

Kristian Ratia

ANALYZING MOVIE TRENDS IN GAMES BASED ON PUBLIC

DATA

ANALYZING MOVIE TRENDS IN GAMES BASED ON PUBLIC

DATA

 Kristian Ratia
 Bachelor’s Thesis
 Spring 2019
 Information Technology
 Oulu University of Applied Sciences

 3

TIIVISTELMÄ

Oulun ammattikorkeakoulu
Tietotekniikan tutkinto-ohjelma, ohjelmistokehitys

Tekijä: Kristian Ratia
Opinnäytetyön nimi: Elokuvien trendien analysointi peleissä, perustuen julki-
seen dataan
Työn ohjaaja: Kari Laitinen
Työn valmistumislukukausi ja -vuosi: Kevät 2019 Sivumäärä: 36

Pelin tekemiseen menee viikosta useampaan vuoteen. Ison ja viimeistellyn pe-
lin tekeminen maksaa paljon. Isot peliyritykset tutkivat tarkasti markkinoita, jotta
heidän pelinsä menestyisi mahdollisimman hyvin. Pienillä peliyrityksillä ei ole ra-
haa eikä työvoimaa tutkia markkinoita. Elokuva-ala tutkii markkinoita hyvin tar-
kasti, lisäksi elokuva-ala käyttää paljon rahaa markkinointiin ja aloittaa markki-
noinnin hyvissä ajoin ennen elokuvan julkaisua.

Tässä opinnäytetyössä tutkitaan miten elokuvien trendit vaikuttavat pelien tren-
deihin. Tutkimuksen perusteella elokuvien trendit näkyvät pelien trendeissä.
Tässä työssä tutkitaan vain elokuvien ja pelien määriä, ei sitä miten trendit nä-
kyvät tuloksessa rahallisesti. Jotkut trendit korreloivat erittäin vahvasti, toiset
taas heikosti. Tulevista elokuvista voidaan päätellä jossain määrin millaisia pe-
lejä on tulossa.

Työtä varten ladattiin suuri määrä julkista dataa elokuvista ja peleistä. Datan kä-
sittelyä varten asennettiin serveri joka ajoi MySQL tietokantaa. Työssä käytettiin
Linux-serveriä, MySQL-tietokantaa ja useita Linuxin apuohjelmia tiedon käsitte-
lyyn.

Asiasanat: IMDb, Steam, Game industry, Movie industry

 4

ABSTRACT

Oulu University of Applied Sciences
Information Technology, Software Development

Author: Kristian Ratia
Title of thesis: Analyzing movie trends in games based on public data
Supervisor: Kari Laitinen
Term and year when the thesis was submitted: Spring 2019 Pages: 36

Making a game will take time from a couple of months to a couple of years. The
Time needed depends on how large and polished the game will be. Big game
companies can use hundreds of millions dollars to make a game while small in-
die game companies use only a couple of thousands of dollars. There is a huge
difference between game budgets, but every company has the same problem:
predicting if the game will sell. Big companies will use their resources for the
market research. Making the research will take time and cost money.

The movie industry is another big industry that uses a lot of money for making
an entertainment product and also uses a lot of money to research which mov-
ies could succeed. Big movie studios begin marketing new movies as soon as
possible. It is possible to know what kinds of movies are coming next year.

This thesis studies whether there are any correlation between movies and
games. It is done by comparing movie tags to games tags. Tags are down-
loaded from IMDb and Steam which are public databases. This thesis study
only does the amount of tags correlate together. It does not study whether the
income of movies and games correlate together.

This thesis proves that there is a correlation between the amount of movie and
game tags. An average correlation is strong enough so that predicting incoming
games from incoming movies is possible.

Keywords: IMDb, Steam, Game industry, Movie industry

 5

PREFACE

I would like to thank my family for support, Oulu Game Lab for knowledge, for a

place where I wrote my thesis and for great connections.

Oulu, 23.10.2018

Kristian Ratia

 6

TABLE OF CONTENTS

 TIIVISTELMÄ 3

 ABSTRACT 4

 PREFACE 5

 VOCABULARY 8

1 INTRODUCTION 9

1.1 Internet movie database 9

1.2 Steam 10

1.3 Timeline 10

1.4 Studies made before 10

2 TOOLS 12

2.1 Server 12

2.2 wget 12

2.3 aria2c 12

2.4 sed 13

2.5 Bash Shell Script 13

2.6 screen 14

2.7 MySQL 14

3 WORK 16

3.1 Setting up server 16

3.2 Downloading data 17

3.2.1 IMDb data 17

3.2.2 Steam data 20

3.3 Getting the information 21

3.3.1 IMDb 22

3.3.2 Steam 22

3.4 Deleting unnecessary text 22

3.4.1 IMDB 22

3.4.2 Steam 25

3.5 Databases 25

3.5.1 Making the database 25

4 RESULTS 28

 7

4.1 50 Most used tags 28

4.2 Tags that found from both 28

4.3 Correlation of tags 29

4.4 Trends in movies 2008 - 2017 31

4.5 Trends in games 2008 - 2017 32

4.6 Trends that are rising from movies and games 2008 - 2017 32

5 CONCLUSION 34

5.1 Future 34

 8

VOCABULARY

AAA Games made by middle sized or big game companies are called

AAA-games. AAA-games have typically higher development and

marketing budget.

CSV Comma-separated values are text files that have information

separated with a comma. For example, Excel can easily make a

sheet with this file.

HTML Hypertext Markup Language

IMDb Internet Movie Database is a net site that lists 5 million movies

IP address Internet Protocol address is a numerical label that is given to every

device which is connected to the internet.

Steam Steam is a platform that sells games.

URL A Uniform Resource Locator is a web address.

VPS Virtual Private Server is a cheaper option for a dedicated physical

server. On VPS companies share physical hardware for multiple VPS

users. Every VPS user has own copy of the operating system.

 9

1 INTRODUCTION

Small game studios do not have enough resources to examine what are upcom-

ing trends in gaming. Big studios and movie studios can use a lot of money for

researching what topics are hot in the future. Making an AAA-game or big Holly-

wood movie costs more than $100 million. The cost of making a high-quality prod-

uct is so high that they want to decrease risk anyway possible. Doing good back-

ground studies is one of the ways how to reduce risk. Another way to reduce risks

is by starting the marketing of a new film or game as soon as possible. In this

thesis, those two are the main things. By checking what kinds of movies are com-

ing, small studios can predict what upcoming trends are. If they do affect, then

small studios do not have to make their own research. They can just check out

what movies will come in the future and use that data when designing a game.

This thesis does not study if movies affect the sales of games. This thesis only

studies the number of games and movies. Studying does trends affect sales could

be a topic for another thesis. Studying does trends correlate is large enough a

topic for one thesis.

1.1 Internet movie database

IMDb is a website that lists a lot of movies and TV series. There are more than 5

million different titles on IMDb. IMDb lists several different things from titles e.g.

Site list cast, production crew, plot summaries, fan reviews, ratings and plot

keywords. IMDb has made a dataset which has basic information about movies

and staff. IMDb has listed those in .tsv (tab-separated values) files. IMDb’s

dataset does not list plot keywords. Plot keywords can be downloaded from

movies plot keyword pages. On the IMDb website, the user can register to the

site and after that, they can add information to the site. There might be some fake

information on the IMDb site but most of the information is trustful. Plot keywords

are harder to upkeep because different people want to pinpoint different things

from the plot. IMDb has thought that and on plot keywords, people can agree or

disagree on the keyword. With those votes, tags that are fake can be separated

from tags that are relevant. Most of the pages do not have any tag words. There

are only 13,000 titles that have tag words.

 10

1.2 Steam

Steam is a popular digital distribution platform for PC games. Steam has 125

million users. There were 20,489 games on Steam on 10.1.2018 [1]. Getting sales

numbers is quite hard for Steam games. This thesis does not study sales, but

sales numbers are needed when studying whether incoming movies affect games

income. In this study, only Steam games, are studied, the sales figures of which

can be found [2] in Orland's article. The company which owns Steam is Valve.

Valve does not tell how many copies games have sold, but because of the

achievement system, people could calculate precisely how much each game had

sold. Steam changed their system how they inform achievements and people

cannot use that anymore for calculating the sale amounts of the games. Games

used in this thesis are those 13,000 games that are Kyle Orland listed in the arti-

cle. Steam does not have a different page on game tags. Steam lists tags on the

same page where it lists other information about the game. Game data used in

this thesis is from Steam game pages which is public information.

1.3 Timeline

Steam was released in 2004. The Steam achievement system was released on

10.10.2007. Before that date, there are no accurate game sale figures. There are

some sale figures before that because some game studios, which have published

their game earlier, have made achievements to their games, but there are a lot

of games that have been released before the achievement system and which

have not been updated to use achievements. Therefore, this thesis only studies

games published between 2008 and 2018.

1.4 Studies made before

Studies that would compare movies and games could not be found, but there are

some studies that tried to predict which movie will be a hit in the future. Studies

that try to predict the success of movies usually used several different variables

for studying which movies make money. Studies used variables, such as the

director, actors, genre, rating, plot synopsis, an average annual profit of movie

industry and release date. Predicting success of movies is a very difficult thing to

 11

do. “None of the studies thus far have succeeded in suggesting a model good

enough to be used in the industry.” [3]. Studies that tried to predict the success

of movies used machine learning.

Studies made about predicting a movie revenue show that predicting a movie

revenue is very difficult and movie studios make various bad investments. Only

36% of movies had a box office revenue higher than production costs [4]. In this

thesis, it does not matter that most movies do not make a profit. Even if the movie

fails, studios still use a great amount of money on marketing and the topic of the

movie will be more popular. This study will show if the number of movie topics will

affect the number of games on the same topic.

 12

2 TOOLS

2.1 Server

A server was needed for this study. The server was rented from Contabo and it

had 6 cores CPU, a 30-GB ram and a 600-GB SSD hard disk. The server had a

Debian Linux operating system. Because of handling a large number of files,

which took a couple of weeks, the server was needed. Another option would have

been to use a home computer but in some cases, this would need the computer

to be up and running for a couple of weeks and it is not comfortable to have a

home computer that uses 100% of computing power all the time. With the server,

there are not any noise or heating problems.

For this study, using Linux as a servers operating system, made things a lot eas-

ier. With Linux, it is easy to make scripts that will do most of the work. There are

several small free programs for Linux that help to handle a large amount of data.

2.2 wget

Wget is a computer program that downloads content from web servers. Wget is

a simple program which does only what it is programmed to do: to download

content. There is a huge amount of data on IMDb and it would have taken over

60 days to get all the data needed with one instance of wget. One instance of

wget uses only one core. On a processor which has six cores, one instance uses

only 16.7% of the processor computing power. To the full computing power of

processors, it needed to run six instances of wget at the same time.

Because over 60 days was far too long time, there was a need for finding out a

better solution to get all the data needed from IMDb. Wget is a good program but

aria2c is even better.

2.3 aria2c

Aria2 is a lightweight multi-protocol and multi-source command-line download

utility [5]. Wget downloads one file at a time and after downloading, there is a

need to run another wget to download another file. Aria2c works differently.

 13

Aria2c has a queue of files. It downloads a file and after that, it downloads the

next file on the list. With aria2c the user can see how many files have been down-

loaded and how many files are left. The total amount of data was 2,519,846 files

which took over 200 GB. With six instances of aria2c were running, it took only 7

days to download all the data. Based on this, aria2c seems to be roughly 40%

faster than wget in a large number of files. Sanjeev has tested which is the best

way to download files and aria2c was the fastest [6].

2.4 sed

Sed is a stream editor that can be controlled with commands. A stream editor is

used to perform basic text transformations on an input stream [7]. When there

are multiple files which have the same information, it is easy to make a script that

manipulates every file. Aria2c downloaded HTML files which had a huge amount

of unneeded information. With multiple sed commands, it was possible to extract

unneeded information. HTML files are pure text files which the browser reads and

uses HTML commands for showing commands as a webpage. Editing an HTML

file with a text editor shows the HTML file as a text. With a text editor, it could be

possible to delete all the data which is not needed but when there are a huge

amount of files, it is better to do a script that manipulates all the text files auto-

matically.

IMDb and Steam generate HTML files automatically. Automatically generated

HTML files have the same data structure. With the same data structure, it is pos-

sible to write scripts that remove the same text in every file. Sed is quite efficient

for text manipulation.

2.5 Bash Shell Script

Shell is a program that takes user commands and gives them to the operating

system.

Bash Shell script is a computer program written in the Bash programming lan-

guage. A script can be programmed to run multiple commands. In this thesis,

there were a huge amount of files that needed manipulating with multiple different

 14

commands. Instead of manipulating files one by one, script automated manipu-

lating of files. After figuring out what commands were needed, the script uses

those commands to every file.

2.6 screen

“The screening program allows you to use multiple windows (virtual VT100 ter-

minals) in Unix.”[8]. A screen allows programs and scripts to run on the back-

ground. The screen makes running programs and script, which takes a long time,

much easier to use. With a screen, the user can run a program and come later to

see the result. Without a screen, the user must be connected to the server with

SSH and the connection must be up while the program or script is running. When

running a screen, the user can either run multiple screens or open multiple win-

dows on the screen and run multiple shells. Running multiple shells simultane-

ously has an advantage when using a processor that has multiple cores. Some

programs can only use one core at a time and to get full advantage of a processor

that has six cores, it needs to run six instances of the program.

2.7 MySQL

“MySQL, the most popular Open Source SQL database management system, is

developed, distributed, and supported by Oracle Corporation.” [9]. Databases are

made for storing and comparing data. SQL stands for a Structured Query Lan-

guage. After storing data to the database, the user can make different kinds of

queries for analyzing data. With a huge amount of data, MySQL might not be the

best possible database to use because even simple queries can take hours to

compile. On the database made for this thesis, there were 166,031 movie tags

and 95,654 game tags. When making a query where movie tags and game tags

are compared together, MySQL makes 166,031 times 95,654 lines. The total

number of lines is 15,881,529,274. After that, MySQL checks which lines fit in the

query and show them. The table that has basic information from movies has

5,388,482 lines and when connecting that table to a movie tag table, MySQL

 15

makes a temporary table that has 894,655,054,942 lines. Making queries from

894 billion lines takes a huge amount of resources.

For this thesis, there was no need for all the movie data. With MySQL, there is

one query that makes new smaller tables. With that command, movie data could

be separated for 10 smaller tables which had movie data separated by years. For

this thesis, there was a need for analyzing movie data year by year, between

2008 and 2018.

 16

3 WORK

To compare movie tags and game tags, there is a need for a database. Setting

up the database, adding data and making database queries are an important part

of this thesis.

3.1 Setting up server

A server is a computer that has remote access. This whole thesis could be done

with a personal computer but there are some benefits that a server offers. When

there are some calculations or data handling that needs a lot of time, it is better

to set up a server and let the server do the work. With a personal computer, there

is a risk that the computer crashes and all the work that has been done must be

done again. Another disadvantage is that the computer shares its resources be-

tween programs so that calculations take more time and using a computer is

slower while it is doing work.

There are three ways of getting a server: buying a server, renting a dedicated

server and renting a virtual private server. The difference between a dedicated

server and VPS is that on the dedicated server the user has an own machine and

all the power of the machine can be used by the user. On VPS there is one phys-

ical server which is shared with users. Every user has a maximum amount of

resources which they can use. VPS is a cheaper option for a dedicated server

because the company does not need to have all the actual hardware which they

are renting.

There are a lot of companies that offer VPS. Comparing the offers of the compa-

nies is not easy because the price is not the only thing to compare. Computing

power, the amount of memory, the size of a hard disk and the speed of an internet

connection differs a lot and most companies have more than 1 different kind of

package. To make comparing even more difficult, some companies have a fast

internet connection, but they slow it down after the user has moved a certain

amount of data per month. Before getting VPS, it is good to read some user re-

views from companies to know exactly what you are paying for and is it good. For

this thesis, VPS was the best solution and the author acquired it from Contabo.

 17

Setting up VPS is easy. The user chooses an operating system from the webpage

and the company will automatically install the selected operating system with se-

lected add-ons. Choosing and installing the operating system takes a couple of

minutes. The VPS company sends an email which has the server’s login infor-

mation and IP after they have installed the operating system. Linux has several

basic programs installed but not all the programs needed for this thesis. Debian

Linux has an apt-get system which installs programs. There are different com-

mands on different Linux distributions but all of them have an easy way to install

programs. Some programs, like MySQL, also need some setting up during instal-

lation and there are a lot of webpages that will guide through installation.

3.2 Downloading data

3.2.1 IMDb data

For this thesis, important information about movies was the year it was published

and what tags users had given to it. IMDb shares a lot of data from movies via

tsv files. Tsv files do not have user tags on them, only basic information about

movies, such as crew, title and when it was made.

Every title on IMDb has a page that shows what tags users have added to that

title. The only way to get user tags is to download all user tag pages. There are

some sites, programs and code examples of how to get information from IMDb

more easily. None of them downloads user tags. User tags can be found via URL

https://www.imdb.com/title/<movieID>/keywords?ref_=tt_stry_kw.

On 1.7.2018 the latest title on IMDb has an ID number 8,773,796.

When downloading a lot of material from the web site, there is a risk that the web

server will ban an IP-address. Banning the IP-address is one way to block DoS-

attacks. On DoS-attacks crackers use multiple computers to make a large amount

of traffic to the website. Eventually, there is so much traffic that the web server

cannot give all the data asked. If there is a large amount of traffic from one IP

address, webservers may block that IP address, so it can handle the rest of the

traffic which is not suspicious. Testing if it is possible to download several files

 18

from a webpage can be done with a script (Figure 1). To be sure that the script

will work and it will download everything, there is a need for monitoring results.

Monitoring can be done by opening another screen and typing ls | wc -l. That

will count how many files are in the folder. Running that command a couple of

times, the number of files should be growing. The amount is not the only thing to

monitor. The amount of files can be growing even if the server has blocked the

IP-address. In that case, the script downloads files, but instead of right data, there

is an only notification that the IP-address has been blocked. Opening some files

with pico tells what is inside the files. If there is not anything about a block and

the data seems to be right, the script is working and the server has not blocked

the IP-address.

Counting the amount of files, waiting for 1 minute and counting the amount of files

again, gives the rough estimation of how many files will be downloaded per mi-

nute. If the total amount of files is known, this estimation can be used to calculate

how much time it will take to download everything.

IMDb does not block the IP-address when downloading several files. The server

allows the script download needed pages. With the script that is shown in Figure

1, it would take about 60 days to download everything needed for this thesis.

Monitoring the use of a processor with a command top tells that the script uses

only a 1/6 of the processor power. The reason that the script does not use all the

available computing power is that one instance of wget cannot use multiple cores

and with a 6-core processor that means that only 1/6 of the computing power is

used. Small download managers are simple programs. There is not any small

and free program for downloading which handles multiple cores. There is a better

solution for downloading multiple files than wget. Aria2c is more efficient. Aria2c

cannot use all the cores. For using all cores, the server must run multiple in-

stances of aria2c. When the amount of files is known, sharing the work amount

for all cores can be done. At the beginning of June, the latest title on IMDb had

an ID number 8,773,796. Dividing that by 6 gives a number which tells how many

titles each script will download. The first script downloaded files from 1 to

1,462,299, the second script downloaded files from 1,462,300 to 2,924,599, the

 19

third script downloaded files from 2,924,600 to 4,386,898, the fourth script down-

loaded files from 4,386,899 to 5,849,197, the fifth script downloaded files from

5,849,198 to 7,311,497 and the last script downloaded files from 7,311,498 to

8,773,796. Aria2c has the ability to skip files that do not exist. The last movie had

an identification number 8,773,796 and still, there were only 5,388,482 titles in

IMDb. That means that there have been some entries that IMDb has deleted. The

used aria2c script is shown in Figure 2.

FIGURE 1. Script for testing downloading user tags from IMDb

 #!/bin/bash

 for i in {1.. 10}

 do

 wget https://www.imdb.com/title/tt000000$i/keywords?ref_=tt_stry_kw

 done

 for i in {10.. 100}

 do

 wget https://www.imdb.com/title/tt00000$i/keywords?ref_=tt_stry_kw

 done

 for i in {100.. 1000}

 do

 wget https://www.imdb.com/title/tt0000$i/keywords?ref_=tt_stry_kw

 done

 for i in {1000.. 10000}

 do

 wget https://www.imdb.com/title/tt000$i/keywords?ref_=tt_stry_kw

 done

 for i in {10000.. 100000}

 do

 wget https://www.imdb.com/title/tt00$i/keywords?ref_=tt_stry_kw

 done

 for i in {100000.. 1000000}

 do

 wget https://www.imdb.com/title/tt0$i/keywords?ref_=tt_stry_kw

 done

 for i in {10000000.. 8773796}

 do

 wget https://www.imdb.com/title/tt$i/keywords?ref_=tt_stry_kw

 done

 20

FIGURE 2. The script that downloads all the needed data from IMDb

3.2.2 Steam data

Ars Technica's information about Steam games sales has game names, sales

and ID number of the games. With that ID number and name, it is possible to

make a URL which leads to a game page in the Steam. URLs in the Steam are

like

https://store.steampowered.com/app/<Game Id>

 #!/bin/bash

 for i in {1.. 10}

 do

 aria2c --file-allocation=none -c -x 10 -s 10 -d "imdb" -o $i.txt https://www.imdb.com/title/tt000000$i/keywords?ref_=tt_stry_kw

 done

 for i in {10.. 100}

 do

 aria2c --file-allocation=none -c -x 10 -s 10 -d "imdb" -o $i.txt https://www.imdb.com/title/tt00000$i/keywords?ref_=tt_stry_kw

 done

 for i in {100.. 1000}

 do

 aria2c --file-allocation=none -c -x 10 -s 10 -d "imdb" -o $i.txt https://www.imdb.com/title/tt0000$i/keywords?ref_=tt_stry_kw

 done

 for i in {1000.. 10000}

 do

 aria2c --file-allocation=none -c -x 10 -s 10 -d "imdb" -o $i.txt https://www.imdb.com/title/tt000$i/keywords?ref_=tt_stry_kw

 done

 for i in {10000.. 100000}

 do

 aria2c --file-allocation=none -c -x 10 -s 10 -d "imdb" -o $i.txt https://www.imdb.com/title/tt00$i/keywords?ref_=tt_stry_kw

 done

 for i in {100000.. 1000000}

 do

 aria2c --file-allocation=none -c -x 10 -s 10 -d "imdb" -o $i.txt https://www.imdb.com/title/tt0$i/keywords?ref_=tt_stry_kw

 done

 for i in {10000000.. 8773796}

 do

 aria2c --file-allocation=none -c -x 10 -s 10 -d "imdb" -o $i.txt https://www.imdb.com/title/tt$i/keywords?ref_=tt_stry_kw

 done

 21

Generating a URL can be made with Excel. On a new cell adding text

“https://store.steampowered.com/app/” and game ID after that makes a URL that

directs to the game page. That gives an exact URL for 13,000 games. Adding an

aria2c command before a URL gives a list of commands that will download all the

data from Steam. When listing commands on a text file, Linux can run those com-

mands. Sharing commands equally to six different files shares the workload quite

equally to all cores. Some game pages have more data than others and it takes

a little bit more time to download, but differences are quite small. All six scripts

were as shown in Figure 3.

FIGURE 3. The script that downloads all the needed data from Steam

3.3 Getting the information

Data stored on web servers is in an HTML format. That is a great format for

browsers but it is not a good format for getting data to the MySQL table. On the

HTML file, there is a lot of information that is only good for browsers. HTML is

purely text and extracting information that goes to the database can be done with

some text editing tools. For a better user experience, IMDb and Steam use auto-

mation for creating different pages. With automation, every page is in a similar

format. Information differs but main things are same on almost every IMDb page

and on almost every Steam page. For this thesis, the information needed from

#!/bin/bash

 aria2c --file-allocation=none -c -x 10 -s 10 -d "latestSales" -o 440.txt https://store.steampowered.com/app/440

 aria2c --file-allocation=none -c -x 10 -s 10 -d "latestSales" -o 730.txt https://store.steampowered.com/app/730

 aria2c --file-allocation=none -c -x 10 -s 10 -d "latestSales" -o 578080.txt https://store.steampowered.com/app/578080

…

…

aria2c --file-allocation=none -c -x 10 -s 10 -d "latestSales" -o 717780.txt https://store.steampowered.com/app/717780

 aria2c --file-allocation=none -c -x 10 -s 10 -d "latestSales" -o 591020.txt https://store.steampowered.com/app/591020

 aria2c --file-allocation=none -c -x 10 -s 10 -d "latestSales" -o 606500.txt https://store.steampowered.com/app/606500

 aria2c --file-allocation=none -c -x 10 -s 10 -d "latestSales" -o 629340.txt https://store.steampowered.com/app/629340

 aria2c --file-allocation=none -c -x 10 -s 10 -d "latestSales" -o 632470.txt https://store.steampowered.com/app/632470

 22

Steam was a publisher, name, user tags, tags, and prices. On IMDb, there are

only user tags.

3.3.1 IMDb

There are only user tags on IMDb files, so there is no need for separating data to

multiple files. To make data manipulation more efficient, it is, however, useful to

separate files so that multiple cores can work together and manipulating data is

more efficient.

3.3.2 Steam

Steam files have more needed information than IMDb files. To get information

into the database to different tables, it is easier to separate data to different files

before. Information could be in the same file but it reduces the risk of error when

data is in different files. Figure 4 shows a script that separates information into

different files.

3.4 Deleting unnecessary text

HTML files have a lot of information that needs to be removed before the needed

information is possible to insert into the database. Sed is a small simple program

which can be used to remove text from text files in Linux.

3.4.1 IMDB

Most of the needed IMDb data comes directly from IMDb in the form that can be

imported directly into the database. Only user-tag-files need modification. User

tag pages have HTML codes in the files and data needed in this thesis is sur-

rounded by HTML code. In IMDb files, there are movie ID, tags and the amount

of how trustfully tags are. Everything else in those files is data that is not needed

in this thesis. On IMDb, any user can add (almost) any tag to the movie. After the

tag has been added, people can approve or disapprove a tag. With that election

system, other people can see if a tag really is approved or not. People can, for

example, see that Riot On! [10] has 17 Plot Keywords but none of them have

been agreed or disagreed and Man without Past [11] has 145 Plot Keywords,

some of them are voted as relevant while some of the keywords do not have any

 23

votes and some are voted as irrelevant. For cleaning files, several commands are

needed. Sed can delete a string, everything before or after, string or a line (Figure

5).

FIGURE 4. The script that separates Steam information to different files

#name

cat <file> | perl -ne '(/<div class=\"apphub_AppName\">/../<\/div>/) && print' | perl -pe 's/.*(<div class=\"apphub_AppName\">.*)/$1/' | perl -pe
's/(.*<\/div>).*/$1/'

#price

cat <file> | perl -ne '(/<div class="game_purchase_price price">/../<\/div>/) && print' | perl -pe 's/.*(<div class="game_purchase_price
price">.*)/$1/' | perl -pe 's/(.*<\/div>).*/$1/'

#dlc

cat <file> | perl -ne '(/<div class="gameDlcBlocks">/../tableView/) && print' | perl -pe 's/.*(<div class="gameDlcBlocks">.*)/$1/' | perl -pe
's/(.*tableView).*/$1/'

#system minimum

cat <file> | perl -ne '(/Minimum:/../<\/li><\/ul>/) && print' | perl -pe 's/.*(Minimum:.*)/$1/' | perl -pe 's/(.*<\/li><\/ul>).*/$1/'

#previewa

cat <file> | perl -ne '(/Overall Reviews/../<\/span>/) && print' | perl -pe 's/.*(Overall Reviews.*)/$1/' | perl -pe 's/(.*<\/span>).*/$1/'

cat <file> | perl -ne '(/Recent Reviews/../<\/span>/) && print' | perl -pe 's/.*(Recent Reviews.*)/$1/' | perl -pe 's/(.*<\/span>).*/$1/'

#time, developer, publisher

cat <file> | perl -ne '(/<div class="date">/../<\/div>/) && print' | perl -pe 's/.*(<div class="date">.*)/$1/' | perl -pe 's/(.*<\/div>).*/$1/'

cat <file> | perl -ne '(/store.steampowered.com\/developer/../<\/div>/) && print' | perl -pe 's/.*(store.steampowered.com\/developer.*)/$1/' |
perl -pe 's/(.*<\/div>).*/$1/'

cat <file> | perl -ne '(/store.steampowered.com\/publisher/../<\/div>/) && print' | perl -pe 's/.*(store.steampowered.com\/publisher.*)/$1/' | perl
-pe 's/(.*<\/div>).*/$1/'

#popular user definied tags

cat <file> | perl -ne '(/glance_tags popular_tags/../<\/div>/) && print' | perl -pe 's/.*(glance_tags popular_tags.*)/$1/' | perl -pe
's/(.*<\/div>).*/$1/'

#steam tags

cat <file> | perl -ne '(/class="block responsive_apppage_details_left" id="category_block">/../class="block responsive_apppage_details_right"/) &&
print' | perl -pe 's/.*(class="block responsive_apppage_details_left" id="category_block">.*)/$1/' | perl -pe 's/(.*class="block
responsive_apppage_details_right").*/$1/'

cat <file> | perl -ne '(/Genre:/../a>
/) && print' | perl -pe 's/.*(Genre:.*)/$1/' | perl -pe 's/(.*a>
).*/$1/'

 24

FIGURE 5. The script that cleans IMDb files

sed -i 's/<h1 class="header">Plot Keywords<\/h1>//g' title.txt

sed -i 's/<div id="keywords_content" class="header">//g' title.txt

sed -i 's/<div class="sort-controls">//g' title.txt

sed -i 's/Sort By: <select name="sort">//g' title.txt

sed -i 's/<option value="votes:descending" selected="selected">Relevance<\/option>//g' title.txt

sed -i 's/<option value="alpha:ascending">Alphabetical<\/option>//g' title.txt

sed -i 's/<\/select>//g' title.txt

sed -i 's/<\/span>//g' title.txt

sed -i 's/<div class="header"><div class="nav"><div class="desc">//g' title.txt

sed -i 's/<table class="dataTable evenWidthTable2Col"><tbody>//g' title.txt

sed -i 's/<tr class="odd">//g' title.txt

sed -i 's/<\/div><\/div><\/div>//g' title.txt

sed -i 's/<div class="sodatext">//g' title.txt

sed -i 's/<div class="did-you-know-actions">//g' title.txt

sed -i 's/> Is this relevant?//g' title.txt

sed -i 's/Relevant?<\/span>//g' title.txt

sed -i 's/<button class="cast-vote" value="up">Yes<\/button>//g' title.txt

sed -i 's/<button class="cast-vote" value="down">No<\/button>//g' title.txt

sed -i 's/<td><\/td><\/tr>//g' title.txt

sed -i 's/<\/tbody><\/table>//g' title.txt

sed -i 's/<div class="article" id="see_also//g' title.txt

sed -i 's/.*<\/a>/TAGI &/g' title.txt

sed -i ':a;N;$!ba;s/\n//g' title.txt

sed -i 's/ALKU/\nALKU/g' title.txt

sed -i 's/<\/div>/<\/div>\n/g' title.txt

sed -i 's/TAGI/\nTAGI/g' title.txt

sed -i 's/TAGI <\/a>//g' title.txt

sed -i 's/\t//g' title.txt

sed -i 's/ //g' title.txt

sed -i 's/<div class="sort-controls"><\/div>//g' title.txt

sed -i 's/<\/div>//g' title.txt

sed -i 's/<tr class="odd"><td class=.*//g' title.txt

sed -i 's/<span class="interesting-cast-vote" data-item-id=.*//g' title.txt

sed -i 's/<\/td><\/tr>//g' title.txt

sed -i 's/<\/td><td class="soda sodavote" data-item-votes.*//g' title.txt

sed -i 's/<\/a>//g' title.txt

sed -i 's/TAGI >/TAGI /g' title.txt

sed -i 's/\>/\n/g' title.txt

sed -i 's/\"> /\n/g' title.txt

 25

3.4.2 Steam

Steam files have also several HTML commands. Getting information from those

files differs from IMDb files because in Steam files most of the HTML code has

gone when separating needed information to different files. Figure 6 shows com-

mands that are needed to clean up Steam files.

3.5 Databases

When there is not a lot of data, data can be handled on an Excel. The amount of

data handled in this thesis was so huge that Excel could not handle the amount.

The database is the best choice for handling a lot of data. There are different

databases. Because data was limited, there was not a need for looking for the

best possible database for this thesis. The MySQL database is easy to use and

that is the reason it has been used in this thesis.

3.5.1 Making the database

Loading data from files to the database can be done with one command in

MySQL (Figure 7). In TSV files from IMDb, there are not any problems when

adding information to tables. In data that has been extracted from HTML files,

there is a problem because of the charset. IMDb lists movies all over the world.

That is the reason that all the titles do not have a title in Latin alphabets. When

using a database table that has Latin alphabets, there is a loss of information

when adding a text that is wrote in different alphabets. Different alphabets are

concerning only the name of the titles. There is a movie ID on the table so if

needed, the movie title can be checked from the IMDb webpage. Steam has the

same problem, but on the database, there is also a Steam page ID so the name

of the game can be checked later from Steam if needed.

 26

FIGURE 6. Scripts that clean up files from Steam

#editing publisher

sed -i 's/\t//g' publisher.txt #removes tabs

sed -i 's/.*\.publisher/BEGIN &/g' publisher.txt #add word BEGIN in front of every gameid

sed -i 's/<div class="date">//g' publisher.txt #remove date div

sed -i 's/<div class="summary column">//g' publisher.txt summary #remove colum

sed -i 's/<\/div>//g' publisher.txt #remove /div

sed -i 's/<div class="summary column" id="developers_list">//g' publisher.txt #remove id developers list

sed -i 's/,/\n/g' publisher.txt #replace , with enter

sed -i 's///' publisher.txt #remove search

sed -i 's///' publisher.txt #remove developer

sed -i 's///' publisher.txt #remove publisher

sed -i 's///' publisher.txt #remove curator

sed -i '/https:\/\/store\.steampowered\.com\/search\//d' publisher.txt #remove lines that has , in names

sed -i 's/<\/a>//g' publisher.txt #remove

sed -i ':a;N;$!ba;s/\n//g' publisher.txt #remove entters

sed -i 's/BAGIN/\nBEGIN/g' publisher.txt #add enter before BEGIN

#editing names

sed -i 's/.*\.name/BEGIN &/g' name.txt #add word BEGIN in front of every gameid

sed -i 's/<div class="apphub_AppName">//g' name.txt #remove apphub

sed -i 's/<\/div>//g' name.txt #remove <div

sed -i ':a;N;$!ba;s/\n//g' name.txt #remove enters

sed -i 's/BEGIN/\nBEGIN/g' name.txt #add enter before BEGIN

sed -i 's/.name/, /g' name.txt #replace word name with ,

#editing usertags

sed -i '/glance_tags popular_tags" data-appid/d' usertags.txt #remove glance tags

sed -i '/<a href="https:\/\/store.steampowered.com\/tags\/en\//d' usertags.txt #remove steampowered

sed -i 's/\t\t\t.*//' usertags.txt2 #delete everything after \t\t\t

sed -i '/ <a href/d' usertags.txt2 #delete rows that has a href

sed -i 's/.usertagsadd/, /g' usertags.txt2 #replace usertagsadd with ,

sed -i '/usertags/d' usertags.txt2 #remove word usertags

#editing tags

sed -i 's/.*\.tags/BEGIN &/g' tags.txt #ad word BEGIN in front of every gameid

sed -i ':a;N;$!ba;s/\n//g' tags.txt #remove enters

sed -i 's/BEGIN/\nBEGIN/g' tags.txt #add enter before BEGIN

sed -i 's/<div/\n<div/g' tags.txt #add enter before <div

 27

FIGURE 7. Command used for creating the database and adding data to it

#IMDb Tables

CREATE TABLE imdb_name_basics (nconst INT, primaryName VARCHAR(255), birthYear INT, deathYear INT, primaryProfession VARCHAR(255),
knownForTitles VARCHAR(255));

LOAD DATA INFILE '/var/lib/mysql-files/name.basics.tsv' INTO TABLE imdb_name_basics CHARACTER SET UTF8 FIELDS TERMINATED BY '\t' LINES
TERMINATED BY '\n';

CREATE TABLE imdb_basic (tconst INT, titleType VARCHAR(255), primaryTitle VARCHAR(255), originalTitle VARCHAR(255), isAdult INT, startYear INT,
endYear INT, runtimeMinutes INT, genres VARCHAR(255));

LOAD DATA INFILE '/var/lib/mysql-files/title.basics.tsv' INTO TABLE imdb_name_basics CHARACTER SET UTF8 FIELDS TERMINATED BY '\t' LINES
TERMINATED BY '\n';

CREATE TABLE imdb_crew (tconst INT, directors VARCHAR(255), writers VARCHAR(255));

LOAD DATA INFILE '/var/lib/mysql-files/title.crew.tsv' INTO TABLE imdb_crew CHARACTER SET UTF8 FIELDS TERMINATED BY '\t' LINES TERMINATED
BY '\n';

CREATE TABLE imdb_episode (tconst INT, parentTconst VARCHAR(255), seasonNumber INT, episodeNumber INT);

LOAD DATA INFILE '/var/lib/mysql-files/title.episode.tsv' INTO TABLE imdb_episode CHARACTER SET UTF8 FIELDS TERMINATED BY '\t' LINES
TERMINATED BY '\n';

CREATE TABLE imdb_ratings (tconst INT, averageRating DOUBLE, numVotes INT);

LOAD DATA INFILE '/var/lib/mysql-files/title.ratings.tsv' INTO TABLE imdb_ratings CHARACTER SET UTF8 FIELDS TERMINATED BY '\t' LINES
TERMINATED BY '\n';

CREATE TABLE imdb_principals (tconst INT, ordering INT, nconst VARCHAR(255), category VARCHAR(255), job VARCHAR(255), characters
VARCHAR(255));

LOAD DATA INFILE '/var/lib/mysql-files/title.principals.tsv' INTO TABLE imdb_principals CHARACTER SET UTF8 FIELDS TERMINATED BY '\t' LINES
TERMINATED BY '\n';

CREATE TABLE imdb_akas (titleId INT, ordering INT, title VARCHAR(255), region VARCHAR(255), language VARCHAR(255), types VARCHAR(255),
attributes VARCHAR(255), isOriginalTitle INT);

LOAD DATA INFILE '/var/lib/mysql-files/title.akas.tsv' INTO TABLE imdb_akas CHARACTER SET UTF8 FIELDS TERMINATED BY '\t' LINES TERMINATED
BY '\n';

CREATE TABLE imdb_tags (MovieID INT, tag VARCHAR(255), plus INT, all INT);

LOAD DATA INFILE '/var/lib/mysql-files/imdb_tags.txt' INTO TABLE imdb_ratings CHARACTER SET UTF8 FIELDS TERMINATED BY '\t' LINES
TERMINATED BY '\n';

#Steam tables

CREATE TABLE steam_games (name VARCHAR(255), ID INT, players INT, published DATE, price DOUBLE);

LOAD DATA INFILE '/var/lib/mysql-files/steam.txt' INTO TABLE steam_games CHARACTER SET UTF8 FIELDS TERMINATED BY '\t' LINES TERMINATED
BY '\n' (name, ID, players, @published, price) set published = STR_TO_DATE(@published, '%d.%m.%Y');

CREATE TABLE steam_tags (gameID INT, tag VARCHAR(255));

LOAD DATA INFILE '/var/lib/mysql-files/usertags.2valmis.txt' INTO TABLE steam_tags CHARACTER SET UTF8 FIELDS TERMINATED BY ';' LINES
TERMINATED BY '\n';

 28

4 RESULTS

4.1 50 Most used tags

On 50 most used tags in movies, there were 28 sex-related tags, 13 tags that

were useless and only 9 tags that are useful. In games on 50 most used tags,

there were 28 game related tags which do not apply to movies, 3 tags that are

useless and 19 tags that are useful. There are 37,299 different tags on IMDb and

only 350 different tags on Steam. Steam has a censorship on their tags. The

difference comes from the reality that IMDb does not sell anything and Steam

sells games. When only listing information, there is not so much need for a cen-

sorship than when selling. Steam will not allow a tag “junk” [12] but IMDb has that

tag. That is only one example but the amount of different tags proves that IMDb

allows more tags than Steam.

Another problem with tags is that some tags mean the same thing but they are

spelled differently. On IMDb, there are 25 tags that have the word “zombie” in it.

On Steam, there is only a “Zombies” tag. IMDb does not have a tag “Zombies”.

That makes the comparison of tags much harder. In this thesis, Only the tags that

are exactly the same are compared.

For a perfect result, IMDb tags should be changed to same as Steam tags or

Steam games should be manually previewed and missing tags should be added.

4.2 Tags that found from both

There were 74 useful tags that can be found from IMDb and from Steam. There

were 143 tags that can be found from IMDb and Steam but sometimes the same

tag means a different thing in games and movies. For example, in survival

movies, there is usually a big threat and main character(s) try to survive. In sur-

vival games, the player usually just kills enemies as long as possible. Survival

games are usually casual games and survival movies are darker and made for

the people who want to watch suspenseful movies. A split screen is another tag

that cannot be compared between movies and games. In games, a split screen

 29

means that multiple players can play the game at the same time with one com-

puter but it does not mean the same thing in movies. In movies, multiple people

can always watch the same movie with one device so there is no need for the

split screen in the same way that there is a need for a split screen in games.

On some tags, there were not enough movies or games that had that tag.

4.3 Correlation of tags

A correlation function on Excel tells whether a movie and game tags correlate. In

Figure 8 there are graphs which tell how well they correlate in the same year and

how well they correlate later. For this thesis, it is important to find out if the same

tags trend at the same time or do movies or games begin the trend which will

affect another, later on.

FIGURE 8. The average correlation of tags

The average correlation was the highest in the same year (Figure 8). These fig-

ures show that games follow more movies than movies follow games. Nowadays,

it is relatively easy to make a game and publish it on Steam. The Cost of publish-

ing a game on Steam is $100. This makes it very cheap to a group of students to

make a game and publish it on Steam. Students might make a game just as a

school project or as a hobby. On Steam, there are a lot of games that an amateur

group has made and they have been made without a marketing research. Without

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0 1 2 3 4 5 6 7

Average correlation of tags

IMDb Steam

 30

a marketing research, game makers cannot know what will be the next trend and

amateurs will more likely make a game based on what is trending right now. Mak-

ing a game will take from a couple of weeks to a couple of years, depending on

how complex, big and finalized the game will be. Most likely that is the reason

why movie trends can be seen as game trends even 3 years after the trend has

been popular.

FIGURE 9. A median correlation of tags

A median correlation of tags is 0.5. A median means that half of the amount is

higher than the median and half of them are lower than the median. When the

median is 0.5 it means that 50% of the correlation of tags are higher than 0.5.

With median and average correlations, it is shown that game tags will follow

movie tags. Without sales numbers, upcoming movies only tell what kinds of

games will be published in a couple of years.

This study shows that there is a correlation between movie tags and game tags

but it does not concentrate on reasons. Some correlations can be explained by

current trends. For example, IMDb has a tag “F rated”. F rated means that the

film is directed, written or starring by women. That tag has not existed before

2014 [13], but users have added that tag on movies later. There are most likely

at least some movies that have been made before 2014 and that does not have

an f rated tag and which would have an f rated tag if the movie would have been

0

0,1

0,2

0,3

0,4

0,5

0,6

0 1 2 3 4 5 6 7 8

Median correlation of tags

IMDb Steam

 31

made today. F rated is only one example of how trends outside of the movie

industry affect tags.

Another problem with movie tags is that only famous movies have a lot of tags

and a lot of people have added or confirmed tags. Some movies have only one

person who has added tags to them. When there is only one person who has

added tags, and no one has confirmed tags, it is impossible to know if the tags

are right.

The last problem with tags is that it is impossible to know if the tag is trending

because of movies or because the tag itself is trending. Basically, if movies that

were made 10 years ago would be made today, would they get the same tags, or

would the tags be different? Most likely at least in some cases, movies would get

different tags in different times. For example, at the time of cold war, people most

likely saw politics in places that were not meant to be politic. People see more

likely things that they consider in their everyday life.

4.4 Trends in movies 2008 - 2017

It is easy to see that there is not so much censorship on IMDb tags than there are

on Steam tags. Because anyone can add almost any tag, there is many porn-

related tags on IMDb. There are not almost any porn related tags on Steam, that

is probably because Steam has been more conservative which kinds of games it

allows to be released on Steam. Nowadays, Steam allows adult games. In this

thesis, there have been only analyzed tags that can be found on both IMDb and

Steam.

From those tags, there were clearly a couple of trends. In the year 2012 nudity

became a trending tag. The highest value of nudity was in the year 2016 when

there were 102 movies that had the tag nudity. After that, the popularity of nudity

has decreased.

Another popular tag has been Blood. It was used 17 times in 2011 and 39 times

in 2013. Blood has been popular since then but last year it dropped to 30. Blood

tag is another tag that is currently decreasing.

 32

The third biggest trend is the female protagonist. It has increased from the year

2012, when it was 15, to the year 2016, when it was 35. Last year it was 33. That

makes it another tag that has most likely past a high point and is decreasing.

There are 7 tags that are currently rising: Destruction, Artificial Intelligence, Fu-

turistic, Dark Comedy, Hacking, Mythology, Satire, Supernatural and Military.

4.5 Trends in games 2008 - 2017

There are 3 strong trends that have been rising lately: Anime, Female Protagonist

and Retro. From those, only Retro is still rising. Other two have reached their

peak point and they are coming less popular but they are still very strong. In 2017

there were 176 games that had a Female Protagonist tag, 188 games that had

an Anime tag and 186 games that had a tag Retro.

There are 2 popular tags that have been rising from the year 2013 and have had

their peak point at 2016: Space and Survival. In 2013 there were 20 games that

had a tag survival and 15 games that had a tag Space. In 2016 there were 126

games that had a tag Survival and 117 games that had a tag Space. In the year

2017, the amount of that tag did not increase but there were almost the same

amount of games that had those tags.

There are 5 tags that peaked in 2015, then decreased and last year they made

their new record. Those tags are Gore, Historical, Dark Humor, Destruction, and

Military.

There are 3 tags that have lately been rising year after year. Those tags are

Fighting, Futuristic and Flight. Fighting has been rising since the year 2011 from

1 to 53 in 2017. Futuristic has been rising from 2013 from 3 to a value 43 in 2017.

Flight has been rising from 2014 from 5 to 33 in 2017.

4.6 Trends that are rising from movies and games 2008 - 2017

There are 3 tags that are rising in movies and games. Those tags are Destruction,

Futuristic and Military. There was also Dark Comedy that is rising on movies and

Dark Humor that is rising on games. Those tags are almost the same so there is

a change that gamers and people who watch movies just use a different tag.

 33

Based on tags that are rising on both categories, the futuristic game about military

destruction with a dark humor would cover all rising tags for 2018. The Verge

published a “THE 39 GAMES WE CAN’T WAIT TO PLAY IN 2018”[14] list on

December 26, 2017. From those 39 games, at least 9 have a tag destruction,

Futuristic or Military. Most of those games were made by big game companies.

That proves that game trends on this list also cover big game studios, not only

small indie game studios.

 34

5 CONCLUSION

Games and movies are both consumer products that fill the need for entertain-

ment. Because they are filling the same need, there is some correlation between

movie and game themes. The Correlation between IMDb and Steam tags are a

different thing. There is a difference which tags can be used on IMDb and on

Steam and because they are not using the same range of tags, tags are different.

5.1 Future

In this thesis, there were not any sales figures involved. This thesis compares

only the amount of games and movies that have certain tags. This thesis cannot

be used to predict whether a certain kind of game will be popular. It can only be

used to predict if there will be a lot of certain kinds of games based on upcoming

movies. Most likely the amount of movies and games will correlate some way to

the amount of paying customers but that is something that needs to be studied in

the future.

One problem with this thesis was different tags. There are two ways to avoid that

problem. One way is to write more tags on Steam games. There were only 13,000

games studied in this work, so it would be possible to go through all the game

webpages and write tags. That would not be very accurate but it would be close

enough.

Another way to avoid the tag problem would be by comparing all the tags. IMDb

uses more tags than Steam and more than one IMDb tag is affecting Steam tags.

Researching which IMDb tags affect which Steam tags, there would be a need

for analyzing what tags affect each other. That would need a lot of calculation

power and a lot of work.

 35

REFERENCES

1) Smith, C. 2018. 30 Interesting Steam Stats and Facts(December 2018).

https://expandedramblings.com/index.php/steam-statistics/. Date of retrieval

20.9.2018

2) Orland, K. 2018. Valve leaks Steam game player counts; we have the num-

bers. https://arstechnica.com/gaming/2018/07/steam-data-leak-reveals-precise-

player-count-for-thousands-of-games/. Date of retrieval 15.6.2018

3) Nithin, VR; Pranav, M; Sarath Babu, PB; Lijiya, A. 2014. Predicting Movie

Success Based on IMDb Data

4) Lash, M; Zhao, K. 2016. Early Predictions of Movie Success: the Who, What,

and When of Profitability. The University of Iowa. Page 2.

page 2, The University of Iowa

5) Arch Linux 2018. aria2. https://wiki.archlinux.org/index.php/aria2 Date of re-

trieval 25.9.2018

6) Nithyanandam, S. 2017. Download speed: vagrant init vs wget vs aria2.

http://www.sanjeevnandam.com/blog/download-opentablewin-2008r2-standard-

amd64-nocm-for-vagranttestkitchen. Date of retrieval 1.10.2018

7) Free Software Foundation. 2018. sed, a stream editor. Available

https://www.gnu.org/software/sed/manual/sed.html. Date of retrieval 15.10.2018

8) The Trustees of Indiana University. 2018. In Unix, what is screen, and how

do I use it?. https://kb.iu.edu/d/acuy. Date of retrieval 20.10.2018

9) Oracle Corporation. 2018. MySQL 5.7 Reference Manual.

https://dev.mysql.com/doc/refman/5.7/en/what-is-mysql.html. Date of retrieval

20.10.2018

10) IMDb.com. 2004. Riot On! https://www.imdb.com/title/tt0427783/key-

words?ref_=lgn_tt_stry_kw. Date of retrieval 12.12.2018.

 36

11) IMDb.com, Inc 2002. Mies vailla menneisyyttä.

https://www.imdb.com/title/tt0311519/keywords?ref_=tt_stry_kw. Date of retrieval

12.12.2018.

12) nanenj. 2014. [Steam Tags] Unexpected censorship with certain words.

https://www.reddit.com/r/Steam/comments/1y6d66/steam_tags_unexpected_censor-

ship_with_certain/. Date of retrieval 12.12.2018.

13) Guardian News and Media Limited. 2017. F-rated: IMDb introduces classification

system to highlight work by women. https://www.theguardian.com/film/2017/mar/07/f-

rated-imdb-introduces-classification-system-to-highlight-work-by-women. Date of re-

trieval 14.12.2018.

14) Webster, A. 2017. THE 39 GAMES WE CAN’T WAIT TO PLAY IN 2018.

https://www.theverge.com/2017/12/26/16807910/most-anticipated-games-2018-ps4-

xbox-nintendo. Date of retrieval 14.12.2018

