployment pipeline are Commit, IntegraƟon, Acceptance, User Acceptance, Ca-
pacity, Staging and ProducƟon. AddiƟonally, the source code and the environment and
applicaƟon configuraƟons will be stored in version control and the package, reports and
metadata - in an ArƟfact repository.

To create a risk miƟgaƟon strategy the main project risks related to ConƟnuous Delivery
were idenƟfied. To assess their severity, they were evaluated by their impact and likeli-
hood. Based on that, the risk percentage for the whole project was calculated - 35%. To
prevent the risks from happening a miƟgaƟng rules were offered to help miƟgate each
of the risks. It was found, that, generally, with the proper communicaƟon within the
team, control from the management and lead engineers and group effort it is possible to
successfully pracƟce ConƟnuous Delivery.

Several ways to deploy an applicaƟon have been invesƟgated during the Literature Re-
search phase: recreaƟon, blue-green, canary, A/B and shadow deployment strategies.
All of them define a way the product is released to the clients, ensuring the quality of it
and enabling the developers to rollback a deployment in case some problems arise. AŌer
the comparison of these strategies canary deployment was chosen as the most suitable
deployment method to use at Mentech InnovaƟon.

There are several development workflows nowadays, based on the way the developer
interacts with the version control system: Centralised, Feature Branch, Giƞlow, Forking
and GitLab workflow. AŌer a research into these models of work it was found that Git-
Lab flow is the most compaƟble with ConƟnuous Delivery as a lot of its rules are set to

28

incorporate the ideas of ConƟnuous Delivery. Therefore GitLab flow was chosen as the
most beneficial workflow for Mentech InnovaƟon.

To sum up, during the Literature Research phase of the thesis project the theoreƟcal
basis for an implementaƟon of ConƟnuous Delivery at Mentech was formed. During the
next - implementaƟon - stage the chosen deployment strategy, development workflow,
risk miƟgaƟon strategy and the general pipeline structure were used to implement the
ConƟnuous Delivery pipeline for the HUME website of Mentech InnovaƟon.

29

5 DESIGN AND IMPLEMENTATION

In this chapter the design and implementaƟon of ConƟnuous Delivery for the HUMEweb-
site of Mentech InnovaƟon are presented. First the deployment pipeline structure for
the website was created and the tools were chosen, and the design quesƟons of chapter
2.4.2 were answered. Then the actual implementaƟon of the pipeline for the website
was done. This includes the setup for the ConƟnuous Delivery tool, version control flow
and the tools for building and tesƟng the soŌware.

5.1 HUME website descripƟon

HUME website is the user interface of the Mentech soŌware system (HUME). An image
of the website can be seen in the Appendix 1. HUME website gets the data from sensors
and outputs it in a visual form. On the website the resources like clients (actual clients of
Mentech InnovaƟon) and sessions (measurements taken from the clients) can be man-
aged. To do that, the website has a side menu bar where the lists of clients and running
sessions are displayed. When one of the clients or sessions is clicked, the informaƟon per
client about the measurement sessions or a graph with the running session is displayed.

The informaƟon on the HUME website comes from the web service through HTTP re-
quests and web sockets. The website communicates with the web service, which is con-
nected to the database, so for the HUME website to operate both the web service and
the database are needed. AddiƟonally, the website access is restricted for security pur-
poses using Keycloak (access management tool), so for integraƟon tests Keycloak needs
to be present.

HUME website is wriƩen using the following technologies: HTML, SCSS and Vue.js. For
version control Git and GitLab are used.

5.2 HUME website deployment pipeline

Based on the general deployment pipeline for Mentech InnovaƟon (Figure 5) a custom
pipeline for the HUME website had to be made. Compared to the general deployment
pipeline, two of the stages - User Acceptance (manual tests involving users) and Capacity
- were removed. Capacity tests are not possible to perform on a website, because these
tests are server-side, not client-side. User Acceptance stage was found not necessary, as
the pipeline has manual tesƟng in the Staging environment as well.

The flow of work in the pipeline is similar to the one described in chapter 4.4 except
for the last steps (due to the removed stages). The changes to the website have to be
commiƩed to version control by a developer. Then the rest of the pipeline executes au-
tomaƟcally. The website is built, then various kinds of tests are performed on it, then it
is released to the staging environment and opƟonally to producƟon.

Therefore, the first design quesƟon of chapter 2.4.2 can now be answered. The structure
of the deployment pipeline can be seen in Figure 11 and the descripƟon of the steps of
the pipeline can be found in chapter 4.4.

30

Figure 11: HUME website deployment pipeline

5.3 SelecƟon of tools

The following secƟon lists all the products and tools the author of this thesis chose to
use for the implementaƟon of ConƟnuous Delivery for the HUME website of Mentech
InnovaƟon. AddiƟonally, the reasoning behind the choice of the tools is provided, as well
as the evaluaƟon of the other opƟons, where possible.

5.3.1 Version control

For version control Git and GitLab (GitLab, n.d.) were used. These were the technologies
of choice of Mentech InnovaƟon and the developers had good experience with them
therefore they were the tools used for version control for this project as well.

5.3.2 ArƟfact repository

For an ArƟfact repository several exisƟng ArƟfact repository soluƟons - Cloudsmith, Pack-
agecloud, JFrog ArƟfactory, Nexus Repository Pro and GitLab - were invesƟgated. It was
decided to use GitLab, because it was already being used for storing arƟfacts in the other
projects ofMentech InnovaƟon. AddiƟonally, the other opƟons did not offer any features
that would make the switch from GitLab to the other soluƟon worth it.

5.3.3 ConƟnuous Delivery tool

To orchestrate the whole process of ConƟnuous Delivery, to actually make the soŌware
update go through the commit, tesƟng and deployment stages (defined in the Figure
11) a ConƟnuous Delivery tool was needed. To choose the tool that is best suitable for

31

Mentech InnovaƟon the hard and soŌ requirements were defined and the most popular
tools found on the Internet were compared.

IniƟally for the comparison the following tools were chosen: Jenkins, GitLab CI, VSTS,
Bamboo, Codeship, Codefresh, TeamCity, Travis CI, GoCD, CircleCI and Drone. Mentech
InnovaƟon has set as the hard requirements for the ConƟnuous Deivery tool to be availi-
able as a service (be cloud-hosted) and be compaƟble with GitLab. TeamCity, Drone and
Jenkins are not availiable as a service and GoCD, VSTS, Travis CI and CircleCI are not com-
paƟble with GitLab. AddiƟonally, Bamboo was found to have too liƩle informaƟon and
documentaƟon on the official website to be easy to use. For these reasons themenƟoned
tools did not parƟcipate in the further comparison.

GitLab CI (GitLab ConƟnuous IntegraƟon & Delivery, n.d.), Codeship (ConƟnuous Integra-
Ɵon, Deployment & Delivery with Codeship, n.d.) and Codefresh (Codefresh, n.d.) were
further invesƟgated and their offered features were compared. The gathered informa-
Ɵon as well as the comparison parameters can be seen in Table 8. The comparison pa-
rameters have been defined by the thesis author according to the Mentech InnovaƟon
requirements.

Table 8: Summary of ConƟnuous Delivery tools

GitLab CI Codeship Codefresh
Price ($/month) 95 75 0
Amount of
repositories

Unlimited Unlimited Unlimited

Amount of
users

5 Unlimited Unlimited

Amount of
concurrent jobs

Unlimited 1 2

Docker support Yes Yes Yes

Local tesƟng
Yes with
GitLab-runner

Yes, with Jet Yes

Kubernetes
support

Yes Yes Yes

ConfiguraƟon
as code

Yes Yes Yes

Open Source Yes No No
Community
support
(according to
stackshare.io on
4 january 2019)

4.44K Reddit
Points, 1.85K Stack
Overflow
QuesƟons

1.3K Reddit
Points, 206 Stack
Overflow
QuesƟons

1.04K Reddit
Points, 0 Stack
Overflow
QuesƟons

GitLab
compaƟbility

Yes Yes Yes

Cloud hosted Yes Yes Yes

NoƟficaƟons
Email, web, Slack,
etc.

Email, Slack,
custom noƟficaƟons

Email, Slack

GitLab OAuth
authorisaƟon

Yes Yes Yes

https://stackshare.io/stackups/codefresh-vs-codeship-vs-GitLab-ci

32

The selecƟon matrix - Table 9 - was created based on Table 8. As well as in the other
selecƟon matrices in this document the scores from 0 to 5 (where more is beƩer) were
given to each ConƟnuous Delivery tool based on the informaƟon in Table 8. AddiƟonally,
weights from 0 to 5 (where more is more important) have been assigned to the compar-
ison parameters. These weights have been determined by the thesis author based on
importance of them for Mentech and have been approved by the lead engineer of the
company. In the boƩom of the table the end score for each ConƟnuous Delivery tool is
calculated as a sum of all the parameters mulƟplied with their weights.

Table 9: SelecƟon matrix for ConƟnuous Delivery tools

GitLab CI Codeship Codefresh Weight
Price ($/month) 2 3 5 3
Amount of repositories 5 5 5 4
Amount of users 2 5 5 3
Amount of concurrent jobs 5 2 3 2
Docker support 5 5 5 5
Local tesƟng 5 5 5 5
Kubernetes support 5 5 5 3
ConfiguraƟon as code 5 5 5 5
Open Source 5 0 0 3
Community support 5 4 3 4
NoƟficaƟons 5 3 2 2
GitLab OAuth authorisaƟon 5 5 5 2

Score: 187 170 197

The reasoning behind the parameters is as follows: Mentech InnovaƟon uses Docker for
containerisaƟon for the applicaƟons to run in which eases the environment configura-
Ɵons. There is pracƟcally no other as popular tool for this job so it is important for the
ConƟnuous Delivery tool to be compaƟble with Docker. AddiƟonally it is extra important
for the ConƟnuous Delivery tool to support local tesƟng (for debugging pipelines) and
configuraƟon as code (for version control and reproducibility) as it is one of the rules of
ConƟnuous Delivery. Mentech InnovaƟon has a lot of projects ongoing so the amount of
repositories offered should be high. Community support of the tool of choice is impor-
tant because it allows to get the feedback to the arising quesƟons faster and generally
allows to findmore informaƟon about the use of the tool on the internet. The price of the
tool per month is not very important (unless its extremely high) but it is of course nicer if
it is lower. The SoŌware Development team of Mentech InnovaƟon consists of 5 people
so the tool should minimally offer support for 5 users, and more is beƩer. Kubernetes
is one more tool which at the Ɵme of wriƟng this (7 January 2019) was considered to be
used to Mentech InnovaƟon, so it is beƩer if the chosen ConƟnuous Delivery tool sup-
ports it. Open Source tools are the preferred tools of Mentech InnovaƟon. The amount
of concurrent jobs the tools of choice offers is not very important for Mentech but more
is beƩer. It is important to get noƟficaƟons when the job is finished or there is an error
with a pipeline, but the way noƟficaƟons are managed is not very important. Together
with the use of GitLab the tool should support authorisaƟon through it, but other ways
of authorisaƟon would also be fine.

33

From Table 9 it is visible that Codefresh gained the highest score therefore it should used
for managing ConƟnuous Delivery at Mentech InnovaƟon.

5.3.4 Commit stage

In the following subsecƟon the tools chosen for each step of the Commit stage of Con-
Ɵnuous Delivery are listed and their choice is moƟvated.

Compile and Package Webpack was chosen as the tool to use for compiling and pack-
aging the code for two reasons. First, Mentech InnovaƟon was using Webpack for their
websites so the developers have experience with it and their opinion of it was posiƟve.
Second, compared to the other tools for compiling soŌware (Grunt, Browserify), Web-
pack has beƩer features and easier configuraƟons. Webpack can handle JavaScript, CSS
and image files, it can minify these files which is good for website opƟmisaƟon and split
resources into bundles to reduce the website loading Ɵme. The configuraƟons of Web-
pack are also shorter than of other similar tools, so the errors are less likely to occur and
less Ɵme will be spent on configuraƟon debugging. (Möller, 2018, 11-12.)

Code analysis ESLint and Flowwere used for code analysis. ESLint helps the developers to
make the code more consistent and to avoid bugs by introducing guidelines for the code
wriƟng style (Hautaviita, 2018, 17). ESLint was chosen because it is free and open-source
and it is more popular than similar tools - on 6 December 2018 ESLint had 12888 stars on
GitHub, compared to a similar tool, JSHint, which had 8066 stars. Stars on GitHub allow
the users to mark a project as ”favourite”, so these stars can be an indicator of popularity
of a project. ESLint allows the developers to build their own set of rules for code analysis
or to use a predefined set of rules, which also can be adjusted. Therefore ESLint is very
flexible and easy to use as well. (Paulasaari, 2018, 46-48.)

JavaScript language does not have strong data types, which can cause bugs that are hard
to noƟce (e.g. possibility of inpuƫng a string value in a field for an integer). Flow is
an open-source type checker, that is used to prevent these kind of bugs by allowing the
developers to enable the enforced use of data types. Flow is the only tool for JavaScript
that has this funcƟonality. (Paulasaari, 2018, 50.)

Unit tests In Table 10 the tools for JavaScript unit tesƟng are listed and compared. The
tools that were chosen for comparison are Mocha (Mocha, n.d.), Jasmine (Jasmine Doc-
umentaƟon, n.d.), Jest (Jest, n.d.) and AVA (Ava, n.d.). These are the most widely used
tools for unit tesƟng. The parameters for comparison were derived from the features the
tools provided. The features that are present in the frameworks are marked with an X.

From the comparison in Table 10 we can see that the Jest unit tesƟng framework is the
most feature complete one. For this reason it was decided to use Jest for JavaScript unit
tesƟng at Mentech InnovaƟon.

5.3.5 IntegraƟon stage

Configure environment Docker Compose (Docker DocumentaƟon, n.d.) was used to con-
figure the environment for the website to run in. This tool was used in the company on
other projects and the developers had good experience with it and, addiƟonally, there
are pracƟcally no other tools to perform the job that Docker does.

34

Table 10: Comparison of unit test tools

Mocha Jasmine Jest AVA
Provides a tesƟng structure x x x
Integrates well with Vue x x x x
Provides asserƟon funcƟons x x
Generates and displays test results x x x
Snapshots of components possible x x
Provides mocks, spies and stubs x x
Code coverage reports x
Running tests in parallel x x

Deploy website To deploy the website Codefresh was used as it was the tool generally
used for the whole automaƟon of the ConƟnuous Delivery processes.

IntegraƟon tests It was found that it was possible to use the same tool for the integraƟon
stage as for the unit tesƟng stage. Therefore, Jest was used for the integraƟon tesƟng of
the soŌware at Mentech InnovaƟon as well.

5.3.6 Acceptance stage

Configure environment, Deploy website For configuring the environment and deploy-
ing of the website in this stage the same tools were used as listed and described in the
IntegraƟon stage secƟon.

Acceptance tests For acceptance tests several most popular user interface tesƟng frame-
works were evaluated - Puppeteer, WebdriverIO, Cypress, Nightwatch.js, PhantomJS and
TestCafe. For the Mentech InnovaƟon use case it was important to choose a framework
that has good documentaƟon, is acƟvely supported and is preferably free to use. For
this reason, only Puppeteer, WebdriverIO, Cypress and Nightwatch.js have been further
compared via empirical research - the thesis author tried to install and use each of them
for wriƟng tests for the HUME website. During the research it was found that the tests
in Nightwatch.js were the most readable and easy to write. AddiƟonally, Nightwatch.js
has good documentaƟon (unlike Cypress), is easy to install (unlike WebdriverIO) and has
cross-browser support (unlike Puppeteer) (Nightwatch.js, n.d.). Therefore, Nightwatch.js
was used for acceptance tesƟng of the HUME website.

5.3.7 Staging and ProducƟon

Configure environment, Deploy website The environment that is used to run the HUME
website in the cloud is AmazonWeb Services Simple Storage Service (S3) and CloudFront.
These tools were chosen by the lead engineer of Mentech InnovaƟon, as the choice of
them is out of scope of this project. Amazon S3 is a storage service used to store the files
of the website in the cloud and CloudFront delivers these files to the customers.

To configure the environment and deploy the website, similarly to the previous stages,
Codefresh was used.

35

5.3.8 Conclusion

In the previous chapters the tools that were used for the ConƟnuous Delivery pipeline
of the HUME website were described and the choice was given a reasoning. Therefore,
the second quesƟon of chapter 2.4.2 can now be answered. The tools that are used for
the deployment pipeline are as follows: GitLab for version control and arƟfact repository,
Codefresh for running the pipeline, Webpack for compiling and packaging the code, ES-
Lint and Flow for code analysis, Docker to configure the environments, Jest for unit and
integraƟon tests and Nightwatch.js for acceptance tests. The website is deployed to the
cloud which works with the Amazon Web Services tools.

5.4 Seƫng up version control

The GitLab repository has been set up and used atMentech InnovaƟon before the start of
this project. However the new flow of work - GitLabworkflow - needed to be established.
At the beginning of the project Mentech had several branches on GitLab that were not
used, aswell as themaster branch and the feature branches. The obsolete brancheswere
deleted. With the master branch and the feature branches the GitLab workflow was set
up.

GitLab is also used as an arƟfact repository. It did not need to be set up, as it worked out
of the box, no configuraƟon was necessary.

5.5 Seƫng up the ConƟnuous Delivery tool

To set up the ConƟnuous Delivery tool a configuraƟon file (codefresh.yml) was created in
the HUME website project. This file contains all the seƫngs for the Codefresh pipeline.
The codefresh.yml file lists the stages that the soŌware has to go through to be released
(such as building, unit tesƟng, etc.) and the setup for these stages.

As it canbe seen in Figure 11 there are 5 stages in theHUMEwebsite deployment pipeline.
However generally they can be divided into four - build (commit), test (code analysis, unit,
integraƟon and acceptance), staging and producƟon. Therefore the resulƟng Codefresh
pipeline consists of four stages, and these stages have substages to represent all the steps
of the HUME website deployment pipeline. The image of the resulƟng pipeline steps can
be seen in Figure 12. The stages on the image are represented in colours - steps of the
build stage are grey, test steps are blue, staging is purple and producƟon is green. Each
of the steps of the pipeline is described in this chapter.

For each step of the pipeline several parameters can be specified. For most of the steps
the parameters that had to be setwere an image, stage and commands. The image seƫng
refers to a Docker image - a file containing libraries, tools, and other files necessary to be
able to run the applicaƟon in a specific environment. The pre-made images can be found
on the Docker Hub (library for container images). AddiƟonally, it is possible to create
a custom image. In the steps of the pipeline described further a pre-made image was
used everywhere where it is not stated otherwise. The stage refers to one of the three
stages menƟoned before and is needed to visually separate the files into categories. The
commands list all the bash scripts to perform the acƟons that have to happen in the step.

36

Figure 12: Deployment pipeline steps

The first step of the pipeline is build-test. This step belongs to the build stage. The com-
mands set up the access to GitLab for the project, download all the necessary libraries
and build the website ready for tesƟng.

The second step is test-analysis. This step belongs to the test stage. During this step
ESLint is set to check the project files, the seƫng up and the funcƟonality of ESLint is
described further on in chapter 5.6.

The following step is test-unit. This step belongs to the test stage. During this step a script
is run to execute the unit tests.

Next step is launch-environment. It is needed to launch the database, web service, Key-
cloak, browser for acceptance tests, and the Nginx tool as a server for the website. These
things have to be launched in order for the website to be tested to run in a similar envi-
ronment as it runs in producƟon.

To launch the database an image of it had to bemade first as the aforemenƟoned Docker
Hub did not have the database image that could be used for this project. This image
specifies the management system of the database (PostgresSQL) and lists the data that
has to be in this database (columns, rows, enƟƟes, etc). Similar image had to bemade for
Nginx, as an extension of an exisƟng image from Docker Hub, specifying the Nginx image
from Docker Hub to be used and the files of the website to be used with it.

The launch-environment step uses these images as well as the images from Docker Hub

37

to create the environment for the HUMEwebsite to run and be tested in. Due to that the
tests of the soŌware will be run during this step and therefore this step belongs to the
test stage. This step has two substeps: test-acceptance and test-integraƟon. During each
of them, the scripts for running the tests are executed. The setup of the tesƟng tools and
funcƟonality of tests are described further in chapters 5.7 and 5.8.

AŌer the launch-environment step, an image had to bemade for the deployment to Ama-
zon S3, as an exisƟng pre-made image used different parameters from the ones that were
needed. The newly created image was an extension of the pre-made one. Then the web-
site had to be rebuilt with the seƫngs for the staging environment. Next step is deploy-
staging. It belongs to the staging stage. During this step the website files are pushed to
the staging environment in the cloud.

As it is menƟoned in the scope of the thesis (chapter 2.2.1), the website should be re-
leased to the producƟon-like environment, which is staging in this case. However, for the
ease of the future deployments to producƟon, it was decided to add one more step to
the codefresh.yml file. A condiƟonal step deploy-prod was added. This step is executed
only aŌer the manual approval of the management/lead engineer of Mentech Innova-
Ɵon. The configuraƟons of this step are essenƟally the same as the configuraƟons of the
deploy-staging step. However during this step the website files are pushed to the pro-
ducƟon environment in the cloud. Staging and producƟon environments are the same
in configuraƟon, the difference is that the producƟon version of the website can be used
by clients and the staging version can be used by the developers of Mentech for tesƟng.

AŌer creaƟng the codefresh.yml file, an account on the Codefresh website was made by
the thesis author. Codefresh prompted the user to connect a GitLab repository for which
the deployment pipeline should be run, in this case it is the HUME website repository.
Then the setupmethod for the pipelinemust be chosen, in this case it is the codefresh.yml
filewhichwas described earlier. The file is presented for review and then the deployment
pipeline is automaƟcally created. AŌer that, with every push of an update to the HUME
website to GitLab the pipeline will be automaƟcally run and the developers will be noƟ-
fied by email about the status of it (success or fail). It is also possible to see in real-Ɵme
on the website of Codefresh how the pipeline is running and view the console log for the
status of the pipeline and whether any errors occur and where.

5.6 Seƫng up the Commit stage

For the Commit stage to be set up for the soŌware of Mentech InnovaƟon all the tools
listed in chapter 5.3.4 had to be configured.

Compile and Package For compiling and packaging the website Webpack was added to
the website project. For the seƫng up of it a configuraƟon file was made in the root of
the project. The configuraƟon included the informaƟon about the project files that need
to be exported, the rules for loading the files, etc. AddiƟonally, the script for starƟng up
Webpack was added to the scripts secƟon of the package.json file.

Code analysis For configuring the ESLint tool the packages needed for it were added to
the package.json file of the project (Configuring ESLint, n.d.). The configuraƟon file for
ESLint was automaƟcally generated. This file defines the rules for ESLint to check the

38

code, such as the amount of spacings, posiƟoning of brackets or variable naming. Two
plugins - for the support of Flow and Vue - were added to the file, and some pre-made
rules were overwriƩen.

Unit tests To set up Jest, its package and configuraƟons were added to the package.json
file of the project (Jest: Geƫng Started, n.d.). The configuraƟons were copied from an
already exisƟng project of Mentech InnovaƟon and edited to fit the case. The config-
uraƟon file enables Jest to be used together with Vue.js, it specifies the tools used to
transform the files (for example vue-jest tool transforms Vue.js files into HTML, CSS and
JavaScript), and lists the directory for the setup file used for geƫng informaƟon from the
web service. Unit tests were wriƩen to check the funcƟons of the website components.
For instance, one of the tests ensures that the component default data is being set cor-
rectly when the component loads. The test creates a component instance and expects
the value of a certain text field in a component to be equal to the preset value.

5.7 Seƫng up the IntegraƟon stage

In the following chapter the setup of tools listed in chapter 5.3.5 will be described.

Configure environment, Deploy website The setup of the Docker images and the config-
uraƟon of Codefresh are described in chapter 5.5.

IntegraƟon tests As Jest was used for the integraƟon tests as well as for the unit tests,
no seƫng up of the tool was needed. Several tests were wriƩen to ensure the website’s
compaƟbility with the other elements of the Mentech InnovaƟon system. For instance,
the connecƟon to a web service from which the informaƟon about the clients and ses-
sions gets delivered to the website was tested. During the test the connecƟon to the web
service was established, and the exisƟng website funcƟons were used to try to get the
list of clients from the database or to stop a running session for a client.

5.8 Seƫng up the Acceptance stage

To set up the Acceptance stage the tools described in chapter 5.3.6 had to be configured.

Configure environment, Deploy website The setup of Docker images and the configura-
Ɵon of Codefresh are described in chapter 5.5.

Acceptance tests For the acceptance tests the Nightwatch.js package was added to the
HUMEwebsite project (Nightwatch.js, n.d.). AddiƟonally, a web driver (driver for a brow-
ser to be able to run tests in it) had to be installed. The opƟons for web drivers were
listed on the Nightwatch.js website. GeckoDriver was chosen for use, as it is the driver
for Firefox, which is the browser of choice of the thesis author.

The configuraƟon file for Nightwatch.js had to be created. It specifies the path to the
folder, in which the test files are, and the seƫngs for the web driver (e.g. on which port
the browser should run). A script for running the acceptance tests was wriƩen in the
package.json file.

With Nightwatch.js it was possible to automaƟcally test the acƟons of all the items on
the HUME website, programming the browser to click on buƩons, fill in the input fields

39

in forms and check if the elements of the page loaded correctly. For example, during
one of the automated tests the website would be opened, the username and password
would be filled in to login and the access to the website would be obtained. Then the
funcƟoning of the website would be checked - whether the page has loaded correctly
(e.g. all the images and texts on it), whether the lists of clients and sessions have been
loaded from the web service correctly and whether the page loads at a reasonable Ɵme.

5.9 Seƫng up Staging and ProducƟon environments

The setup of both environments was out of the scope of the project, as the setup of the
cloud environment was needed for the whole soŌware system, not only for the website.
The setup of the Docker image for Amazon S3 and the configuraƟon of Codefresh are
described in chapter 5.5.

5.10 Conclusion

As a result of theDesign and ImplementaƟonphase the design of the deployment pipeline
for the HUME website was made, the research quesƟons for this phase were answered
and the ConƟnuous Delivery pipeline was set up.

The structure of the HUME website pipeline is presented in Figure 11. This pipeline is
similar to the general one (Figure 5) created during the literature research phase, ex-
cept for the User Acceptance and Capacity stages that were removed. According to the
pipeline structure, aŌer an update to the code of the project is pushed to version con-
trol, the website should automaƟcally be built, the code should be analysed, tested (unit,
integraƟon and acceptance) and released into a staging environment.

During the Design and ImplementaƟon phase the tools to implement the deployment
pipeline were chosen. The selected tools are: GitLab for version control and as an arƟfact
repository, Codefresh to run the deployment pipelines, Webpack to compile and package
the code, ESLint and Flow for staƟc code analysis, Docker for environment configuraƟons,
Jest for unit and integraƟon tests and Nightwatch.js for acceptance tests. The staging
and producƟon environments of the website are running in the cloud which works with
Amazon Web Service tools.

The tools menƟoned above have been configured to work together. A working deploy-
ment pipeline was created according to the planned structure of it. The running of the
pipeline, including all the stages and the console log prinƟng out the state of the pipeline,
can be seen by the developers of Mentech InnovaƟon on the Codefresh website.

40

6 VALIDATION

The aim of this project was to examine the concept of ConƟnuous Delivery, evaluate its
risks and benefits and, if the concept proves to be theoreƟcally beneficial, to implement
ConƟnuous Delivery for the HUME website of Mentech InnovaƟon. The implementaƟon
phase included the configuraƟons of the tools and infrastructure of ConƟnuous Delivery.
This chapter will demonstrate the validaƟon of the ConƟnuous Delivery concept and its
implementaƟon. It includes the theoreƟcal assessment of the concept benefits as of the
end of the project, a comparison of the old way of deploying soŌware with the new de-
ployment pipeline and a screenshot and descripƟon of the resulƟng Codefresh pipeline.

For the theoreƟcal assessment the Maturity Model is used. This model can be used to
classify the releasemanagementmaturity of a company, in this caseMentech InnovaƟon.
The model uses several parameters, defining the soŌware development processes and
pracƟces. These parameters have different levels of maturity, so the company can see
how their working pracƟces can improve. (Humble & Farley, 2011, 419.)

The model is presented on the Figure 13. In red the level per each parameter on which
the soŌware of the HUME website of Mentech InnovaƟon was before the implementa-
Ɵon of ConƟnuous Delivery is marked. The soŌware build was automated, however the
tests were not. The environments for each build were created manually. Releases were
reliable, however very Ɵme consuming. Tests were not wriƩen. Data migraƟons were
manual. Version control was set up well, however there was no defined way of how to
work with branches, which resulted in a lot of unused branches.

In green the levels per each parameter on which the soŌware of the HUME website of
Mentech InnovaƟon was aŌer the implementaƟon of ConƟnuous Delivery are marked.
The build-test-release process is automated and is repeatable and reliable. The visual
board and the console log of the Codefreshwebsite allow the developers to see the status
of the deployment pipeline clearly and act on it. AddiƟonally, all the team members
receive emails with the status of the deployment pipeline (success/fail), so any errors can
be proacƟvely managed. All the tesƟng is automated as well as the database changes.
The Codefresh website displays the Ɵme in which the pipeline runs - on average it is 10
mi-nutes. To sum up the level per each parameter moved two levels up on average, and
in general the soŌware deployment process can be considered quanƟtaƟvely managed
or consistent.

To visualise the benefit of using ConƟnuous Delivery for the HUME website soŌware re-
leases, a value stream map was created and it is displayed on Figure 14. This map is an
updated version of the one that can be seen in the Chapter 4.3. The new value stream
map has been approved by the lead engineer of Mentech. Compared to the old version,
this value streammap shows a clear improvement in the development & conƟnuous tes-
Ɵng, system tesƟng and release stages. The system tesƟng and release value-added Ɵme
has decreased, as well as the elapsed Ɵme between stages. We can see that there is no
elapsed Ɵme between the development & conƟnuous tesƟng and system tesƟng stages
anymore, because the developers can now system test the soŌware by one click of a but-
ton whenever they are ready. The only period of elapsed Ɵme of the soŌware delivery
part of the value stream map (between the system tesƟng and release stages) depends
now on a management decision when to release the HUME website to the clients.

41

Figure 13: Maturity Model (Humble & Farley, 2011, 419)

In the old version of the value stream map, the system tesƟng and release stages would
in total take 28% of the total Ɵme, whereas with the ConƟnuous Delivery enabled these
stages take 9% of the total Ɵme, and the leŌover Ɵme can now be spent on the develop-
ment and conƟnuous tesƟng of the HUME website. Therefore, the enabling of ConƟnu-
ous Delivery has clearly benefited the whole process of soŌware release.

42

Figure 14: Value stream map with ConƟnuous Delivery

The resulƟng deployment pipeline created for the HUME website of Mentech InnovaƟon
is working correctly as it can be seen on the Figure 15. More images of the Codefresh
console can be found in the Appendix 2.

The pipeline is started when any of the developers working on the HUME website push
their work to GitLab. If the soŌware has no bugs, all the 13 steps of the pipeline complete
without errors, taking in total 10 minutes 14 seconds to run (this Ɵme can vary, but on
average, it is about 10 minutes). As a result, the soŌware of the HUMEwebsite is pushed
to the staging environment in the cloud, and, when the management of Mentech wants
to release it to their clients, it can be done by just one push of a buƩon.

Figure 15: Codefresh console screenshot

AŌer the validaƟonof the project and the system themain research quesƟonof this thesis
can now be answered and the hypothesis can be proved. The concept of ConƟnuous
Delivery has improved the process of wriƟng, tesƟng and releasing soŌware at Mentech
InnovaƟon. As can be seen from the Figures 13 and 14, ConƟnuous Delivery allows the
process of soŌware development and release to be controlled beƩer, as the state of the
soŌware being tested and deployed can be seen at all Ɵmes and if any errors occur the
developers are noƟfied of it. As the whole deployment pipeline for the HUME website
is automated, the developers can deploy updates to soŌware just by pushing their code

43

to version control, which saves the Ɵme on manual tesƟng and deployment, and any
human errors while releasing are just not possible. The process of soŌware releasing
for the HUME website has become repeatable and reliable, and since the tesƟng and
deployment can be now done by just a push of a buƩon, the developers can create and
release new features faster, which will benefit Mentech InnovaƟon.

44

7 CONCLUSION

During this thesis project a research project was conducted on the usage of ConƟnuous
Delivery for the soŌware at Mentech InnovaƟon. This topic was important for the com-
pany, as in the end of 2019 the company is aiming to turn their emoƟon sensing plaƞorm
HUME into producƟon grade soŌware. The soŌware lacked quality assurance and re-
peatable and reliable releases, and the concept of ConƟnuous Delivery was proposed as
a soluƟon to this problem.

The aim of the project was to validate whether the concept of ConƟnuous Delivery would
improve the process of wriƟng, tesƟng and releasing soŌware at Mentech InnovaƟon
and if so, how? To perform this validaƟon a literature research and an implementaƟon
of ConƟnuous Delivery for the HUME website of Mentech InnovaƟon was to be made. A
hypothesis to beprovedor disprovedduring the researchwas: The concept of ConƟnuous
Delivery will improve the process of soŌware releasing at Mentech InnovaƟon bymaking
it fast, frequent, repeatable and reliable.

During the literature research the concept of ConƟnuous Delivery, its benefits and dis-
advantages were evaluated and the general structure of the deployment pipeline for the
Mentech soŌware was created. The potenƟal risks when working with ConƟnuous Deli-
very were listed andmiƟgaƟng strategies for themwere proposed. It was found that with
proper communicaƟon and planning it is possible to successfully pracƟce ConƟnuous De-
livery. AddiƟonally, the deployment strategies for the soŌware were examined and the
strategy that was found to suit Mentech the best was canary deployment. The soŌware
development workflowswere compared. It was found that GitLab workflowwas the best
compaƟble with ConƟnuous Delivery as a lot of its rules were set to incorporate the ideas
of ConƟnuous Delivery, therefore it was chosen for use at Mentech InnovaƟon.

During the implementaƟon phase of the project the structure of the deployment pipeline
for the HUME website of Mentech InnovaƟon was created and the tools for its imple-
mentaƟon were chosen. Then, the pipeline was implemented using Codefresh. Using
this pipeline, a developer commits their code to version control (GitLab), the code gets
automaƟcally compiled and packaged (with Webpack), unit tested (with Jest), analysed
(with ESLint and Flow), integraƟon (Jest) and acceptance (Nightwatch.js) tested and re-
leased to the staging and producƟon environments (running in the cloud working with
Amazon AWS tools).

The deployment pipeline of the HUME website has proved to work correctly. The vali-
daƟon of the implemented concept was conducted in two ways: using a maturity model
and using a value stream map. Both of these methods proved that the concept of Con-
Ɵnuous Delivery was beneficial to be used with the Mentech InnovaƟon soŌware as it
improved the process of soŌware tesƟng and release by making it fully automated, mea-
sured, controlled and therefore reliable. AddiƟonally, it saved Ɵme for the developers so
that instead of manual tesƟng and releasing Ɵme can now be spent on developing new
features. Thus, the usage of the ConƟnuous Delivery concept was validated and the hy-
pothesis presented at the beginning of the work was proved. It can be concluded that
ConƟnuous Delivery has improved the process of wriƟng, tesƟng and releasing soŌware
at Mentech InnovaƟon.

45

8 RECOMMENDATIONS

In this thesis work the implementaƟon and validaƟon of ConƟnuous Delivery on the soŌ-
ware of Mentech InnovaƟon has been described. However, for the further successful
funcƟoning of ConƟnuous Delivery several recommendaƟons can be given. This chapter
lists the work that can be done to support or improve the created system.

As menƟoned in chapter 4.5, the ConƟnuous Delivery model can be a challenge to truly
adopt in a company due to a big amount of team collaboraƟon, discipline and Ɵme that
is needed. Therefore, to keep the team commiƩed to the usage of the ConƟnuous Deli-
very method, the rules listed in chapter 4.5 should be followed. In general, everybody
in the team should be informed of the pracƟce and encouraged to conƟnuously deliver
the results at the regular meeƟngs. The team members should take responsibility for
their code and write tests for it. AddiƟonally, the management of all the teams pracƟsing
ConƟnuous Delivery should regularly check the status board of the soŌware integraƟons
to see the status of each feature branch and the person responsible for it. With a good
collaboraƟon of the team members the highest level of company deployment maturity
can be achieved.

In regards to the created deployment pipeline, the ArƟfact repository in GitLab is set up
to store the external libraries needed for the project. To store the package between the
stages of the deployment pipeline cache is used. However, as menƟoned in chapter 4.4,
the package should be stored in the ArƟfact repository, as well as the documentaƟon
from every step of the deployment pipeline execuƟon. This needs to be set up.

The ConƟnuous Delivery system is yet to be implemented on the other elements of the
Mentech InnovaƟon system. A lot of the already wriƩen code can be reused (for example
the configuraƟon files for the deployment tools), however depending on the applicaƟon
different tools might need to be chosen. Since this thesis document has proven Con-
Ɵnuous Delivery to be beneficial to be used, both theoreƟcally and pracƟcally, Mentech
InnovaƟon engineers have to set it up for the code they are working on.

During work with the ConƟnuous Delivery tool - Codefresh - it was noƟced that it runs
out of memory when running the pipeline. This can lead to failed deployments because
the Codefreshmemory just cannot handle the amount of code it has to process. The free
Codefresh plan that was used only offers 2GB of pipeline memory. AddiƟonally, this plan
offers 120 builds/month (so the pipeline can be ran only 120 Ɵmes/month), which is not
an issue when running the pipelines only for the HUME website, but it might be too liƩle
if ConƟnuous Delivery with Codefresh will be enabled for all the parts of the Mentech
InnovaƟon system. Therefore, to pracƟce ConƟnuous Delivery effecƟvely, it would be
beneficial to get the Basic paid Codefresh plan, which enables more pipeline memory
(3GB) and more builds/month (220).

46

Bibliography

Ava. (n.d.). Retrieved 25 January 2019, from https://github.com/avajs/ava
Blischak, J. D., Davenport, E. R., & Wilson, G. (2016). A quick introducƟon to version

control with Git and Github. PLoS computaƟonal biology, 12(1), 1–18.
Chang, M. (2013). Model everything to fail fast. Retrieved 22 February 2019,

from https://www.thoughtworks.com/insights/blog/model-everything
-fail-fast

Chen, L. (2015). ConƟnuous delivery: Huge benefits, but challenges too. IEEE SoŌware,
32(2), 50–54.

Codefresh. (n.d.). Retrieved 5 February 2019, from https://codefresh.io/
Comparing workflows. (n.d.). Retrieved 19 February 2019, from https://www

.atlassian.com/git/tutorials/comparing-workflows
Configuring ESLint. (n.d.). Retrieved 25 January 2019, from https://eslint.org/

docs/user-guide/configuring
ConƟnuous integraƟon, deployment & delivery with Codeship. (n.d.). Retrieved 5 Febru-

ary 2019, from https://codeship.com/
DeMarco, T., & Lister, T. (2003). Waltzing with bears: Managing risk on soŌware projects.

New York: Dorset House.
Docker documentaƟon. (n.d.). Retrieved 19 February 2019, from https://docs.docker

.com/
Farcic, V. (2017). The ten commandments of conƟnuous delivery. Retrieved 7 November

2018, from https://technologyconversations.com/2017/03/06/the-ten
-commandments-of-continuous-delivery/

GitLab. (n.d.). Retrieved 25 January 2019, from https://about.gitlab.com/stages
-devops-lifecycle/

GitLab conƟnuous integraƟon & delivery. (n.d.). Retrieved 5 February 2019, from
https://about.gitlab.com/product/continuous-integration/

Halonen, R. (2017). Improving visibility of test results for conƟnuous integraƟon and deliv-
ery pipeline (Master’s Thesis, Degree Programme in InformaƟon Technology, Tam-
pere University of Applied Sciences). Retrieved 12 February 2019, from http://
urn.fi/URN:NBN:fi:amk-2017112518145

Hautaviita, A. (2018). Developing a web applicaƟon on the MEVN stack (Thesis,
Degree Programme in InformaƟon Technology, Turku University of Applied Sci-
ences). Retrieved 6 December 2018, from http://urn.fi/URN:NBN:fi:amk
-2018120319693

Humble, J., & Farley, D. (2011). ConƟnuous delivery: Reliable soŌware releases through
build, test, and deployment automaƟon. Boston: Addison-Wesley.

Humble, J., & Molesky, J. (2011). Why enterprises must adopt devops to enable conƟn-
uous delivery. CuƩer IT Journal, 24(8), 6–12.

Jasmine documentaƟon. (n.d.). Retrieved 25 January 2019, from https://jasmine
.github.io/

Jest. (n.d.). Retrieved 25 January 2019, from https://jestjs.io/
Jest: Geƫng Started. (n.d.). Retrieved 25 January 2019, from https://jestjs.io/

docs/en/getting-started
Mocha. (n.d.). Retrieved 25 January 2019, from https://mochajs.org/

https://github.com/avajs/ava
https://www.thoughtworks.com/insights/blog/model-everything-fail-fast
https://www.thoughtworks.com/insights/blog/model-everything-fail-fast
https://codefresh.io/
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://eslint.org/docs/user-guide/configuring
https://eslint.org/docs/user-guide/configuring
https://codeship.com/
https://docs.docker.com/
https://docs.docker.com/
https://technologyconversations.com/2017/03/06/the-ten-commandments-of-continuous-delivery/
https://technologyconversations.com/2017/03/06/the-ten-commandments-of-continuous-delivery/
https://about.gitlab.com/stages-devops-lifecycle/
https://about.gitlab.com/stages-devops-lifecycle/
https://about.gitlab.com/product/continuous-integration/
http://urn.fi/URN:NBN:fi:amk-2017112518145
http://urn.fi/URN:NBN:fi:amk-2017112518145
http://urn.fi/URN:NBN:fi:amk-2018120319693
http://urn.fi/URN:NBN:fi:amk-2018120319693
https://jasmine.github.io/
https://jasmine.github.io/
https://jestjs.io/
https://jestjs.io/docs/en/getting-started
https://jestjs.io/docs/en/getting-started
https://mochajs.org/

47

Möller, K. (2018). Developing a graphical user interface for modifying chatbot configu-
raƟons (Thesis, Degree Programme in InformaƟon and CommunicaƟons Technol-
ogy, Metropolia University of Applied Sciences). Retrieved 6 December 2018, from
http://urn.fi/URN:NBN:fi:amk-2018052510356

Nightwatch.js. (n.d.). Retrieved 19 February 2019, from http://nightwatchjs.org/
NikiƟna, N., Kajko-MaƩsson, M., & Stråle, M. (2012, June). From scrum to scrumban:

A case study of a process transiƟon. In 2012 internaƟonal conference on soŌware
and system process (ICSSP) (pp. 140-149). IEEE.

Paulasaari, M. (2018). Tools for code quality in front-end soŌware development (Mas-
ter’s Thesis, Degree Programme in InformaƟon Technology, Metropolia University
of Applied Sciences). Retrieved 6 December 2018, from http://urn.fi/URN:
NBN:fi:amk-201804134642

Shahin, M., Babar, M. A., & Zhu, L. (2017). ConƟnuous integraƟon, delivery and deploy-
ment: A systemaƟc review on approaches, tools, challenges and pracƟces. IEEE
Access, 5, 3909–3943.

Sharma, A. (2018). A brief history of devops, part IV: ConƟnuous deliv-
ery and conƟnuous deployment. Retrieved 6 November 2018, from
https://circleci.com/blog/a-brief-history-of-devops-part-iv
-continuous-delivery-and-continuous-deployment/

Tremel, E. (2017). Six strategies for applicaƟon deployment. Retrieved 8 November 2018,
from https://thenewstack.io/deployment-strategies/

http://urn.fi/URN:NBN:fi:amk-2018052510356
http://nightwatchjs.org/
http://urn.fi/URN:NBN:fi:amk-201804134642
http://urn.fi/URN:NBN:fi:amk-201804134642
https://circleci.com/blog/a-brief-history-of-devops-part-iv-continuous-delivery-and-continuous-deployment/
https://circleci.com/blog/a-brief-history-of-devops-part-iv-continuous-delivery-and-continuous-deployment/
https://thenewstack.io/deployment-strategies/

48

Appendix 1 HUME website

Below a screenshot from one of the pages of the HUMEwebsite is presented. The clients
field that can be visible in the side menu of the website is filled with clients (such as
”David Hume”) goƩen from the database through the web service. Similarly to this, the
sessions field (not visible on the screenshot) is filledwith running sessions goƩen from the
wearable sensor devices through the web service. The items in the clients and secƟons
fields can be clicked, causing a calendar of measurements to appear per client or a graph
with a running session to appear per session.

Figure 16: Hume website screenshot

49

Appendix 2 Codefresh console

Below on the Figure 17 the log output from running the Codefresh pipeline is shown.
When the pipeline is running, it is possible to see for every step of the pipeline what is
going on at themoment. All the possible pipeline errors are logged too, so it is convenient
for debugging.

Figure 17: Codefresh console log example

On the Figure 18 the screenshot of the email that is automaƟcally sent by Codefresh
when a pipeline completes is presented. It ensures that the developers are aware of any
failed pipelines or know when the pipeline built succeeded. The email is sent to all the
developers that are using the Codefresh account of Mentech.

Figure 18: Codefresh email example

	Glossary
	INTRODUCTION
	ASSIGNMENT
	Background
	Description of assignment
	Scope

	Problem definition
	Research questions and hypothesis
	Literature research questions
	Design questions
	Hypothesis

	PROJECT APPROACH
	Research methods
	Design and implementation methods

	LITERATURE RESEARCH
	Continuous Delivery rules
	Advantages and disadvantages
	Value stream map
	Deployment pipeline
	Types of testing

	Risk management
	Deployment strategies
	Development workflows
	Conclusion

	DESIGN AND IMPLEMENTATION
	HUME website description
	HUME website deployment pipeline
	Selection of tools
	Version control
	artifact repository
	Continuous Delivery tool
	Commit stage
	Integration stage
	Acceptance stage
	staging and production
	Conclusion

	Setting up version control
	Setting up the Continuous Delivery tool
	Setting up the Commit stage
	Setting up the Integration stage
	Setting up the Acceptance stage
	Setting up staging and production environment
	Conclusion

	VALIDATION
	CONCLUSION
	RECOMMENDATIONS
	Bibliography
	Appendix HUME website
	Appendix Codefresh console

