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Abstract:  

  The thesis aims to verify the possibility of applying vibrational measuring method on thin 

plate made of light-weighed material. Particularly, it aims to develop formula for the cal-

culation of dynamic shear and bending modulus for light-weighed material with such 

method. This method has been proven and being applied on heavy-weighed material such 

as metals and alloy based on standard ASTM E1876-15 which is explained in the Literature 

review part.  

 

  In ASTM E1876 method, the vibration of the specimen is caused by knocking a hammer 

on a metal plate placed upon two supports. However, this experiment is not possible to 

produce with light weighed materials as they will fly off the support. Therefore, the possi-

bility of performing vibrational measuring method on light weighed materials needs to be 

testified.  

 

  In order for the method to be proven reliable, it needs to be supported by both theory, 

simulation and practical experiments. The theory is developed based on already existed 

theory of the same method on high density material; and the simulation is complemented 

with COMSOL multiphysics. The practical experiments are planned and done according 

to the availability of the equipment at Arcada’s laboratory. There is a small part of experi-

ment remained undone due to technical issue. However, detailed set up of the apparatus for 

the experiment is well provided along with some alternatives in case failure occurs. 

 

  After studying the matter at many particular cases and different points of view, it is con-

cluded that the method is applicable for the purposed material. In other words, it provides 

an alternative for standard ASTM E 1876-15 suitable for low density material.  

 

 Cantilever beam vibration mathematics is tested using Comsol and with 3-point bending 

and Cantilever beam vibration. The results show that the error of Young’s modulus calcu-

lation between Cantilever beam vibration and 3 points bending is 1,6%. The Young’s mod-

ulus results compared between experiment of the 3-point bending at Arcada and the 3-point 

bending at Borås is 1,694% 

 

 The study of the thesis proves that Cantilever beam vibration has a known solution and 

easily be done on light weighed material when the specimen is clamped properly. 
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 COMSOL software used as Finite Element Method helps not only to verify theoretical 

formulas, but also to develop a formula for calculating the frequency of the torsional vibra-

tion of a thin beam hinged at both ends 

𝑓𝑡 = 0,5√
𝐽𝐺

𝐿𝐼𝐿
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1 INTRODUCTION  

1.1 Objectives 

The primary purpose of the thesis is to determine the mechanical properties of material 

based on the calculation of material dynamic shear and bending modulus; from which 

Poisson number would be found. 

The reviews of existing standards and methods used to measure the shear and bending 

modulus of heavy-weighed materials by vibrational testing method will be mentioned, 

followed by the examination in the case of light-weighed material. 

The thesis aims to find out all the alternatives for calculating shear and dynamic Young’s 

modulus for low density material with vibrational method by relating with the theory of 

the case of heavy-weighed material and using Finite Element Method. 

The most important objects of the thesis can be summed up in two questions:  

1. Is the mentioned dynamic testing applicable for light-weighed materials? 

2. What are the mathematical formulas of shear and bending modulus that should be 

recommended for light-weighed materials, in case the current existing standard 

does not provide a possible method? 

 

1.2 The relevance of the problem 

Inspecting mechanical properties of materials is an important part of the manufacturing 

process. Throughout the development of the technology industry, mechanical testing has 

been developed and improved itself to achieve a wide range of testing methods with reli-

able results. These can be categorized into two main groups: Destructive method and 

Non-destructive method (NDM). 
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Destructive testing methods are widely used to determine the physical properties of ma-

terials such as durability, ductility, hardness, stiffness, surface roughness, Young modu-

lus, yield and ultimate tensile strength. This way of finding mechanical properties of ma-

terials is simple, effective and reliable, however it causes damages or even completely 

breaks the samples or parts. During the real-life inspection work, one would not prefera-

bly deform or break a testing part, but instead, remain its state, and still achieve the pur-

pose of examining the mechanical properties of the parts. Non-destructive testing method 

stands out to solve the problem. 

Non-destructive testing is the process of testing and inspecting of materials that causes 

no physical damage to the testing object and remains it in its current state. In other words, 

the part is in normal operation after the test. Non-destructive testing has been applied to 

various fields of industry such as aerospace, automobiles, pipeline and shipping industry. 

In shipping industry, for example, Non-destructive testing is an unreplaceable part of the 

maintenance procedure in which parts are inspected to collect necessary information that 

would help predict the working capability of the parts and give the maintenance plan.  

The techniques that are commonly used in NDM are visual inspection, magnetic particle 

testing, ultrasonic testing and liquid penetrant testing. In this thesis, the focus will be on 

other technique which is called Dynamics testing. This method has been successfully ex-

ploited by a company named IMCE which will be referred to in the next part of this 

document. 

 Dynamic testing is a type of non-destructive mechanical testing that are done by stand-

ard. It relies on the recording of vibrational signal produced when a sample is tapped with 

a small projectile. This method has shown reliable results and been used extensively in 

IMCE. The results are then analyzed and used in order to figure out the aging of material 

from which long maintenance or repair plans can be scheduled. Other important infor-

mation about material is also found out such as current Shear Modulus, Young’s modulus, 

Poisson’s ratio. 
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1.3 Relationship to existing knowledge 

The theory is based partly on the existing standard applied to calculated shear and dy-

namic Young’s modulus, ASTM E1876-15, which will be discussed in the later section. 

 

It is necessary to refer to IMCE. This is a company that is currently using standard ASTM 

E1876-15 in their business. The company is major in material analysis and related fields. 

More information about IMCE is found in the link given in section 7: REFERENCES 
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2 LITERATURE REVIEW 

2.1 ASTM E1876-15 

ASTM E1876 refers to a standard method for calculating dynamic Young’s modulus, 

shear modulus, and Poisson’s ratio by Impulse excitation of Vibration. Beside ASTM 

E1876-15 standard, it could be seen simultaneously standards ISO 12680-1 and EN 843-

2 which are not described in detail but briefly as below: 

1. ISO 12680-1 refers to methods of test for refractory products - part 1: Determina-

tion of dynamic Young’s modulus (MOE) by impulse excitation of vibration. 

2. EN 843-2 refers to advanced technical ceramics – Mechanical properties of mon-

olithic ceramics at room temperature – part 2: Determination of Young’s modulus, 

shear modulus and Poisson’s ratio. 

2.1.1 Impulse excitation technique 

Impulse excitation technique is a non-destructive testing method used to measure elastic 

properties and internal friction of materials. By observing the resonant frequencies, it can 

give measurement of Young’s modulus, shear modulus, Poisson’s ratio and internal fric-

tion of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples.          

                                                                          

 

Figure 1: Impulse excitation technique [1] 
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 An automated tapping device is used to produce regular tapping at the tested material 

with a small projectile. The induced vibrational signal is then recorded with a microphone. 

Afterward, the acquired vibrational signal in the time domain is converted to the fre-

quency domain by a fast Fourier transformation. Dedicated software will determine res-

onant frequency to calculate elastic properties based on the beam theory. [1]  

2.1.2 Elastic properties 

1. Dynamic Young’s modulus 

  

 
𝐸 = 0,9465 (

𝑚𝑓𝑓
2

𝑤
) (

𝐿3

𝑡3)𝑅1  [1] 

 

 

 (1) 

  

 

With 𝑅1 = 1 + 6,585 (
𝑡

𝐿
)
2

, and 
𝐿

𝑡
≥ 20   [2] 

 

 

     Table 1: Terms and definition                                                                                                     

Term Definition Unit   Term  Definition Unit 

𝐸 Young’s modulus kg m-1 s-2 𝑤 Width m 

𝑓𝑓 Flexural frequency s-1 𝑡 Thickness m 

𝑚 Mass kg 𝑅1 Correction factor Dimensionless 

𝐿 Length m    
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Notice that when  
𝐿

𝑡
≥ 20 then 𝑅1 is close to 1. The table below gives some values of 𝑅1 

according to the value of L and t.  

Table 2: Correction factors 

L(m) 

Length 

t(m) 

Thickness 

w(m) 

Width 

0,1 0,005 0,0100 

0,11 0,005 0,0110 

0,12 0,005 0,0120 

0,13 0,005 0,0130 

0,14 0,005 0,0140 

0,15 0,005 0,0150 

0,16 0,005 0,0160 

0,17 0,005 0,0170 

0,18 0,005 0,0180 

0,19 0,005 0,0190 

 

Young’s modulus is calculated through the measurement of flexural vibration frequency 

and the mass and dimensions of sample according to the different standards (ASTM 

E1876-15, ISO 12680-1, EN 843-2). [1] 

 

Figure 2: Young's modulus calculation [1] 
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2. Shear Modulus 

 
𝐺 =

4𝐿𝑚𝑓𝑡
2

𝑤𝑡
𝑅2  [1] 

 

 

 (2) 

  

With 

 𝑅2 = (
1+(

𝑤

𝑡
)
2

4−2,521
𝑡

𝑤
(1−

1,991

𝑒
𝑤
𝑡
+1

)

)(1 +
0,00851𝑤2

𝐿2 ) − 0,060 (
𝑤

𝐿
)

3

2
(
𝑤

𝑡
− 1)

2
 [2] 

 

Assume that 𝑤 > 𝑡. 

 

Table 3: Terms and definition 

Term Definition Unit   Term  Definition Unit 

𝐸 Young’s modu-

lus 

kg m-1 

s-2 

𝑤 Width m 

𝑓𝑡 Torsional fre-

quency 

s-1 𝑡 Thickness m 

𝑚 Mass kg 𝑅2 Correction 

factor 

Dimen-

sionless 

𝐿 Length m    
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Figure 3: Shear modulus calculation [1] 

The table below gives some values of R2 according to the value of w, t, L 

 

Table 4: Correction factor 

L(m) 

Length 

t(m) 

Thickness 

w(m) 

Width 

R2 

Correction factor 

0,1 0,005 0,0100 1,743788 

0,1 0,005 0,0110 1,978668 

0,1 0,005 0,0120 2,234256 

0,1 0,005 0,0130 2,510083 

0,1 0,005 0,0140 2,805802 

0,1 0,005 0,0150 3,121148 

0,1 0,005 0,0160 3,455908 

0,1 0,005 0,0170 3,809897 

0,1 0,005 0,0180 4,182953 

0,1 0,005 0,0190 4,574926 

 

To calculate the shear modulus, the equipment measures the torsional vibration frequency 

and determine the shear modulus using the mass and dimensions of sample according to 

the standards (ASTM E1876-15, ISO 12680-1, EN 843-2). [1] 

 

3. Poisson’s ratio 
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Poisson’s ratio is determined by using Hooke’s law which can only be applied to isotropic 

materials (ASTM E1876-15, ISO 12680-1, EN 843-2). [1] 

 

 
𝜐 =

𝐸

2𝐺
− 1  [1] 

 

 

 (3) 

  

 

With 𝜐 being the Poisson’s ratio 

E is the value of the Young’s modulus  

G is the value of the shear modulus  

 

 

2.2 Equation of damped harmonic motion  

 

Figure 4: Damped harmonic motion [3] 

When there is an external force exert on an oscillator and cause the motion die out over 

time, it is said that the motion is damped. In the figure above, the damping force is the 

dragging force of the water exerting on the vane. 

In a simple case, assume that the damping force 𝐹𝑑
⃗⃗⃗⃗  is proportional to the velocity 𝑣, then. 
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𝐹𝑑 = −𝑏𝑣   [3] 

 

 

 (4) 

  

Where b is a damping constant that depends on the environmental factors. 

The force on the block from the spring is 𝐹𝑠 = −𝑘𝑥; and 𝐹𝑛𝑒𝑡 = 𝑚𝑎 where 𝐹𝑛𝑒𝑡 is the net 

force acting on the block. Then we have: 

 
−𝑏𝑣 − 𝑘𝑥 = 𝑚𝑎   

 

 

 (5) 

  

                                             
I.e.., 𝑚

𝑑2𝑥

𝑑𝑡2
+ 𝑏

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 0    

 

 

 (6) 

  

 

The solution for this is: 

 
𝑥(𝑡) = 𝑥𝑚𝑒

−𝑏𝑡

2𝑚 cos(𝜔𝑑𝑡 + 𝜃)   

 

 

 (7) 

  

Where 𝑥𝑚 is the amplitude and 𝜔𝑑 is the angular frquency of the damped oscillator. This 

angular frequency is given by: 

 
𝜔𝑑 = √

𝑘

𝑚
−

𝑏2

4𝑚2   

 

 

 (8) 

  

If 𝑏 = 0 there is no damping. 

If b is small but not zero, then 𝜔𝑑 is approximate the freqency of undamped oscillator, 

𝜔𝑁 = √
𝑘

𝑚
; then remind that the mechanical energy of a simple harmonic motion without 

damping is given by 𝜖 =
1

2
𝑘𝑥𝑚

2 [4], where 𝜖 is the mechanical energy, 𝑘 is the spring 

stiffness and 𝑥𝑚 is the amplitude of the harmonic motion; by replacing the amplitude 

from equation (7) we get: 
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𝜖(𝑡) ≈

1

2
𝑥𝑚

2 𝑒
−𝑏𝑡

𝑚   [3] 

 

 

 (9) 

  

Which tells that in damped harmonic motion, like the amplitude, the mechancal energy 

decreases exponentially over time. 

It is seen that in air-vacuumed condition, which implies 𝑏 = 0, the freqency of the motion 

is 𝜔𝑑 = 𝜔𝑁 = √
𝑘

𝑚
 which is only dependent on 𝑘 – the spring’s stiffness: 

 

𝜔𝑁 = √
𝑘

𝑚
 

 

  

(10) 

  

2.3 Torsion of a rectangular massless beam  

Consider a rectangular uniformed-section beam fixed at one end and free to move at the 

other end. The beam is subject to a torque of magnitude 𝑇. Assume that the mass of the 

beam is relatively small compared to the magnitude of the torque. 

 

 

Figure 5: Torsion of massless beam [5] 

An important characteristic of torsional deformation of rectangular bar is the warping of 

the cross section. On a rectangular cross section, the maximum shear stress (𝜏𝑚𝑎𝑥)  takes 
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place at the middle of the longer edge. The maximum shear stress of a rectangular beam 

is given by: 

 

𝜏𝑚𝑎𝑥 =
𝑇

𝛼 × 𝑤𝑡2
  [9] 

 

 (11) 

  

 

Where 𝑇 is the applied torque, w and t be are the dimensions of the bar as seen in the 

above figure; 𝛼 is a dimensionless constant obtained by a theory of elasticity solution and 

listed in the table below. 

The angle of twist 𝜃 is given by: 

 

𝜃 =
𝑇𝐿

𝐽𝐺
  [9] 

 

 (12) 

  

 

Where 𝐽 = 𝛽𝑤𝑡3 is the torsional constant; G is the modulus of rigidity (shear modulus) 

of the material; and 𝛽 is a constant listed in the table below.  

Table 5: Torsion constant for rectangular bars [6] 

𝒘

𝒕
 

1,00 1,50 1,75 2,0 2,50 3,00 4 6 8 10 ∞ 

𝜶 0,208 0,231 0,239 0,246 0,258 0,267 0,282 0,298 0,307 0,312 0,333 

𝜷 0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,298 0,307 0,312 0,333 
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3 METHOD 

In this part, the theory about the vibration of a beam in some cases will be developed and 

explained.  

3.1 The deflection of a Cantilever beam with external mass 

Consider a cantilever beam fixed to a vertical support at one end and subject to a load at 

the other end; and assume that the mass of the beam is relatively small compared to the 

external mass. 

 

 

Figure 6: Cantilever beam structure [7] 

The deflection y at any point x along the beam is calculated by: 

 

𝑦 =
𝐹𝑥2

6𝐸𝐼𝐴
(3𝐿 − 𝑥)   [7] 

 

 (13) 

  

The deflection 𝑦𝑚𝑎𝑥 at the free end of the beam is then given by: 

  

𝑦𝑚𝑎𝑥 =
𝐹𝐿3

3𝐸𝐼𝐴
    

 

 

 (14) 
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                Table 6: Terms and definition 

Term Definition Unit 

E Modulus of elasticity (Young’s modulus) kg m-1 s-2 

𝐼𝐴 Area moment of inertia m4 

F Load kg m s-2 

L Projectile length of the beam unto the 

ground 

m 

x Distance from the section to the support m 

y deflection m 

 

According to Hooke’s law we have: 

 

𝐹 = 𝑘𝑥 

 

  

  

Where 𝐹 is the applied force, k is the spring’s stiffness and x is small compared to the 

spring’s length . 

From equation (14) we have: 

 

𝑥 =
𝐹

𝑘
 

 

 (15) 

  

Now combine equation (14) and (15) with the notice that in equation (11), 𝑦𝑚𝑎𝑥 plays the 

same role as x in equation (15), we get: 

 

𝑘 =
𝐹

𝑦
=

𝐹

𝐹𝐿3

3𝐸𝐼𝐴

=
3𝐸𝐼𝐴
𝐿3

 

 

 (16) 

  

From equation (10) and (16) we then have: 
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𝜔𝑁 = √
𝑘

𝑚
= √

3𝐸𝐼𝐴
𝑚𝐿3

 

 

 (17) 

  

Notice that equation (17) is true only when no damping occurs. 

Note that the formula for area moment of inertia 𝐼𝐴 for a bar of width w and thickness t 

is: 

 

𝐼𝐴 =
1

12
𝑤𝑡3 

 

 (18) 

  

From equation (17) and (18) we have: 

 

𝜔𝑁 = √
𝑘

𝑚
= √

𝐸𝑤𝑡3

4𝑚𝐿3
 

 

 (19) 

  

The frequency in Hz is 𝑓𝑁 =
𝜔𝑛

2𝜋
, combine with equation (19) we get: 

 

𝐸 = 16𝜋2𝑓𝑁
2 (

𝑚

𝑤
)  (

𝐿

𝑡
)
3

   

 

 (20) 

  

Remind that in equation (1) we have 𝐸 = 0,9465 (
𝑚𝑓𝑓

2

𝑤
) (

𝐿3

𝑡3)𝑅1, which is similar to equa-

tion (20). Notice that the only difference between the two equations is the constant fac-

tors: in equation (20), it is 16𝜋2  and in equation (1), 0,9465𝑅1. This similarity shows 

that the boundary conditions change, but the system remains constant. 
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3.2 Free vibration of a Cantilever beam with distributed mass. 

Consider a cantilever beam, with length L, clamped at one end and subjected to free vi-

bration at the other end. The mass of the beam is considered to be evenly distributed along 

its length. We aim to find the natural frequency of the beam under vibration. 

 

 

Figure 7: Cantilever beam subjected to free vibration [8] 

 

According to Euler-Bernoulli Beam Theory, we find: 

 

𝐸𝐼𝐴
𝑑4𝑦

𝑑𝑥4 + 𝜌𝐴
𝑑2𝑦

𝑑𝑡2 = 0 [9] 

 

 (21) 

  

Where, E is the modulus of rigidity of beam material, IA is the area moment of the beam 

cross-section, A is the cross-section area, 𝜌 is the material density, x and y are the dis-

placement from the fixed end in x and y axis at time t respectively. 

The normal solution for the above equation is: 

 

𝑌(𝑥, 𝑡) = 𝑋(𝑥)𝑇(𝑡)  

 

 (22) 

  

From equation (21) and (22) we have: 
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 𝐸𝐼𝐴

𝜌𝐴

𝑑4𝑋

𝑑𝑥4 𝑇(𝑥) − 𝑋(𝑡)
𝑑2𝑇

𝑑𝑡2 = 0      (23) 

  

Solution for displacement is given by:  

 

𝑋(𝑥) = 𝐶1𝐶𝑜𝑠(𝑥𝛿) + 𝐶2𝑆𝑖𝑛(𝑥𝛿) + 𝐶3𝐶𝑜𝑠ℎ(𝑥𝛿) + 𝐶4𝐶𝑜𝑠ℎ(𝑥𝛿)  [9] 

 

   (24) 

  

In which, 

 

𝛿 = (
𝜌𝐴

𝐸𝐼𝐴
𝜔2)

1

4
     

 

 (25) 

  

Because one end is fixed, therefore the displacement and slope are zero at this end which 

implies: 

𝐴𝑡 𝑥 = 0, 𝑦 = 0,
𝑑𝑦

𝑑𝑥
= 0 

 While at the free end, the moment is zero (
𝑑2𝑦

𝑑𝑥2 = 0 ) and shear is zero ( 
𝑑3𝑦

𝑑𝑥3 = 0). Thus, 

we have the boundary condition: 

𝐴𝑡 𝑥 = 0, 𝑦 = 0,
𝑑𝑦

𝑑𝑥
= 0 

𝐴𝑡 𝑥 = 𝐿,
𝑑2𝑦

𝑑𝑥2
= 0,

𝑑3𝑦

𝑑𝑥3
= 0 

Apply above conditions to equation (24), we get 𝐶2 = −𝐶4 and 𝐶1 = −𝐶3. Solving this 

for 𝐶1 and 𝐶2 we find: 

 

𝐶𝑜𝑠(𝛿𝑙)𝐶𝑜𝑠ℎ(𝛿𝑙) = −1     

 

 (26) 

  

The general solution of equation (26) is 𝛿𝑛𝐿 =
(2𝑛−1)𝜋

2
 . Combining this with equations 

(24) and (25) gives: 
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𝑇(𝑡) = 𝑏1𝑆𝑖𝑛 [(𝛿𝑛

2
√

𝐸𝐼𝐴

𝜌𝐴
) 𝑡] + 𝑏2𝐶𝑜𝑠 [(𝛿𝑛

2
√

𝐸𝐼𝐴

𝜌𝐴
) 𝑡]    

(27) 

  

The frequency in rad/s is: 

 

𝜔𝑛 =
𝛿𝑛

2

𝐿2 √
𝐸𝐼𝐴

𝜌𝐴
    [9] 

 

 (28) 

  

The natural frequency in Hz is: 

 

𝑓𝑛 =
𝜔𝑛

2𝜋
=

𝛿𝑛
2

2𝜋𝐿2 √
𝐸𝐼𝐴

𝜌𝐴
     

  

 (29) 

  

The shapes of the first three modes are shown as below: 

 

 

Figure 8: Mode shapes and natural frequencies for the first three modes of flexural vibration of the cantilever beam 

[10] 
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 Notice that 
𝑓1

𝑓2
≈ 0,1596. In the next part, we will recheck this ratio with COMSOL soft-

ware to prove that the software gives the results that match the theory. 

In equation (29), solve for E and remind that, 𝜌 =
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
=

𝑚

𝐿.𝐴
, we get, for the first mode: 

 

𝐸 = 𝑓𝑛
2 (

𝐿

𝑡
)
3

(
𝑚

𝑤
) (

48𝜋2

1,8754)  

 

 (30) 

  

Again, compare equation (30) to equation (1), 𝐸 = 0,9465 (
𝑚𝑓𝑓

2

𝑤
) (

𝐿3

𝑡3)𝑅1 we can recog-

nize the similarity between them. The only difference between them is the boundary con-

dition resulting in the factor 
48𝜋2

1,8754 = 38,33 in equation (30) and  0.9465𝑅1 in equation 

(1). This shows gain that the boundary condition does not affect the system but only the 

constant factor. 
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3.3 Torsional harmonic oscillator 

 

 

Figure 9: Torsional Pendulum [11] 

 

Suspend a bar from a thin wire and wind it by an angle 𝜃, the bar swings and due to the 

restoring force of the wire caused by torsion. The motion of the bar is an example of the 

motion a torsional harmonic oscillator. The torsional torque is (the term definitions are 

given the table below): 

 

T = −𝜅𝜃 [11] 

 

 (31) 

  

The equation of the motion is: 

 

𝐼𝜃′′ = −𝜅𝜃 

 

 (32) 

  

 

We can rewrite equation (32) as: 

 

𝐼
𝑑2𝜃

𝑑𝑡2
+ 𝐶

𝑑𝜃

𝑑𝑡
+ 𝜅𝜃 = 𝑇(𝑡)   [11] 

 

 (33) 
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If the damping is small,𝐶 ≪ √
𝜅

𝐼
, the frequency of the vibration is close to the natural 

resonant frequency of the system: 

 

𝜔𝑁 = √
𝜅

𝐼
    

 

 (34) 

  

 

The general solution for equation (33) in case there is no driving force which mean T(𝑡) =

0 is: 

 

𝜃 = 𝐴𝑒−𝛼𝑡 𝑐𝑜𝑠(𝜔𝑡 + 𝜙)  [11] 

 

 (35) 

  

 

Where 𝜚 =
𝐶

2𝐼
 and 𝜔𝑑 = √𝜔𝑁

2 − 𝜚2 = √𝜅

𝐼
− (

𝐶

2𝐼
)
2

. 

Table 7: Terms and definition 

Term  Unit  Definition  

𝜃 rad Twisted angel 

𝐼 kg m2 Moment of inertia of the bar 

𝐶 J s rad-1 Angular damping constant 

𝜅 N m rad-1 Torsion spring constant 

𝑇 N m Drive torque 

𝜔𝑁 rad s-1 Un-damped resonant frequency in radian 

𝜔𝑑 rad s-1  Damped resonant frequency in radian 

𝜚 s-1 Reciprocal of damping time constant  

𝜙 rad Phase angle of oscillation 

 

Consider the case when we replace the wire by a thin bar of length L, width w and thick-

ness t (𝑤 ≫ 𝑡) and of negligible mass. The bar is now replaced by a shaft of cylinder 

shape with length l and mass m. 
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Figure 10: twisting motion 

Equation (12) gives that the angle of twist is 𝜃 =
𝑇𝐿

𝐽𝐺
  which implies that: 

 

𝑇 = 𝜃
𝐽𝐺

𝐿
 

 

 (36) 

  

Equation (31) gives that T = −𝜅𝜃. The negative sign is taken away when we consider the 

magnitude of the torque only. Then we have: 

 

𝜃
𝐽𝐺

𝐿
= 𝜅𝜃 

 

 (37) 

  

Thus, 

 

𝜅 =
𝐽𝐺

𝐿
 

 

 (38) 

  

 

Equation (34) gives 𝜔𝑁 = √
𝜅

𝐼
  .Substitute 𝜅 from equation (38) we get: 
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𝜔𝑁 = √
𝐽𝐺

𝐼𝐿
 

 

 (39) 

  

Remind that I is the moment of inertia of the cylinder shaft with the axis of rotation, in 

this case, is at the center of the shaft. We have: 

 
𝐼 =

1

12
𝑚𝑙2  

 

 

 (40) 

  

Where m and l are the mass and length of the shaft as defined above. 

Substitute I from equation (39) to equation (40) and notice that 𝐽 = 𝛽𝑤𝑡3 =
1

3
𝑤𝑡3 as 

𝑤 ≫ 𝑡 (check Table 1), we get. 

 

𝜔𝑁 = √
12 × 𝐽𝐺

𝐿𝑚𝑙2
= √

4𝑤𝑡3𝐺

𝐿𝑚𝑙2
 

 

 (41) 

  

We expect that the torsional frequency of twist is proportional to 𝜔𝑁 ∝
1

√𝐿
. This result is 

valid only if there is no or insignificant damping. As we discussed earlier the damping is 

related to the frequency of the vibration such that the damping is big if the frequency is 

big.  Therefore equation (41) is possible if 𝜔𝑁 is small. This occurs when 𝐿 is large com-

pared to 𝑤 and 𝑡. 

Solve equation (41) for G and notice that 𝜔𝑁 = 2𝜋𝑓𝑁, we get: 

  

𝐺 =
𝜋2𝑓𝑁

2𝐿𝑚𝑙2

𝑤𝑡3
=

𝐿𝑚𝑓𝑁
2

𝑤𝑡
×

𝜋2𝑙2

𝑡2
 

 

 (42) 

  

Equation (42) gives a theoretical formula to calculate the Shear modulus of the thin rec-

tangular bar by mean of the frequency 𝜔𝑁. 



28 

 

 

 

Now if we look back at equation (2) 𝐺 =
𝐿𝑚𝑓𝑡

2

𝑤𝑡
× 4𝑅2 we can see that the difference be-

tween the two equations is the two factors 
𝜋2𝑙2

𝑡2  in equation (42) and 4𝑅2 in equation (2). 

𝐺 =
4𝐿𝑚𝑓𝑡

2

𝑤𝑡
𝑅2 

3.4 COMSOL simulation 

COMSOL Multiphysics software is a simulation software for modelling designs, devices 

and processes in the field of engineering technology and research. The software provides 

designing tools that help model and simulate variety of mechanical test.  

In the project, the version 5.3a of COMSOL Multiphysics – Classkit license is used to 

perform simulations as part of theoretical research. 

In this section, some of the theories that are mentioned earlier are modelled and sent to 

simulation with the software. In other words, we recheck the formulas that have been 

developed earlier with COMSOL Multiphysics.  

The purpose of this task is in the first place, to re-enforce the theory and in the second 

place, to prove the reliability of COMSOL Multiphysics software. 

3.4.1 Eigen frequency ratios and Young’s modulus 

In the very end of the section 3.2, we come up with the two important results after ana-

lyzing the vibration of a beam with distributed mass: 

 

1.  
𝑓1

𝑓2
≈ 0,1596  

2. Equation (30) 

𝐸 = 𝑓𝑛
2 (

𝐿

𝑡
)
3

(
𝑚

𝑤
)(

48𝜋2

𝛿𝑛
4 ) 

We will test these two results with simulation from COMSOL Multiphysics software. 
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3.4.1.1 Eigen frequency ratios 

In order to verify these two ratios in COMSOL, we model a beam that is made of Alumi-

num, fixed at one end and free to move at the other end. This is the exact condition that 

we set for the theory in section 3.2. 

The dimension of the beam is changed in each experiment to prove that the result is reli-

able. The experiment can be done unlimited time, however, in this task, five experiments 

are performed.  

The process and results are given below: 

 

Figure 11: Eigen frequency simulation 

 

Figure 12: Mechanical properties of Aluminum attained from COMSOL 
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The table below shows the results of 5 experiments: 

Table 8: Eigen frequency's ratio and error 

Width 

w(m) 

Thickness 

t(m) 

Length 

L(m) 

First mode  

frequency 

f1(Hz) 

Second mode  

frequency 

f2(Hz) 

Ratio 

f1/f2 

Error (%) 

0,01 0,005 0,2 103,57 647,95 0,159 0,151 

0,01 0,0075 0,2 156,29 975,77 0,160 0,357 

0,01 0,01 0,2 208,83 1298,5 0,160 0,766 

0,015 0,01 0,2 209,54 1305,9 0,160 0,536 

0,02 0,01 0,3 92,218 576,31 0,160 0,259 

 

The error (%) shown in table 8 is calculated by: 

𝑒𝑟𝑟𝑜𝑟 = (|
𝐹𝐸𝐴 𝑣𝑎𝑙𝑢𝑒

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
− 1|) × 100% 

The errors calculated are relatively small which proves that COMSOL simulation results 

and theoretical value are close as we desire. 

3.4.1.2 Equation of Dynamic Bending modulus formula of a beam with distrib-

uted mass 

The equation that is mentioned here is equation (30): 

𝐸 = 𝑓𝑛
2 (

𝐿

𝑡
)
3

(
𝑚

𝑤
)(

48𝜋2

𝛿𝑛
4 ) 

We simplify the equation by examining only the case with the first mode of vibration, 

which implies that the value of 𝛿𝑛 is 1.875 equation (30) becomes: 

𝐸 = 38,33𝑓𝑛
2 (

𝐿

𝑡
)
3

(
𝑚

𝑤
) 
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Remind that this equation is based on the boundary condition such that the beam is fixed 

at one end and free to move at the other end. This result is different from equation (1) in 

section 2.1.2. 

𝐸 = 0,9465 (
𝑚𝑓𝑓

2

𝑤
) (

𝐿3

𝑡3)𝑅1   

The reason for this difference is the boundary condition. In equation (1), the sample is 

clamped at both ends instead of being clamped at only one end. 

Some values of  𝑅1 are given in table 1. It is clear that 𝑅1 ≈ 1. Then the difference be-

tween the frequency  𝑓𝑛 achieved in equation (30) and the frequency 𝑓𝑓 in equation (1) is: 

𝑓𝑛
𝑓𝑓

= √
0,9465

38,33
= 0,157 

This means that 𝑓𝑛 is 6,36 times smaller than 𝑓𝑓. This implies that the beam vibrates 6,36 

times slower in one-end fixed experiment than it does with two-end fixed experiment. 

And because the damping force is proportional to the velocity of the motion, the one-end 

fixed experiment will undergo smaller damping force which leads to less error in the cal-

ibration result. 

Now go back to equation (30), we want to add some more transformation. Notice that 

𝑚 = 𝑉𝜌 = 𝑤𝑡𝐿𝜌 where 𝑉, 𝜌 are the volume and density of the beam respectively. Re-

place this to the above equation and solve for 𝑓𝑛 we get: 

𝐸 = 38,33𝑓𝑛
2 (

𝐿

𝑡
)
3

𝑡𝐿𝜌 = 38,33𝑓𝑛
2𝜌

𝐿4

𝑡2
 

 

 
𝑓𝑛 =

0,162√
𝐸
𝜌 𝑡

𝐿2
 

(43) 

 

By setting up similar model and simulation which have been done in section 3.4.1.1 and 

varying the factors 𝐿, 𝑡 and 𝜌, E (by adjusting the material), it is possible to observe the 
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relationship between 𝑓𝑛 and these elements. And thus, we would verify whether COM-

SOL gives the result that is the same as theoretical result.  

Notice that 𝐸 and 𝜌 are dependent on the material, thus they are dependent on each other. 

For that reason, there is no choice but examining the behavior of the whole factor √
𝐸

𝜌
 and 

𝑓𝑛. 

In this set of experiments, it is enough to observe only the first mode (𝑓1) of vibration. 

The results are listed below: 

1. Dependence of frequency on beam’s length 

The width and thickness of the beam are 0,02m and 0,01m respectively. 

Table 9: Dependence of frequency on beam's length 

Material Length 

L(m) 

1/L2 

(m-2) 

Frequency 

fn(Hz) 

Aluminum 0,2 25 208,77 

Aluminum 0,25 16 133,37 

Aluminum 0,3 11,111 92,218 

Aluminum 0,35 8,163 67,688 

Aluminum 0,4 6,25 51,785 
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The graph below shows the relationship between the value of 𝑓𝑛 and 
1

𝐿2. 

 

Figure 13: Dependence of frequency on beam's length 

 

The linear graph pointing toward the origin proves that  𝑓𝑛 and 
1

𝐿2 has a linear relationship. 

The error will be bigger if the damping is significant, that is for short beams. 

2. Dependence of frequency on beam’s thickness 

Table 10: Dependence of frequency on beam's thickness 

Material Mass 

w(m) 

Thickness 

t(m) 

Length 

L(m) 

Frequency 

fn(Hz) 

Aluminum 0,01 0,05 0,2 103,57 

Aluminum 0,01 0,06 0,2 124,85 

Aluminum 0,01 0,07 0,2 145,74 

Aluminum 0,01 0,08 0,2 166,81 

Aluminum 0,01 0,09 0,2 188,81 

 

0

50

100

150

200

250

0 5 10 15 20 25 30

fn
(H

z)
Fr

eq
u

en
cy

1/L2(m-2)
Reciprocal of the square of length

Frequency and Length



34 

 

 

 

 

The graph below shows the relationship between 𝑓𝑛 and 𝑡. 

 

Figure 14: Dependence of frequency on beam's thickness 

 

The linear line tending to pass through the origin proves that 𝑓𝑛 and t are linearly depend-

ent as desire. 

3. Dependence of frequency on beam’s material (variation on E and 𝜌) 

The length, width and thickness of the beam are 0,2m, 0,02m and 0,01m respectively. 
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Table 11: Dependency of frequency on beam's material 

Material Young’s  

modulus 

E(Pa) 

𝐃𝐞𝐧𝐬𝐢𝐭𝐲 

𝛒 

(𝐤𝐠 𝐦-3) 

Frequency 

fn(Hz) 

√
𝐄

𝛒
   

(Pa1/2 kg-1/2 m3/2) 

Aluminum 7,00E+10 2700 208,77 5091,751 

Cast iron 1,40E+11 7000 181,93 4472,136 

Copper 1,10E+11 8960 144,06 3503,824 

Iron 2,00E+11 7870 205,78 5041,127 

Steel 2,05E+11 7850 208,41 5110,249 

 

 

Figure 15: Dependence of frequency on beam's material 

 

The linear line pointing at the origin proves that 𝑓𝑛 and √
𝐸

𝜌
 are directly proportional as we 

desire. 
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We have now proved that 𝑓𝑛 is proportional to 𝐿, 𝑡 and√
𝐸

𝜌
 , which implies that: 

𝑓𝑛 = 𝛥1

√
𝐸
𝜌 𝑡

𝐿2
 

Where 𝛥1 is unknown constant. 

However, by using Table 7, the value of 𝛥1 can be found. The equation is used beam 

theory. The thickness must be comparable to width. 

Remind that the length, width and thickness of the beam are 0,2m, 0,02m and 0,01m 

respectively. 

Table 12: Constant value 

Material Young’s  

modulus 

E(Pa) 

Density 

𝛒(kg m-3) 

Frequency 

fn(Hz) 

√
𝐄

𝛒
 

 

Constant 

∆𝟏 

error 

(%) 

Aluminum 7,00E+10 2700 208,77 5091,751 0,164 1,239 

Cast iron 1,40E+11 7000 181,93 4472,136 0,163 0,446 

Copper 1,10E+11 8960 144,06 3503,824 0,164 1,519 

Iron 2,00E+11 7870 205,78 5041,127 0,163 0,791 

Steel 2,05E+11 7850 208,41 5110,249 0,163 0,698 

 

The error (%) is calculated by: 

𝑒𝑟𝑟𝑜𝑟 = (|
𝐶𝑂𝑀𝑆𝑂𝐿 𝑟𝑒𝑠𝑢𝑙𝑡

0,162
− 1|) × 100 

The errors shown in the table reveals that the difference between the COMSOL results 

and the theoretical solution of the constant is relatively small and negligible. 
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3.4.2 Eigen frequency for torsional motion 

3.4.2.1 Verification of frequency equation of torsional motion for a beam with 

distributed mass and fixed at one end 

In the former section, we have seen the reliable capability of COMSOL software to check 

and verify the theoretical equation that is built in section 3.2, equation (30). 

𝐸 = 𝑓𝑛
2 (

𝐿

𝑡
)
3

(
𝑚

𝑤
)(

48𝜋2

𝛿𝑛
4 ) 

This equation is solved for 𝑓𝑛 in equation (43): 

𝑓𝑛 =
0,162√

𝐸
𝜌 𝑡

𝐿2
 

In this section, by using the same software COMSOL, we will build a formula for the 

frequency of the beam with distributed mass in the case of torsional motion and with the 

boundary condition such that the beam is fixed at one end and free at the other end. 

In the first place, it is worth noticing that in section 3.3, the formula for frequency of 

torsional harmonic oscillator has been built in equation (41): 

𝜔𝑁 = √
12 × 𝐽𝐺

𝐿𝑚𝑙2
= √

4𝑤𝑡3𝐺

𝐿𝑚𝑙2
 

This case is different from the case that we are finding because of the boundary condition. 

Equation (41) is true for the beam fixed at one end and the other end is attached to a 

cylinder bar that has relatively large mass compared to the mass the beam. 

However, because of the primary nature of the two motions is torsion, we expect that the 

equation that we are trying to develop is somewhat similar to equation (41). In more de-

tail, it is expected that the unknown equation has a form as below. 

𝑓𝑡 = √
4𝑤𝑡3𝐺

𝐿Υ
 

Where: 
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Table 13: Terms and definition 

Term Definition Unit 

𝑓𝑡 Torsional frequency Hz 

𝑤 With of the beam m 

𝑡 Thickness of the beam m 

𝐺 Shear Modulus  Pa 

𝐿 Length m 

Υ Unknown factor To be determined 

 

The unknown factor Υ is predictably same as the moment of inertia, which implies 

Υ ∝ 𝑚𝑙2. 

In simulation to testify the dependence of frequency on length, width and thickness, Alu-

minum is used. 

1. Verification of the dependence on thickness 

In this group of simulation, all other factors of the beam including length, width, material 

(which means density and Shear modulus) are fixed. It is only the thickness of the beam 

is varied. In this way, the dependence between the torsional frequency and the thickness 

of the beam can be verified. 

The table and graph below show the result: 

Table 14: Dependence of frequency on beam's thickness 

 Width 

w(m) 

Thickness 

t(m) 

Length 

L(m) 

Frequency 

f t (Hz) 

0,05 0,005 0,5 312,46 

0,05 0,007 0,5 430,51 

0,05 0,009 0,5 543,88 

0,05 0,011 0,5 653,52 

0,05 0,013 0,5 754,89 
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Figure 16: Dependence of frequency on beam’s thickness 

 

The straight line pointing at the origin proves that the value frequency is directly propor-

tional to the value of the beam’s thickness when other factors are fixed. 

2. Verification of the dependence on length 

With the same method, the length of the beam is varied and other factors are fixed, it is 

possible to observe the relationship between torsional frequency of the beam and its 

length. 

Table 15: dependence of frequency on beam's length 

Width 

w(m) 

Thickness 

t(m) 

Length 

L(m) 

Frequency 

ft (Hz) 

Reciprocal of length 

1/L (m-1) 

0,05 0,005 0,2 814,63 5 

0,05 0,005 0,3 530,02 3,333 

0,05 0,005 0,4 393,15 2,5 

0,05 0,005 0,5 312,46 2 

0,05 0,005 0,6 259,32 1,667 
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Figure 17: Dependence of frequency on beam’s length 

The straight line pointing at the origin proves that 𝑓𝑡 and 
1

𝐿
 are directly proportional. 

3. Verification of the dependence on width 

Table 16: Dependence of frequency on beam's width 

Width 

w(m) 

Thickness 

t(m) 

Length 

L(m) 

Frequency 

ft (Hz) 

Reciprocal of width 

1/w (m-1) 

0,02 0,02 0,5 309,99 50 

0,04 0,005 0,5 158,43 25 

0,06 0,005 0,5 107,06 16,667 

0,08 0,005 0,5 81,257 12,5 

0,1 0,005 0,5 65,786 10 
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Figure 18: Dependence of frequency on beam’s thickness 

As can be seen on the graph, the value of the torsional frequency and reciprocal of the 

width are directly proportional. 

4. Verification of the dependence on 
𝐺

𝜌
 

The ratio 
𝐺

𝜌
 is the ratio between the shear modulus of the material and its density. This 

ratio is the same the ratio 
𝐸

𝜌
 that appears in section 3.4.1.2 in equation (43). 

In order to see the dependence between 𝑓𝑡  and 
𝐺

𝜌
, simply fixed the dimension of the beam 

and change only its material. 

The table and graph below show the relationship: 

The length, width and thickness of the beam are 0,5m, 0,05m and 0,005m respectively. 
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Table 17: Dependence of frequency on beam's material 

Material Density 

𝝆    

(kg m-3) 

Shear modulus 

G 

(Pa) 

Frequency 

ft (Hz) 

𝑮/𝝆  

(Pa kg-1 m3) 

ft
2  

(s-2) 

Aluminum 2700 26315789474 312,46 9746589 97631,252 

Cast iron 7000 56000000000 282,56 8000000 79840,154 

Copper 8960 40740740741 213,54 4546958 45599,332 

Iron 7870 77519379845 313,8 9849985 98470,44 

Steel 7850 80078125000 319,27 10201035 101933,333 

Table 18: Dependence of frequency on beam’s material 

 

 

 

 

Figure 19: Dependence of frequency on beam’s material 
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The graph proves that 𝑓𝑡
2
 is proportional to 

𝐺

𝜌
 implying 𝑓𝑡 is proportional to √

𝐺

𝜌
. 

5. Formula of the frequency 

We have proved that 𝑓𝑡 is proportional to 𝑡,
1

𝐿
,
1

𝑤
, 𝑎𝑛𝑑 √

𝐺

𝜌
. From this we have: 

𝑓𝑡 = ∆𝑡𝑡
1

𝐿

1

𝑤
√

𝐺

𝜌
 

Where ∆𝑡 is a constant that can be found by simply solve the above equation for ∆𝑡 

and use that simulation that have been done previously. 

The length, width and thickness of the beam are 0,5m, 0,05m and 0,005m respec-

tively. 

 

Table 19: Constant value 

Material Frequency 

ft (Hz) 

𝑮/𝝆  

(Pa kg-1 m3) 

Constant 

∆𝒕 

Aluminum 312,46 9746589 0,5004 

Cast iron 282,56 8000000 0,4995 

Copper 213,54 4546958 0,5007 

Iron 313,8 9849985 0,4999 

Steel 319,27 10201035 0,4998 

 

As can be seen on the table ∆𝑡≈ 10. We get: 
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 𝑓𝑡 = 0,5
𝑡

𝑤𝐿
√

𝐺

𝜌
 (44) 

Now we proceed with some transformation from equation (45): 

𝑓𝑡 = 0,5√
𝐺

𝜌
(

𝑡

𝑤𝐿
)
2

= 0,5√
𝑤𝑡3𝐺

(𝑤𝐿𝑡𝜌)𝐿𝑤2
= 0,5√

𝑤𝑡3𝐺

𝐿𝑚𝑤2
 

 𝑓𝑡 = 0,5√
𝑤𝑡3𝐺

12𝐿(
1
12𝑚𝑤2)

 (45) 

If 𝑤 ≫ 𝑡 then we have 𝑤2 ≈ 𝑤2 + 𝑡2 then equation (46) becomes: 

𝑓𝑡 = 0,5√

1
3𝑤𝑡3𝐺

4𝐿(
1
12𝑚(𝑤2 + 𝑡2)

= 0,25√
𝐽𝐺

𝐿𝐼𝐿
 

 𝑓𝑡 = 0,25√
𝐽𝐺

𝐿𝐼𝐿
 (46) 

Where 𝐽 =
1

3
𝑤𝑡3 is the number that has been mentioned in section 2.3; 𝐼𝐿 is the mass 

moment of inertia of the beam about the axis that passes through its center of mass 

and parallel to the its length. 

3.4.2.2 Verification of frequency equation of torsional motion for a beam with 

distributed mass and fixed at two ends 

In this sector, we study the torsional vibration of a beam with distributed mass that is 

fixed at both ends. This case is similar to the former case with the only difference being 

that both faces are locked instead of one. 

We examine this case with the same method and the same factors: thickness, length, width 

and the ratio 
𝐺

𝜌
. 

1. Dependence of the frequency on thickness 
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Table 20: Dependence of the frequency on thickness 

Material Width 

w(m) 

Thickness 

t(m) 

Length 

L(m) 

Frequency 

ft(Hz) 

Aluminum 0,05 0,005 0,5 643,01 

Aluminum 0,05 0,006 0,5 766,06 

Aluminum 0,05 0,007 0,5 885,76 

Aluminum 0,05 0,008 0,5 1005,7 

Aluminum 0,05 0,009 0,5 1118,2 

 

 

 

Figure 20: Dependence of the frequency on thickness 

 

The graph shows that the frequency of vibration if directly proportional to the thick-

ness of the beam. 

2. Dependence of the frequency on length 
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Table 21: Dependence of the frequency on beam's length 

Material  Width 

w(m) 

Thickness 

t(m) 

Length 

L(m) 

Frequency 

ft(Hz) 

Reciprocal of Length 

1/L(m-1) 

Aluminum 0,05 0,005 0,5 643,01 2 

Aluminum 0,05 0,005 0,6 530,9 1,67 

Aluminum 0,05 0,005 0,7 452,79 1,43 

Aluminum 0,05 0,005 0,8 395,1 1,25 

Aluminum 0,05 0,005 0,9 349,91 1,11    

 

 

 

Figure 21: Dependence of the frequency on length 

 

The straight line passing through the origin proves that the value of the frequency is in-

versely proportional to the length of the beam. 

3. Dependence on the width 
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Table 22: Dependence of frequency on beam's width 

Material Width 

w(m) 

Thickness 

t(m) 

Length  

L(m) 

Frequency 

ft(Hz) 

Reciprocal of width 

1/w(m-1) 

Aluminum 0,05 0,005 0,5 643,01 20,00 

Aluminum 0,06 0,005 0,5 544,8 16,67 

Aluminum 0,07 0,005 0,5 474,58 14,29 

Aluminum 0,08 0,005 0,5 421,37 12,50 

Aluminum 0,09 0,005 0,5 380,19 11,11 

 

 

Figure 22: Dependence of the frequency on beam’s width 

 

The graph shows that the value of the frequency is inversely proportional to the value of 

the width. 
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4. Dependence of the frequency on ratio 
𝐺

𝜌
 

It is the same as in section 3.4.2.1, we examine the dependence of the frequency on the 

material of the beam. The simulation is done by fixing the dimensions of the beam and 

have its material varied. 

The length, width and thickness of the beam are 0,5m, 0,05m and 0,005m respectively. 

Table 23: Dependence of frequency on beams material 

Material 

𝑮

𝝆
 

(kg m-3 Pa-1) 

Frequency 

ft (Hz) 

ft
2 

(Hz2) 

Aluminum 9,75E+06 643,01 413461,9 

cast iron 8,00E+06 580,33 336782,9 

Copper 4,55E+06 439,69 193327,3 

Silicon 2,85E+07 1097 1203409 

Acrylic plastic 9,96E+05 206 42345,41 
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Figure 23: Dependence of frequency on beam's material 

 

The graph shows that the square of the value of the frequency is directly proportional to 

𝐺

𝜌
, or 𝑓𝑡 ∝

𝐺

𝜌
. 

5. Finding the formula of frequency according to the value of length, thickness, 

width and ratio 
𝐺

𝜌
 of the beam. 

According to the relationship between the frequency with the length, thickness, width and 

material of the beam, we have: 

𝑓𝑡 = ∆
𝑡

𝑤𝐿
√

𝐺

𝜌
 

Solving above equation for ∆ gives: 

Table 24: Constant value 

Material  Width 

w(m) 

Thickness 

t(m) 

Length 

L(m) 

Frequency 

ft(Hz) 

Constant 

∆  

Aluminum 0,05 0,005 0,5 643,01 1,02982 

cast iron 0,05 0,005 0,5 580,33 1,025888 

Copper 0,05 0,005 0,5 439,69 1,030994 

Silicon 0,05 0,005 0,5 1097 1,027204 

Acrylic plastic 0,05 0,005 0,5 205,78 1,030988 

 

It is clear that ∆≈ 1, we have: 

𝑓𝑡 =
𝑡

𝑤𝐿
√

𝐺

𝜌
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And following the same steps as we did to achieve equation (47), we get: 

 𝑓𝑡 = 0,5√
𝐽𝐺

𝐿𝐼𝐿
 (47) 

 

And remind that equation (47) is only true for a thin beam (𝑡 ≪ 𝑤) of which both ends 

are fixed at both two ends. 

 

3.4.2.3 Verification of frequency equation of torsional vibration of a beam with 

small distributed mass attached with a large mass in the middle, fixed 

at both ends 

In this section, we will simulate the vibration of a thin beam locked at both ends and 

attached with a cylinder object that has the mass relatively large compare to the mass of 

the beam. 

Then by using the same method as in other sections, we attempt to find the formula of the 

frequency of vibration in term of other known factors of the beam and the object. 
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Figure 24: Cylinder object attached to thin beam 

The factors that are concerned in this simulation are the dimensions and material of the 

beam of attached object. 

1. Dependence of the frequency on the length of the beam 

In the table below, l is the length of the cylinder object and R is the radius. 

Table 25: Dependence of frequency on beam's length 

l(m) R(m) w(m) t(m) L(m) ft(Hz) 𝟏

𝑳
 (m-1) 𝟏

√𝑳
(𝒎−

𝟏
𝟐) 

𝟏

𝑳
𝟑
𝟐

(𝒎−
𝟑
𝟐) 

0,5 0,025 0,05 0,005 0,5 1497,5 2 1,414214 1,587 

0,5 0,025 0,05 0,005 0,6 1201,4 1,667 1,291 1,406 

0,5 0,025 0,05 0,005 0,7 1003,1 1,429 1,195 1,268 

0,5 0,025 0,05 0,005 0,8 863,33 1,250 1,118 1,160 

0,5 0,025 0,05 0,005 0,9 757,49 1,111 1,054 1,072 
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Figure 25: Relationship between frequency and beam's length 

 

It is seen from the graph that the frequency is proportional to the reciprocal of the beam’s 

length, however there is no linear relationship between them. 

 

Figure 26: Relationship between frequency and beam's length 
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Figure 27: Relationship between frequency and beam's length 

 

We examine another variation as above. Again, (
1

𝐿
)

3

2
 and 𝑓𝑡 are proportional but not di-

rectly proportional. 

As can be seen in this case, the frequency of the beam is clearly dependent on the length 

of the beam. However, it fails to find a clear relationship between them. This leads to the 

fact that it is not feasible this time to find a formula as we desire. 

Thus, in this case, we conclude that it is not possible to use COMSOL multiphysics to 

achieve a formula for the frequency.  
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4 EXPERIMENTS 

In section 3.6, COMSOL Simulation is used to help developing formulas and testify the 

theory in the cases of torsional vibration of cantilever beam with distributed mass and one 

end fixed, and torsional motion of cantilever beam with distributed mass and two ends 

fixed. As discussed at the end of section 3.4.2.3, the software is incapable of giving a 

clear formula for the frequency of torsional vibration in the case where two ends of the 

beam are fixed. 

The experiments are implemented in an attempt to, again, testify the formula of the fre-

quency of a cantilever beam with distributed mass fixed at one end undergoing transla-

tional vibration, which is the equation (30), 𝐸 = 𝑓𝑛
2 (

𝐿

𝑡
)
3

(
𝑚

𝑤
) (

48𝜋2

1,8754) which is the other 

form of equation (29), 𝑓𝑛 =
𝜔𝑛

2𝜋
=

𝛿𝑛
2

2𝜋𝐿2 √
𝐸𝐼𝐴

𝜌𝐴
    with 𝛿𝑛 = 1,875. 

 

In addition to this, one apparatus is built in order to verify the frequency of vibration of a 

cantilever beam undergoing torsional vibration that is attached to a relatively big mass. 

 

The first experiment is successfully conducted and showed a similar result as described 

in the theory and to the bending modulus achieved from static 3 point bending test that 

has been done simultaneously. However, torsional vibration test has not been conducted 

because of the lack of equipment at Arcada. 

4.1 Apparatus for bending modulus testing 

4.1.1 Procedure 

The specimen is made of carbon fiber lamina with the free length being 149mm, the width 

being 15mm and thickness being 2,25mm.  

The original length of the specimen is 180mm. The free length is the length of the part of 

the specimen that undergoes vibration. 
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The specimen is clamped at one end and allowed to vibrate at the other end. A force is 

initiated to cause the vibration, after which the spectrum of the frequency of vibration is 

achieved. 

By reading the frequency’s spectrum, the first mode of frequency of translational vibra-

tion is calculated. 

 

 

Figure 28: spectrum of frequency 
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Figure 29: Reading of frequency 

 

 

After achieving the frequency, static Young modulus, E, is calculated by solving equation 

(29) for E. 

Finally, the specimens are sent to dynamic 3 point bending test in Arcada laboratory and 

Borås laboratory in order to calculate the dynamic Young modulus according to this 

method. Then the results are recorded and compared. 
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4.1.2 Result 

It is known that the thickness of the sample is 2,25m; the free length of the sample is 

149mm; it is then calculated that the total mass of the sample is 8,57g and the mass of the 

free part is 7,094g.    

Table 26: Test results [12] 

item I 

(mm4) 

Young’s  

Modulus  

calculated by 

equitation (29) 

(GPa) 
 

Young’s Modulus 

calculated at  

Arcada’s laboratory  

(GPa) 

 
 

Young’s Modulus 

calculated at Borås’ 

laboratory  

(GPa) 
 

CCC

2.1 

14,23 78,52 77,21 75,96 

CCC

2.2 

14,23 64,23 77,21 75,969 

CCC

2.3 

14,23 79,77 77,21 75,96 

 

 

As can be seen from the table, the error of the Young’s modulus from the static bending 

test at Lab Arcada and Lab Borås is considerably small: 

𝐸𝑟𝑟𝑜𝑟 = |(1 −
77,21

75,96
) × 100%| ≈ 1,6% 

 

In the same way, we can calculate the error of the Young’s modulus calculated by equa-

tion (29) with each sample and the Young’s modulus calculated at Arcada’s laboratory. 

For example, with sample CCC 2.1, we have: 

 

𝐸𝑟𝑟𝑜𝑟 = |(1 −
78,52

77,21
) × 100%| ≈ 1,697% 
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Apply this calculation for both three samples, we get the table showing errors between 

the results. 

Table 27: Error 

Specimen Error compared to  

Lab Arcada result (%) 

Error compared to 

 Lab Borås result (%) 

CCC 2.1 1,697 3,3702 

CCC 2.2 16,811 15,4423 

CCC 2.3 3,316 5,0158 
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4.2 Apparatus for shear modulus testing 

As mention above, the apparatus for shear modulus testing is not possible to produce at 

Arcada laboratory. However, it is expedient to recommend an effective set-up for this test 

The model below gives a good figure of the recommended apparatus. 

 

Figure 30: Modelling of test's apparatus 
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Figure 31: Schematic drawing 

 

1. Prepare a specimen of carbon fiber lamina with the length being 300mm, thick-

ness being 2mm and width being 20mm. 

2. Place the specimen inside an aluminum frame. Clamp both ends of the specimen.  

3. Clamp two part of cylinder-shape steel mass at the middle of the specimen as 

Figure 30. 

4. Swing the mass in the horizontal direction. Calculate the frequency simply by 

counting of one revolution as the speed of vibration is very small. 

 

After defining the frequency of vibration, we would expect to use equation (47) to calcu-

late the dynamic shear modulus: 
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𝑓𝑡 = 0,5√
𝐽𝐺

𝐿𝐼𝐿
 

 

However, there should be variation in this case as there is a big mass attached to the 

specimen. It is predicted that the value of the inertia in this case is the sum of the value 

of the inertia of both the extra mass and the specimen instead of merely the value of inertia 

of the specimen as can be seen in equation (47). In addition to this the constant coefficient 

in this case is expectedly not 0,5. 
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5 RESULTS 

The study of the thesis has been done on six cases in which five cases give a formula for 

the frequency as a function of chosen factors such as length, width, thickness and mate-

rial. In each case, the set-up of the apparatus is different which leads to different result. 

  

1. Case 1: Cantilever beam with external mass (section 3.1) 

 

In this case, a beam is fixed at one end and attached with an extra mass at the other end. 

The weight of the beam is negligible compared to the weigh of the extra mass. The vibra-

tion is translational and gives dynamic Young’s modulus. 

 

𝐸 = 16𝜋2𝑓𝑁
2 (

𝑚

𝑤
)  (

𝐿

𝑡
)
3

 

This case has been done theoretically. 

 

2. Case 2: Free vibration of Cantilever beam (section 3.2) 

 

In this case, a beam is fixed at one end and allowed to vibrate at the other end. The weight 

of the beam is considered. The vibration is translational and gives dynamic Young’s mod-

ulus. 

𝑓𝑛 =
𝜔𝑛

2𝜋
=

𝛿𝑛
2

2𝜋𝐿2 √
𝐸𝐼𝐴

𝜌𝐴
    [9] 

 

Especially, in this case, COMSOL simulation has been done as well as practical experi-

ment. Both gives results that testifies the reliability of the equation. 

 

3. Case 3: Torsional harmonic motion (section 3.3) 

 

In this case, a beam is attached with a cylinder-shaped extra mass at one end and is 

clamped at the other the end. The weigh of the beam is negligible compared to the weigh 

of the extra mass. The motion is torsional and harmonic from which shear modulus has 

been found. 



63 

 

 

 

𝐺 =
𝐿𝑚𝑓𝑁

2

𝑤𝑡
×

𝜋2𝑙2

𝑡2
 

This case has been done theoretically. 

 

4. Case 4: Torsional vibration of a beam fixed at one end (section 3.4.2)  

 

In this case, a beam is clamped at one end and allows to move at the other end. There is 

no extra mass. The vibration is torsional from which the function of torsional frequency 

and shear modulus and other factors has been found. 

 

𝑓𝑡 = 0,25√
𝐽𝐺

𝐿𝐼𝐿
 

This case is done with COMSOL simulation. 

 

5. Case 5: Torsional vibration of a beam fixed at two ends (section 3.4.3) 

 

 

In this case, a beam is clamped at both ends and undergoing torsional vibration.  

𝑓𝑡 = 0,5√
𝐽𝐺

𝐿𝐼𝐿
 

This case is done with COMSOL simulation. 
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6 DISCUSSION 

 

In the recommended apparatus, it is necessary to have both ends of the specimen clamped 

in order to prevent potential translational motion caused by the large extra mass. 

 

In case the recommended apparatus fails to give a good result, it is still possible to modify 

the apparatus such that the specimen is clamped at one end and attach to a big extra mass 

at the other end. This means that we accept the risk of error reading due to potential trans-

lational motion. If this apparatus is implemented, then equation (42) in section 3,3 will be 

used to calculate the shear modulus. 

 

𝐺 =
𝜋2𝑓𝑁

2𝐿𝑚𝑙2

𝑤𝑡3
=

𝐿𝑚𝑓𝑁
2

𝑤𝑡
×

𝜋2𝑙2

𝑡2
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7 CONCLUSION 

The research has successfully developed the theory for calculating dynamic Young and 

Shear modulus by vibrational method for light-weighed material. This includes theoreti-

cal parts developed based on the existing knowledge about beam theory and other previ-

ous study on the same subject with heavy-weighed material. In addition to this, Finite 

Element Method has been used to verify formulas in some other important cases along 

with practical experiments that are built to strengthen some of these results. 

 

Although the formula for the case in which a big mass is attached to a 2-end-fixed beam 

has not been verified and the experiment aimed to calculate torsional frequency has not 

been done due to some particular reasons, the case is still much likely to be solved by the 

recommended apparatus and its alternative.  

 

Throughout the research, the most reliable formula that has been developed is equation 

(29), 𝑓𝑛 =
𝜔𝑛

2𝜋
=

𝛿𝑛
2

2𝜋𝐿2 √
𝐸𝐼𝐴

𝜌𝐴
, 𝑤𝑖𝑡ℎ 𝛿𝑛 = 1,875 or its transformation, equation (30), 𝐸 =

𝑓𝑛
2 (

𝐿

𝑡
)
3

(
𝑚

𝑤
) (

48𝜋2

1,8754) as these equations have been proven both by theory, Finite Element 

Method and practical experiment. Remind that these equations is used to define transla-

tional frequency for a beam that is fixed at one end and vibrating at the other end. 
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9 TABLE OF ABBREVIATION AND UNITS 

Table 28: Table of abbreviation and units 

Term unit Definition 

𝐸 Pa (kg m−1 s−2)  Young’s modulus 

𝑚 kg Mass 

𝑓𝑓  s-1 Flexural frequency 

𝐿 m Length  

𝑤 m Width  

𝑡 m thickness 

𝑅1 Dimensionless Correction factor 

𝑅2 Dimensionless Correction factor 

𝐺 Pa (kg m−1 s−2) Shear Modulus 

𝑓𝑡 s-1 Torsional frequency 

𝜐 Dimensionless Poisson’s ratio 

𝐹𝑑
⃗⃗⃗⃗  Newton (kg m s−2) Damping force 

𝑏 Dimensionless  Damping constant 

𝑣 m s−1 Velocity 

𝑎 m s−2 Acceleration 

𝑘 Newton per meter 

(kg s−2)  

Spring’s stiffness 

𝑥𝑚 m Amplitude of oscillator 

𝑒 ≈ 2.71828 Euler number 

𝜔𝑛 Rad s-1 Natural frequency in radian 

𝑓𝑛 Hz (s-1) Natural frequency in Hz 

𝐴 m2 Area 

𝜌 kg m-3 Density 

𝜏 Pa (kg m-1 s-2) Shear stress 

𝑇 kg m2 s-2 Torque 

𝛼 Dimensionless Constant obtained by theory of elasticity listed 

in Table 1 
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𝛽 Dimensionless Constant obtained by theory of elasticity listed 

in Table 1 

𝜃 Rad Angle of twist 

𝐽 m4 Torsional constant 

𝐺 Pa (kg m-1 s-2) Modulus of rigidity or shear modulus 

𝐼 kg m2 Moment of inertia of the bar 

𝐼𝐴 m4 Area moment of inertia 

𝐶 J s rad-1 Angular damping constant 

𝜅 N m rad-1 Torsion spring constant 

𝑇 N m Drive torque 

𝜔𝑁 rad s-1 Un-damped resonant frequency in radian 

𝜔𝑑 rad s-1  Damped resonant frequency in radian 

𝜚 s-1 Reciprocal of damping time constant  

𝜙 rad Phase angle of oscillation 

∆1 Dimensionless Constant value 
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