

Abdollah Shajadi

AUTOMATING SECURITY TESTS FOR WEB APPLICATIONS IN
CONTINUOUS INTEGRATION AND DEPLOYMENT ENVIRON-
MENT

AUTOMATING SECURITY TESTS FOR WEB APPLICATIONS IN
CONTINUOUS INTEGRATION AND DEPLOYMENT ENVIRON-
MENT

 Abdollah Shajadi
 Bachelor’s Thesis
 Autumn 2018
 Information Technology
 Oulu University of Applied Sciences

 3

ABSTRACT

Oulu University of Applied Sciences
Degree programme, Information Technology

Author: Abdollah Shajadi
Title of the bachelor’s thesis: Automating Security Tests for Web Applications in
Continuous Integration and Deployment Environment
Supervisor: Kari Laitinen
Term and year of completion: Autumn 2018, Number of pages: 61 + 3 appen-
dices

This thesis was a research project commissioned by Liana Technologies for cre-
ating tools and processes to implement automated security tests for web appli-
cations.

Discovering and testing available tools and concepts to achieve the aims of this
project was the starting point. Burp Suite Pro, the Python programming language
and Gitlab CI/CD were the main technologies that helped with the progress.

The result of this research was a Python script called Skinner that automated
security testing with Burp Suite Pro in the Gitlab CI pipeline. The procedure of
implementing this technology and reaching the best practice of DevSecOps is
the main ingredient of the developed solution in this thesis.

Keywords: Web Application, Security, Automation, DevSecOps, DevOps,
Python

 4

CONTENTS

ABSTRACT 3

TABLE OF CONTENTS 4

VOCABULARY 5

1 INTRODUCTION 6

1.1 History of Agile in software development and production 7

1.2 Agile information security 9

1.3 Challenges of DevSecOps 9

2 SECURITY CONCEPTS 11

2.1 Shifting security to the left 12

2.2 DevOps Infrastructures 15

2.3 DevSecOps integrations 17

2.4 Log management, Metrics dashboard, monitoring system and alerting 21

2.5 Cultural modification 24

3 SECURITY TESTING TOOLS 28

3.1 Dynamic Application Security Testing (DAST) 28

3.2 Burp Suite Pro 30

4 DEVELOPMENT PROCESS OF SKINNER 32

4.1 Challenges of developing a DAST solution 32

4.2 Life cycle of Skinner 39

4.3 Reporting and Feedback Loop 47

5 FUTURE DEVELOPMENT POSSIBILITIES 51

5.1 Joining several tools to work together 51

5.2 Implementation of AI and Machine Learning 53

5.3 Proactive defence and repair 54

6 CONCLUSION 56

REFERENCES 58

APPENDICES 62

 5

VOCABULARY

TERMS AND ABBREVIATIONS EXPLANATION

CI Continuous Integration

CD Continuous Deployment

DevSecOps Development, Security, Operations

SDLC System Development Life Cycle

OS Operating System

DB Database

SAST Static Application Security Testing

DAST Dynamic Application Security Testing

IAST Interactive Application Security Testing

WAF Web Application Firewall

 6

1 INTRODUCTION

In today’s practice of software development and production, speed plays an

important role. Programmers create and use different methodologies in their de-

velopment cycle to become more and more agile and it helps them to produce

better quality code in less time.

The idea of being agile does not stop with programmers, system administrators

also think about new methods of automating their tasks and handling their oper-

ations, in the Agile way.

A number of tools and methods is developed to get implemented in infrastructures

for sysadmins to make the whole process of development and production faster,

easier and more precise.

Nowadays, the rise of security concerns is witnessed in different aspects of digital

life and even more in the software development and production.

Testing security problems of software has always been a process of manual

scanning which requires its own checklists and long timeframe because shipment

of the software products without security checks may cause an irreparable dam-

age to the software, the company and its users. This makes the security testing

procedures crucial before each release.

The need to introduce an agile process to security scans becomes more evident

when agile development and deployment procedures are already in place in other

departments.

The current way of security testing is the bottleneck in the product shipment lifecy-

cle and it is only one of the reasons why it is necessary to automate part of the

security scans in the software production pipeline.

 7

During the writing of this thesis and while attempting to gather information on the

topic, an acute shortage of relevant literature was discovered, nonetheless, all

available resources were used to their extent and were supplemented with the

experience gained from the full-time job at Liana Technologies as a security en-

gineer in the R&D team.

1.1 History of Agile in software development and production

The word “agile” is defined as “able to move quickly and easily” by Oxford dic-

tionary (1) and it has been in use by software developers as Agile (with capital A)

since 2001.

Seventeen software developers met to work on better development methods: Jeff

Sutherland, Ken Schwaber, Jim Highsmith and Bob Martin can be named among

the people, who published the “Manifesto for Agile Software Development.” (2)

However, project management methods called Iterative and incremental devel-

opment methods can be traced back to 1957. (3)

The Agile software development manifesto has four main values:

1. Individuals and interactions over processes and tools

2. Working software over comprehensive documentation

3. Customer collaboration over contract negotiation

4. Responding to change over following a plan

While there is an importance in the items on the right, the items on the left are

valued more (2). According to these values, with right tools it is possible to

achieve agility in the software development process. By its natural means, it is a

culture and practice that can be implemented in an everyday work environment.

These four values seem simple, but the agile software development targets a

complex product development with dynamic and non-linear characteristics that

can be done with different methodologies and practices using a range of tools.

 8

For instance, Scrum is one of the most famous Agile frameworks for managing

work and tasks in the software development process.

At the 2008 Agile Toronto conference, the “DevOps” term introduced by Andrew

Shafer and Patrick Debois in their talk on "Agile Infrastructure”. The DevOps term

has been steadily promoted from 2009 (4).

The word DevOps is constructed with “development” and “operations”, The main

goal of the DevOps is to automate and monitor all steps of software production

from integration, testing and releasing to deployment and infrastructure manage-

ment.

Agile methods focus more extensively on development and DevOps techniques

focus on deployment. The frequency of development increases in general. There-

fore, it is possible to test and ship the code as fast as possible. Introducing Agile

to an infrastructure is a big step towards reaching the level of high-speed Agile

developments that are already in place. Thus, the code can be shipped as fast

with the help of a DevOps toolchain.

The DevOps toolchain can be broken down into 7 categories as follows:

1. Development and reviewing of Code.

2. Continuous integration tools.

3. Continuous testing tools.

4. Staging and packaging tools to store and manage artifacts for releases.

5. Tools for automation of releases of the software.

6. Tools for configuration management of infrastructure.

7. Tools for monitoring the process and performance.

Many tools and companies can be found within the industry that provide open

source and premium services or products for each of these categories. Building

a seamless solution with all the above-mentioned tools is the main task for the

DevOps engineers with the collaboration of programmers and the management

team.

 9

1.2 Agile information security

The idea of being Agile with security has always been the case. However, having

both the infrastructure and the culture ready for it, is the point that makes it hard

to implement and achieve. Scanning and performing a security test are one of

the most important parts of the software development that need to be addressed

based on the needs of today’s environment.

The classic way of conducting a security test of software is time-consuming,

therefore it is against the Agile culture and it slows down the deployment process.

Thus, designing a set of tools and processes to integrate a security test into the

Agile development and infrastructure is the primary concern.

With this mindset, three parts are integrated: Development, Security and Opera-

tions and consequently the term “DevSecOps” is born. It is a practice that aims

at integrating security into every aspect of an application life cycle from design to

development, testing, production and ongoing operations. Thus, in new

DevSecOps world, automation is the main focus.

1.3 Challenges of DevSecOps

If one searches the Internet for the concept of “Security in DevOps”, many differ-

ent names and arrangements of DevSecOps appear. However, all different ter-

minology defines one concept, and this shows that there is no specific standard

available for DevSecOps even though there is an existing standard for the secure

development life cycle called ISO/IEC 27034-1 (5). Because each environment

is different and each company operates in its own way and set of tools, it is hard

to agree with a standard. For this thesis the term “DevSecOps” is being used to

define the process of implementing a security test in the DevOps infrastructure

and procedures.

One of the biggest challenges of DevSecOps is keeping up with the speed of

DevOps for that implementation of tools and practices are needed considering

the following points:

 10

• Implementing security as code.

• Tools for automating security scans.

• Tools for monitoring.

• Integrating the results and processes with development, operations and secu-

rity teams.

All the above-mentioned practices help to implement security but not necessarily

make it faster. The goal is finding low hanging fruits of bugs being produced in

the early stages of development inside the continuous integration system. There-

fore, security scan tools need to be configured to not to scan deeply and thor-

oughly. Also introducing pre-commit hooks to statically check the code can make

the Security part of the DevSecOps process faster.

Maintaining a proper teamwork can become a challenge when we introduce dif-

ferent teams from multiple departments to each other. With adopting the security

tests into DevOps, new teams that are not used to working together will collabo-

rate more even though the final goal is having an automated process. But it needs

collaboration between the security team, developers and the operation team to

build up the culture throughout the company and complete the process.

The aftermath of the automated DevSecOps process is a huge amount of data.

Managing and processing those logs and data and piping them through security

engineers and developers to handle tasks based on them can be a challenge,

too.

 11

2 SECURITY CONCEPTS

The environment in practice already has a running DevOps infrastructure. A work-

ing Continuous Integration and Continuous Delivery (CI/CD) environment is pre-

requisite. In practice, Developers commit and push code to the version control

system (Git) and then the CI/CD pipeline will be triggered.

Before introducing DevSecOps, companies were going through a time-consum-

ing process of testing the application for security holes before releasing it to pro-

duction. The process can be something like the following list:

1. Developer pushes the feature

2. A release version is being made

3. Software is ready to deploy to production

4. Security team holds the deployment for tests

5. Security report is submitted to the developer

6. Patch is being made, and a new release version is created

7. After the security team's approval, the new release deploys to production

A big gap between the development and deployment can be seen, security tests

are completely separated from CI/CD and it causes the whole production process

to halt and wait for the security team. Therefore, before trying to implement the

security automation and DevSecOps idea, DevOps infrastructure should be dis-

sected to find out which tools are being used and how they interact with each

other and developers.

 12

FIGURE 1. Far left and far right of security testing.

To integrate DevSecOps seamlessly in a company it is important to have a proper

understanding of the tools programmers and engineers are using and how they

use them. It will give us a better perspective of the general culture of the working

environment.

2.1 Shifting security to the left

DevSecOps is about shifting security to the left, as far as possible, running tests

against the developed code as soon as they pushed the new code makes security

everyone's problem. Having security tests starting on the far left of the develop-

ment process helps to divide the attack surface between different sections of se-

curity tests and each sections of security problem will be taken care of separately.

This way security team changes from a team that tells people what to do and

what not to do to a team that works hand in hand with the development team.

 13

FIGURE 2. Top down process of development.

As shown in the Figure 1 on the far left, there is the static analysis, a pre-commit

hook which runs when a developer tries to commit and push the code to the pipe-

line. It scans for different kinds of defects which can be found with the static anal-

ysis.

On the far right, there is penetration testing. It can be performed by a third-party

penetration tester every year or every six months. It is a very expensive process

but with DevSecOps in place, most of the application can be tested during the

development. Penetration testing projects only apply to the production-ready and

shipped code. It can be narrowed down to vague features which cannot be tested

on pre-commit hooks and during the pipeline.

Most of the changes occur in the pipeline and during the development process.

For instance, Implementation of tools to gather metrics and run automated static

 14

and dynamic security tests against testing and staging environment on the pipe-

line or running a continuous bug bounty project helps to maintain a secure appli-

cation throughout the year and not only when it is time to doing the penetration

test.

The figure 2 shows the process of development in the pipeline which will be dis-

cussed in depth in the next chapter. After the code is pushed to the source code

management, The CI/CD pipeline starts running and result of it will be a deployed

staging version of the application. Static and dynamic scans can be performed in

this segment. The results of those scans will be generated then the feedback loop

triggers and the whole process starts again for the next pipeline run.

The feedback loop can be a new issue tracker ticket or a message on the internal

chat or an alert on the monitoring system or even a meeting with the team.

DevSecOps will adopt successfully when everyone starts engaging with the

security tests. To reach the successful stage of integration, different kinds of tools

should be work in the SDLC (System Development Life Cycle). These tools are

being implemented and used by developers, operation engineers, security engi-

neers, management and team leaders.

Tools can be categorized by environment, virtualizations and containers, Dash-

board, log and metrics management, Alerting, Testing, source management, con-

tinuous integration and deployment system.

 15

FIGURE 3. Issue Tracker’s Scrum board view of Gitlab (6).

2.2 DevOps Infrastructures

Before adding a new module to a running system having an in-depth under-

standing of it is imperative, the goal is to add the security test tools to the al-

ready in place and running DevOps infrastructures and make them automated.

First and foremost, the implementation of the source code version control which

goes hand in hand with the CI/CD solution has to be done. The enterprise edition

of Gitlab is being used, it has its own CI/CD pipeline and Git version control with

a nicely done web UI that supports Issue tracker as shown in the figure 3, it helps

developers to browse through the project easily. (6)

Gitlab plays a key role in the DevSecOps implementation, it is a powerful hub for

all of our tools to connect and work together. It centralizes the code, documenta-

tion and operation so managers, developers and security engineers can collabo-

rate on tasks as productive as possible.

 16

FIGURE 4. Perl6-platform command line tool.

The next most important tool to implement is at the far left of the development

process which is the developer’s local environment. Perl6-Platform as shown in

the figure 4, it is being used in the environment in practice, a tool developed at

Liana Technologies that works with Docker containers and based on defined

YAML configuration it creates, configures and runs complicated multi-container

application conveniently and fast. (7)

The Platform is a tool for managing single projects or tightly coupled projects via

the container environment. It is a command line tool for macOS and Unix based

OS (at the writing of this document) that connects with the Docker API. With the

help of its YAML based configuration file, the complicated application environ-

ment can automatically install, configure and start.

The Platform very fast became one of the “must have” tools in the development

cycle. It helps developers to configure their needed tool automatically at the far

 17

left of SDLC. Another famous tool for that purpose is Vagrant (8) from Hashicorp

that does the same thing as the Perl6-platform and supports Linux, macOS and

Windows.

One of the most important parts of being a DevOps engineer is to configure serv-

ers for each stage of deployment which is a very sensitive and time-consuming

task. The importance of using an automation tool for that is significant. Puppet,

an automated administrative engine for the Linux, Unix, and Windows is being

used for DevOps automation. It performs administrative tasks (such as adding

users, installing packages, and updating server configurations) based on a cen-

tralized specification (9).

Terraform is another tool from Hashicorp for building, changing, and versioning

infrastructure safely and efficiently. Terraform hand in hand with other Hashicorp

tool stack can manage existing and popular service providers as well as custom

in-house solutions (10). It helps to define configuration as code even more

throughout the whole system and it enables to automate DevOps tasks even

more deeply, it gives security engineers the power to automate security test in

infrastructure, too.

With the usage of these automation tools deploying new fully configured and fully

automated servers is possible. The metrics agents and tools are pre-installed,

and they can be used in AWS as well as private cloud and servers.

Now that the base of the DevOps infrastructure is being discussed, it is time to

go through tools that concerns a log management and alerting and dashboards.

2.3 DevSecOps integrations

It has been discussed about the challenges on DevSecOps in the section 1.3,

cultural changes are the most important part of the DevSecOps integration. How

they proceed with security problems in the team and company-wide, as well as

the role of the security team and developers when they engage with each other.

 18

FIGURE 5. DevSecOps integration to DevOps infrastructure. (24)

This will be analyzed, and a solution will be found for these kinds of cultural issues

in the current chapter, section 2.5.

The next important part of DevSecOps integration is designing a practical cycle

with a security procedure inside each section, the way that if a manager slices

out each section of the development cycle from far left (developers) to far right

(shipped code), they will be able to see that the security test are running and

the metrics are generating and being sent to monitoring dashboard.

Having a fully organized and automated process like that needs hours of planning

and thinking and it can be drastically different in each environment and company.

Figure 5 is an example of a minimum recommended development process with

security integrated (DevSecOps cycle). As shown in the diagram there is the ver-

sion control server and CI/CD servers which both are managed by Gitlab. There

is an Artifact repository which is a database for all the artifacts generated via

 19

testing tools in the CI/CD pipeline. These artifacts can be e.g. log files, screen-

shots, binary files and DB dumps.

The Issue tracker that is managed by Gitlab also functions as a feedback loop for

security findings between developers and security team. All the security issues

that needs to be fixed by developers are created as a new ticket in the project’s

issue tracker, developers can assign the tickets to themselves and start working

on a fix right away.

The far right of the development process, there are three kinds of servers for

deployments. The latest version of application lives there for different purposes,

testing environment, staging environment and production environment. A set of

logic tests and functional tests and also security tests will run against each of

these environments during those stages of development.

Based on the defined DevSecOps procedure, automating security starts from be-

fore the developer pushed their code to the version control and it continues to

fetch metrics and artifact on all the stages in between and in the end from the

production deployment, the issues are reported back to the developers with the

issue tracker.

The feedback loop gets completed with metrics and dashboard. Developers, the

security team and the management can see what is going on in the system. The

next section, log management and how the dashboard works and what tools are

being used will be discussed in detail.

Security tests throughout the development cycle from the very beginning until

after shipment of the code and deployment can be in different forms. Static Ap-

plication Security Testing (SAST), Dynamic Application Security Testing (DAST)

and Interactive Application Security Testing (IAST) are the ones that are imple-

mented in the procedure. As it can be seen from the figure 5, at least one or more

of these methods can be used at each step of development.

 20

The first step on the far left is when the developer writes the code and wants to

commit and push it to Gitlab. Static code analyzer (SAST) is there as a pre-com-

mit hook that alarms the developer about issues with the code even before it

leaves its machine.

On the next steps the version control and CI/CD pipeline are presented, metrics

and artifacts are gathered and sent to artifact DB and dashboard at all of these

steps. When CI/CD pipeline is running it runs SAST and DAST based on the

instructions against one of the environments, mostly Testing and Staging envi-

ronments.

On the far right of the development, interactive application security testing (IAST)

program that runs against the staging/production machines as a penetration test-

ing project or an on-going bug bounty program. Finally, to complete the cycle

automatically or manually (based on the process) a new issue on the issue

tracker is created to produce the feedback loop in place.

Gathering metrics at every step of the DevSecOps integrated system is what has

been focused on. To process and understand all of those metrics a set of tools

need to be installed which is the topic of the next section, it helps to understand

what exactly happens in this complicated and fast paced procedure.

 21

FIGURE 6. An example of Kibana dashboard with graphs and charts (11).

2.4 Log management, Metrics dashboard, monitoring system and alerting

Considering the discussed DevSecOps solution as a whole, a machine, which

works as one body with the duty of making and shipping software, has many

different, complicated internal organs. It should contain and present a working

security tests and respected metrics at each part of it. The system generates an

enormous amount of log files and metrics on each run of the DevSecOps pipeline

as described in section 2.3.

These metrics need to be gathered, processed, filtered, indexed and then pre-

sented in a nice and understandable manner on a web-based dashboard so that

security, development and management teams can see and use this data fast

and accurate, according to their need and decide based on them.

The solution which has been used for this process is the ELK stack which is a

stack of software made from Elasticsearch, Logstash and Kibana. In this section,

the use case of ELK stack and how to implement it in the environment will be

 22

FIGURE 7. Filebeat workflow (11).

discussed. The ELK stack or as they call it “The Elastic Stack” is built on an open

source foundation. It helps to reliably and securely fetch logs from any source, in

any format and search, analyze, and visualize them in real time (11).

Kibana gives an analytical shape to the data and is the extensible user interface

for configuring and managing all aspects of the Elastic Stack. It has a nicely built

web GUI that helps to build and define charts and graphs also to browse logs

which are being indexed by Elasticsearch.

Elasticsearch is a distributed, JSON-based search and analytics engine de-

signed for horizontal scalability, maximum reliability, and ease of management.

It indexes all the data which being filtered and processed by Logstash and

made visible by Kibana.

Logstash is a dynamic data collection pipeline with an extensible plugin ecosys-

tem and a strong Elasticsearch synergy. With Logstash it is possible to gather the

 23

FIGURE 8. Elastic stack workflow. (11)

metrics and logs from a different part of the system and application via multiple

methods, e.g. Beats, then filter and format the logs and send it to Elasticsearch

for indexing. Logstash support numerous amounts of filter plugin to aggregate

and format any kind of logs. The most famous plugin called Grok that parse arbi-

trary log texts and structure it with the help of its internal patterns and widely used

regular expressions.

Beats is a platform of lightweight shippers that sends data from edge machines

to Logstash and Elasticsearch, the Beats are Logstash's agents. There are sev-

eral different Beats with different specialties e.g. Metricbeat, Auditbeat, Packet-

beat, Heartbeat and Filebeat.

The Filebeat is being used in the environment in practice because the application

generates different sets of log files in different formats all in one folder and the

best beat for shipping and keeping track of all those log files is Filebeat.

As you can see in figure 7 on page 22, Filebeat keeps track of log files and new

lines of logs in each of them and ships them to Logstash. Because of differences

 24

on the process speed between Logstash and Filebeat, one of them can become

slower or faster for that reason Filebeat supports “Back-pressure sensitive proto-

col” to take care of caching and the speed of pushing the logs to Logstash and

not losing any line in the process.

After finishing the configuration of the ELK stack, the journey of a logs starts from

the application writing the event on the designated log file that Filebeat points at,

as shown in figure 8 on page 23. It is possible to submit logs to Logstash via tools

other than Beats but in this case Filebeat is the proper choice. It can pick up the

logs and send them to Logstash then it filters and process them, the result will be

processed and filtered logs in JSON.

Logstash submits the processed logs to Elasticsearch which indexes for search.

It is possible to search through indexed logs in Kibana, but it has a lot more to

offer than just presenting raw logs on the browser, as shown in figure 6 on page

21, it is possible to make useful charts and graphs from the processed and

searchable data and put them together on a dashboard.

One of the most important parts of DevSecOps is making sense of all the tech-

nologies which works together in the process, a good dashboard can enable eve-

ryone to actually use all the generated data and act based on it toward a better

workflow.

2.5 Cultural modification

As mentioned in earlier chapters, the employees working habits or better say

“culture”, throughout the development cycle and even the daily normal human

interaction plays an important role in security. Therefore, cultural modification,

integration of new habits and how everyone deal with security issues is the most

important part of the DevSecOps.

First step is shifting security to the left as far as possible which was the topic of

section 2.1. It means programmers are the first line of security testing, making

programmers feel responsible about security as a part of their daily routine and

 25

not a set of rules that are enforced by security team is a big step toward a better

DevSecOps integration.

On the other hand, the security team needs to understand how developers work

and what they need, they need to stop generating bulky outdated reports full of

false positives and commanding everyone about security parameters.

The DevSecOps idea is about being Agile, a considerable amount of cultural

modification is toward security team itself. Developers and operation teams al-

ready know how to work in an Agile way, it is security team that needs to change

their habits and start learning more about development, operation and produc-

tion.

Working in a fast-paced environment together with operation and development

teams will teach security team about how they should proceed with their tasks. It

makes them a friendly entity that is there to help developers to secure the soft-

ware in a productive manner with their own tools, not dictate what they should do

and what they should not.

The main task as a security team during implementation of DevSecOps is to

make “Security” everyone's problem, when they reach to the point that every per-

son dealing with software feel that they are first hand responsible for the security

of what they are doing they reached the DevSecOps nirvana, for that it is imper-

ative to give security more transparency.

Before the DevSecOps security teams was scan the software and hold the pro-

duction and give the other teams reports of the security problems weeks after

development of that part of the code, then the development team tries to fix the

issues and get the security approval, after that the code can get ready to ship.

With this approach, none of the teams has a big picture of security performance

of the application on each step of it teams are blind to each other’s progress and

it makes the procedure slow and prone to error.

 26

When security becomes everyone's problem and companies implement it the way

that it works on each iteration of development with the speed of the operation

team the security team process the scan data and show it in a user-friendly dash-

board as described in the section 2.4, then every department can see the value

of what they are doing and they can increase their knowledge base and prioritize

their task list based on it.

With security become transparent to teams, it enables them to actually care about

security all the time, to the point that everyone become a member of the security

team and the people in security team become freer to take care of more important

issues which cannot be achieved with automatic scanning.

The DevSecOps and automated security scanning does not eliminate the need

of security teams, penetration testers and bug bounty projects, it just narrows

down their job to the more important parts of the application.

Automated security tools can cover a good amount of security problems that pop-

ulates most of the security reports. The DevSecOps integration finds and reports

all of those issues on the time of development so the application is more secure

right after first push to the version control software.

There is always some problem that an automated test cannot find, it needs the

human interaction (IAST). The DevSecOps makes security teams free to focus

on them and become more efficient on their job, it also makes the third-party

penetration testing projects become less expensive.

All the security concepts needed to know for a successful DevSecOps implemen-

tation is covered in this chapter, the pre-requisites that is needed from DevOps

team for CI/CD and issue tracking to Log Management and dashboards. How

The DevSecOps can be implemented in the environment, explained the behavior

of culture and how it should change toward a better DevSecOps experience.

 27

Next chapter is dedicated to the candidate DAST tools and will describe the tool

which has been used to develop the DAST part of the DevSecOps implementa-

tion.

 28

3 SECURITY TESTING TOOLS

During a full run of the pipeline with the DevSecOps proposal in figure 5 on the

page 18, it scans the application in different ways, static testing (SAST), dynamic

testing (DAST) and interactive testing (IAST). Sometimes it does all of them at

one stage of the pipeline. These different ways of testing have been defined in

the previous chapter and discussed about how they work, the most problematic

and of them to implement is the DAST.

In this chapter, it is about the tools that are available to security teams to use as

an automatic dynamic testing in pipeline. One of them will be picked to develop

the solution based on it in the next chapter.

3.1 Dynamic Application Security Testing (DAST)

Dynamic is about black box testing of the whole or parts of the application with

scanners and to perform that the application needs to be up and running.

The dynamic scan tools do not have access to the source code and only can

browse and scan applications the way a user experiences it, either the backend

or frontend, admin pages or public access pages, there is a set of open source

and premium tools with different capabilities ready to use.

All the tools in talk for dynamic testing of the web applications either crawl the

whole application or accept URLs to scan, then sends the HTTP based attacks

to the application and logs the results, they can perform known types of web at-

tacks e.g. SQL injection and XSS.

There is a range of different tools to choose, from full-fledged web application

scanners with all the numerous features to small specialized tools like fuzzers.

From the big list of scanners, three of them will be discussed. Burp Suite Pro (12),

OWAST ZAP (13) and W3af (14). All of these products provide dynamic security

testing and each of them has their own pros and cons.

 29

W3af is an open source command-line based application written in Python, it is

modular and supports its own scripting system to execute tasks and automate

them.

There is graphical user interface available for this tool but the fact that it natively

runs on Linux terminal makes it very easy to use for implementing it as an auto-

mated tool in the CI/CD pipeline. it makes this tool a good choice for the goals.

An example of W3af audit script is in Appendix 1 (15), the audit script can run

with the following command:

$./w3af_console --s MyScript.w3af

Next tool in the list is OWASP ZAP (Zed Attack Proxy), one of the most famous,

opensource web application testing by OWASP maintained by hundreds of vol-

unteers written in Java with an easy to use GUI.

The pros of OWASP ZAP is that it has plugins for famous CI/CD systems like

Jenkins that makes is very easy to implement Automated scanning with it, in the

current case which is Gitlab CI/CD it can use its API which provides natively by

the application.

The last application in the list is Burp Suite Pro by Portswigger. Burp Suite Pro is

the de facto industrial security testing tool for web applications with a big list of

plugins and features, Portswigger provides a free version but considering the

number of features that paid version enables the Burp Suite Pro will be chosen

one.

 30

FIGURE 9. Options page of Proxy feature of Burp Suite Pro.

3.2 Burp Suite Pro

Burp Suite is a graphical security test tool that works as a proxy and intercepts

all the traffic from user to the web application and tests them. It is written in Java

and supports two versions, free edition and professional edition. Because the free

edition does not support most of the useful features, the professional edition will

be used. It supports functionalities like the proxy server, scanner and intruder.

The advanced options are the spider, repeater, decoder, comparer, extender and

a sequencer.

What will be used mostly is the scanner for the submitted URL during the pipeline

runs via API, whole process will be discussed in the next chapter.

To use Burp Suite Pro on your local machine, the browser’s proxy setting needs

to be changed according to the parameters indicating at “Proxy” section in the

“Options” menu of the application, as shown in figure 9.

 31

It is possible to browse the pages under test. The requests and responses be-

tween the user and web server are showing in the “Proxy” menu and the “Inter-

cept” tab which gives the testers the ability to directly manipulate, accept or deny

them.

Burp Suite Pro logs all the target’s information for instance the content of requests

and responses and the found issues about them in the “Target” page, it is possi-

ble to start other features of Burp Suite Pro against those targets e.g. Scanner,

Intruder.

In this chapter, some of the testing tools which can be used for DAST solution

has been discussed and Burp Suite Pro got chosen then its features and how it

works on its basic usage scenario shortly explained.

 32

4 DEVELOPMENT PROCESS OF SKINNER

The Skinner is a proof of concept script written in Python to show how a DAST

solution can work in an Agile manner. It works in Gitlab CI/CD pipeline, in other

word, it runs directly from inside Gitlab CI configuration file (gitlab-ci.yml) that

holds all the instructions and what is going to happen in the pipeline.

Burp Suite Pro scans need to be start automatically inside Gitlab CI/CD pipeline

against the latest running version of the web application which is the version that

recently pushed either to Master branch or other branches. Because of the re-

source limitation, these kinds of scans can become time-consuming, it is better

to limit them to the master branch.

In this chapter, first in section 4.1, all the challenges during the development of

the Skinner and the DAST solution and the development process will be dis-

cussed.

In section 4.2 the Skinner will be tested and how it works and how to use it in

production will be discussed. Section 4.3, Agile feedback loop which comes with

its monitoring and reporting systems is the topic.

4.1 Challenges of developing a DAST solution

Developing a solution that needs to work automatically inside and within other

solutions naturally makes it imperative to provide an API, preferably a REST API.

Current version of Burp Suite Pro does not support any kind of REST API. It can

be run on headless mode which makes it possible to develop an API plugin and

run it in terminal, the first challenge is to run a version of Burp Suite Pro in terminal

that supports REST API.

 33

FIGURE 10. Burp Suite Pro API Swagger documentation page.

Open source third-party REST API add-ons are available, after testing several

of them for instance an extension called Carbonator (16) and an API add-on de-

veloped by VMware (17), VMware solution has been chosen to be incorporated

to the solution because of simplicity and fewer resource overhead.

Burp Rest API by VMware is a tool written in Java that needs to be compiled, it

takes the binary file of Burp Suite Pro and after compilation generates a new Burp

Suite Pro binary that supports API, the API documentation that built with Swagger

(18), Burp Suite Pro API starts with the following command:

$ java -jar burp-rest-api-1.0.0.jar

As presented in figure 10, it is possible to browse API documents with the follow-

ing link:

http://localhost:8090/swagger-ui.html#/

It is worth mentioning that at the time of writing this thesis Portswigger does not

have any plan to implement internal API for Burp Suite Pro or include support for

 34

CI/CD integration. Instead, they are working on a separate product that auto-

mates security scans on CI/CD pipelines (19). Based on a discussion on their

support portal at the moment (August 2018) there is no release date specified for

that product yet.

The second challenge comes to light when the Burp Suite API is running and tries

to scan the application, this is a DAST solution and Burp Suite Pro scans the

application as it experienced by the user (Black Box), for that reason the applica-

tion needs to be deployed first.

FIGURE 11. Deploy configuration of Gitlab CI.

Continuous Delivery (CD) part of the pipeline is to deploy the application, there

are special features ready to use in Gitlab CI/CD, with adding the configuration

presented in figure 11 to the “gitlab-ci.yml” file, it is possible to deploy the last

changes during pipeline. More details about the configuration will be discussed

in the next section. The application is running, configured and accessible via the

following URL:

http://deploy.intra

Current state is the “Deploy” stage of the pipeline, in the minimum pipeline con-

figuration, unit test stage comes before deploy stage and security test stage

comes after, to connect to deployment server, server's SSH key need to be added

to Gitlab Variables as $DEPLOY_KEY so pipeline runner can connect and login

with it.

This happens under before_script, after that the connection to the deployment

server is initiated then it executes the checkout to master branch and pulls latest

 35

changes under script directive on line 51. Deploy stage is happening only if the

pipeline is running for master on lines 53 and 54.

After applying the changes, the deployment server is ready and the continuous

deployment (CD) is configured, now accessing to the latest pushed changes

while the pipeline is running is possible. It is possible for the Burp Suite Pro API

to scan the application, this leads to the next challenge that is browsing the ap-

plication.

Burp Suite Pro is working as a proxy that indexes the URLs that were browsed

then it queues them for the scan, it needs to perform tasks in the application like

logging in, filling the forms and changing to pages.

The DAST solution needs to be fully automated, it needs a headless browser that

accepts browsing instructions. There are several products for this purpose, the

most famous of them is Selenium.

FIGURE 12. Selenium Web GUI.

To define Selenium in one sentence: “Selenium automates browsers. That's it!”,

as its website asserts (20). The Selenium server can accept different types of

drivers as a browser engine, the Chrome driver is being used in this case.

The application is written in PHP, for writing the Selenium instruction file in PHP

Facebook/WebDriver (21) is needed which by the time of writing this thesis is the

best Selenium WebDriver for PHP.

 36

To install Selenium, Docker container has been used, because of its usability and

speed. A new server on the same network as the Burp Suite Pro API installation

and Deployment server initiated for Selenium called selenium.intra. It is possible

to install Chrome version of Selenium with the following command:

$ docker run -d -p 4444:4444 selenium/standalone-chrome

This command exposes port 4444 of the container to the port 4444 so it is possi-

ble to access the Web GUI of the Selenium as presented in figure 12 via the

following URL:

http://selenium.intra:4444/wd/hub/static/resource/hub.html

In the real-world situation while the DAST solution is in production this URL will

never be used, everything happens automatically but during development, it is

helpful to use it for debugging purposes.

In the next section, the configuration and usage of Selenium and other tools to-

gether will be explained in detail, now that the main DAST toolchain is ready it is

possible to test a security scan.

FIGURE 13. BDD-Security test case (22).

The questions that arises is that how long it will take and what will be scan and

what will happen if this running scan holds up the pipeline for a long time and

makes the whole process very slow, this is the fourth and the most important

challenge.

 37

Time and resource play a vital role in every system, the optimization of the pro-

cesses should be done very well, so it does not undermine the Agility of the de-

signed system. The focus should be on different parts of the system that makes

it bottleneck of the process. This can break down into three questions.

1. How security test is written?

2. What scans are done?

3. When the scans are done?

By answering these questions, it is possible to optimize and minimize the usage

of time and resource by the processes. There are two different approaches to

answer the first question, first way to do it is BDD (Behavior Driven Development),

there are similar solution with this approach like BDD-Security by Continuum-

security (22) and Mittn by F-secure (23). To work with these applications the pro-

grammer needs to write security tests in BDD as shown in figure 13, like they

write unit tests, they need to think of different possibilities and write tests for it

which the result will be pass or fail.

This approach narrows down what the scanner will be going to scan to the parts

of the application which recently changed and the type of vulnerabilities, it has a

dramatic impact to the scanning time and usage of the resources.

The downside of this strategy is that programmers have to write test cases for

every part of the application which needs to be tested, it makes them to think of

different attack vectors. Next approach is that what the developed python script

(Skinner) does, running scanner only for newly developed pages.

This way with Burp Suite Pro spider being disabled it only put browsed URLs that

are being instructed by developer to the scanning list and the security scan en-

gine starts to test all the ways to intrude the application.

 38

FIGURE 14. gitlab-ci.yml example.

It will make scan time longer but in the other hand what programmers have to

do is much easier and that improves the integration of DevSecOps. This solu-

tion is user-friendly, and developers can start using it faster. Also those pages

are the target pages of the application being scanned, this answers the second

question (What scans are done?).

Programmers instruct in Selenium config file only the parts of the application they

want to get queued for scan. This way it reduces time on writing test case and

also scanning time. The detail of how to write a Selenium instruction file is in

section 4.2.

 39

FIGURE 15. Development to Production timeline.

The final question to answer is: When the scans are done? the scan triggers and

starts during the pipeline to answer this question first the question of “what hap-

pens in pipeline?” need to be answered, that is the topic of next section.

In the minimum configuration possible, there is three stages, unitest, deploy and

securitytest. The position of security test stage is crucial for the process, so se-

curity test needs to be the last thing that happens in pipeline right before produc-

tion release.

4.2 Life cycle of Skinner

In section 4.1, the challenges and solutions of DAST has been discussed and the

introduction of toolchain that will enable security team to reach the automated

dynamic security tests like Burp Suite Pro API as the security scanner that runs

on the following URL:

http://burp.intra

Next is the deployment server that fetches latest changes during pipeline runs

which is accessible via the following URL:

http://deploy.intra

Last but not least, Selenium server with Chrome driver which automates browser

tasks that is accessible with the following URL:

http://selenium.intra

 40

FIGURE 16. Skinner command line tool.

The pre-requisites and infrastructure to use Skinner (24) are ready, Skinner is a

command line tool written in Python as seen in figure 16 that works like a glue, it

connects and orchestrate all of the pieces and manages the reporting and pro-

cessing of the results. Skinner runs inside the security test stage of the pipeline

and connects and runs tasks related to scans via Burp Suite Pro.

As shown in figure 15 on page 39, security test is after deployment to the stag-

ing environment and before Deployment to the production environment. As dis-

cussed on section 2.3 and presented in figure 5 on page 18, There are three

kinds of environments running the web application, testing, staging and produc-

tion.

 41

FIGURE 17. Selenium instruction PHP file.

Figure 15 on page 39, illustrates the big picture of stages of the pipeline, after

developer pushed the changes to Gitlab, CI/CD pipeline triggers and starts run-

ning, the full example of “gitlab-ci.yml”, it is available on figure 14 on page 38.

First stage that will run is unittest which executes all the functional tests written

by the developer after passing of this stage developers can continue their work

on the next commits, they will be notified about security issues found by the

DAST solution later via chatOps or issue tracker.

 42

FIGURE 18. The life cycle of Skinner during a pipeline run.

Next is the deployment stage which makes the latest change of the application

available on the deployment server after that pipeline moves to the securitytest

stage that runs the Skinner. Finally, if the new version is ready to deploy to pro-

duction it will go for the procedure.

As it can be seen from figure 14 on page 38, securitytest stage is the last stage

of the pipeline which starts on line 56, like other stages there is before_script,

script, and limitation of branch that the stage executes for which is the master

branch.

On before_script it installs needed libraries for the running Skinner that consists

of curl, wget, Python, and with Python package manager (pip3), it then installs

Requests package and MatterMost driver (for ChatOps) that will be explained in

section 4.3, Also Selenium library for python which enable Skinner to be able to

connect to Selenium.

 43

FIGURE 19. The Manifest.json file, Chrome proxy plugin.

Under the script directive the Skinner is being prepared to run on lines 63 to 65,

it runs with the following command:

$ python3 ./skinner/main.py -b http://burp.intra -u http://deploy.intra -sU sele-

nium.intra -id $CI_PROJECT_ID

The options in the command are as follow:

1. -b: Defines the Burp Suite Pro API server address.

2. -u: Defines the deployment server.

3. -sU: Defines the Selenium server.

4. -id: Defines CI project id that being created by Gitlab CI.

 44

FIGURE 20. The proxy.js file, Chrome proxy plugin.

Gitlab CI configuration file is ready, next file to write is the Selenium instruction in

PHP which named security_test.t.php. as shown in figure 17 on page 41.

It first defines the Facebook/WebDriver namespace and import its functions.

Then comes the Selenium server host to connect with at line 10. Before start

browsing the application, it needs to configure the headless automated Sele-

nium Chrome proxy to get behind Burp Suite Pro API and send traffic through it.

A custom made Chrome plugin will be used, it is the proxyplugin.zip, on line 12

that contains two files, proxy.js and manifest.json as a Chrome plugin requires,

it can be found in the content of these file in figure 19 and figure 20.

From lines 14 to 18 the proxy plugin is being enabled and the Chrome driver

session initiated, now it can perform the browsing tasks, the web application in

this case, is restricted and needs to login to access internal pages so the first task

is to log in and go through authentication procedure.

 45

From lines 21 to 32, pre-configured username and password is defined and with

special Facebook WebDriver selectors it can accessed to login and password

elements and with sendKeys and pressKey it performs the login task.

By now the login process queued in Burp Suite Pro to scan, now it needs to set

the URLs of the application to scan as follow:

$driver->get('http://deploy.intra/installations');

From lines 36 to 40, it described 3 URLs can be changed on different cases as

programmer desires, Selenium will browse these pages and it gets queued to

Burp Suite Pro scan list that will be scanned right after. On the last line, 43, it

closes the session which helps the Selenium server to stay light and clean for the

next pipeline run.

The major goal on DevSecOps and the DAST solution is being Agile in security.

In a practical language with the programmer’s point of view it means, the pro-

grammer develops code, commits and pushes changes to Gitlab and it runs the

CI/CD pipeline, after it finishes, the developer receives notification and new ticket

according to the found security issues. This goal will be reached with the help of

Skinner script.

Figure 18 on page 42, represents everything that happens after programmer

pushes code to Gitlab. Right after Gitlab received new commits it runs the pipeline

according to the definition on the Gitlab CI YAML file. First thing CI runner does

is executing unittest stage that is a set of test cases including the Selenium se-

curity test that proxy the URLs to Burp Suite Pro and add them to the scanning

queue.

 46

FIGURE 21. The results of Skinner on Gitlab CI runner console.

With that being passed successfully it deploys latest changes to deployment

server and with confirmation of successful operation it moves to the last stage

that is security test, as described before it installs and runs Skinner on this stage.

In this stage of pipeline, Skinner connects to Burp Suite Pro via REST API and

configures it then starts the scan and waits for the Burp Suite Pro to send back

the report of the found issues.

 47

Burp Suite Pro starts the scan of the queued URLs against the updated applica-

tion on the deployment server and in the end, it sends back report data via REST

API to Skinner. During this time Skinner keeps track of the scan and at the end

of the scan after it received the report as shown on figure 21 it prints all the se-

curity issues on Gitlab CI runner's console.

In the end, Skinner creates new tickets with full details on Gitlab Issue tracker via

Gitlab’s official REST API and sends a full PDF version of the report to Matter-

Most channel. Skinner is a part of DevSecOps that plays the role of DAST. It has

been designed in a way that it takes a minimum amount of energy and time from

developers and tries to be as efficient and fast as possible during its process in

pipeline.

Skinner is an open source tool that I developed at Liana Technologies which can

be accessed via the following link on GitHub:

https://github.com/LianaTech/skinner

4.3 Reporting and Feedback Loop

The developed solution is sending a full report of the scan from Burp Suite Pro

API to the running Skinner in Gitlab CI pipeline, next it needs to get the most out

of it, processing these data and metrics and reports are one of the most important

parts of project.

The problem with old fashion penetration testing reports is that security team

gives a PDF or a printed version of hundreds of pages of a technical report about

security issues of the project. Going through that report for developers is a frus-

trating process and it ends up with having a tremendous number of false positives

and unrelated issues.

 48

FIGURE 22. New ticket in Gitlab issue tracker by Skinner.

There is a “big data” problem, on each run of the pipeline it sends a big number

of issues from Burp Suite Pro to Skinner to process and most of these issues are

false positive and repetitive.

To handle this, a false positive database comes handy, to save all the found is-

sues and tag them as a legit issue or false positive, every time Skinner receives

an issue it compares it to false positive database and then generates report and

creates new ticket based on it.

After a proper filtering and categorization an issue list is being made, it is time to

generate metrics and send them to ELK stack for monitoring and further deci-

sions. In figure 22, a screenshot of created ticket in Gitlab Issue Tracker via Skin-

ner can be seen and the sent message in the chat system (MatterMost) in figure

23 is presented.

 49

FIGURE 23. New message containing list of issues in Mattermost by Skinner.

ChatOps is a part of DevSecOps that makes connecting and messaging between

people and system to people efficient. feedback loop is one of the most important

concepts of DevSecOps that is going to complete the process. Everything that

has been done in the pipeline and with the help of cultural modification everything

will show off and start making sense in feedback loop process. It is where people

connect, present and meet to see results, solve problems and decide about next

steps of the development.

The tools that helps to have a productive feedback loop process like Gitlab Issue

Tracker, an automatically created new ticket for critical problems via Skinner or

the MatterMost Channel comes handy when the goal is sending the list of found

issues.

With all these tools powered by analytical processing of ELK stack everything

that needs to make security, management and development team connected to-

gether in a productive way is in use.

 50

In this chapter, how a DAST process can work in pipeline, its relationship with

Skinner script and how it is implemented in the Gitlab CI pipeline has been dis-

cussed. The most important challenges that was on the way to achieve a proper

DAST solution explained and also, the way it is possible to use generated data

as a bi-product of everything happened in pipeline, mostly Burp Suite Pro report.

This chapter presented what has been done for DAST part of the DevSecOps

implementation in Liana Technologies infrastructure, of course, it can be devel-

oped and thought through in many different ways. Skinner is a proof of concept

of a dynamic security test inside DevOps infrastructure was the result.

There are many ideas to complete this project and implement it in production for

daily usage of development life cycle which is the topic of the next chapter. How

it is possible to make it more Agile, smarter and better, how it can help to eliminate

external intruders and help developers to patch bugs as fast as possible.

 51

5 FUTURE DEVELOPMENT POSSIBILITIES

Every system can be improved and made better. The important part of the devel-

opment of an IT solution is to prioritize and decide what will need to be done first

and what lake the most, by now a DAST solution as part of DevSecOps has been

developed.

Development and improvement of the Skinner is always the case but the whole

system can work better, in this chapter the ideas of future development of the

DevSecOps system is the topic. As one may heard this famous phrase: “hackers

are always one step ahead of us”.

The ultimate goal is to change that phrase, with making security test Agile and

with the use of all the new methodologies and technologies to try to get close to

a performance of securing and defending the system that it may never be

achieved before.

5.1 Joining several tools to work together

As described in the last chapter Skinner’s role is acting as a glue to connect and

orchestrate different tools to achieve one goal, receiving security scan results

from Burp Suite Pro, the tools that Skinner handles are Burp Suite Pro, Selenium

and Gitlab Issue Tracker.

All of these works together to obtain scan reports and create new tickets for crit-

ical security issues but in practice with the security point of view it is just Burp

Suite Pro scanner against the web application that does the heavy lifting of dis-

covering security problems.

One of the main ideas for future development is adding more security tools for

more sophisticated scans to the system like fuzzers, analyzers like security pro-

tocol analyzers and OS scanners.

 52

All of these new tools can run during the pipeline, it is about being Agile in

DevSecOps, so speed should not be sacrificed for more tools, automated security

scanning is to find low hanging fruits and problems that can be found automati-

cally.

Deep security testing for sophisticated problems is done by the security team,

penetration testers and bug bounty hunters. When the time comes with proper

testing, the decision needs to be made about either to run the new tool within

Skinner during pipeline or collect the report from Skinner and continue testing

separately after the pipeline finished running then update the monitoring tools

with new reports and metrics.

The first tool to consider is about fuzzing, fuzz testing helps to discover various

types of programming errors in software e.g. Buffer Overflow, the fuzzing tools

are called fuzzers, they provide the software with numerous unexpected and in-

valid and random inputs, it looks for crashes and how software react by those

inputs.

There are many fuzzers available, one of the candidates is Radamsa (25) the

famous fuzzer by OUSPG (Oulu University Secure Programming Group) (26),

many other tools like Mittn (23) are implemented it as a part of their solution, as

developers of Radamsa defined it:

“Radamsa is a test case generator for robustness testing, a.k.a. a fuzzer. It is

typically used to test how well a program can withstand malformed and potentially

malicious inputs.

It works by reading sample files of valid data and generating interesting different

outputs from them. The main selling points of Radamsa are that it has already

found a slew of bugs in programs that actually matter, it is easily scriptable and

easy to get up and running.”

 53

Next important tool to consider is OSquery by Facebook (27), as its developers

defined it:

“OSquery is an operating system instrumentation framework for OS X/macOS,

Windows, and Linux.

The tools make low-level operating system analytics and monitoring both perfor-

mant and intuitive. There are many additional continuous build jobs that perform

dynamic and static analysis, test the package build process, rebuild dependen-

cies from source, assure deterministic build on macOS and Linux, fuzz test the

virtual tables, and build on several other platforms not included above. Code

safety, testing rigor, data integrity, and a friendly development community is the

primary goals.”

OSquery can be implemented to the environment to gather metrics about how

the backend is performing.

5.2 Implementation of AI and Machine Learning

Technology is getting more and more advanced in every aspect, every day. AI

(Artificial Intelligence) and machine learning are in those advancement areas,

these technologies recently had big impact on security industry too.

As read on the news about hackers using AI and machine learning to gather in-

formation and attack businesses and financial organizations (28), the only way to

respond to these attacks is with the power AI and machine learning.

AI can be utilized in many ways, for instance, at the gateway of external applica-

tion's interface by a WAF and a firewall, discovering the type of attacks and fetch

metrics and trigger alarms at the pipeline which helps with categorization of false

positive findings and the management of metrics.

 54

In the current project the focus is to make the final report smarter, as different

tools is being combined, each of them on each run generates tremendous amount

of data to process mostly in the form of logs, metrics, artifacts and reports. These

data need to be sent to its designated place, e.g. databases, dashboard or

fileservers for further processing.

Elastic search stack which already explained in section 2.4, and how it helps to

make sense of data, the Elastic stack is a powerful tool and the best at what it is

doing but it can even be better with additional machine learning toolset. HELK (A

Hunting ELK) (29) is the Elastic stack with advanced analytic capabilities that

enables machine learning (ML) within ELK stack.

HELK is an example of using tools like Spark, Hadoop and Kafka within ELK

stack to makes ELK to not only alert the teams with each event but also predicts

what is going to happen next and decide which alert is critical and may damage

the system.

5.3 Proactive defense and repair

What is the end goal of DevSecOps with the power of AI and Machine learning?

What need to be achieved is the production application works stable and new

development code ship without glitches. This takes enormous amount of effort

from all teams by working together, with the help and agility of DevSecOps and

technologies that makes it happen it is possible to get close to this end goal.

The story of receiving attacks from intruders and blocking the traffic by admins,

finding the problem, committing the fix by programmers so it ships, and produc-

tion code get patched is an old story of software companies that occurs all the

time every day in different shapes and forms. In these cases, the incident hap-

pens and manually reported to the developer team to work on a fix.

The idea is filling this gap between inbound traffic that makes a disturbance to

the internal DevSecOps process and pipeline with the help of Machine learning,

analytical power and software automation.

 55

With the new developments the intruder that is either an adversary or a bug

bounty hunter starts testing and attacking the production server from internet.

The AI-powered gateway WAF starts finding out the type of security issue and

which part of the code it concerns then passes the information to the dashboard

and internal teams to alarm and process further.

Next the AI-powered dashboard tries to find out if it is a false alarm or actually

the intruder may end up breaking the system then in case of real attack it alarms

the team which is responsible for that part of the code and creates a new ticket.

After code fixed and committed to the Gitlab, the DevSecOps pipeline checks if

the issue fixed and finally deploys the changes to the production server.

The code can be patched even before the attacker successfully hack the system

and in their point of view the code may never had a problem and it all seems like

false positive to them.

This is the end goal of DevSecOps and how it is possible to achieve a security

nirvana in development and production process. This goal is plausible with the

tools and procedures that explained in this thesis.

 56

6 CONCLUSION

During this research, different scenarios and tools was tested to reach the aim

and as the result, Skinner was developed and described in chapter 4, it connects

all the parts of a dynamic security scan of the running application.

In chapter 1, agile development and how it impacts the way of software develop-

ment and lifestyle of a software company has been explained. How it is being

used by programmers, how operations department adopted it for their infrastruc-

ture management and how security teams can make use of it for making software

and processes more secure.

Security concepts like DevSecOps was the topic in chapter 2, how it is possible

to make use of the already running DevOps infrastructure to deploy and automate

security tools and which type of tools can help security teams to make it possible,

most importantly the cultural aspect of DevSecOps has been discussed and how

without improving it even with the best tools in place the outcome can become a

failed try.

All the introductions and concepts paved the road for the main tool of this thesis

(Skinner), chapter 3 is about explaining the security tools can be used, How Burp

Suite Pro works explained in detail and how it can help with the goal which leads

to chapter 4, in this chapter the development of DAST solution was the topic and

Skinner, how it runs in Gitlab CI/CD pipeline and how programmers, security team

and management team can benefit from it.

The most important element of DevSecOps is human, all the tools which intro-

duced help to do the job faster, more efficient and more precise, next important

element to implement for a DevSecOps solution is the environment. Each com-

pany and each team have different habit, culture and infrastructure, there is no

plug and play formula for DevSecOps that works everywhere, each environment

needs to be understood separately for its own DevSecOps solution.

 57

Throughout this thesis, a road map has been drawn and a practical example of a

case in Liana Technologies has been discussed, the Skinner solution is just at

the beginning of its challenging journey.

 58

REFERENCES

1. Oxford Online dictionary, Cited 10.05.2018

https://en.oxforddictionaries.com/definition/agile

2. Manifesto for Agile Software Development, Cited 10.05.2018

http://agilemanifesto.org/

3. Larman, Craig; Basili, Victor R. (June 2003), Cited 10.05.2018

https://pdfs.seman-
ticscholar.org/f9b3/ca89c69bacfade039c8be40762c6857bda11.pdf

4. Debois, Patrickm, Cited 10.05.2018

http://www.jedi.be/presentations/agile-infrastructure-agile-2008.pdf

5. ISO/IEC 27034-1:2011, Cited 10.05.2018

https://www.iso.org/standard/44378.html

6. Gitlab enterprise source controll and CI/CD, Cited 12.05.2018

https://about.gitlab.com/

7. Perl6-Platform development environment management, Cited 12.05.2018

https://gitlab.com/tavu/perl6-platform

8. Vagrant environment management, Cited 12.05.2018

https://www.vagrantup.com/

 59

9. Puppet automation system, CIted 14.05.2018

https://github.com/puppetlabs/puppet

10. Terraform infrastructure orchestration system, Cited 20.05.2018

https://github.com/hashicorp/terraform

11. Eastic stack (ELK), Cited 05.06.2018

https://www.elastic.co/products

12. Burp Suite Pro, Cited 20.06.2018

https://portswigger.net/burp/

13. OWASP ZAP project, Cited 20.06.2018

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

14. W3af project, Cited 20.06.2018

http://w3af.org/

15. Automated Audit using W3AF, Cited 03.07.2018

https://www.owasp.org/index.php/Automated_Audit_using_W3AF

16. Carbonator plugin for Burp Suite Pro, Cited 10.07.2018

https://portswigger.net/bappstore/e3a26fff8e1d401dade52f3a8d42d06b

17. Burp Suite Pro Rest API from VMware, Cited 10.07.2018

https://github.com/vmware/burp-rest-api

 60

18. Swagger tool to document API, Cited 10.07.2018

https://swagger.io/

19. Portswigger forum on developing new CI/CD tool for security scans, Cited
10.07.2018

https://support.portswigger.net/customer/portal/questions/16672914-integration-
of-burp-with-jenkins

20. Selenium website, Cited 18.07.2018

https://docs.seleniumhq.org/

21. Facebook’s php webdriver for Selenium, Cited 18.07.2018

https://github.com/facebook/php-webdriver

22. BDD-Security tool from Continuumsecurity, Cited 22.07.2018

https://www.continuumsecurity.net/bdd-security/

23.Mittn tool from F-secure, Cited 01.08.2018

https://github.com/F-Secure/mittn

24. Skinner tool for automatic security tests, Cited 01.08.2018

https://github.com/LianaTech/skinner

25. Radamsa Fuzz testing tool, Cited 05.08.2018

https://gitlab.com/akihe/radamsa

26. OUSPG (Oulu University Secure Programming Group), Cited 05.08.2018

https://www.ee.oulu.fi/research/ouspg/

 61

27. OSquery by Facebook, Cited 08.08.2018

https://osquery.io/

28. Wired, Firewalls don’t stop hackers, AI might, 27.09.2017, Cited 08.08.2018

https://www.wired.com/story/firewalls-dont-stop-hackers-ai-might/

29. HELK software (A hunting ELK), Cited 08.08.2018

https://github.com/Cyb3rWard0g/HELK

 APPENDIX 1/1

APPENDICES

--

W3AF AUDIT SCRIPT FOR WEB APPLICATION

--

#Configure HTTP settings

http-settings

set timeout 30

back

#Configure scanner global behaviors

misc-settings

set max_discovery_time 20

set fuzz_cookies True

set fuzz_form_files True

set fuzz_url_parts True

set fuzz_url_filenames True

back

plugins

#Configure entry point (CRAWLING) scanner

crawl web_spider

crawl config web_spider

set only_forward False

set ignore_regex (?i)(logout|disconnect|signout|exit)+

back

#Configure vulnerability scanners

##Specify list of AUDIT plugins type to use

 APPENDIX 1/2

audit blind_sqli, buffer_overflow, cors_origin, csrf, eval, file_upload, ldapi, lfi,
os_commanding, phishing_vector, redos, response_splitting, sqli, xpath, xss, xst

##Customize behavior of each audit plugin when needed

audit config file_upload

set extensions
jsp,php,php2,php3,php4,php5,asp,aspx,pl,cfm,rb,py,sh,ksh,csh,bat,ps,exe

back

##Specify list of GREP plugins type to use (grep plugin is a type of plugin that
can find also vulnerabilities or informations disclosure)

grep analyze_cookies, click_jacking, code_disclosure, cross_domain_js, csp, di-
rectory_indexing, dom_xss, error_500, error_pages,

html_comments, objects, path_disclosure, private_ip, strange_headers,
strange_http_codes, strange_parameters, strange_reason, url_session,
xss_protection_header

##Specify list of INFRASTRUCTURE plugins type to use (infrastructure plugin is
a type of plugin that can find informations disclosure)

infrastructure server_header, server_status, domain_dot, dot_net_errors

#Configure target authentication

auth detailed

auth config detailed

set username admin

set password password

set method POST

set auth_url http://pcdom/dvwa/login.php

set username_field user

set password_field pass

set check_url http://pcdom/dvwa/index.php

set check_string 'admin'

set data_format username=%U&password=%P&Login=Login

back

 APPENDIX 1/3

#Configure reporting in order to generate an HTML report

output console, html_file

output config html_file

set output_file /tmp/W3afReport.html

set verbose False

back

output config console

set verbose False

back

back

#Set target informations, do a cleanup and run the scan

target

set target http://pcdom/dvwa

set target_os windows

set target_framework php

back

cleanup

start

