

Simulation Model for a Six Axis

Articulated Arm Industrial Ro-

bot
For Educational Use in Control System Design

Olivier Preuss

BACHELOR’S THESIS
APRIL 2019

Double Degree Program in Mechanical Engineering

ABSTRACT

Tampereen Ammattikorkeakoulu
Tampere University of Applied Sciences
Double Degree Program in Mechanical Engineering
First Supervisor: Senior Lecturer Sami Hämäläinen, M.Sc. (Eng.)
Second Supervisor: Principal Lecturer Markus Aho, D.Sc. (Tech.)
&
Hochschule Hannover
Hannover University of Applied Sciences and Arts
Double Degree Program in Mechanical Engineering
First Supervisor: Professor Franz Christoph Kallage, Dr.-Ing.
Second Supervisor: Professor Jens Hofschulte, Dr.-Ing.

Olivier Preuss
Simulation Model for a Six Axis Articulated Arm Industrial Robot
For Educational Use in Control System Design

Bachelor's Thesis 138 Pages, Appendices 66 Pages
April 2019

Virtual system mappings and simulations are fundamental and contemporary engineering
methods, especially within the widely spread field of complex, multi-domain mechatronic robotic
systems. Therefore, companies as well as educational institutions typically try to apply the most
recent simulation methods and software in order to achieve future-oriented and successful
teaching, studies and researches.
The client of the thesis work at hand, Tampereen Ammattikorkeakoulu (TAMK) owns an ABB
industrial robot manipulator that operates, among others, as a MIG/ MAG welding robot. Relat-
ed to that, this thesis work aimed at the development and implementation of a MATLAB® Sim-
ulink® simulation model of an ABB IRB 2600-12/1.85 six axis articulated arm industrial robot for
the purpose of educational use in control system design. The main objectives were: Design and
implementation of a modular, maintainable and extendable simulation model based on a
MATLAB® Simulink® Simscape

TM
 Multibody

TM
 model, derived from the robot’s CAD model. The

simulation model shall be used as a ready-to-use environment for control system structures
design and include sufficient parameterization as well as user interface(s), motion planning and
an operating manual.

In the context of the accomplishment, firstly the entirety of requirements was identified. In order
to clearly outline the work extent and to meet the requirements satisfyingly, necessary defini-
tions and regulations were formulated; this also covered general simplifications and restrictions.
Task related, corresponding, common and state-of-the-art theory was studied and gathered
from appropriate sources and adapted if required. The conceptual design was related to the
preliminary determination of general matters e.g. the project structure and simulation flow but
also of particular tasks e.g. the design of joint actuation models and graphical user interfaces.
Finally, the conceptual design was implemented under the continuous consideration of the pro-
jects requirements, previously determined definitions and regulations and the corresponding
theory.
The result of this thesis work is considered as a comprehensive and fully functional simulation
program/ model that meets the client’s requirements, covers optional accomplished tasks and
can be used for the educational purposes it was initially meant for.
Nevertheless, the simulation model at its state at the finalization of the thesis work at hand,
suffers weaknesses, incompleteness and limited capabilities due to incomplete parameteriza-
tion, not conducted model validation and necessarily applied simplifications. Therefore, future
continuations of this thesis work, e.g. in the context of further thesis works or semester projects,
need to be applied to obtain a fully comprehensive and accurate simulation model.

Key words: robot, simulation, modeling, ABB IRB 2600, control systems, MATLAB® Simulink®

CONTENTS

1 INTRODUCTION ... 1

2 TASK DEFINITION .. 3

3 DEFINTIONS AND REGULATIONS .. 5

3.1 Units .. 5

3.2 Gravitational Acceleration ... 5

3.3 Manipulator Axes .. 5

3.4 Coordinate Systems (Frames) .. 6

3.4.1 Base Coordinate System ... 7

3.4.2 World Coordinate System .. 7

3.4.3 Reference Coordinate System... 8

3.4.4 Tool/ End Effector Coordinate System .. 8

3.5 Home Position ... 8

3.6 Tool/ End Effector Orientation ... 8

3.7 General Simplifications and Restrictions of the Simulation Model 9

3.7.1 Air Resistances.. 9

3.7.2 Rigidities .. 9

3.7.3 Frictions ... 10

3.7.4 Bearings .. 10

3.7.5 Backlashes and Uncertainties ... 10

3.7.6 Time Delays (Dead-Times) .. 11

3.7.7 External Loads... 11

3.7.8 Electric Motors ... 11

3.7.9 Transmission Gears .. 12

3.7.10 Other Electric Components and Computers................................ 12

3.7.11 Thermal Effects ... 12

3.7.12 Environment .. 12

4 THEORY .. 13

4.1 Industrial Robot Manipulators ... 13

4.1.1 Articulated Arm Manipulators .. 14

4.1.2 Direct Kinematics ... 16

4.1.3 Inverse Kinematics .. 20

4.1.4 Dynamics ... 23

4.2 Motion Planning .. 26

4.2.1 Linear Trajectory Planning ... 28

4.2.2 Joint Trajectory Planning ... 33

4.3 Control Systems .. 37

4.4 MATLAB Simulink ... 41

4.5 Programming... 42

II

CONTENTS (CONTINUATION)

5 CONCEPTUAL DESIGN .. 44

5.1 General Simulation Program Structure ... 45

5.2 Simulink/ Simulink Simscape .. 46

5.2.1 Simscape Multibody Model .. 46

5.2.2 Simulink ... 51

5.2.3 Parameter Provision .. 53

5.3 MATLAB .. 53

5.3.1 Simulation Model Variables ... 54

5.3.2 Graphical User Interfaces .. 56

5.3.3 Programs & Program Flow Charts ... 58

6 ACCOMPLISHMENT ... 64

6.1 CAD Model .. 64

6.2 Simulink Simulation Model .. 67

6.2.1 Simulink Simscape Multibody Robot Model 67

6.2.2 Signal Bus ... 73

6.2.3 Control System Structures ... 75

6.2.4 Measurements ... 77

6.3 MATLAB Program(s) ... 81

6.3.1 Program & Program Structure(s) ... 82

6.3.2 Simulation Model Variables ... 85

6.3.3 Motion Planning ... 91

6.3.4 Graphical User Interfaces .. 94

6.4 Simulation Model Parameters ... 98

6.4.1 Parameter Acquisition ... 99

6.4.2 Parameter Spreadsheet .. 106

6.4.3 Simulation Model Parameterization ... 109

6.5 Data Set File Structure .. 109

6.6 Operating Manual .. 110

6.7 Optional Tasks .. 111

6.7.1 Simplified Joint Actuation Motor Model(s) 111

6.7.2 Virtual Identification Measurements ... 113

7 TESTING AND DEBUGGING .. 117

8 OPERATION OF THE SIMULATION MODEL ... 119

9 CONCLUSION ... 120

10 OUTLOOK ... 123

REFERENCES ... 125

DECLARATION OF AUTHORSHIP .. 128

APPENDICES ... 129

III

ABBREVIATIONS AND TERMS

3D Three-Dimensional

ABB Asea Brown Boveri

AC Alternating Current

ASM Asynchronous Machine (Motor)

CAD Computer Aided Design

CoM Center of Mass

CP Continuous Path

DC Direct Current

DH Denavit-Hartenberg

DOF Degree of Freedom

FF Feedforward

GUI Graphical User Interface

GUIDE Graphical User Interface Development Environment

HsH Hannover University of Applied Sciences and Arts

IRB Industrial Robot

MAG Metal Active Gas Welding

MATLAB®1 Matrix Laboratory

MIG Metal Inert Gas Welding

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

MoI Moment of Inertia

PFC Program Flow Chart

PoI Product of Inertia

PTP Point-to-Point

SI Système International (d’unités)

SIMO Single-Input Multiple-Output

SISO Single-Input Single-Output

STL/ .stl Stereolithography

TAMK Tampere University of Applied Sciences

TCP Tool Center Point

XML/ .xml Extensible Markup Language

1
 MATLAB

®
 is a registered trademark of The MathWorks, Inc.

IV

LIST OF FIGURES

FIGURE 1.1: ABB IRB 2600 industrial robot (ABB Asea Brown Boveri Ltd.

2019a) ... 2

FIGURE 3.1: ABB IRB 2600 robot axes and rotational directions definitions 6

FIGURE 3.2: ABB IRB 2600 robot coordinate systems definitions 7

FIGURE 4.1: ABB IRB 2600 individual robot elements assignment 14

FIGURE 4.2: Exemplary depiction of a kinematic structure’s coordinate frames

(DH-formalism) .. 15

FIGURE 4.3: Exemplary description of the relative tool position and orientation

(Siciliano, Sciavicco, Villani & Oriolo 2009, 59, modified). 18

FIGURE 4.4: Exemplary depiction of homogenous frame transformations

(Siciliano, Sciavicco, Villani & Oriolo 2009, 61). .. 19

FIGURE 4.5: Example of a multiple solution problem of inverse kinematics

(Siciliano, Sciavicco, Villani & Oriolo 2009, 93, modified) 21

FIGURE 4.6: Vector based linear workspace path formulation (Weber 2017, 86,

modified) ... 28

FIGURE 4.7: Trapezoidal velocity profile (left) and the corresponding

acceleration profile (right) (Weber 2017, 75, modified) 30

FIGURE 4.8: Sinusoidal acceleration profile and corresponding velocity and

position graphs (Weber 2017, 79, modified) ... 31

FIGURE 4.9: Flow chart: adaption of the applicable path velocity (Weber 2017,

77, modified) ... 32

FIGURE 4.10: Exemplary depiction of a fully synchronized axis motion (velocity)

 .. 34

FIGURE 4.11: Schematic depiction of internal and external robot control (Weber

2017, 25, modified) ... 38

FIGURE 4.12: Decentralized SISO control system structure (Bajd, Mihelj,

Lenarčič, Stanovnik & Munih 2010, 78, modified) ... 39

FIGURE 4.13: Schematic depiction of a decentralized cascaded SIMO control

system structure (Grote, Bender & Göhlich 2018, T112, modified) 40

FIGURE 4.14: Schematic depiction of a decentralized cascaded MIMO control

system structure with centralized feedforward control (Grote, Bender & Göhlich

2018, T112, modified) ... 41

FIGURE 5.1: Automatically generated Simscape Multibody model block

diagram ... 44

V

LIST OF FIGURES (CONTINUATION)

FIGURE 5.2: General simulation program structure diagram 46

FIGURE 5.3: Freehand sketch of the concept of the simulation model’s

Simscape block diagram ... 47

FIGURE 5.4: Freehand sketch of the concept of a subsystem of the Simscape

block diagram.. 47

FIGURE 5.5: Freehand sketch of the concept of a joint actuation subsystem .. 48

FIGURE 5.6: Screen capture of a Simulink Simscape Asynchronous Machine

block ... 49

FIGURE 5.7: Screen capture of a Simulink Simscape Cycloidal Drive block 49

FIGURE 5.8: Screen capture of the MATLAB Simulink Simscape

“Asynchronous Machine Scalar Control” example block diagram 50

FIGURE 5.9: Block diagram of a common basic closed-loop control system

structure .. 51

FIGURE 5.10: Screen capture of an exemplary block parameterization 53

FIGURE 5.11: General Simulation Program Flow Chart 54

FIGURE 5.12: Freehand sketch of the concept of the Main (G)UI window 57

FIGURE 5.13: Freehand sketch of the concept of the Motion (G)UI window 58

FIGURE 5.14: Flow chart diagram of the linear movement planning 59

FIGURE 5.15: Program flow chart of the inverse_kinematics() function 61

FIGURE 6.1: Procedure of the generation of the Simscape Multibody model

import files... 65

FIGURE 6.2: Screen capture of the SolidWorks assembly of the robot

manipulator ... 66

FIGURE 6.3: Screen capture of the final simulation model’s Simulink block

diagram ... 67

FIGURE 6.4: Screen capture of the final simulation model’s Simulink Simscape

robot model ... 68

FIGURE 6.5: Screen capture of the Simscape simulation model’s Robot Base

Subsystem .. 69

FIGURE 6.6: Screen capture of the Simscape simulation model’s Joint 1 Drive

Subsystem (1/2) .. 71

FIGURE 6.7: Screen capture of the Simscape simulation model’s ASM1 Driver

Subsystem .. 72

VI

LIST OF FIGURES (CONTINUATION)

FIGURE 6.8: Screen capture of the Simscape simulation model’s Robot End

Effector Subsystem ... 72

FIGURE 6.9: Screen capture of the Simscape simulation model’s Joint 1 Drive

Subsystem (2/2) .. 73

FIGURE 6.10: Screen capture of the signal bus structure of the Control System

subsystem InBus ... 74

FIGURE 6.11: Screen capture of the Control System subsystem of the Simulink

block diagram.. 75

FIGURE 6.12: Screen capture of the Controller Joint 1 (Axis 1) (sub) subsystem

 .. 77

FIGURE 6.13: Screen capture of the Measurements subsystem of the Simulink

block diagram.. 78

FIGURE 6.14: Screen capture of the Joint Angles (sub) subsystem of the

Measurements subsystem .. 79

FIGURE 6.15: Screen capture of a Joint Angle Axis 1 Scope block signal plot 79

FIGURE 6.16: Screen capture of the Joint Velocities (sub) subsystem of the

Measurements subsystem .. 80

FIGURE 6.17: Screen capture of the robot’s Simscape Multibody model

simulation animation (Mechanics Explorer) .. 81

FIGURE 6.18: Flow chart of the MATLAB General Program Flow 82

FIGURE 6.19: MATLAB program(s) structure and function/ file dependencies. 83

FIGURE 6.20: Screen capture of the first level of the structure of the robotPara

variable ... 86

FIGURE 6.21: Screen capture of the first level of the structure of the simVar

variable ... 87

FIGURE 6.22: Screen capture of the MATLAB Command Window and

Workspace after the successful MATLAB program execution 87

FIGURE 6.23: Depiction of the linear movement’s end effector position and

pose .. 92

FIGURE 6.24: Screen capture of the simVar.linPathPlan and

simVar.linPathPlan.pRes variables (example) .. 93

FIGURE 6.25: Screen capture of the simVar.qSetValues and

simVar.qSetValues.q1SV variables (example).. 94

FIGURE 6.26: Screen capture of the MATLAB main GUI main_ui 96

VII

LIST OF FIGURES (CONTINUATION)

FIGURE 6.27: Screen capture of the MATLAB joint movement GUI

joint_move_ui .. 97

FIGURE 6.28: Screen capture of the MATLAB linear movement GUI lin_path_ui

 .. 97

FIGURE 6.29: Screen capture of an invalid input MATLAB error message box98

FIGURE 6.30: Cycloidal reduction gear of the RV-N series of the Nabtesco

Corporation (Nabtesco Corporation 2019a) .. 100

FIGURE 6.31: Manufacturer’s rating table of the RV-N series cycloidal reduction

gear (Nabtesco Corporation 2015, 8, modified) .. 101

FIGURE 6.32: Manufacturer’s rating table of the RV-N series cycloidal reduction

gear (continuation) (Nabtesco Corporation 2015, 9, modified) 101

FIGURE 6.33: Manufacturer’s efficiency table of the RV42-N cycloidal reduction

gear (Nabtesco Corporation 2015, 36) .. 101

FIGURE 6.34: ABB IRB 2600 Axis 4, 5 & 6 AC motor (ABB Asea Brown Boveri

Ltd. 2019d) .. 102

FIGURE 6.35: TBL-I IV series compact size AC servomotor basic specifications

(TAMAGAWA SEIKI Co., Ltd. 2019, 2, modified).. 102

FIGURE 6.36: TSM3204 400W AC200V torque characteristic diagram

(TAMAGAWA SEIKI Co., Ltd. 2019, 8) ... 103

FIGURE 6.37: Screen capture of link 2 of the robot manipulator’s CAD model

 .. 105

FIGURE 6.38: Screen capture of the (8) Joint Parameters worksheet of the

parameters spreadsheet ... 107

FIGURE 6.39: Screen capture of the ASM1 block parameterization 109

FIGURE 6.40: General file structure of the data set of the simulation model .. 110

FIGURE 6.41: Simulink screen capture of the Robot Link 3 Subsystem with a

DC motor model .. 112

FIGURE 6.42: Simulink screen capture of the DC Motor 4 Driver subsystem 113

FIGURE 6.43: Exemplary plot of a trapezoidal joint velocity profile of the robot’s

first axis ... 115

VIII

LIST OF TABLES

TABLE 3.1: Assignments and limitations of the manipulator’s axes (ABB Asea

Brown Boveri Ltd. 2019b, 11).. 6

TABLE 4.1: Assignment and typecast of the ABB IRB 2600 robot elements 14

TABLE 5.1: Listing and description of the conceptualized MATLAB function(s)

(files) ... 62

TABLE 6.1: List of SolidWorks parts and assemblies of the manipulator 65

TABLE 6.2: List of Simscape Multibody simulation model input files of the

manipulator ... 66

TABLE 6.3: Listing of the available signal bus signal types 74

TABLE 6.4: Listing and description of additionally implemented MATLAB

function(s) (files) ... 84

TABLE 6.5: Descriptions of the five simulation variables 88

TABLE 6.6: Detailed description of the robotPara variable 89

TABLE 6.7: Detailed description of the simVar variable 90

TABLE 6.8: ABB IRB 2600 gearbox spare part information (axis 3) 100

TABLE 6.9: ABB IRB 2600 motor spare part information (axis 4, 5 & 6) 100

TABLE 6.10: Robot manipulator’s link mass and volume information 106

TABLE 6.11: Structure and contents of the parameters spreadsheet 108

1

1 INTRODUCTION

From a general perspective, the origin of this thesis work bases on the demand

of providing contemporary teaching methods to pupils and students. In this con-

text, simulation is an important share of the teaching content, especially within

the widely spread engineering domain.

Due to the continuous and rapid development of powerful simulation software

during the last decades, nowadays complex systems can be virtually mapped

and simulated with moderate effort. In parallel to that, the capabilities and avail-

abilities of computer systems in general, but also common PCs, increased mas-

sively while the costs decreased. Furthermore, software developers often pro-

vide discounted or free (academic) software versions for general educational

purposes to the institutions or to the students/ pupils directly.

In sum, this allows educational institutions to include the most recent simulation

methods and software in teaching, studies and researches with moderate ad-

ministrational and financial efforts.

From a more particular perspective, the topic of this thesis work was initiated by

lecturers of the engineering department of the Tampereen Ammattikorkeakoulu1

(TAMK). The TAMK owns an ABB2 IRB 2600-12/1.85 industrial robot manipula-

tor that operates, among others, as a MIG/ MAG welding robot equipped with a

Fronius3 Robacta Drive CMT welding solution (which also includes the torch

end effector). Unified with other ABB components and additional applications

and equipment, the entirety represents a multifunctional robot cell located at the

TAMK production engineering laboratory (room F0-19). The industrial manipula-

tor was and is still used for teaching, laboratory-, project- and thesis works but

also in the context of the accomplishment of external commercial customer or-

ders.

The purpose of the thesis work is the development of a MATLAB® Simulink®4

simulation model of an ABB IRB 2600 six axis articulated arm industrial robot

for educational use in control system design.

1
 English: Tampere University of Applied Sciences

2
 ABB Asea Brown Boveri Ltd.

3
 Fronius International GmbH

4
 MATLAB

®
 Simulink

®
 is a registered trademark of The MathWorks, Inc.

2

The simulation model shall be used as a ready-to-use environment for control

system structures designed and implemented by pupils/ students. Thus, the

simulation model shall include all components to execute, monitor and record

kinematic and dynamic simulations of the robot, except the controller structures

themselves. Additionally, the simulation model shall be easily varied, e.g.

change of motor types, change of computer aided design (CAD) data and/ or

extended, e.g. with pneumatics, hydraulics or any other applicable elements

within the MATLAB Simulink (this also covers Simulink® Simscape™ and Sim-

scape™ Multibody™)5 environment. Furthermore, MATLAB Simulink simulation

results shall be comparable to results gained from hand calculations, other sim-

ulation types or real measurements.

FIGURE 1.1: ABB IRB 2600 industrial robot (ABB Asea Brown Boveri Ltd. 2019a)

In the context of recent thesis works at the TAMK, the industrial manipulator

was thematised in: Älykäs Huuva (Hyyppä 2015), Design of an Intelligent Pro-

tection Shield (Rodewald 2016), Designing and implementing a Robot Gripper

using additive manufacturing (Gerland 2017), Creation of an Augmented Reality

App for an Introduction to Industrial Machine Mechanics (Compton 2018).

5
 Simulink

®
 Simscape™ and Simscape™ Multibody™ are trademarks or registered trademarks

of The MathWorks, Inc.

3

2 TASK DEFINITION

In addition to the description of the purpose of this thesis, written in the second

last paragraph of the section 1, a conclusion of the thesis objectives is listed

subsequently. The objectives were defined by the customer (TAMK) and do

contain required as well as optional elements.

Important note: The administrative part of the accomplishment of the thesis

work also included a conclusion of a contract between the receiving institution

(client; TAMK) and the author. This thesis contract also contains a complete

listing of the thesis objectives and can be found from the appendices as Appen-

dix 1. Thesis Contract. The corresponding project plan is available from Appen-

dix 2. Project Plan.

The thesis work bases on the industrial robot manipulator of the type: ABB IRB

2600-12/1.85. Due to the topic of the thesis (simulation), processes and their

outcomes are mainly related to software such as simulation software (MATLAB/

Simulink/ ABB RobotStudio) and CAD software. In this context, more details

can be obtained from the thesis contract (Appendix 1. Thesis Contract) or the

list of requirements (Appendix 3. List of Requirements).

The simulation model to be created shall base on the MATLAB programming

language which also covers Simulink and Simscape block diagrams. Predefined

MATLAB/ Simulink contents like toolboxes, classes, functions, blocks, etc. shall

be preferred and used whenever available to accomplish a task.

As a minimum requirement, the interaction between the user and the simulation

model shall be realised via the MATLAB command window. The creation of a

(graphical) user interface(s) is optional, but if implemented, the design shall be

kept simple and intuitive.

The simulation model shall include a graphical representation of the robot

based on a CAD model with a sufficient precision implemented via Simulink

Simscape Multibody. The simulation model shall represent the real robotic sys-

tem with all its properties such as geometry and dimensions, physics, etc. as

sufficient as an appropriate effort of the acquisition of the properties allows.

4

Identification measurements taken from the real robotic system are not part of

the thesis. Required data shall be acquired from product documents, software

sources, third parties, etc.

In case of not obtainable data, simplifications and assumptions are allowed but

to be clearly revealed and founded in a sufficient way.

The simulation model shall use the BASE coordinate system (frame) as its main

coordinate system. The BASE coordinate system shall be in coincidence with

the WORLD coordinate system and represent a reference coordinate system

which acts as reference for target definitions and end effector orientations. All

coordinate systems are right-handed Cartesian coordinate systems.

The home configuration, axis designations, initial angular positions, angular limi-

tations and directions of rotation (signs) of the simulation model shall be in ac-

cordance with the defaults of the real robotic system defined by the manufac-

turer.

The simulation model shall include two types of motion planning. Firstly, a linear

path planning from coordinate “A” to coordinate “B”, specified by the user in the

reference coordinate system. Secondly, the values of the angles of every indi-

vidual rotational (revolute) joint of the robot model shall be allowed as user input

for the motion planning of a joint movement.

The structure of the simulation model shall be created in a modular way. Main-

taining, editing, updating and extending the model shall be possible with mod-

erate effort. The program flow and the operation of the model shall be designed

clearly structured. Simulation results gained from MATLAB Simulink shall be

comparable to measurements taken from the real robot system and/ or the ABB

RobotStudio software, which is optional. Furthermore, a short concise instruc-

tion document for the operation and service of the simulation model shall be

created.

The simulation model shall generally base on the SI base units and derived

units, exceptions are allowed if meaningful and sufficiently justified.

5

3 DEFINTIONS AND REGULATIONS

In order to ensure a consistent content within this thesis work, the following def-

initions and regulations are valid for the complete thesis work. This also covers

all the documents and data created in the context of the accomplishment of this

work such as documentations, program codes, the simulation model, CAD data,

etc.

3.1 Units

Only SI-units and derived SI-units are used. Deviating from this, the units “per-

centage [%]” and “degree [°]” are used in the context of user inputs (user inter-

faces and robot parameters spreadsheet) and simulation result measurements

(Simulink Simscape environment) in order to increase the comprehensibility of

the provided/ measured values.

3.2 Gravitational Acceleration

The value of the gravitational acceleration is in accordance with the MATLAB

Simulink default settings and defined as:

𝑔 = 9.80665
m

s2
 (3.1)

The direction is defined as the negative direction of the z-axis (Z0) of the base

frame (see FIGURE 3.2).

3.3 Manipulator Axes

The definitions of the manipulator’s axes and the corresponding rotational direc-

tions of the revolute joints are in accordance with the manufacturer’s definitions

and are shown below (FIGURE 3.1).

6

FIGURE 3.1: ABB IRB 2600 robot axes and rotational directions definitions

TABLE 3.1: Assignments and limitations of the manipulator’s axes (ABB Asea Brown Boveri
Ltd. 2019b, 11)

n: Axis: Name: Symbol: Upper Limit [°]: Lower Limit [°]:

1 Axis 1 A q1 +180 -180

2 Axis 2 B q2 +155 -95

3 Axis 3 C q3 +75 -180

4 Axis 4 D q4 +400* -400*

5 Axis 5 E q5 +120 -120

6 Axis 6 F q6 +400** -400**

*: (+ 251 rev. to - 251 rev. Max.) **: (+ 274 rev. to - 274 rev. Max.)

3.4 Coordinate Systems (Frames)

Coordinate systems (frames) are always right-handed Cartesian coordinate sys-

tems.

7

3.4.1 Base Coordinate System

The base coordinate system (frame) (index 0, see FIGURE 3.2) definition is in

accordance with the common definition: The x-y-plane of the base frame is in

coincidence with the set-up area of the base of the robot. The z-axis of the base

frame is in coincidence with the robot’s first revolute joint axis (Axis 1, A) and

points away from the x-y-plane.

The described definition of the base frame is in accordance with the manufac-

turer’s definition (ABB Asea Brown Boveri Ltd. 2019c, 24-28).

FIGURE 3.2: ABB IRB 2600 robot coordinate systems definitions

3.4.2 World Coordinate System

The world coordinate system (frame) is in coincidence with the base coordinate

system.

Y
6
 Z

6

X
6

O
6

Z0

X
0
 Y

0

O
0

TCP

8

3.4.3 Reference Coordinate System

The reference coordinate system (frame) is in coincidence with the base coor-

dinate system.

3.4.4 Tool/ End Effector Coordinate System

The tool/ end effector coordinate system (frame) (index 6, see FIGURE 3.2)

definition is in accordance with the common definition: The x-y-plane of the tool/

end effector frame is in coincidence with the tool mounting surface of the last

(seventh) link of the manipulator. The z-axis of the tool/ end effector frame is in

coincidence with the manipulator’s last revolute joint axis (Axis 6, F) and points

away from the x-y-plane. The origin of the tool/ end effector coordinate system

O6 (see FIGURE 3.2) is called tool center point (TCP).

The described definition of the tool/ end effector frame is in accordance with the

manufacturer’s definition (ABB Asea Brown Boveri Ltd. 2019c, 24-28).

3.5 Home Position

The home position of the manipulator is shown FIGURE 3.1. In the home posi-

tion, the manipulator’s pose is defined by the angular values of the axes:

𝑞1 … 𝑞6 = 0 ° (3.2)

This axes configuration also acts as the reference for any angular joint move-

ments.

3.6 Tool/ End Effector Orientation

In the context of simulation model user inputs, the tool/ end effector orientation

is described with the common definition of the ZYX-Euler angles [α β γ].

9

The base frame of the manipulator (see sub section 3.4.1) is the reference

frame for the description of the tool/ end effector orientation. This topic is dis-

cussed more detailed in section 4.1.3.

3.7 General Simplifications and Restrictions of the Simulation Model

Real robotic systems are highly dynamic and complex structures. The robotic

system’s static and dynamic behaviour is influenced by means of effects origi-

nated in their type, application, conditions, environment etc. Despite the fact

that some of the effects cause non-negligible impacts on the system’s behav-

iour, simplifications are necessarily made and restrictions applied in order to

keep the thesis work within a manageable extent. Furthermore, the created

simulation is meant for educational purposes with emphasis on control system

design at undergraduate level. Therefore, the complexity of the model needs to

cover main characteristics of the real system but also needs to be kept at a

moderate level to ensure the traceability of its behaviour.

3.7.1 Air Resistances

Influences caused by forces evoked by the movement of the real robotic system

in its ambient atmosphere (air) are neglected.

Justification: Air resistance influences were not mentioned by any source listed

in the references in the context of industrial robots, therefore, they were consid-

ered as negligible. This is only valid for the robotic system itself. In case of the

simulation of loads with large dimensions, e.g. sheet metals, combined with

high velocity movements, non-negligible deviations can occur which are not

considered by the simulation model.

3.7.2 Rigidities

All types of bodies of the simulation model such as links, joints, shafts, trans-

mission gears, belts, etc. are considered as ideal rigid bodies.

10

Justification: The determination of the non-rigid properties of the real robotic

system components can only be obtained from non-public manufacturer’s data

and/ or sophisticated measurements not covered by the scope of the thesis

work. If obtained, elasticities can be taken into consideration by adding the cor-

responding blocks within the Simulink environment.

3.7.3 Frictions

The simulation of frictions is limited to the number of Simulink Simscape blocks

of main elements of the real robotic system modelled in the simulation model

and their individual level of detail (e.g. viscous rotor damping). This covers only

constant and linear frictional effects such as breakaway frictions, Coulomb fric-

tions and (linear) viscous (damping) frictions. Non-linear frictional effects are not

implemented but can be added to the Simulink block diagram(s) if required and

if sufficient parameters are available.

3.7.4 Bearings

Only joint bearings are simulated separately within the simulation model. The

assumption is made that the effects related to the bearing of each individual

component (e.g. motor) are sufficiently covered by the applicable parameters of

the corresponding individual Simulink block.

3.7.5 Backlashes and Uncertainties

All types of backlashes, e.g. originated from bearings and transmissions are

neglected. All types of uncertainties of the real robotic system, especially geo-

metrical uncertainties are neglected.

Justification: At the case at hand, both backlashes and uncertainties can only

be obtained from non-public manufacturer’s data and/ or sophisticated meas-

urements not covered by the scope of the thesis work.

11

3.7.6 Time Delays (Dead-Times)

Time delays occur on the real robotic system, originated from the specific be-

haviour of each physical component and their interactions within the complete

system. This also covers time delays caused by the differences of continuous

signals considered in the theory and non-continuous (= discrete) signals typical-

ly processed in real systems, especially in the context of control systems (We-

ber 2017, 177). Furthermore, the simulation bases on computation and is exe-

cuted on PCs with non-real-time operating systems, thus discrete signals are

used and time delays also depend on the recent workload of the PC.

Because sophisticated measurements are necessary to identify the time delays

of the real robotic system, time delays are not considered in the simulation.

If obtained, time delays can be taken into consideration during control system

design in the Simulink environment using appropriate Simulink blocks.

3.7.7 External Loads

The simulation model represents the real robotic system only equipped with a

welding torch end effector. The welding system is not connected to the real ro-

botic manipulator, except the end effector and its supply wiring. In this context,

the end effector supply wiring is not included in the simulation model because

the modelling of its specific behaviour is considered as too complex.

If required, external loads, e.g. represented by rigid bodies, can be added to the

CAD model within the CAD software or the simulation model within the Simulink

Simscape environment.

3.7.8 Electric Motors

The level of detail of the electric motor models (joint actuation) of the simulation

model is limited to the level of details of the corresponding Simulink Simscape

blocks (diagrams). This covers typical electrical (e.g. voltage, power, impedanc-

es, etc.) and mechanical (e.g. viscous rotor damping) parameters only.

12

3.7.9 Transmission Gears

The level of detail of the transmission gears/ gearboxes is limited to the level of

detail of the corresponding Simulink Simscape blocks (diagrams) e.g. non-

uniform transmission behaviour. Transmission gears parameterization covers

gear ratios, (rotational) inertias, input to output efficiencies and output to input

efficiencies only. The values of (rotational) inertias of the transmission gears are

always related to the input shaft (motor side).

3.7.10 Other Electric Components and Computers

The level of detail of the electric components of the simulation model, e.g. motor

driver circuits, is limited to the level of detail of the corresponding Simulink Sim-

scape blocks (diagrams) e.g. parasitic capacities.

Specific features and properties of the manufacturer’s computational units and

power systems are not identified or implemented in any way due to the lack of

sufficient acquirable sources.

3.7.11 Thermal Effects

Thermal effects are generally not considered in the context of this thesis work

(e.g. transmission lubricant viscosity) but can be considered by additional Sim-

ulink blocks or appropriate parameterization of existent blocks with specific pre-

pared but deactivated functionalities (e.g. transmission gears/ gearbox blocks).

3.7.12 Environment

Influences on the real robotic system caused by environmental effects such as

any kinds of external forces, vibrations, energy supply fluctuations, electromag-

netic disturbances, atmospheric changes, etc. cannot be considered due to a

lack of acquirable information and/ or their unpredictable character.

13

4 THEORY

The subsequently described theory only covers the particular topics which were

necessarily needed to accomplish the tasks related to this thesis work. If not

defined divergently, the general overall usage of formulas, symbols, naming,

indexing and units relates to the content described in this theory section.

4.1 Industrial Robot Manipulators

At the present state and in the context of modern technologies and societies,

the term “robot” is often used loosely to describe a particular machine or appli-

cation from a huge variety of subareas (e.g. industrial robots, service robots,

etc.). Several national and international systematic definitions, classifications

and standardizations exist in order to define and categorize each robot precise-

ly. A short but concise definition of industrial robots:

A manipulating industrial robot is an automatically controlled, re-
programmable, multipurpose manipulator programmable in three or
more axes, which may be either fixed in place or mobile for use in
industrial automation applications (Kelly, Santibáñez & Loría 2005,
4).

Due to the predetermination of a particular robot type (ABB IRB 2600) to be

used in this thesis work, the theory is narrowed to stationary (fixed in place) in-

dustrial robot manipulators with (six axes) serial kinematics.

Real industrial robot manipulators as well as their theoretical abstractions do

usually consist of several elements but can be broken down into two types of

kinematic main elements, links (rigid bodies) and joints, as shown subsequently

(FIGURE 4.1).

14

FIGURE 4.1: ABB IRB 2600 individual robot elements assignment

TABLE 4.1: Assignment and typecast of the ABB IRB 2600 robot elements

No.: (Trivial-)Name: Element Type: Connection Link i+1 to Link i via:

0 Base

(Rigid Body)

Link

Revolute Joint

(f = 1)

1 Shoulder

2 Lower Arm

3 Upper Arm

4 Wrist

5 Wrist

6
Wrist

(End Effector)

4.1.1 Articulated Arm Manipulators

From the perspective of mechanics, manipulators are commonly distinguished

by their kinematic structure. The structures are generally divided into the fields

of serial and parallel kinematics, whereby in the case at hand the serial kine-

matics were considered only.

0

1

3

2

4

5

6

15

Serial kinematic structures are characterized by an open kinematic chain, a

chain of links connected by (kinematic) joints, typically revolute or prismatic

joints. Links are considered as ideal rigid bodies with surfaces that are geomet-

rically perfect in both position and shape. Each link has its own fixed frame.

A kinematic joint is a connection between two bodies that allows relative motion

with a particular number of degrees-of-freedom f (DOF) and without any clear-

ances. In the case at hand, the robotic manipulator only contains of a number of

six single revolute (R) joints, whereby a revolute joint itself is a lower-pair-joint

(surface contact) with one DOF. (Siciliano & Khatib 2008, 18-19)

𝑓 = 1 (4.1)

Hence, each revolute joint allows only one direction of motion and is represent-

ed by one motion variable:

𝑞i (4.2)

In general, the z-axis of the i-1-coordinate frame is in coincidence with the i-

revolute axis of the joint, see FIGURE 4.2 below.

FIGURE 4.2: Exemplary depiction of a kinematic structure’s coordinate frames (DH-formalism)

16

The motion variable qi typically describes the angle between the fixed frames of

the two links connected to the joint. The motion variables of the robot, six in this

case, are collected conveniently in the column vector q:

𝒒 = [

𝑞1

𝑞2

⋮
𝑞6

] (4.3)

The robotic manipulator at hand contains six single revolute joints, whereby

every single revolute joint increases the DOF of the robot by one. Thus, the six

axis robotic manipulator has six DOF:

𝑛 = 𝐹 = 𝑓 = 6 (4.4)

In theory, this allows the end effector (also tool), or more precisely, the TCP to

reach every point within the workspace (neglecting the angular joint limitations

of real robotic systems).

4.1.2 Direct Kinematics

In general, the theory of kinematics describes the motion of a kinematic struc-

ture without the consideration of forces and/ or torques causing that motion (Si-

ciliano & Khatib 2008, 9). In the general context of robotics and in the particular

context of this document, the theory of kinematics was split up into direct (also

forward) kinematics (section 4.1.2) and the inverse kinematics (section 4.1.3).

Note: The kinematic structure of the robotic manipulator (RigidBodyTree) was

automatically generated during the procedure of the Simulink Simscape Multi-

body CAD model import. Direct kinematics are automatically solved in the Sim-

ulink/ Simulink Simscape environment during the computation of the solution of

the simulation model. Inverse kinematics, required for motion planning purposes

(see section 4.2), are solved using the predefined MATLAB inverse kinematics

solver (GeneralizedInverseKinematics; gik()).

17

Therefore, the subsequently described theories of direct and inverse kinematics

were narrowed to the basic required extent.

Continuing from the descriptions of the previous section 4.1.1, the robotic ma-

nipulator’s kinematic structure is described by an open chain, a series of rigid

bodies (links) and joints, whereby the first (fixed) link (index 0) is typically

named “base” and the last link (index 6 in this case) is typically named “end ef-

fector” or “tool”.

The purpose of the theory of direct kinematics is the description of the end ef-

fector’s/ tool’s position and orientation, relative to a reference (fixed base frame,

index 0), as a function of the joints motion variables (united in the 6 x 1-

dimensional vector q), hence, in joint-space (Siciliano, Sciavicco, Villani & Orio-

lo 2009, 58).

In the case at hand, the six DOF of the robotic system are divided into the posi-

tion of the tool frame (O6) (three DOF) and the orientation of the tool frame (an-

other three DOF) with respect to the reference frame (O0). This is typically de-

scribed by a 4 x 4-matrix:

𝑻(𝒒)6
0 = [𝒙6

0(𝒒) 𝒚6
0(𝒒) 𝒛6

0(𝒒) 𝒑6
0(𝒒)

0 0 0 1
] (4.5)

Whereby 𝒑6
0 is a 3 x 1-dimensional vector that points from the origin of the fixed

frame (O0) to the origin of the tool frame (O6) (= Cartesian coordinates of the

TCP) and 𝒙6
0 , 𝒚6

0 , 𝒛6
0 are each 3 x 1-dimensional unit vectors that describe the

orientation of the tool frame, both position and orientation with respect to the

fixed reference frame (see FIGURE 4.3 below).

18

FIGURE 4.3: Exemplary description of the relative tool position and orientation (Siciliano, Sci-
avicco, Villani & Oriolo 2009, 59, modified).

To obtain the description of the tool position and orientation depending on the

properties of the kinematic structure, so called homogeneous transformations,

represented by homogenous transformation matrices:

𝑨i
i−1(𝑞i) (4.6)

Need to be applied. In the case at hand, a sequence of six homogenous trans-

formations is required to obtain the transformation from the base frame to the

tool frame:

𝑻(𝒒)6
0 = 𝑨1

0(𝑞1) 𝑨2
1(𝑞2) 𝑨3

2(𝑞3) 𝑨4
3(𝑞4) 𝑨5

4(𝑞5) 𝑨6
5(𝑞6) (4.7)

This procedure is exemplarily depictured in the subsequent FIGURE 4.4.

𝑧0

𝒑6
0

𝒛6
0

𝒚6
0

𝒙6
0

𝑂6

𝑂0

𝑥0

𝑦0

19

FIGURE 4.4: Exemplary depiction of homogenous frame transformations (Siciliano, Sciavicco,
Villani & Oriolo 2009, 61).

The homogenous transformation matrices in turn are each based on a se-

quence of four fundamental matrix operations:

𝑨i
i−1 = 𝑅𝑜𝑡(𝑧i−1, 𝜃i) ∙ 𝑇𝑟𝑎𝑛𝑠(𝑧i−1, 𝑑i) ∙ 𝑇𝑟𝑎𝑛𝑠(�⃗�i−1, 𝑎i) ∙ 𝑅𝑜𝑡(�⃗�i, 𝛼i) (4.8)

The described method as well as the parameters θi, di, ai and αi (the so called

Denavit-Hartenberg (DH) parameters), are based on and determined during the

application of the quasi-standard (but non-unique!) Denavit-Hartenberg formal-

ism for the general determination of the frames of a kinematic structure:

 Axis zi along the i + 1-joint axis.

 Oi is located at the intersection of the zi axis with the common normal to

the zi−1 axis and the zi axis.

 Axis xi along the common normal to the axes zi−1 and zi with positive di-

rection from i-joint to i + 1-joint.

 Axis yi is chosen in a way to obtain a right-handed frame.

(Siciliano, Sciavicco, Villani & Oriolo 2009, 62). (See also FIGURE 4.2)

20

Typically, the DH parameters are united in n x 1-dimensional parameters vec-

tors each:

𝜽, 𝒅, 𝒂, 𝜶 (4.9)

In the case at hand, the elements of the 6 x 1-dimensional parameter vectors d,

a and α are fixed values based on/ derived from the mechanical structure (ge-

ometry) of the robotic system. The elements of the 6 x 1-dimensional parameter

vector θ are variable parameters (values) and defined by the elements (values)

of the joint position/ motion variable q.

4.1.3 Inverse Kinematics

The inverse kinematics theory aims at the determination of the required values

of the joint position variable in order to describe a given position and orientation

of the end effector (relative to the reference frame), hence, inverse kinematics is

the inversion of the direct kinematics (Siciliano & Khatib 2008, 27). Furthermore,

inverse kinematics are an important and fundamental part of robotic manipula-

tors theory, especially in the context of motion planning, e.g. for the calculation

of a linear reference trajectory for welding applications.

In contrary to the direct kinematics, where orientation and pose of the end effec-

tor are always same for the same set of joint position variable values (= unique),

solving the inverse kinematics is a much more complex problem due to:

 The corresponding equations are typically non-linear; closed-form solu-

tions do not necessarily exist.

 Multiple solutions may exist.

 An infinite number of solutions may exist.

 Possibly no admissible solutions are available due to the specific ma-

nipulator’s kinematic structure.

(Siciliano, Sciavicco, Villani & Oriolo 2009, 90-91).

21

Modern commonly used applications like e.g. MATLAB use numerical methods

for the solving the inverse kinematics problem. As closed-form solutions are

typically related to the analytical solving method, numerical solving does not

suffer this problem. Furthermore, and in contrary to the analytical method, nu-

merical methods are independent from the specific robot manipulators type. In

turn, numerical solving can be less performant in some cases and typically does

not allow the computation of all possible solutions (theoretically 16 possible and

admissible (without limitations) solutions in the case of a six axis (revolute) joint

manipulator). (Siciliano & Khatib 2008, 28)

The problem of the existence of multiple solutions of the inverse kinematics

needs to be considered especially in the robotic simulation context and is ex-

emplarily shown in FIGURE 4.5 below. From the mathematical perspective,

both poses (solid and dashed lines) represent a valid solution for same prede-

termined pose and orientation of the end effector.

FIGURE 4.5: Example of a multiple solution problem of inverse kinematics (Siciliano, Sciavicco,
Villani & Oriolo 2009, 93, modified)

The problem of an infinite number of solutions of the inverse kinematics is relat-

ed the superior topic of the so called singularities, which also play an important

role in robotics theory. In this context, an example related to the description of

the end effector’s position orientation is discussed subsequently.

22

Therefore, continuing from equation (4.5):

While the three elements of the vector 𝒑6
0 are sufficient to determine the tool

position within the reference frame, the orientation of the tool needs to be de-

scribed with nine values, due to each of the unit vectors 𝒙6
0 , 𝒚6

0 , 𝒛6
0 is 3 x 1-

dimensional. The orientation of the tool frame can also be described with only

three variables α, β, γ, the so called Euler angles, and with the help of three rota-

tional matrices (Weber 2017, 39). Amongst a number of other possible variants

of the Euler angles formulation, in this case the order Z-Y-X was used to meet

the thesis requirements and to be in line with the standard MATLAB formulation.

To obtain the unit vectors from the Euler angles, three rotational transformations

need to be applied to the tool frame in the corresponding and predetermined

order:

𝑹0
6 = 𝑹z(𝛼) 𝑹y′(𝛽) 𝑹x′′(𝛾) (4.10)

 Whereby:

𝑹…(…) = [
cos (…) −sin (…) 0
sin (…) cos (…) 0

0 0 1

] (4.11)

Similar to the all other vector/ matrix robotics kinematic theory formulations, the

Euler angles formulation suffers from non-uniqueness and can cause serious

problems like the so called “Gimbal Lock”, e.g. in the case of a spherical robot

manipulator’s wrist (as applicable for the industrial robot type of this thesis

work).

For appropriate and more efficient computation, modern (numerical) robotic cal-

culation algorithms, e.g. like implemented in MATLAB, are based on the usage

of the so called and, most important, unique unit quaternion:

𝝐 = 𝜖0 + 𝜖1 𝑖 + 𝜖2 𝑗 + 𝜖3 𝑘 (4.12)

Whereby 𝜖0, 𝜖1, 𝜖2 and 𝜖3 are scalars and i, j and k are operators satisfying:

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (4.13)

23

Euler angles can be converted into the unit quaternion and vice versa, e.g. us-

ing standard conversion tables obtainable from respective literature. (Siciliano &

Khatib 2008, 13)

As the Euler angle formulation is more comprehensible and therefore used for

user input purposes, the Euler angles are converted to the unit quaternion using

the MATLAB eul2quat() function before passed in to the MATLAB inverse

kinematics solver.

The problem of not admissible solutions caused by the specific manipulator’s

kinematic structure can be solved by the provision of a sufficient number of de-

grees of freedom and/ or an appropriate set of workspace limitations.

4.1.4 Dynamics

As the theory of kinematics describes the robot manipulator’s motion without the

consideration of any forces or torques, the theory of dynamics covers the scope

of kinematics as well as forces and torques. Equal to the theory of kinematics,

the theory of dynamics can also be split up into direct (forward) and inverse dy-

namics.

Direct dynamics theory typically describes the robot manipulator’s joint motion

(accelerations), from which forces and torques can be calculated, for any given

joint actuation forces/ torques. Inverse dynamics in turn allow determining the

joint actuation forces required for any specific robotic manipulator’s motion

(specified by a trajectory). In the context of practical applications, direct dynam-

ics are usually used for simulation purposes. Inverse dynamics in contrast are

typically implemented for the appropriate calculations related to feedforward

(FF) control (as part of control system structures). (Siciliano & Khatib 2008, 36)

Due to the fact that control system design was not part of this thesis work, the

theory of inverse dynamics is not discussed any further.

Additionally and according to the purpose of the thesis work at hand, the robot

manipulator’s dynamics of the simulation model created were not to be solved

by the author by own program codes.

24

Instead, the simulation model’s dynamics are solved numerically within the

“background” of the Simulink Simscape Multibody environment. Therefore, the

(direct) dynamics theory is only slightly touched in this section in order to pre-

sent the fundamental coherences between the general theory and the simula-

tion model.

Most commonly, dynamics of robot manipulators are described by either the

Newton–Euler formulation or the Lagrange formulation (Siciliano & Khatib 2008,

44). Using the joint-space, neglecting external forces applied to the robot ma-

nipulator (free robotic motion) but considering gravitational and frictional effects,

both the Newton–Euler formulation and the Lagrange formulation will lead to

(Kelly, Santibáñez & Loría 2005, 77):

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) + 𝒇(�̇�) = 𝝉 (4.14)

Whereby:

𝒒, �̇�, �̈� (4.15)

Are the n-dimensional vectors of the (revolute) joint positions, velocities and

accelerations.

The n x n-dimensional matrix:

𝑴(𝒒) (4.16)

Is the (joint-space related) inertia matrix. In the context of the simulation model,

the inertia matrix is represented by the rigid bodies (links) of the Simulink Sim-

scape Multibody simulation model and their individual properties (masses, Cen-

ters of Mass (CoM), Moments of Inertia (MoI) and Products of Inertia (PoI)), de-

rived from the imported CAD model assembly of the industrial robot.

25

The n x n-dimensional matrix:

𝑪(𝒒, �̇�) (4.17)

Is the so called centrifugal and Coriolis matrix. In combination with the vector of

the joint velocities, the centrifugal and Coriolis matrix represents the centrifugal

and Coriolis torques of the dynamic model evoked by the robotic motion. In the

context of the simulation model, the centrifugal and Coriolis phenomena are

fully covered by the Simscape Multibody simulation environment.

The n-dimensional vector:

𝒈(𝒒) (4.18)

Is the vector of gravitational torques. This vector represents torques within the

dynamic model evoked by the effect of gravitational accelerations applied to

every element (rigid bodies; links) of the simulation model.

In the context of the simulation model, gravitational effects are simulated within

the Simulink Simscape Multibody environment. Also refer to section 3.2.

The n-dimensional vector:

𝒇(�̇�) (4.19)

Is the friction torque vector. The appearance of the friction vector depends on

the applied frictional model. In the case at hand, a common static friction model

considering viscous (Fm1) and Coulomb frictions (Fm2) was applied and therefore

the friction vector f is substituted by:

𝒇(�̇�) = 𝑭m1 �̇� + 𝑭m2 𝑠𝑖𝑔𝑛(�̇�) (4.20)

26

Whereby Fm1 and Fm2 are n x n-dimensional diagonal matrices, containing the

individual constant friction coefficients/ torques (Kelly, Santibáñez & Loría 2005,

76).

In the context of the simulation model, the viscous friction coefficient matrix Fm1

is represented by the entirety of the viscous damping/ friction parameters and

the Coulomb friction torque matrix Fm2 is represented by the entirety of the Cou-

lomb friction torque parameters applied to the Simulink Simscape simulation

model.

The n-dimensional vector:

𝝉 (4.21)

Contains the individual joint torques. In the context of the simulation model, the

torques of the joint actuation motor models, transformed by the transmission

gear models, are applied to the joint torque vector of the dynamic model. Based

on that the simulation model’s motion is solved within the Simulink Simscape

Multibody environment.

4.2 Motion Planning

In contrast to the theories of kinematics (section 4.1.2 and section 4.1.3) and

the theory of dynamics (section 4.1.4), motion planning is not automatically cal-

culated by MATLAB Simulink at any point, therefore, the theory of motion plan-

ning is discussed more comprehensively and more detailed.

The purpose of robotic manipulators is the execution of predefined tasks within

their workspace, based on controlled motions of the combination of the ele-

ments of the complete robotic system. In this context, typically two main prob-

lems need to be considered and solved: The avoidance of collisions of the ma-

nipulator’s elements with the environment and the correct positioning and orien-

tation of the manipulator’s tool.

27

Because collision avoidance was not a part of the thesis work, the subsequent

theory only focuses on motion planning with emphasis to the manipulator’s tool.

Depending on the task to be accomplished, a proper motion type needs to be

chosen from the range of existing types of robotic motions such as, point-to-

point (PTP) movements, linear movements, circular movements etc. According

to the task definition, only linear and joint movements were taken into consider-

ation. After the determination of a motion type, the motion needs to be planned

in order to obtain set values, also references, for the closed-loop control system

structures of the manipulator.

The task of motion planning is part of the covering topic “robot navigation” which

in turn can be divided into three sub tasks: path planning, trajectory planning

and control design (Kelly, Santibáñez & Loría 2005, 13).

Path planning covers the determination of a curve between the initial and the

final position and orientation of the manipulator’s end effector, avoiding colli-

sions with obstacles (Kelly, Santibáñez & Loría 2005, 14).

Control design is thematised in section 4.3.

Trajectory planning is about generating a time dependent trajectory from the

curve obtained during the process of path planning, typically defined in work-

space coordinates. (The so obtained trajectory is also called reference trajecto-

ry). (Kelly, Santibáñez & Loría 2005, 14)

Based on the demands from the task definition, in this case joint and linear (re-

ferring to the welding application) movement types were considered only. In this

context, motion planning is also narrowed to movements from a starting (A) to

target (B) position (and orientation of the manipulator’s tool).

As the joint movement type does not require following a defined path of the ma-

nipulator’s tool within the workspace and already operates in joint (space) coor-

dinates, no path planning is required. Linear motions by contrast require a de-

fined movement of the tool along a defined (linear) path. In general, this defined

paths, also called continuous paths (CP), are formulated in workspace coordi-

nates and require a sufficient path planning in order to enable the robot follow-

ing the demanded path.

28

4.2.1 Linear Trajectory Planning

If not defined divergently, the theory of this section 4.2.1 and the subsequent

section 4.2.2 base exclusively on the theory described in Weber (2017, 71-105).

A linear path (defined in the robotic manipulator’s workspace), to be followed by

the robot’s TCP (e.g. for the creation of a weld seam), can be described by a

vector pp. This vector is defined as:

𝒑p = 𝒑tgt − 𝒑stt (4.22)

Whereby the ptgt vector is a vector aiming at the target point “B” of the linear

workspace path and the pstt vector is a vector aiming at the start point “A” of the

linear workspace path. Both are position vectors originated in the origin of the

reference frame (O0). See FIGURE 4.6 below.

FIGURE 4.6: Vector based linear workspace path formulation (Weber 2017, 86, modified)

The time dependent movement of the TCP along the vector pp can be de-

scribed with the help of the newly introduced, scalar and time dependent path

parameter sp(t).

Furthermore, time counting starts with the start of the motion at tstart = t0 = 0 s,

hence:

pstt

p
tgt

 O
0

p
stt

p
tgt

s
abs

p
p

29

𝑠p(𝑡start) = 𝑠p(𝑡0) = 𝑠p(0 s) = 0 m (4.23)

Accordingly, time counting ends with the end of the motion at tend, hence:

𝑠p(𝑡end) = 𝑠abs (4.24)

Whereby sabs is the absolute length of the vector 𝒑p and calculated from:

𝑠abs = |𝒑p| = |𝒑tgt − 𝒑stt| =

√(𝑝tgt,z − 𝑝stt,z)
2

+ (𝑝tgt,y − 𝑝stt,y)
2

+ (𝑝tgt,x − 𝑝stt,x)
2

(4.25)

The time dependent workspace trajectory vector p(t), originated in the origin of

the reference frame (O0) and pointing at the desired contemporary TCP work-

space position (= origin of the tool frame O6) can be now described as:

𝒑(𝑡) = 𝒑stt + [𝑠p(𝑡) ∙
(𝒑tgt − 𝒑stt)

𝑠abs
] (4.26)

As the variables ptgt and pstt are initially directly defined (e.g. by a user input)

and the variable sabs only needs to be calculated once, the path parameter sp(t)

needs to be described more detailed.

Therefore, the necessary assumption of a motion starting from a resting state

and ending at a resting state is made, thus:

�̇�p(𝑡start) = �̇�p(0 s) = 𝑣p(0 s) = 0
m

s
 (4.27)

And:

�̇�p(𝑡end) = 𝑣p(𝑡end) = 0
m

s
 (4.28)

30

For any further determination of the path parameter sp(t), its specific course

needs to be determined. This is typically accomplished by the determination of

the path velocity �̇�p(𝑡) = 𝑣p(𝑡) by a so called velocity profile or by the determi-

nation of the path acceleration �̈�p(𝑡) = 𝑎p(𝑡) by a so called acceleration profile.

As a simple trapezoidal velocity profile only consists of linear and continuous

functions, the derivation of the velocity (profile) �̇�p(𝑡), the acceleration (profile)

�̈�p(𝑡) reveals that the motion is not (sufficiently) jerk-free (jerk 𝑗 = 𝑠p(𝑡)), see

FIGURE 4.7.

FIGURE 4.7: Trapezoidal velocity profile (left) and the corresponding acceleration profile (right)
(Weber 2017, 75, modified)

This in turn could cause harmful vibrations and stresses of the robotic system.

In order obtain a smooth motion, a sinusoidal acceleration profile was chosen.

The motion is basically described by (general formulation):

�̈�(𝑡) = �̂� ∙ sin2 (
𝜋

𝑡s
∙ 𝑡) (4.29)

(Whereby �̂� describes the peak value of the acceleration and 𝑡s describes the

length of the considered time span) and, along with the corresponding velocity

profile and the corresponding position graph, depicted in FIGURE 4.8 below.

�̇�p(𝑡) �̈�p(𝑡)

31

FIGURE 4.8: Sinusoidal acceleration profile and corresponding velocity and position graphs
(Weber 2017, 79, modified)

For a further mathematical description, firstly the new time variables 𝑡acc, 𝑡dec

and 𝑡end are introduced accordingly to the definition shown in FIGURE 4.8

above.

As the aim of the determination of the sinusoidal acceleration profile is to obtain

an appropriate description of the path parameter sp(t), equation (4.29) needs to

be integrated two times for each of the three distinctive motion phases:

The motion phase of acceleration (0 ≤ t < tacc) is described by:

𝑠p(𝑡) = 𝑎m ∙ {(
1

4
∙ 𝑡2) + [

𝑡acc
2

8𝜋2
∙ (cos (

2𝜋

𝑡acc
∙ 𝑡) − 1)]} (4.30)

The motion phase of continuous velocity (tacc < t ≤ tdec) is described by:

𝑠p(𝑡) = 𝑣m ∙ [𝑡 − (
1

2
∙ 𝑡acc)] (4.31)

�̈�p(𝑡) �̇�p(𝑡)

𝑠p(𝑡)

𝑡acc 𝑡acc

𝑡acc

𝑡dec

𝑡dec

𝑡dec

𝑡end

𝑡end

𝑡end

𝑠abs

−𝑎m

𝑎m

𝑣m

32

The motion phase of deceleration (tdec < t ≤ tend) is described by:

𝑠p(𝑡) =
𝑎m

2
∙ {[𝑡end ∙ (𝑡 + 𝑡acc)] − [

(𝑡2 + 𝑡end
2 + 2 ∙ 𝑡acc

2)

2
]

+ [
𝑡acc

2

4𝜋2
∙ (1 − cos (

2𝜋

𝑡acc
∙ (𝑡 − 𝑡dec)))]}

(4.32)

Whereby the value 𝑎m describes the maximum applied (desired) path accelera-

tion value and 𝑣m describes the maximum applied (desired) path velocity value.

Both are necessarily predetermined by user inputs or obtained from any other

source in advance.

In the case of short trajectory and/ or high acceleration values, the maximum

desired path velocity value 𝑣m can possibly not be reached and needs to be

adapted to the maximum reachable path velocity. For obvious practical matters,

the value of the maximum applied path acceleration 𝑎m is kept constant. Start-

ing from this, the maximum reachable path velocity can be calculated from:

𝑣m,max = √
𝑎m ∙ 𝑠abs

2
 (4.33)

Then be compared to the maximum desired path velocity value 𝑣m and adapted

if necessary. The procedure is depicted in the flow chart shown in FIGURE 4.9:

below.

FIGURE 4.9: Flow chart: adaption of the applicable path velocity (Weber 2017, 77, modified)

𝑣m = √
𝑎m ∙ 𝑠abs

2

𝑣m > √
𝑎m ∙ 𝑠abs

2
 ?

𝑣m, 𝑎m, 𝑠abs

𝑡acc, 𝑡end, 𝑡dec

true

false

33

Finally, the time variables 𝑡acc, 𝑡dec and 𝑡end are calculated from (same length of

the acceleration and deceleration phases (= symmetric velocity profile)):

𝑡acc =
2 ∙ 𝑣m

𝑎m
 (4.34)

𝑡end =
𝑠abs

𝑣m
+ 𝑡acc (4.35)

𝑡dec = 𝑡end − 𝑡acc (4.36)

4.2.2 Joint Trajectory Planning

In contrast to the linear trajectory planning which requires subsequent solving of

the inverse kinematics in order to obtain the joint-space trajectory from the

workspace trajectory, joint trajectory planning is directly accomplished in the

joint-space.

The general procedure of joint trajectory planning is similar to the procedure of

linear trajectory planning and also uses a sinusoidal acceleration profile, but the

path parameter is now:

𝒒p(𝑡) = [𝑞1,p(𝑡) 𝑞2,p(𝑡) 𝑞3,p(𝑡) 𝑞4,p(𝑡) 𝑞5,p(𝑡) 𝑞6,p(𝑡)]T (4.37)

Instead of sp(t). Hence, the joint trajectory planning needs to be applied for each

of the joint position variables (= robot manipulator’s axes) individually, six times

in this particular case.

𝒒(𝑡) = [𝑞1(𝑡) 𝑞2(𝑡) 𝑞3(𝑡) 𝑞4(𝑡) 𝑞5(𝑡) 𝑞6(𝑡)]T (4.38)

In theory, the individual joint trajectory planning procedures could be executed

independently from each other’s, which is called asynchronous motion and typi-

cally causes non-obvious trajectory courses and a higher overall mechanical

stress level of the robotic manipulator.

34

Therefore, the decision was made to fully synchronize all individual axis trajec-

tories. The fully synchronized trajectory motion is characterized by the same

lengths of each of the three distinctive motion phases for each axis as exempla-

rily shown for a trapezoidal velocity profile in FIGURE 4.10 below.

FIGURE 4.10: Exemplary depiction of a fully synchronized axis motion (velocity)

Whereby the slowest axis is necessarily the so called leading axis and deter-

mines the length of the motion phase of acceleration, of continuous velocity and

of deceleration for all other non-leading axes.

For the identification of the leading axis, firstly the overall traveling times of all

individual axes need to be calculated, using the theory described for the linear

trajectory planning but substituting:

𝒑tgt = 𝑞i,tgt (4.39)

𝒑stt = 𝑞i,stt (4.40)

Thus:

𝑞i,abs = |𝑞i,tgt − 𝑞i,stt| (4.41)

𝑡1,dec =

𝑡2,dec =

𝑡3,dec

𝑣1,m(𝑡), 𝑣2,m(𝑡), 𝑣3,m(𝑡)

𝑣1,m(𝑡)

,

𝑡

𝑡1,acc =

𝑡2,acc =

𝑡3,acc

𝑡1,end =

𝑡2,end =

𝑡3,end

35

And:

𝑣m = 𝑣i,m [
rad

s
] (4.42)

𝑎m = 𝑎i,m [
rad

s2
] (4.43)

𝑡acc = 𝑡i,acc (4.44)

𝑡dec = 𝑡i,dec (4.45)

𝑡end = 𝑡i,end (4.46)

Hence:

𝑣i,m,max = √
𝑎i,m ∙ 𝑞i,abs

2
 (4.47)

𝑡i,acc =
2 ∙ 𝑣i,m

𝑎i,m
 (4.48)

𝑡i,end =
𝑞i,abs

𝑣i,m
+ 𝑡i,acc (4.49)

𝑡i,dec = 𝑡i,end − 𝑡i,acc (4.50)

Then the maximum traveling time is calculated from:

𝑡end,max = max (𝑡i,end) (4.51)

This also identifies the leading axis. If once determined, the maximum traveling

time is now valid for all axes, thus:

36

𝑡𝑖,end = 𝑡end,max (4.52)

Accordingly, the values of 𝑡acc and 𝑡dec of the leading axis are applied for all

other axes:

𝑡i,acc = 𝑡acc,max (4.53)

𝑡i,dec = 𝑡end,max (4.54)

Subsequently, the individual maximum desired path velocity and acceleration

values of the non-leading axes need to be adapted to the new time variable val-

ues with:

𝑣i,m =
𝑞i,abs

𝑡i,dec
 (4.55)

And:

𝑎i,m =
2 ∙ 𝑣i,m

𝑡i,acc
 (4.56)

Finally, the individual joint-space trajectories can be calculated from:

𝑞i(𝑡) = 𝑞i,stt + [𝑞i,p(𝑡) ∙
(𝑞i,tgt − 𝑞i,stt)

𝑞i,abs
] (4.57)

Using:

The motion phase of acceleration (0 ≤ t < ti,acc) is described by:

𝑞i,p(𝑡) = 𝑎i,m ∙ {(
1

4
∙ 𝑡2) + [

𝑡i,acc
2

8𝜋2
∙ (cos (

2𝜋

𝑡i,acc
∙ 𝑡) − 1)]} (4.58)

37

The motion phase of continuous velocity (ti,acc < t ≤ ti,dec) is described by:

𝑞i,p(𝑡) = 𝑣i,m ∙ [𝑡 − (
1

2
∙ 𝑡i,acc)] (4.59)

The motion phase of deceleration (ti,dec < t ≤ ti,end) is described by:

𝑞i,p(𝑡) =
𝑎i,m

2
∙ {[𝑡i,end ∙ (𝑡 + 𝑡i,acc)] − [

(𝑡2 + 𝑡i,end
2 + 2 ∙ 𝑡i,acc

2)

2
]

+ [
𝑡i,acc

2

4𝜋2
∙ (1 − cos (

2𝜋

𝑡i,acc
∙ (𝑡 − 𝑡i,dec)))]}

(4.60)

4.3 Control Systems

As the topic of robotic manipulator control is highly sophisticated and compre-

hensive, only coarse and narrowed outlines of the topic are discussed in this

section. Furthermore, the scope of the thesis work did not covered any control

system design, but common control system theory was considered in order to

create an environment that meets the requirements for state of the art control

systems design.

In a first distinction, the field of robot control can be divided into the area of

force control and the areas of position/ motion control, whereby hybrid forms

also exist. The force control is typically meant for the purpose of the control of

forces and torques applied from the robot to its environment or vice versa (We-

ber 2017, 23).

In the case at hand, only free robotic motion was considered and therefore, the

topic of force control was not discussed any further.

Continuing from that, position control is related to the task of controlling the ro-

bot manipulator to reach a specific set-point (Kelly, Santibáñez & Loría 2005,

135). Motion control in contrast is related to the task of controlling desired ma-

nipulator’s motions, or more precise, following a desired trajectory (Kelly, San-

tibáñez & Loría 2005, 224).

38

Both position and motion control are independent from external forces and tor-

ques.

Furthermore, a distinction can be made between internal (joint) robot control

and external robot control as shown in the subsequent FIGURE 4.11.

FIGURE 4.11: Schematic depiction of internal and external robot control (Weber 2017, 25, mod-
ified)

From FIGURE 4.11 above can be obtained that external robot control requires:

 Additional external measuring devices

 Inverse kinematics solving

 Subsequent internal control system structures

Because external measuring devices were not covered by the thesis scope, the

theory of external robot control was neglected but without excluding possible

future implementations of external control to the simulation model, because in-

ternal robot control is subordinated to external robot control.

External
Control

Inverse
Kinematics

Controlled
Values

Target
Values

Measured Values

Sensor Information

Internal (Joint)
Control

Workspace
Set Values

Joint-Space
Set Values

39

As joint actuations (e.g. by servomotors) as well as joint variable measurements

(e.g. by the servomotor’s resolver) are typically joint-space related, internal ro-

bot control can be considered as the fundamental control system type of a

common industrial robot.

Following this, it must be considered that changes of one specific joint variable

in most of the cases also causes impacts on all other joint variables of the ro-

botic manipulator’s system, therefore multi-variable control is required for ap-

propriate control of the typically non-linear coupled robotic structure. (Weber

2017, 25)

In this context, another distinction is made between the so called centralized

and decentralized control. Decentralized control bases on the assumption of a

robotic manipulator consisting of a number of n independent systems to be con-

trolled (n joint variables), whereby coupling effects are treated as disturbances

(Siciliano, Sciavicco, Villani & Oriolo 2009, 309).

Centralized control in contrast includes the decentralized control structures but

also considerers the inter-system connections and dependencies (influences

based on the typically non-linear couplings within the simulation model) (Sicili-

ano, Sciavicco, Villani & Oriolo 2009, 327).

Based on that, the superordinate structure, centralized control, was again not

further considered but without excluding possible future implementations of a

centralized control to the simulation model.

A typical and common scheme of a closed-loop single-input single-output (SI-

SO) decentralized control system structure, including up-streamed inverse kin-

ematics, is shown below (FIGURE 4.12).

FIGURE 4.12: Decentralized SISO control system structure (Bajd, Mihelj, Lenarčič, Stanovnik &
Munih 2010, 78, modified)

Joint/

Robot

Mechanism

qr,i

q
i

u
i
 τ

i

̃̃̃̃̃̃̃̃̃~

 qi

40

Theoretically, decentralized control system structures can be of the types:

 Single-input single-output (single variable control without feedforward

control (e.g. individual joint position qi))

 Multiple-input single-output (MISO) (single variable control with feedfor-

ward control (e.g. individual joint position qi))

 Single-input multiple-output (SIMO) (cascaded control system without

feedforward control)

 Multiple-input multiple-output (MIMO) (cascaded control system with

feedforward control)

Whereby the cascaded (SIMO) control system structures, as shown in FIGURE

4.13, are proven and common in the context of all kinds of (electric motor driv-

en) positioning tasks.

FIGURE 4.13: Schematic depiction of a decentralized cascaded SIMO control system structure
(Grote, Bender & Göhlich 2018, T112, modified)

This cascaded decentralized structure can be extended to a more performant

MIMO structure with moderate efforts by the implementation of a superior cen-

tralized feedforward control system (also called Computed Torque Feedforward

Control), as shown in the subsequent FIGURE 4.14.

Position
Controller

Velocity
Controller

Current
Controller

Motor
Gearbox

Joint

𝑧𝑖

𝑞i 𝑞r,i 𝑈i

�̇�i

𝑞i

𝐼i

41

FIGURE 4.14: Schematic depiction of a decentralized cascaded MIMO control system structure
with centralized feedforward control (Grote, Bender & Göhlich 2018, T112, modified)

4.4 MATLAB Simulink

The software MATLAB is a numerical computing environment based on vector-

and matrix operations, suitable for the operating systems (OS) Microsoft® Win-

dows®6, Apple® macOS®7 and Linux®8. MATLAB provides numerical calcula-

tions and visualisations using its own high-level programming language. Nowa-

days, MATLAB is widespread in the research, development and industry and

mainly used in the context of mathematical and engineering sciences. (Pie-

truszka 2014, 1)

MATLAB also contains the graphical development environment Simulink. Sim-

ulink provides modelling and simulation of dynamic systems (linear and non-

linear) mainly based on block diagrams. In- and outputs of the simulation can be

provided and evaluated directly in the Simulink environment but also indirectly

from the MATLAB Workspace or M-files. This also allows further processing of

the Simulink simulation results within the MATALB environment. (Pietruszka

2014, 167)

6
 Microsoft® Windows® is a registered trademark of Microsoft Corporation

7
 Apple® and macOS® are registered trademarks of Apple Inc.

8
 Linux® is a registered trademark of The Linux Foundation®

Current
Controller

Velocity
Controller

Position
Controller

Motor
Gearbox

Joint

𝑞i

𝑧𝑖

𝐼i

𝐼FF,i

𝑈i 𝑞r,i

�̇�r,i

�̈�r,i �̇�r,i 𝑞r,i Invers
Model

�̇�i

𝑞i

42

Simulink itself provides several integrated tools such as Stateflow®9 or Sim-

scape. Simscape is a tool for modelling and simulating multi-domain physical

systems typically occurring within the area of mechatronic systems. Simscape is

also mainly based on block diagrams, covering electrical, mechanical, and hy-

draulic components. (Pietruszka 2014, 353)

Focusing on mechanical issues, Simscape Multibody provides a multibody sim-

ulation environment for three-dimensional (3D) mechanical systems which also

covers the import of CAD model assemblies. As it is a part of the Simulink envi-

ronment, in general, Simulink functionalities can be applied in the Simscape

environment and models can be parameterised using MATLAB variables and

expressions. (The MathWorks Inc. 2019a)

4.5 Programming

A wide variety of programming languages, types, methods and supporting tools

exist, typically related to the specific problem to be solved. The problems solved

in the context of the thesis work at hand were mainly related to the technical

domain and the working environments were predetermined. Hence, program-

ming was accomplished using the MATLAB programming language (text-based)

within the MATLAB environment and block diagrams (graphical) within the Sim-

ulink/ Simulink Simscape environment exclusively.

Program planning was managed following the typical basic programming pro-

cedure:

1. Identification of the demanded/ required program outputs

2. Identification of the available/ required program inputs

3. Determination of the required processing program code

In this context, the outlines, the main program flow, the main characteristics and

functionalities were sufficiently described and documented visually using appro-

priate tools for the creation of program flow charts like PapDesigner10 Version

2.2.0.8.04.

9
 Stateflow® is a registered trademark of The MathWorks, Inc.

10
 Copyright© friedrich-folkmann.de 2017

43

Additionally, the basic code creation rules were applied:

 Sufficient code comments

 Consistent naming of data, variables, functions, etc.

 Modular code structures

 A descriptive header for each individual code, exemplarily shown below:

%##

%

% Project :

% File Name :

% Author :

% Date Created :

% Purpose :

% Revision History :

%

% Date Author Revision Changes

%

%##

44

5 CONCEPTUAL DESIGN

Related to the general purpose and requirements of the thesis work, the simula-

tion model is mainly centred around a Simulink Simscape Multibody representa-

tion (block diagram) of the real robotic system, based on and derived from its

CAD model.

Firstly, the level of completeness (compared to the real robotic system) of an

automatically generated Simulink Simscape Multibody simulation model was

examined with the help of a prepared CAD model of the ABB IRB 2600-12/1.85

industrial robot (provided by the TAMK) and the MATLAB smimport() func-

tion. (The procedure of the preparation of the CAD model is precisely described

in section 6.1). FIGURE 5.1 shows the Simulink Simscape Multibody block dia-

gram automatically derived from the CAD model assembly of the industrial ro-

bot.

FIGURE 5.1: Automatically generated Simscape Multibody model block diagram

The block diagram fully represents the manipulator’s kinematic structure, con-

sisting of the two basic elements, (revolute) joints and rigid bodies (links)

blocks. Rigid Transform blocks are used to describe the geometrical relation-

ships between the individual links and joints.

It can be clearly seen that the joint actuation systems are completely missing.

45

Thus, no control, signal or measurement system structures exist. Furthermore,

no parameterization was applied, except the kinematic parameters (DH-

parameters, joint types) and mass/ inertia/ graphical appearance (CoM, MoI,

PoI, etc.) parameters derived from the CAD model during the automatic genera-

tion.

Therefore, the conceptual design of the Simulink/ Simulink Simscape model

was mainly related to the identified and summarized tasks to be accomplished

listed below:

 Design of the robot manipulator’s joint actuation (bearings, transmis-

sions, motors, motor drivers (inverters))

 Design of appropriate simulation model signal processing (acquisition,

routing, provision)

 Design of appropriate preparations for control system structures

 Design of measurement systems

Furthermore, the task of identifying and outlining appropriate solutions for gath-

ering, determining, processing and providing all the required information to the

simulation model was pending.

The decision was made to accomplish these tasks within the MATLAB environ-

ment, whereby the main tasks can be expressed as:

 Parameterization of the simulation model (acquisition, preparation and

provision of the parameters)

 Set values (reference values, reference trajectories) calculation and pro-

vision

5.1 General Simulation Program Structure

The draft of the general simulation program structure, depicted as simplified

function diagram, is shown in the subsequent FIGURE 5.2.

46

FIGURE 5.2: General simulation program structure diagram

The image shown above should be self-explanatory and was used as guidance

for clearly structured progresses of the processed work.

As the required CAD data of the robotic manipulator only needed to be built and

assembled once and are already provided to the simulation program, the pro-

cess of the CAD model handling was not specified any further in the diagram

but is discussed sufficiently in section 6.1.

5.2 Simulink/ Simulink Simscape

5.2.1 Simscape Multibody Model

Due to the similarities of the automatically generated Simulink Simscape Multi-

body block diagram structure (FIGURE 5.1) to the general kinematic structure

(open, serial kinematic chain) of the real robotic system, the decision was made

to retain the already existent general block diagram structure unchanged.

FIGURE 5.3 shows a sketch of the concept of the simulation model’s Simscape

block diagram.

gui1.m

MATLAB

Other Data (Images, etc.)

Library

CAD Model Data Parameter
Spreadsheet

Simulink/
Simulink

Simscape

Workspace

Variable 1

Variable 2

Variable 3

Variable 4

Variable 5 Function2.m

function1.m

47

FIGURE 5.3: Freehand sketch of the concept of the simulation model’s Simscape block diagram

In accordance with the (kinematic) theory (section 4.1), the number of degrees

of freedom is equal to the number of joints (with f = 1), thus the robotic structure

consists of n = F = f = 6 (revolute) joints and seven rigid bodies (considering link

6 and the end effector as one body due to the rigid connection). Therefore, a

number of seven subsystems shall represent the kinematic structure of the ma-

nipulator. The subsystems shall be in series, rigidly linked and connected to a

signal bus. Each subsystem shall mainly contain one rigid body (link i), the (i+1

revolute) joint and the corresponding joint actuation (except the end effector

subsystem). The general subsystem structure shall be same for all other sub-

systems, except the end effector subsystem which only shall contain the end

effector rigidly connected to link 6. Exemplarily, a sketch of the concept of a

subsystem is shown in FIGURE 5.4 below.

FIGURE 5.4: Freehand sketch of the concept of a subsystem of the Simscape block diagram

48

The main task of the conceptual design was related to the determination of

general concepts and structures - the specific contents of the further (sub) sub-

system were unknown at this point. Therefore, the “black-box-method” was

used for the depiction of required elements/ blocks of the subsystems block di-

agram.

The rigid body (sub) subsystem and (revolute) joint block already existed (see

FIGURE 5.1) and no further specifications were needed.

The measurement (sub) subsystem was not drafted any further as its structure

and contents were highly dependent on the specific obtainable signals of the

finally implemented individual elements/ blocks of the block diagram. Neverthe-

less, the discussion of the control system theory (section 4.3) revealed that

each Subsystem i Measurement Subsystem at minimum needs to capture at

minimum the corresponding:

 Joint position, velocity and acceleration variables 𝑞i, �̇�i, �̈�i

 Joint torque variable 𝜏i

A sufficient description of the finally implemented measurement subsystem can

be found from the later section 6.2.4.

A sketch of the concept of a joint actuation (sub) subsystem is shown in FIG-

URE 5.5 below.

FIGURE 5.5: Freehand sketch of the concept of a joint actuation subsystem

49

The motor block of the Joint i+1 Actuation Subsystem (FIGURE 5.5) shall be

chosen from the range of predefined motor model blocks of the Simulink Sim-

scape Library.

The motor type of the real robotic system was identified as alternating current

(AC) asynchronous motor (see section 6.4.1). Therefore, the decision was

made that an Asynchronous Machine Squirrel Cage (ASM) model block from

the Simulink Simscape Electrical Library shall be implemented as it meets the

characteristics of the real motor best (from the range of available library ele-

ments).

FIGURE 5.6: Screen capture of a Simulink Simscape Asynchronous Machine block

Similar to the motor block, the gearbox block of the Joint i+1 Actuation Subsys-

tem shall be chosen from the range of predefined gearbox model blocks of the

Simulink Simscape Library.

The gearbox type of the real robotic system was identified as cycloidal reduction

gear (see section 6.4.1). Therefore, the decision was made that a Cycloidal

Drive model block from the Simulink Simscape Driveline Library shall be imple-

mented as it is the only available and reasonable applicable library element.

FIGURE 5.7: Screen capture of a Simulink Simscape Cycloidal Drive block

50

According to the requirements, predefined MATLAB/ MATLAB Simulink (Sim-

scape) contents should always be preferred if reasonable and applicable. In the

case of the motor driver subsystem, the decision was made that the required

function principles and blocks of the MATLAB Simulink Simscape “Asynchro-

nous Machine Scalar Control” (pe_asm_scalar_control) example block

diagram shall be utilized as it is applicable to the chosen motor model block and

meets the requirements best.

FIGURE 5.8: Screen capture of the MATLAB Simulink Simscape “Asynchronous Machine Sca-
lar Control” example block diagram

From FIGURE 5.5 can be obtained that the motor driver subsystem input needs

to be aligned to the controlled value from the joint controller subsystem. In this

context, it needs to be mentioned again that control system structure design

was not part of the thesis scope and therefore, later and from external parties

applied control system structures and the corresponding controlled values were

unknown at this point. Therefore, and in order to increase the comprehensibility

of the simulation model, the decision was made that the motor driver shall be

created in a way to expect scalar values (similar to the mentioned example)

within the range from -1 to +1 as the controlled value. Thus: “+1” = “100% pow-

er in the positive direction” and “-1” = “100% power in the negative direction”.

In the case of more sophisticated control system structure design to be applied

by an external party (SIMO, MIMO), the motor driver subsystem can be adapted

accordingly if required.

51

The signal processing block of the Joint i+1 Actuation Subsystem shall only be

implemented if required, e.g. for signal bundling, depending on the final struc-

ture and contents of the joint actuation subsystem unknown at this point.

Additional elements/ blocks shall also be implemented if the finally applied pre-

defined motor and/ or gearbox blocks not include all required simulation model

parameters (e.g. viscous rotor damping).

5.2.2 Simulink

The simulation model is meant for the purpose of control structure system de-

sign in an educational context. Therefore, the decision was made that the ap-

pearance of the Simulink block diagram shall be similar to the appearance of a

common basic closed-loop control system block diagram, as shown in FIGURE

5.9 below.

FIGURE 5.9: Block diagram of a common basic closed-loop control system structure

As Simulink Simscape (Multibody) is a sub environment of Simulink, the

Simspace Multibody model of the robotic system (as described in the previous

section 5.2.1) shall be implemented as a subsystem of the overlaying Simulink

block diagram. In the context of FIGURE 5.9, the Multibody block diagram

would be then embedded in the “System” block.

From FIGURE 5.9 can also be obtained that a controller subsystem and signal-

ling were needed to complete the demanded Simulink block diagram structure.

Therefore, summarizing the theory formerly discussed in section 4.3 and the

additionally studied theory from the literature Weber (2017), Kelly, Santibáñez &

Loría (2005) and Bajd, Mihelj, Lenarčič, Stanovnik & Munih (2010):

-

r(t)
Controller System

e(t) u(t)

+

y(t)

z(t)

52

A number of n decentralized MIMO structures is necessarily the fundamental

control system structure to be provided within the simulation model in order to

enable the design and implementation of any other control system structure.

Hence, the control system structure to be designed and implemented in the

context of the thesis work shall cover at minimum:

 A superior control system structure carrying the individual decentralized

control system structures in order to provide an environment for central-

ized control if required

 Six independent (decentralized) control system structures, one for each

of the simulation model’s (revolute) joints (joint variables (q1-q6))

 Multiple inputs covering joint-space position set values as well as meas-

ured actual values of the joint actuation systems (e.g. joint position, ve-

locity, acceleration and torque)

 Multiple outputs covering the joint space controlled values as well as the

controlled values of the joint actuation systems (e.g. motor driver set val-

ue)

For signalling between the individual Simulink and Simulink/ Simscape subsys-

tems and any other (sub) subsystems, all signalling options available from the

Simulink Signal Routing Library were investigated and rated. Based on that, the

decision was made that a signal bus shall be used, as it provides a minimum

amount of signal lines (= clear overview) but maximum comprehensibility,

adaptability and extensibility (compared to e.g. direct wiring or “From” & “Goto”

blocks).

Because the signal bus only allows transferring Simulink domain signals, con-

verting shall be applied for interfacing from/ to other signal domains when add-

ing or branching off bus signals (e.g. “PS-Simulink Converter“ or “Simulink-PS

Converter“ blocks). Furthermore, the decision was made to only transfer SI unit

and derived SI unit signal values within the bus (except signals originally without

unit) in order to prevent errors, as the bus signals are values without any unit.

Therefore, unit conversion shall also be applied when adding or branching off

bus signals if required.

53

5.2.3 Parameter Provision

In order to enable an efficient and convenient provision of the parameters of the

individual elements/ blocks of the Simulink and Simulink Simscape block dia-

grams, parameterization shall be implemented indirectly via the simulation

model variables obtainable from the MATLAB Workspace (see later section

5.3.1).

FIGURE 5.10: Screen capture of an exemplary block parameterization

This method provides a structured and centralized compilation of all simulation

model parameters in one or more variables which in turn allow a quick and ex-

tensive access for viewing and/ or modifications of individual parameters.

5.3 MATLAB

As described in the introductory paragraphs of this section (5), the simulation

program can be divided into a Simulink/ Simulink Simscape part and a MATLAB

part. The previous sections 5.1 and 5.2 describe the simulation model’s general

overall structure, its individual elements and their functional dependencies.

In order to also determine sequential dependencies between the individual ele-

ments and functionalities, a general flow chart, shown in FIGURE 5.11 below

was created.

54

FIGURE 5.11: General Simulation Program Flow Chart

Based on the previously determined main tasks of the MATLAB program part:

 Simulation model parameterization

 Set values calculation and provision

And the main contents and functionalities obtainable form FIGURE 5.2 and

FIGURE 5.11, appropriate conceptual designs were elaborated and are pre-

sented and discussed within the subsequent sections 5.3.1, 5.3.2 and 5.3.3.

5.3.1 Simulation Model Variables

In the context of the previously mentioned automatically generated Simulink

Simscape Multibody simulation model from the CAD model, using the MATLAB

smimport() function, the “ABB_IRB_2600_12_185_Simscape_Data.m” file

was automatically created. The corresponding and predetermined MATLAB var-

iable of this file is smiData.

Furthermore, the predetermined variables robotModel and importInfo are

automatically created from the MATLAB importrobot() function, required for

inverse kinematics solving (see section 5.3.3) .

Open Simulink/Simulink Simscape Simulation Model

Program
Part 2:

Simulink/
Simulink

Simscape

Joint Movement
Planning (GUI)

Linear Movement
Planning (GUI)

START

Initialization

Data Import

Main (GUI)

END

Update

Result Evaluation (Manually)

Simulation Execution (Manually)

Control Systems Structure Creation (Manually)

Manual Restart

Change

Program
Part 1:

MATLAB

55

As it is highly recommended not to change these predetermined, required and

automatically generated variables:

 smiData

 robotModel

 importInfo

The decision was made to create new own variables for the MATLAB program

part. Therefore, the variable:

 robotPara

Shall be used to store the simulation model parameters in SI and/ or derived SI

units, imported from the externally provided robot parameters compilation. The

creation/ initialization of the variable and the subsequent storing of the parame-

ters shall be accomplished within a separate MATLAB function.

The variable:

 simVar

Shall be created in order to act as the main working variable of the MATLAB

program part. In detail, the variable shall be passed into and returned from each

individual MATLAB function for data transfer. Hence, the variable shall store all

required information captured and calculated during the MATLAB program exe-

cution, which finally also covers the trajectory set values to be provided to the

Simulink/ Simulink Simscape environment. The variable shall also be created by

a separate MATLAB function to ensure the comprehensibility of its structure and

contents.

Both variables shall be stored at the MATLAB “base” Workspace in order to en-

able visibility for the user and easy access for the Simulink/ Simulink Simscape

environment.

56

5.3.2 Graphical User Interfaces

Referring to the requirements of the simulation model, user inputs/ interactions

are at minimum to be performed via the MATLAB Command Window. Due the

number and extent of all required individual elements of the MATLAB program

part (see subsequent section 5.3.3), controlling the simulation program/ model

via the MATLAB Command Windows was considered as inconvenient, ineffi-

cient, complex and may require additional syntax/ command knowledge. Based

on that, the decision was made that the optional task of the implementation of

graphical user interfaces (GUI) shall be accomplished.

Therefore, the graphical interfaces shall be created with the MATLAB graphical

user interface development environment (GUIDE) tool, whereby, according to

FIGURE 5.11, three GUI shall be created:

 Main GUI

 Joint Movement Planning GUI

 Linear Movement Planning GUI

Each GUI in turn is represented by a .fig file which represents the contents

and appearance of the corresponding GUI window itself and a corresponding

.m file. The .m file contains the required code for the implementation of the GUI

functionalities (which covers the initial GUI parametrization (e.g. labelling of text

boxes), callback functions (reactions on user interactions, e.g. user presses a

button) and additional sub functions if required). Thus, six .m/ .fig files are

required for the implementation of the GUI of the MATLAB program part.

Moreover, each GUI shall contain sufficient input filtering such as:

 Input value type check (number, text, etc.)

 Input value limitations/ range check (e.g. axes angular limitations)

For each individual input value of a GUI and an:

 Input completeness check (entirety of required input values)

In the context of all input values of the corresponding GUI.

57

Additionally, each GUI shall contain required descriptions and/ or descriptive

images to provide guidance and comprehensibility.

A sketch of the conceptualized appearance of the Main (G)UI window is shown

in FIGURE 5.12 below.

FIGURE 5.12: Freehand sketch of the concept of the Main (G)UI window

A sketch of the conceptualized appearance of the Motion (G)UI windows is

shown in FIGURE 5.13 below, whereby the concept shall be valid for both (line-

ar and joint movement) and therefore need to be adapted to the specific re-

quirements (e.g. corresponding description/ descriptive image, number and

format of input values, etc.).

58

FIGURE 5.13: Freehand sketch of the concept of the Motion (G)UI window

Further preconfigured (graphical elements), e.g. MATLAB dialog boxes, shall be

used to display further guidance, information, warnings and errors (e.g. in case

of the application of non-appropriate input values).

5.3.3 Programs & Program Flow Charts

For the purposes of modularity and comprehensibility, the decision was made

that each main task/ procedure of the MATLAB program shall be represented

by an individual MATLAB .m function file.

Example: simVar_init.m shall only contain the simVar_init() function.

Some .m function files may contain further sub functions which shall only be

called locally (within the corresponding function).

Summarizing the contents described in the previous sections 5.2.3, 5.3.1 and

5.3.2, the conceptual design determined the need of four functions for the crea-

tion of variables, six functions for the GUI representations and one function for

the import of robot parameters.

59

For the purpose of the installation of a required MATLAB Simulink Simscape

Library (see FIGURE 5.2) another separate function shall be created.

Furthermore, the conceptual design of the robotic manipulator’s motion refer-

ence trajectory design was pending. Therefore, the conceptualization of a linear

robotic movement planning was depicted in a flow chart diagram (see FIGURE

5.14) and described below.

The conceptualization of a linear robotic movement planning is presented ex-

emplarily and also valid for the joint movement planning but without the need of

solving the inverse kinematics.

FIGURE 5.14: Flow chart diagram of the linear movement planning

MATLAB Workspace (base)

(qSV)

(t, q(t))

GUI; User Inputs: pstart, ptarget, vTCP, aTCP, k

Creation of the k x 1-dimensional Time Vector t
Calculation of the Workspace Reference k x 3-dimensional Trajectory Vector

p(t)

Robot’s Kinematic Structure Derivation from the Simulink Simscape Multibody
Model (importrobot(), robotModel)

(robotModel, pstart,

ptarget, vTCP, aTCP, k)

(robotModel)

(t, p(t))

Calculation of the Joint-Space Reference k x 6-dimensional Trajectory Vector
q(t)

(Inverse Kinematics; GeneralizedInverseKinematics, gik())

Creation of the k x 7-dimensional Reference Trajectory Set Value Vector qSV

60

Firstly, the robot’s kinematic structure, represented by a MATLAB Rigid-

BodyTree object robotModel, needs to be derived from the existing Simulink

Simscape Multibody model with the MATLAB importrobot() function. Fol-

lowing this, the desired starting (A) workspace position 𝒑start = [𝑥A 𝑦A 𝑧A], work-

space target (B) position 𝒑target = [𝑥B 𝑦B 𝑧B] and the corresponding motion pa-

rameters (velocity vTCP, acceleration aTCP and interpolation resolution k) shall be

obtained from the user via the GUI (see FIGURE 5.13)

Subsequently, the workspace trajectory p(t) vector shall be calculated from the

user inputs within a separate function and accordingly to the elaborated theory

(section 4.2.1). It must be considered that the theory of the calculation of the

time dependent workspace trajectory vector p(t) is formulated analytically (=

continuous time). As the simulation model bases on computational calculations,

firstly a discrete time series (= k x 1-dimesional time vector t) shall be deter-

mined and then used to calculate discrete values of the k x 3-dimensional work-

space trajectory vector p(t).

Following this, a separate function shall be created for inverse kinematics solv-

ing in order to calculate the required k x 6-dimensional reference joint-space

trajectory q(t) vector from the workspace trajectory vector p(t). Therefore the

MATALAB GeneralizedInverseKinematics solver shall be used. Its cor-

responding MATLAB function gik()shall be called with the robotModel ob-

ject and appropriate ConstraintInputs objects, to be determined in advance

and accordingly to the requirements (e.g. tool orientation).

Then, the reference joint-space trajectory q(t) vector shall be united with the

time vector t in order to create a k x 7-dimensional reference trajectory set value

vector qSV. This vector shall be stored at the MATLAB Workspace “base” to be

accessible for the Simulink/ Simulink Simscape program part and act as control

system set values.

Exemplarily, the program flow chart (PFC) of the inverse kinematics function

inverse_kinematics() is shown in FIGURE 5.15 below.

61

FIGURE 5.15: Program flow chart of the inverse_kinematics() function

The procedure for the joint trajectory planning shall be same but without the

inverse kinematics as the reference joint-space trajectory can be calculated di-

rectly form the user inputs.

Finally, a main function shall be created to represent the general program flow,

depictured in and obtainable from page 1(18) of Appendix 4. Program Flow

Charts.

62

In order to provide a convenient start of the simulation program (without typing

calling parameters) by the user from the MATALB Command Window, the main

function shall in turn be called by another superordinate but concise function.

Summarized, the programs to be created, listed and described in TABLE 5.1

below, shall be designed during the accomplishment considering the elaborated

definitions and regulations, theory and conceptual design.

TABLE 5.1: Listing and description of the conceptualized MATLAB function(s) (files)

MATLAB .m/ .fig

(Function)

File(s):

Description:

Corresp. PFC

(Appendix 4.

Program Flow

Charts) Page:

runSim.m

Entry point of the simulation; shall call

the main() function and shall be called

with runSim; from the MATALB Com-

mand Window.

16(18)

init.m

Shall call all required initialization func-

tions ((e.g. simVar_init()) and/ or

initialize/ install all required variables/

libraries/ data.

4(18)

simVar_init.

m
Shall initialize the simVar variable. 17(18)

load_smiData

.m

Shall load the smiData variable from

"ABB_IRB_2600_12_185_Simscape_Da

taFile.m".

10(18)

mul-

ti_physics_l

ib.m

Shall install the required Simscape

Multibody Multiphysics Library.
13(18)

ro-

bot_import.m

Shall import and/ or update the robotic

system/ structure (RigidBodyTree)

from the Simulink Simscape model

(.slx).

14(18)

63

TABLE 5.1: Listing and description of the conceptualized MATLAB function(s) (files)

MATLAB .m/ .fig

(Function)

File(s):

Description:

Corresp. PFC

(Appendix 4.

Program Flow

Charts) Page:

ro-

bot_para_xls

_import.m

Shall create the robotPara variable

and import simulation model parameters

from the parameter spreadsheet.

15(18)

main.m Main function (and corresponding GUI);

shall represent the general program

flow. Shall call all other necessary func-

tions in order to gather user inputs and

to calculate and provide the required

data for the Simulink simulation.

11(18)

main_ui.m

12(18)
main_ui.fig

joint_move_u

i.m

Shall obtain and filter required user in-

puts for the trajectory planning of a joint

movement of the robotic manipulator

(includes the corresponding GUI).

6(18)
joint_move_u

i.fig

joint_traj_p

lanning.m

Shall calculate the joint space trajectory

of a joint movement with a sin2 accelera-

tion profile in full synchronous mode

7(18)

lin_path_ui.

m

Shall obtain and filter required user in-

puts for the trajectory planning of a line-

ar movement of the robotic manipulator

(includes the corresponding GUI).

8(18)
lin_path_ui.

fig

lin_traj_pla

nning.m

Shall calculate the workspace trajectory

of a linear movement with a sin2 accel-

eration profile.

9(18)

in-

verse_kinema

tics.m

Shall solve the inverse kinematics of the

robotic manipulator for each waypoint of

a linear movement (p(t) -> q(t)) based

on Cartesian start and target user inputs

using the MATLAB gik() solver func-

tion.

6(18)

64

6 ACCOMPLISHMENT

The accomplishment generally based on the basic ideas, structures, methods

and solutions elaborated in the conceptual design (section 5). Under continuous

consideration of the definitions and regulations (section 3) and, if required, the

methods and knowledge gained from the theory (section 4), the accomplish-

ment was conducted. Adaptions were made whenever necessary in order to

meet the requirements (Appendix 3. List of Requirements) satisfyingly and to

increase the simulation model’s quality. Adaptions as well as substantial devia-

tions from the individual corresponding conceptual design are mentioned ac-

cordingly.

Additional required unspecific/ general information, knowledge and help/ guid-

ance were obtained from The MathWorks Inc. (2019b), The MathWorks Inc.

(2019c), The MathWorks Inc. (2019d) and Glöckler (2018) during the MATLAB

and Simulink/ Simulink Simscape programming.

Due to the repetitive character of the most of the tasks processed during the

accomplishment procedure (mainly caused by the repetitive structure of the ro-

botic manipulator’s simulation model), accomplishments are primarily presented

and documented in an exemplary manner within this section.

6.1 CAD Model

Used CAD software: Dassault Systèmes® SolidWorksTM11 Premium 2014, x64-

Edition, SP 2.0

Additional Software: MathWorks Simscape Multibody Link Version 6, Release:

R2018b, Win64, plug-in for SolidWorks 2001Plus and higher

The first step of the creation of the simulation model was related to the prepara-

tion of the manipulator’s CAD model. Therefore, the CAD data of the robot links

and the end effector were separated from the .x_t parasolid file of the robot

welding cell provided by the client (TAMK).

11

 SOLIDWORKS™ is a trademark of Dassault Systèmes®

65

Following this, the separated data (see TABLE 6.1) were edited individually in

order to define the material, density, weight and colouration of each part.

Subsequently, the parts were assembled using appropriate constraints (see

TABLE 6.1) to create a fully functional representation of the real robotic system

(see FIGURE 6.2). The last step covered the generation of Simscape Multibody

environment import files using the MathWorks Simscape Multibody Link plug-in

for SolidWorks (see TABLE 6.2). The obtained import files were needed to cre-

ate the manipulator’s Simscape Multibody simulation model automatically, using

the MATLAB smimport() function. The previously described procedure is also

depicted in FIGURE 6.1 below.

FIGURE 6.1: Procedure of the generation of the Simscape Multibody model import files

TABLE 6.1: List of SolidWorks parts and assemblies of the manipulator

SolidWorks Parts

No.: Name: Type:
Assembly Constraint Type

Link i+1 to Link I :

0 IRB2600_12_185_base

SolidWorks

Part

Document

(.sldprt)

Revolute

(Coincidence of the sur-

faces and axes of the

CAD model representing

the revolute joints) (see

FIGURE 6.2)

1 IRB2600_12_185_link1

2 IRB2600_12_185_link2

3 IRB2600_12_185_link3

4 IRB2600_12_185_link4

5 IRB2600_12_185_link5

6 IRB2600_12_185_link6 Rigid

7 Welding_End_Effector -

SolidWorks Assembly

Name: Type:

ABB_IRB_2600_12_185_Simscape SolidWorks Assembly Document(.sldasm)

Information:
Model geometries
from CAD sources
(.igs, .prt, .step,
.stl, .x_t, etc.)

Output:
Simscape Multibody
environment import
files:
.xml file
.stl data

Compatible CAD Software
(e.g. SolidWorks)

Simscape
Multibody Link

Plug-In

Model
Assembly

Additional Information:
Additional geometries, assembly constraints,

materials, densities, weights, frames, colours, etc.

66

TABLE 6.2: List of Simscape Multibody simulation model input files of the manipulator

Simscape Multibody Simulation Model Files: .stl

No.: Name: Type:

0 IRB2600_12_185_base_Standard_sldprt

.stl

1 IRB2600_12_185_link1_Standard_sldprt

2 IRB2600_12_185_link2_Standard_sldprt

3 IRB2600_12_185_link3_Standard_sldprt

4 IRB2600_12_185_link4_Standard_sldprt

5 IRB2600_12_185_link5_Standard_sldprt

6 IRB2600_12_185_link6_Standard_sldprt

7 Welding_End_Effector_Standard_sldprt

Simscape Multibody Simulation Model Files: .xml

- ABB_IRB_2600_12_185_Simscape .xml

FIGURE 6.2: Screen capture of the SolidWorks assembly of the robot manipulator

67

6.2 Simulink Simulation Model

In contrary to the chronology of the process of the accomplishment of the thesis

work, the final general structure of the simulation model is already shown at the

beginning of this section. The idea behind is, to firstly give an overview over the

final simulation model’s Simulink block diagrams individual elements (see FIG-

URE 6.3), which are then presented and described in detail within the following

subsections 6.2.1 - 6.2.4.

The final Simulink/ Simulink Simscape simulation model file

“ABB_IRB_2600_12_185_Simscape.slx” can be found from the “Simulink Sim-

scape Data” folder of the complete data set (see section 6.5), along with all oth-

er required corresponding data (e.g. .stl files).

FIGURE 6.3: Screen capture of the final simulation model’s Simulink block diagram

6.2.1 Simulink Simscape Multibody Robot Model

As conceptualized, the basic Simscape Multibody model of the robotic system

was generated automatically from the pre-processed CAD data, more precise

the “ABB_IRB_2600_12_185_Simscape.xml” file (section 6.1, TABLE 6.2), us-

ing the MATLAB smimport() function.

6.2.3

6.2.1

6.2.2
6.2.4

68

The basic Simscape Multibody model (see section 5, FIGURE 5.1) was then

elaborated as conceptualized (adding further subsystems, joint actuation, sig-

nalling etc.), see FIGURE 6.4 below, and implemented as a subsystem of the

overlaying Simulink block diagram (see mark 6.2.1 in FIGURE 6.3).

All corresponding data (block parameters) of the automatically generated Sim-

scape Multibody model are stored in the also automatically generated

“ABB_IRB_2600_12_185_Simscape_DataFile.m” file.

The Simscape Multibody robot model itself (FIGURE 6.4) consists of the first

(sub) subsystem (Robot Base Subsystem) rigidly linked to the World Frame and

all other (sub) subsystems which are sequentially rigidly linked to their prede-

cessors. All (sub) subsystems do have the same general structure and are con-

nected to the signal bus (except the Robot End Effector Subsystem).

The World Frame, Mechanism Configuration and Solver Configuration blocks

contain the basic parametrization and references of the Simscape simulation

environment (e.g. value and direction of the gravitational acceleration) and are a

basic requirement for every Simulink Simscape model.

FIGURE 6.4: Screen capture of the final simulation model’s Simulink Simscape robot model

Exemplarily for the other sub (subsystems), FIGURE 6.5 shows the Robot Base

(sub) Subsystem of the Simscape robot model (see mark a) FIGURE 6.4).

f)

a)

69

The Base Body (sub) subsystem of the Robot Base Subsystem contains a Solid

block representing the rigid body of the base (link 0) and Rigid Transform blocks

for the required appropriate fixed frame transformations (kinematic structure) as

automatically generated. The Base Body (sub) subsystem is rigidly connected

to its predecessor (World Frame in this case (LinkageWorld)) and to the corre-

sponding joint (Joint 1).

The Joint 1 block (Revolute Joint) represents the real revolute joint of the ro-

bot’s system and is rigidly connected to the Base Body (sub) subsystem on the

input side and to the corresponding kinematic successor (Link 1) on the output

side (LinkageBaseLink1). Deviating from the conceptual design, no additional

sensor elements/ blocks were applied to measure the joint variables 𝑞1, �̇�1, �̈�1

and 𝜏1 from the corresponding joint as the block provides these values via inter-

nal sensing.

Also deviating from the conceptual design, the Joint 1 Drive System (sub) sub-

system does not only apply the motor torque to the Joint 1 block (port “t”) but

also receives joint velocity feedback (�̇�1) (port “w”) for interfacing purposes (see

description of FIGURE 6.6). Both, the Joint 1 Drive System (sub) subsystem

(mark b) FIGURE 6.5) and the Joint 1 block are connected to the signal bus.

Signals from different signal domains (e.g. Simscape Multibody and Simulink

domain) are converted with PS-Simulink Converter or Simulink-PS Converter

blocks before added to or branched off the signal bus.

FIGURE 6.5: Screen capture of the Simscape simulation model’s Robot Base Subsystem

b)

70

The block diagram of the (sub) subsystem of the Joint 1 Drive System (mark b)

FIGURE 6.5) is shown in FIGURE 6.6 below.

As conceptualized, the ASM 1 Driver (sub) subsystem (mark c) FIGURE 6.6)

receives the corresponding controlled value from the Controller Joint 1 subsys-

tem (via the signal bus) and drives the joint actuating ASM 1 block using the

three-phase voltage supply (blue coloured electrical domain).

The ASM 1 block represents the real AC asynchronous joint motor and is driven

in delta configuration using a Phase Permute (Delta) block in order to gain max-

imum motor torque. The joint actuation (ASM 1) block provides its (mechanical)

torque via the rotational conserving ports “R” (Rod) and “C” (Case) to the Rota-

tional Simscape Interface 1, using the Simscape mechanical rotational domain

network (green coloured domain). The joint actuation (ASM 1) torque cannot

directly be applied to the corresponding joint as the joint actuation is performed

within the Simscape Multibody domain (red coloured signalling domain) and

therefore interfacing with joint velocity feedback (�̇�1) is required.

The Machine 1 Inertia block and Machine 1 Viscous Damping block were added

to the mechanical rotational network to simulate the mechanical characteristics

of the joint actuation motor not covered by the corresponding block (ASM 1).

The real gearbox of the robotic system is represented by the Cycloidal

Transm.1 block also implemented in the mechanical rotational network. As the

Cycloidal Transm.1 block does not provide the inertia parameter of the gearbox

to be simulated, the Transm. 1 Inertia block was applied.

The Joint 1 Bearing Friction block represents the (linear) friction model of the

real bearing of the corresponding joint (Joint 1) and covers breakaway friction

as well as Coulomb and viscous friction. Block parameterization is described in

the later sections 6.4.2 and 6.4.3.

71

FIGURE 6.6: Screen capture of the Simscape simulation model’s Joint 1 Drive Subsystem (1/2)

The block diagram of the ASM 1 Driver (sub) subsystem (mark c) FIGURE 6.6)

is shown in FIGURE 6.7 below.

According to the conceptual design (section 5.2.1), the ASM 1 Driver (sub) sub-

system was created utilizing the basic function principles and blocks of the

MATLAB Simulink Simscape “Asynchronous Machine Scalar Control”

(pe_asm_scalar_control) example block diagram. During the creation,

several adaptions were applied whereby the signal limitation and the rotational

direction reversing are the most considerable. The signal limitation was imple-

mented to narrow the expected scalar input value range to -1 to +1, using the

Signal Limiter block (Saturation) (mark d) FIGURE 6.7) (Thus: “+1” = “100%

power in the positive direction” and “-1” = “100% power in the negative direc-

tion”). The Rotational Direction Reverser (sub) subsystem (mark e) FIGURE

6.7) determines the rotational direction of the corresponding joint actuation mo-

tor (ASM 1) by permuting two of the three voltage supply phases, depending on

the sign of the controlled value (Control Signal).

c)

72

FIGURE 6.7: Screen capture of the Simscape simulation model’s ASM1 Driver Subsystem

As the Robot End Effector Subsystem (mark f) FIGURE 6.4) differs from the

other (sub) subsystems, its block diagram is shown in FIGURE 6.8 below. Ac-

cordant to the conceptual design, it only contains the rigidly connected rigid

body (sub) subsystems of link 6 (Link 6 Body) and the end effector/ tool (End

Effector Body) in order to represent the robot manipulator’s last kinematic ele-

ment.

FIGURE 6.8: Screen capture of the Simscape simulation model’s Robot End Effector Subsys-
tem

d)

e)

73

6.2.2 Signal Bus

Within the Simulink/ Simulink Simscape simulation model, all signals are routed

with the help of a signal bus structure (see mark 6.2.2 in FIGURE 6.3) (excep-

tion: values/ parameters directly or indirectly obtained from the MATLAB Work-

space (base) using From Workspace blocks). Each (sub) subsystem connected

to the signal bus contains InBus blocks (mark g)) to branch off individual signals

form the signal bus and OutBus blocks (mark h)) to add signals to the signal

bus as exemplarily shown for the Joint 1 Drive System (sub) subsystem in FIG-

URE 6.9 below.

FIGURE 6.9: Screen capture of the Simscape simulation model’s Joint 1 Drive Subsystem (2/2)

Sub busses were created within the signal bus in order to bundle individual but

related signals meaningfully within a number of subordinated sub busses.

FIGURE 6.10 exemplarily shows the structure of the InBus (ControllerSystem-

InBus) of the Control System subsystem (mark 6.2.3 in FIGURE 6.3). The in-

coming individual (joint and motor) signals of each Simscape model’s (sub)

subsystem (e.g. Robot Base Subsystem) Angle, Velo, Acc, Torque, Drive are

bundled within the corresponding sub busses Joint1OutBus – Joint6OutBus.

g)

h)

74

FIGURE 6.10: Screen capture of the signal bus structure of the Control System subsystem In-
Bus

The naming of the individual bus signals and sub busses was applied in a con-

sistent and explanatory manner; therefore, no overall listing of the bus systems

individual signals is given here.

Alternatively, all signal types measured and available from the signal bus of the

final Simulink/ Simscape simulation model are listed in TABLE 6.3 below.

TABLE 6.3: Listing of the available signal bus signal types

Signal Description: Related Symbol(s):

Joint Position Variables/ Values 𝑞1 … 𝑞6

Joint Velocity Variables/ Values �̇�1 … �̇�6

Joint Acceleration Variables/ Values �̈�1 … �̈�6

Joint Torque Variables/ Values 𝜏1 … 𝜏6

Controlled Variables/ Values 𝑢1 … 𝑢6

Motor (ASM) Electrical Torque Variables/ Values 𝜏1,e … 𝜏6,e

Motor (ASM) Rotor Velocity Variables/ Values 𝜔1,m … 𝜔6,m

Motor (ASM) Slip Variables/ Values 𝑠1 … 𝑠6

75

As already mentioned in section 6.2.1, PS-Simulink Converter or Simulink-PS

Converter blocks were implemented for interfacing when adding or branching

off bus signals if required, as the signal bus only transfers Simulink domain sig-

nals. For error prevention purposes, only SI unit and derived SI unit signal val-

ues are transferred within the bus (except signals originally without any unit).

Therefore, unit conversion blocks were added wherever required (e.g. within the

Measurement System).

6.2.3 Control System Structures

Accordant to the conceptual design (section 5.2.2), a superior control system

structure, the Control Systems subsystem, was implemented as a subsystem of

the overlaying Simulink block diagram (see mark 6.2.3 in FIGURE 6.3).

The Control System’s subsystem carries six (individual) decentralized control

system structures (sub) subsystems (Controller Joint 1 (Axis 1) – Controller

Joint 6 (Axis 6)), one for each of the simulation model’s (revolute) joints, which

are connected to the signal bus and shown in the subsequent FIGURE 6.11.

The subsystem can be used as an environment for centralized control if re-

quired.

FIGURE 6.11: Screen capture of the Control System subsystem of the Simulink block diagram

i)

76

Apart from the deviating input and output signals of the individual Controller

Joint (sub) subsystems, all (sub) subsystems do have the same structure, ex-

emplarily shown for the Controller Joint 1 (Axis 1) (sub) subsystem (mark i)

FIGURE 6.11) in FIGURE 6.12 below.

Each Controller Joint (sub) subsystem is divided into three areas (blue shaded

areas, FIGURE 6.12), left: input area (mark j)), middle: controller area (mark k))

and right: output area (mark l)), whereby applied block diagrams must not be

necessarily kept inside the areas, since the separation is only meant as a sug-

gestion for the purpose of a clear structure. Explanatory notes are given below

each area.

The input area provides the corresponding joint-space position set values (ref-

erence trajectory) using a From Workspace block in order to obtain the refer-

ence values (q1SV) from the simVar variable from the MATLAB ”base” Work-

space. Furthermore, the measured actual values of the corresponding Joint

block, joint position 𝑞1 and joint velocity �̇�1 are branched of the signal bus.

The controller area is initially equipped with a simple closed-loop controller

structure and a Scope block. The predefined PID Controller block as well as the

Scope block were implemented for testing purposes only and do not provide an

appropriate control system structure of the simulation model.

The output area contains the signal of the controlled value of the corresponding

joint actuation (sub) subsystem (ASM 1 Driver) added to the signal bus.

As each Controller Joint (sub) subsystem is connected to the signal bus, all sig-

nals of the bus structure listed in the previous TABLE 6.3 are available within

each (sub) subsystem. Following this and deviating from the conceptual design,

the implemented Controller Joint (sub) subsystems are MISO instead of MIMO

structures, as only one corresponding output (controlled value; u1…u6) is avail-

able for each (sub) subsystem at the contemporary state. This decision was

made based on the lack of information of the types and amount of the specific

controlled values to be implemented by the individual user and application.

Due to the usage of a signal bus, further signals can be branched off and/ or

added to the signal bus and therefore lead out from and/ or added to the Con-

troller Joint (sub) subsystems by the user whenever required.

77

FIGURE 6.12: Screen capture of the Controller Joint 1 (Axis 1) (sub) subsystem

6.2.4 Measurements

In contrary to the conceptual design (section 5.2.2), the measurements subsys-

tems were outsourced from the individual subsystems of the Simulink Simscape

Multibody model and implemented bundled as a subsystem of the overlaying

Simulink block diagram (see mark 6.2.4 in FIGURE 6.3). As all measured sig-

nals are available from the signal bus anyways, no additional structures were

applied in the context of the implementation of the Measurements subsystem.

The Measurements subsystem consists of the four (sub) subsystems:

 Joint Angles (𝑞1 … 𝑞6)

 Joint Velocities (�̇�1 … �̇�6)

 Joint Accelerations (�̈�1 … �̈�6)

 Joint Torques (𝜏1 … 𝜏6)

Whereby the (sub) subsystems are organized by the type of the measured val-

ues (angle, velocity, etc.) instead of the origin of the values (corresponding Joint

1-6 blocks) as shown in the subsequent FIGURE 6.13. Necessarily, each (sub)

subsystem is connected to the signal bus.

k)

j) l)

78

FIGURE 6.13: Screen capture of the Measurements subsystem of the Simulink block diagram

Exemplarily, the structure of the Joint Angles (sub) subsystem (mark m) FIG-

URE 6.13) is shown in FIGURE 6.14 below.

Measurements are taken with Scope blocks within every (sub) subsystem as

they provide displaying (plotting), live viewing, logging, formatting, examining

and exporting the captured individual input signals.

In the case of the Joint Angles (sub) subsystem, six Scope blocks were imple-

mented, one for each of the six joint position variables/ joint angles (𝑞1 … 𝑞6) to

be observed, as shown in the subsequent FIGURE 6.14. Each Scope block re-

ceives the corresponding joint-space position set values (q1SV…q6SV, refer-

ence trajectories), gained from the simVar variable using From Workspace

blocks. Furthermore, each Scope block receives the corresponding measured

actual values of the joint positions/ joint angles (𝑞1 … 𝑞6). This allows the direct

comparison of each of the corresponding actual and reference values of each

axis as exemplarily shown in the signal plot (FIGURE 6.15) of the Joint Angle

Axis 1 Scope block (mark n) FIGURE 6.14).

m)

79

FIGURE 6.14: Screen capture of the Joint Angles (sub) subsystem of the Measurements sub-
system

FIGURE 6.15: Screen capture of a Joint Angle Axis 1 Scope block signal plot

80

In contrary to the Joint Angle (sub) subsystem, the Joint Velocities, Joint Accel-

erations and Joint Torques (sub) subsystems only contain two Scope blocks

each, whereby the individual six signals are bundled related to the principal ax-

es (indices 1-3) and the minor axes (indices 4-6) (see FIGURE 6.16).

FIGURE 6.16: Screen capture of the Joint Velocities (sub) subsystem of the Measurements
subsystem

To in increase the comprehensibility of the measured values, the signals of the

Joint Angles, Joint Velocities and Joint Accelerations (sub) subsystems are

converted from the units [rad], [rad/s] and [rad/s^2] to the units [°], [°/s] and

[°/s^2], whereas the Joint Torques (sub) subsystem uses the unit [Nm]. The

predefined unit conversions can be adapted by changing the gain values of the

preceding Gain blocks (see exemplary mark o) in FIGURE 6.16) of each Scope

input signal.

The 3D animation/ simulation of the Simulink Simscape Multibody simulation

model, represented by the .stl geometry files gained from the CAD model and

the calculated kinematics and dynamics, can be viewed from the MATLAB Me-

chanics Explorers window as exemplarily shown in FIGURE 6.17 below.

o)

81

FIGURE 6.17: Screen capture of the robot’s Simscape Multibody model simulation animation
(Mechanics Explorer)

6.3 MATLAB Program(s)

Equally to the structure of section 6.2, the final structure/ flow of the MATLAB

Program (part) is presented at the beginning of this section and therefore depic-

tured in FIGURE 6.18 below. The MATLAB General Program Flow chart does

only cover the main elements of the program, since a complete semantic de-

scription of the MATLAB program requires all 18 individual program flow charts,

available from Appendix 4. Program Flow Charts.

82

FIGURE 6.18: Flow chart of the MATLAB General Program Flow

6.3.1 Program & Program Structure(s)

The MATLAB programming was accomplished by following the basic theoretical

programming procedure (section 4.5) and applying the elaborated requirements

and specifications of the corresponding conceptual design (section 5.3). The

structure, dependencies and interactions of the MATLAB .m/ .fig files and all

external data (within the data set) are depicted in the subsequent FIGURE 6.19.

83

The directions of connections refer to the real data flow (from the left to the

right: calls, from the right to the left: returns). Further information concerning the

shown folders are given in section 6.5.

FIGURE 6.19: MATLAB program(s) structure and function/ file dependencies

84

Comparing the contents of FIGURE 6.19 and TABLE 5.1 reveals that the:

 update_all.m

 get_joint_move.m

 get_lin_move.m

Functions/ files were finally created and implemented but not specified in the

conceptual design. Justification: The need of the mentioned functions/ files was

not foreseeable at the state of the conceptual design. Hence, no concepts were

prepared at that point.

The conceptual designs, including the corresponding program flow charts, were

therefore elaborated during the phase of accomplishment. The descriptions of

the functions/ files are listed in TABLE 6.4 below.

TABLE 6.4: Listing and description of additionally implemented MATLAB function(s) (files)

MATLAB .m/

.fig File(s):
Description:

Corresp. PFC

(Appendix 4.

Program Flow

Charts) Page:

up-

date_all.m

Update of required variables/ libraries/ data

(simVar, robotPara, smiData, robot-

Model, importInfo variables and Sim-

scape Multibody Multiphysics Library).

18(18)

get_joint_m

ove.m

Calls joint_move_ui(), then calls

joint_traj_planning() to calculate

the joint movement trajectory. Finally writes

the calculation results into the simulation

variable simVar in the required format.

2(18)

get_lin_mov

e.m

Calls lin_path_ui(), then calls

lin_traj_planning() to calculate the

linear movement trajectory. Finally writes

the calculation results into the simulation

variable simVar in the required format.

3(18)

85

All other functions/ files were implemented as conceptualized and described in

section 5.3.3, TABLE 5.1.

The limited extent of the document at hand does not allow detailed discussions

of the explicit contents and functionalities of each individual function (.m/ .fig

file) and the interactions/ dependencies between them. As the corresponding

theory, conceptual design and program flow charts are available from the doc-

ument at hand and function codes are also described by file headers and com-

ments sufficiently, no further explanations are given here.

Excerpts of the final MATLAB code are presented and described more detailed

in the later section 6.3.3.

6.3.2 Simulation Model Variables

As conceptualized in section 5.3.1, the simulation program requires the entirety

of five variables:

 smiData

 robotModel

 importInfo

 robotPara

 simVar

Which are generated and filled with all required data within the MATLAB pro-

gram part.

The smiData variable is loaded from the

ABB_IRB_2600_12_185_Simscape_DataFile.m file using the

load_smiData() function. The

ABB_IRB_2600_12_185_Simscape_DataFile.m in turn is the automatically

generated model data file derived from the Simulink Simscape Multibody Import

.xml file (ABB_IRB_2600_12_185_Simscape.xml) using the MATLAB smim-

port() function.

86

The predetermined variables robotModel and importInfo are automatically

created in the context of the usage of the MATLAB importrobot() function.

The robotPara variable is created by the robot_para_xls_import() func-

tion. The robot parameter values are read from the ABB_IRB_2600-12-

1.85_Parameters.xlsx spreadsheet file and stored in the robotPara variable

(the variable’s first level structure is shown in FIGURE 6.20). Hence, the pur-

pose of the robotPara variable is the parameterization of the Simulink/ Sim-

ulink Simscape simulation model as conceptualized and also described more

detailed in the later sections 6.4.2 and 6.4.3.

FIGURE 6.20: Screen capture of the first level of the structure of the robotPara variable

The simVar variable is initialized by the simVar_init() function and re-

ceived and returned from all functions of the MATLAB program part in order to

allow all functions to read/ write information from/ to one centralized variable.

The simVar variable (the variable’s first level structure is shown in FIGURE

6.21) also contains and provides the set values (of the reference trajectories) of

the control systems structures of the Simulink/ Simulink Simscape simulation

model.

87

FIGURE 6.21: Screen capture of the first level of the structure of the simVar variable

Summarized, the variables smiData, robotModel and importInfo are only

used within the MATLAB program part exclusively, whereby the robotPara

and simVar variables are used in both the MATLAB and the Simulink/ Simulink

Simscape program parts.

All variables are made visible/ accessible in the MATLAB “base” Workspace

with the transition from the MATLAB to the Simulink/ Simulink Simscape pro-

gram part, along with the minimum recommended simulation time (in the

MATLAB Command Window) as shown in FIGURE 6.22 below.

FIGURE 6.22: Screen capture of the MATLAB Command Window and Workspace after the
successful MATLAB program execution

All five variables are also described in the TABLE 6.5 below, whereby the

robotPara variable is described more detailed in the subsequent TABLE 6.6

and the simVar variable in the subsequent TABLE 6.7.

88

TABLE 6.5: Descriptions of the five simulation variables

Name: Type: Description/ Purpose:
Initialized/ Created/

Changed by:

simVar
1x1 struct

(9 fields)

Contains all required data for

the execution of the MATLAB

program part. Provides the

results of the MATLAB pro-

gram part to the Simulink/

Simulink Simscape program

part.

Initialized by

simVar_init(),

changed by all oth-

er functions of the

MATLAB program

part.

smiData
1x1 struct

(3 fields)

Contains the block parameter

values of the imported Sim-

scape Multibody simulation

model automatically created

during the procedure of the

execution of the smimport()

function.

Created by smim-

port(),

initialized by

load_smiData()

robotPara
1x1 struct

(7 fields)

Contains values for the pa-

rameterization of the block(s)

(diagram(s)) of the Simulink/

Simulink Simscape simulation

model.

ro-

bot_para_xls_i

mport()

robotModel
1x1 Rigid-

BodyTree

Contains the robotic manipu-

lator’s simulation model’s kin-

ematic structure (represented

by rigid bodies connected by

joints) and corresponding pa-

rameters.
importrobot()

importInfo

1x1 Rigid-

BodyTree-

ImportInfo

Contains information concern-

ing the import procedure of

the importrobot() func-

tion.

89

TABLE 6.6: Detailed description of the robotPara variable

Variable:
Fields (First

Level):
Description/ Purpose:

robotPara

generalRo

eralRo-

botInfo

Contains further subfields (e.g. capacity);

contains general information of the real robotic

manipulator.

axisLim-

its

Contains further subfields (e.g. range); contains

axis/ joint limitations of the Simulink/ Simulink

Simscape simulation model equal to the axis/

joint limitations of the real manipulator (e.g. for

input filtering in joint_move_ui() and

lin_path_ui()) .

tcpLimits

Contains values (e.g. velocity); contains TCP

limitations of the Simulink/ Simulink Simscape

simulation model equal to the TCP limitations of

the real manipulator (e.g. for input filtering in

joint_move_ui() and lin_path_ui()) .

jointPara

Contains further subfields and sub subfields (e.g.

stateTar); contains values for the parameteri-

zation of the revolute joint block(s) (diagram(s))

of the Simulink/ Simulink Simscape simulation

model.

motorPara

Contains further subfields and sub subfields (e.g.

ratPow); contains values for the parameteriza-

tion of the joint motor/ driver block(s) (dia-

gram(s)) of the Simulink/ Simulink Simscape

simulation model.

transmPa-

ra

Contains further subfields and sub subfields (e.g.

nCdt); contains values for the parameterization

of the joint transmission block(s) (diagram(s)) of

the Simulink/ Simulink Simscape simulation

model.

motDrivPa

ra

Contains further subfields and sub subfields (e.g.

vdc); contains values for the parameterization of

the joint motor driver block(s) (diagram(s)) of the

Simulink/ Simulink Simscape simulation model.

90

TABLE 6.7: Detailed description of the simVar variable

Variable:
Fields (First

Level):
Description/ Purpose:

simVar

uiInput

Contains further subfields and sub subfields;

contains inputs of the graphical user interfaces

joint_move_ui() and lin_path_ui().

uiControl

Contains further subfields (e.g. exeUpdate); for

control functionalities of the main graphical user

interface main_ui.

statusFlags

Contains (flag-) values (either “1” = “true” or “0”

= ”false”); for the interaction/ control functionali-

ties between the different graphical user inter-

faces.

updateTime

Contains the update times of updated/ loaded/

created/ executed data/ libraries/ programs (e.g.

Simscape Multibody Multiphysics Library) for the

“Last updated:” labels in the main_ui GUI win-

dow.

linPathPlan

Contains further subfields (e.g. pRes); contains

the results of the linear trajectory planning

lin_traj_planning() (for

get_lin_move() internal use).

initVal

Contains further subfields (e.g. qStartA); con-

tains the initial pose (and velocities) of the Sim-

ulink/ Simulink Simscape simulation model.

targetVal

Contains further subfields (e.g. qTargetB); con-

tains the target pose (and velocities) of the Sim-

ulink/ Simulink Simscape simulation model.

gik

Contains a further subfield (qRes); stores the

(unformatted) results of the inverse kinematics

(inverse_kinematics()).

qSetValues

Contains further subfields (q1SV…q6SV); con-

tains the (formatted) set values of the joint an-

gles for the Simulink/ Simulink Simscape simula-

tion model.

91

6.3.3 Motion Planning

Motion planning was implemented within the MATLAB program part, closely

following the created flow chart diagram (FIGURE 5.14) and program flow

charts described in the conceptual design (section 5.3.3) and using the methods

and equations of the corresponding theory comprehensively elaborated and

described in the sections 4.2.1 and 4.2.2.

For exemplarily purposes, an excerpt of the code of the in-

verse_kinematics() function (part of the linear movement planning) is

shown and described below. The excerpt is related to the core of the in-

verse_kinematics() function, solving the robot manipulator’s inverse kine-

matics with the MATLAB GeneralizedInverseKinematics solver.

28| gik = robotics.GeneralizedInverseKinematics(

29| 'RigidBodyTree',robotModel,'ConstraintInputs',…

29| {'position','aiming','joint'});

 .

 .

 .

70| for k=2:length(simVar.linPathPlan.pRes)

 …|

73| positionConst.TargetPosition = simVar.linPathPlan.pRes(k,:);

74| aimConst.TargetPoint = simVar.linPathPlan.pRes(k,:);

 …|

77| jointConst.Bounds = [

78| (simVar.gik.qRes(:,k-1)- maxJointChange)…

78| (simVar.gik.qRes(:,k-1)+ maxJointChange)];

 …|

81| [simVar.gik.qRes(:,k),solInfo] = gik(

81| simVar.gik.qRes(:,k-1),…

82| positionConst, aimConst,…

82| jointConst);

83| end

In line 28 and 29, the GeneralizedInverseKinematics System object™

gik is created. The gik object bases on the robotic manipulator’s model’s kin-

ematic structure, mapped by a RigidBodyTree object, in turn represented by

the robotModel variable. During the gik object creation, a set of the kinemat-

ic constraints objects (ConstraintInputs), to be applied for the later inverse

kinematics solving, need to be predetermined. In the cased at hand, the posi-

tion, aiming and joint constraint objects were predetermined and are

created from the corresponding classes accordingly.

92

The position constraint position causes the end effector/ tool (tip of the weld-

ing torch) to match the contemporary waypoint of the linear trajectory, whereby

the aiming constraint aiming causes the tool’s z-axis (Ztool) to aim at the con-

temporary waypoint at the same time. An explanatory depiction is shown in the

subsequent FIGURE 6.23 .

FIGURE 6.23: Depiction of the linear movement’s end effector position and pose

As there were no additional constraints defined related to the restriction of the

tools pose, the rotation of the tool around its z-axis is not restricted and there-

fore determined by the inverse kinematics solver. Typically, the z-axis rotation

remains unchanged by the inverse kinematics solver (qRes6,k = 0 °), unless a

rotation is absolutely required to reach the contemporary waypoint within the

workspace. If required, the tool’s z-axis rotation can be constrained/ restricted

by the user utilizing predefined constraint creation code available from the in-

verse_kinematics.m file.

Due to the non-uniqueness of the inverse kinematics, the joint constraint joint

was predefined in order to limit the maximum changes of the angular joint val-

ues (q1 - q6) between each robot’s pose related to the waypoint of the linear

(workspace) trajectory.

93

Solving the inverse kinematics is accomplished individually for each waypoint of

the linear (workspace) trajectory (stored in the simVar.linPathPlan.pRes

variable, see FIGURE 6.24) within the for-loop from code line 70 to line 83. As

the inverse kinematics solver is a numerical solver, solving always requires an

initial guess of the robot manipulator’s resulting pose (q1,k - q6,k). Therefore, the

start pose of the robot manipulator (qStartA(1) - qStartA(6) variables)

(k = 1) is solved once before the solver loop (line 70 to line 83), using the

home pose of the manipulator (q1,1 - q6,1 = 0 °) as initial guess. This also justifies

the for-loop’s index k starting from the value 2.

In line 73 and 74, the position and aiming constraint objects are updated to the

related contemporary waypoint (k) of the linear trajectory.

In line 77 and 78, the joint constraint object is updated to the contemporary

maximum allowed angular joint changes, based on the robot’s pose related to

the previous waypoint (k-1) and gained form the simVar.gik.qRes variable.

In line 81 and 82, the gik object is solved for the related robot manipulator’s

pose of the contemporary waypoint (k), using the GeneralizedInverseKin-

ematics solver. The solving is accomplished using the robot’s previous pose

(k-1) as initial guess. The results (qRes(1,k) – qRes(6,k)) are stored in

the simVar.gik.qRes variable.

FIGURE 6.24: Screen capture of the simVar.linPathPlan and simVar.linPathPlan.pRes variables
(example)

Within the inverse_kinematics() function, the inverse kinematics results

are stored in the 6 x k-dimensional variable simVar.gik.qRes.

94

Deviating from the conceptual design, the inverse kinematics results are not

provided to the MATLAB Workspace using the initially conceptualized k x 7-

dimensional reference trajectory set value variable qSV.

As the joint-space position set values (inverse kinematics results) of the Joint

Controller (sub) subsystem are individually obtained from the MATLAB ”base”

Workspace using From Workspace blocks, the set values are stored in the six

individual k x 2-dimensional variables (simVar.qSetValues.q1SV -

simVar.qSetValues.q6SV). These variables are created by the

get_lin_move.m function, whereby the first column of each of variable con-

tains the explicit time series values and the second column contains the corre-

sponding joint position/ angle values as exemplarily shown in FIGURE 6.25 be-

low.

FIGURE 6.25: Screen capture of the simVar.qSetValues and simVar.qSetValues.q1SV varia-
bles (example)

6.3.4 Graphical User Interfaces

The graphical user interfaces were implemented closely following the deter-

mined conceptual design (section 5.3.2) and the corresponding program flow

charts, using the MATLAB GUIDE tool. The three GUI are represented by their

corresponding MATLAB .m and .fig files each:

95

 Main GUI: main_ui.m & main_ui.fig

 Joint Movement GUI: joint_move_ui.m & joint_move_ui.fig

 Linear Movement GUI: lin_path_ui.m & lin_path_ui.fig

From the user’s perspective, the three GUI and a number of further MATLAB

message boxes/ dialog boxes implemented map the complete MATLAB pro-

gram part.

The main graphical user interface main_ui is the central GUI of the MATLAB

program part and shown in FIGURE 6.26 below. All other program functionali-

ties and GUI are accessed from the main_ui window, can be repeated as of-

ten as required and also automatically return there, except the case of opening

the Simulink simulation model or the exiting of the MATLAB program part.

Status labels (see mark p) FIGURE 6.26) indicate whether the corresponding

entry (e.g. simVar) is ready (“Ready!” text and a green shaded label) or not

ready (“Not Ready!” text and a red shaded label). Deviating from the conceptual

design sketch (FIGURE 5.12), Last updated timestamp labels (see mark q)

FIGURE 6.26) were added for each corresponding entry in order to allow the

user to check when the corresponding entry was updated and/ or a specific pro-

cedure was executed.

By pressing the Update button of the main_ui window (see mark r) FIGURE

6.26), the update procedure is activated and the update_all() function is

called. The update procedure is guided by further information provided via

MATLAB message boxes/ dialog boxes and leads to the update of all five simu-

lation variables (also the not listed importInfo variable) and the Simscape

Multibody Multiphysics Library.

After the successful execution, the corresponding Last updated timestamp la-

bels are refreshed accordingly and the program returns to the main_ui win-

dow.

The joint movement planning GUI joint_move_ui is accessed by pressing

the Joint Movement button (see mark s) FIGURE 6.26) and shown in FIGURE

6.27.

96

The linear movement planning GUI lin_path_ui is accessed by pressing the

Linear Movement button (see mark t) FIGURE 6.26) and shown in FIGURE

6.28.

FIGURE 6.26: Screen capture of the MATLAB main GUI main_ui

Both movement GUI, joint_move_ui and lin_path_ui provide specific

corresponding descriptions/ instructions and a descriptive image based on the

CAD model assembly of the robot manipulator’s model. The input areas for the

start and target poses/ positions were adapted accordingly to the corresponding

movement type. For the increase of the comprehensibility, robot axis angles

inputs (Pose, A1-A6) were implemented using the unit [°] and workspace coor-

dinates (Position, [x y z]) using the unit [mm]. Non-SI unit inputs ([%], [°], [mm/s]

and [mm]) were also implemented within the Movement Parameters definition

area in order to provide common input value formats.

r)

q)

s)

t)

v)

u)

p)

97

FIGURE 6.27: Screen capture of the MATLAB joint movement GUI joint_move_ui

FIGURE 6.28: Screen capture of the MATLAB linear movement GUI lin_path_ui

Furthermore, all inputs of the movement GUI are filtered for being a number and

being within the allowed boundaries, whereby the corresponding boundaries are

gained from the robotPara variable (and therefore from the parameter

spreadsheet). All input procedures are looped and show error or warning mes-

sages as long as inputs are faulty and/ or incomplete, exemplarily depicted in

FIGURE 6.29 below.

98

FIGURE 6.29: Screen capture of an invalid input MATLAB error message box

In the case of correct and complete inputs, pressing the Continue button of the

movement GUI will cause closing the related GUI window and the execution of

the related trajectory calculation. After the successful trajectory calculation, the

program returns automatically to the main_ui window and the corresponding

Last updated timestamp labels are refreshed accordingly.

Motion Planning can only be prepared for either the Joint Movement or the Lin-

ear Movement at a time. Hence, only the latest executed motion planning result

is available, whereas former results are deleted and the corresponding Status

Label is set to the “Not Ready!” state.

The Simulink/ Simulink Simscape program part is accessed by pressing the

Open Simulink button of the main_ui window (see mark u) FIGURE 6.26).

With the initiation of this procedure, the MATLAB program part is terminated, all

variables are made visible/ accessible in the MATLAB “base” Workspace and

the minimum recommended simulation time is printed to the MATLAB as shown

in the earlier FIGURE 6.22.

The MATALB Program part can only be exited without errors from the main_ui

window using the Exit button (see mark v) FIGURE 6.26). In the case of the

cancelation of the MATLAB program using the Exit button, all variables are de-

leted, thus, no variables are made visible/ accessible in the MATLAB Work-

space.

6.4 Simulation Model Parameters

The task of the simulation model parameterization covered firstly the acquisition

of all required and obtainable parameters of the model.

99

Secondly, the preparation and compilation of the entirety of parameters of the

Simulink Simscape simulation model was accomplished. Thirdly, the conceptu-

alized method of the provision of the parameters to the simulation model was

applied.

6.4.1 Parameter Acquisition

The subsection of the parameter acquisition is divided into another two sub

subsections, the approximation of the industrial robot’s CAD model part/ body

masses and the acquisition of all other applied parameters. This separation was

made due to the distinctive characters of the methods of acquisition.

The first attempt made in the context of the acquisition of main parameters of

the simulation model based on a request sent to the Finnish branch ABB (Fin-

land) Oy, of the industrial robot’s manufacturer ABB Asea Brown Boveri Ltd. in

order to obtain:

 Links masses and links CoM coordinates

 (Joint actuation) motor types and their main electrical and mechanical

parameters (e.g. rotor inertia, viscous damping coefficients)

 Gearbox types, ratios, efficiencies and inertias

The manufacturer replied that none of the requested data can be shared.

As identification measurements were not covered by the scope of the thesis

work, disassembling of the industrial robot was not a realistic option and due to

the general lack of freely accessible information, the subsequently explained

methods were conducted:

From non-public manufacturer’s maintenance and spare parts lists documents

of the industrial robot, owned and provided by the client (TAMK), the subse-

quently listed information were obtained exemplarily for the robot’s third axis

gearbox:

100

TABLE 6.8: ABB IRB 2600 gearbox spare part information (axis 3)

Position: Axis: Spare Part Number: Type: Variants:

3 Axis-3 3HAC028705-004 RV-42N, i=126
IRB 2600

IRB 2600ID

And exemplarily for the robot’s axis 4, 5 & 6 (joint actuation) motors:

TABLE 6.9: ABB IRB 2600 motor spare part information (axis 4, 5 & 6)

Position: Spare Part Number: AC Motor with Pinion:

4 3HAC030216-003 Axis-4, -5 & -6

In the case of the gearboxes, common internet search engines were used in

order to obtain more detailed information. The finding was made that “RV-42N”

is a specific model of a 2-stage high-precision cycloidal reduction gear of the

RV®12 -N series of the Nabtesco Corporation.

FIGURE 6.30: Cycloidal reduction gear of the RV-N series of the Nabtesco Corporation (Nab-
tesco Corporation 2019a)

With the help of the ratio value “i” and the type description “RV-42N” (see TA-

BLE 6.8), the gearbox model and its parameters were searched and found from

the official technical datasheet of the Nabtesco Corporation (Nabtesco Corpora-

tion 2015) as shown below (FIGURE 6.31, FIGURE 6.32 and FIGURE 6.33).

12

 RV® is a registered trademark of the Nabtesco Corporation

101

FIGURE 6.31: Manufacturer’s rating table of the RV-N series cycloidal reduction gear (Nabtesco
Corporation 2015, 8, modified)

FIGURE 6.32: Manufacturer’s rating table of the RV-N series cycloidal reduction gear (continua-
tion) (Nabtesco Corporation 2015, 9, modified)

FIGURE 6.33: Manufacturer’s efficiency table of the RV42-N cycloidal reduction gear (Nabtesco
Corporation 2015, 36)

In the case of the motors, the information of an AC asynchronous motor type

was also found from the robot manufacturer’s maintenance documents.

102

Furthermore, the information of the country of origin and the motors net weight

(amongst others) were obtained from the industrial robot’s manufacturer’s web-

site (ABB Asea Brown Boveri Ltd. 2019d):

Country of Origin: Japan (JP)

Product Net Weight: 1.7 kg

FIGURE 6.34: ABB IRB 2600 Axis 4, 5 & 6 AC motor (ABB Asea Brown Boveri Ltd. 2019d)

With the help of the above mentioned information and the information printed to

the label of the motor, the motor manufacturer was identified as: TAMAGAWA

SEIKI Co., Ltd. As the TAMAGAWA SEIKI Co., Ltd. only offers one applicable

AC asynchronous servomotor product series, TBL-I IV Series, the assumption

was made that motors with similar characteristics and parameters can be found

form the manufacturer’s product catalogue (TAMAGAWA SEIKI Co., Ltd. 2019)

as shown in the subsequent FIGURE 6.35 and FIGURE 6.36.

FIGURE 6.35: TBL-I IV series compact size AC servomotor basic specifications (TAMAGAWA
SEIKI Co., Ltd. 2019, 2, modified)

103

FIGURE 6.36: TSM3204 400W AC200V torque characteristic diagram (TAMAGAWA SEIKI Co.,
Ltd. 2019, 8)

The described procedures were repeated for all other gearboxes and motors.

All obtained parameters were collected, evaluated if necessary and stored at

the corresponding entries of the worksheets (“(8) Transmission Parameters”

and “(7) Motor Parameters”) of the “ABB_IRB_2600-12-1.85_Parameters.xlsx”

spreadsheet (see also section 6.4.2).

CAD Model Rigid Body (Link) Masses:

Due to the lack of available information and resources, the decision was made

to approximate the individual link masses based on the geometrical information

available from the CAD model. The approximation based on the approach of an

average equally distributed overall density ρ*.

Firstly, the overall volume Vtot of the CAD model of the industrial robot was de-

termined by the summation of the individual link volumes, excluding the tool/

end effector.

𝑉tot = ∑ 𝑉 i

6

i=0

= 102.85 ∙ 10−3 m3 (6.1)

104

Secondly, the overall mass of the real robotic system without any further appli-

cations mtot was obtained from the manufacturer’s product specifications docu-

ment (ABB Asea Brown Boveri Ltd. 2019b, 12):

𝑚tot = 284 kg (6.2)

Subsequently, the average equally distributed overall density ρ* was calculated:

𝜌∗ =
𝑚tot

𝑉tot
=

284 kg

102.85 ∙ 10−3 m3
= 2761.26

kg

m3
 (6.3)

The average equally distributed overall density ρ* was then applied to each in-

dividual CAD part within the CAD environment. Furthermore, the weight of the

welding torch end effector was gained from a real measurement using a com-

mon scale and also applied to the virtual CAD representation.

Based on the available geometrical information and the density ρ*, the CAD

software automatically calculated the rigid body (link) parameters such as:

 CoM, MoI, PoI

 Frames; (main) axes of inertia

Exemplarily, link 2 of the robot manipulator’s CAD model is shown in the subse-

quent FIGURE 6.37, showing the calculated and displayed frame of the main

axes (Ix, Iy, Iz; CoM related).

105

FIGURE 6.37: Screen capture of link 2 of the robot manipulator’s CAD model

The approximated mass of the link 2 part of the simulation model was calculat-

ed exemplarily by hand:

𝑚2 = 𝑉2 ∙ 𝜌∗ = 15.67 ∙ 10−3 m3 ∙ 2761.26
kg

m3
= 43.28 kg (6.4)

TABLE 6.10 below contains a listing of the individual solid body volumes and

approximated link masses of the virtual representations of the manipulator’s

links.

106

TABLE 6.10: Robot manipulator’s link mass and volume information

i: Link i:
Solid Body Volume

Vi [m
3]:

Overall Density

ρ* [kg/m3]:

Approx. Link

Mass mi [kg]:

0 Base 31.82E-03

2761.26

87.87

1 Link 1 25.31E-03 69.88

2 Link 2 15.67E-03 43.28

3 Link 3 23.58E-03 65.11

4 Link 4 6.02E-03 16.62

5 Link 5 0.36E-03 0.99

6 Link 6 0.0087E-03 0.24

Σ 102.85E-03 - 284

End Effector - - 5.25

The acquisition of all other parameters not covered by this section of the docu-

ment is continued in section 6.7.2 in the context of the optional task of virtual

identification measurements.

6.4.2 Parameter Spreadsheet

Based on the general requirements of the modularity, extensibility and conven-

ient usage of the simulation program, the decision was made to provide the pa-

rameters of the Simulink Simscape simulation model block diagram blocks indi-

rectly but automatically via variables (FIGURE 6.39) from the MATLAB Work-

space as described in the conceptual design (section 5.2.3 and 5.3.1). As the

contents of the parameter variables of the simulation model need to be obtained

from any source as well, the decision was made to compile and save all re-

quired parameters in an external but centralized file. This centralized file in turn

is then read during the initialization of the simulation program in order to write

the model parameters to the corresponding (MATLAB Workspace) variable

robotPara. Therefore, a Microsoft® Excel®13 spreadsheet:

“ABB_IRB_2600-12-1.85_Parameters.xlsx”

13

 Microsoft® Excel® is a registered trademark of Microsoft Corporation

107

Containing the clearly arranged parameter compilation was created. Deviating

from the unit definitions and regulations (section 3.1), the units [°], [°/s] and

[°/s^2] were used for some parameter ranges of the spreadsheet to enable the

input of values from the manipulator’s manufacturer’s documents directly with-

out any unit conversions.

Exemplarily, the sixth worksheet (Joint Parameters) of the spreadsheet is

shown in the FIGURE 6.38 below.

FIGURE 6.38: Screen capture of the (8) Joint Parameters worksheet of the parameters spread-
sheet

The general structure and contents of the spreadsheet are listed in the subse-

quent TABLE 6.11.

108

TABLE 6.11: Structure and contents of the parameters spreadsheet

Sheet

No.:
Sheet Name: Content(s)/ Purpose(s):

1
(1) General Ro-

bot Information
Handling capacity, reach, weight

2
(2) Axis Range

Limits
General (angular) axis limitations (A1-A6)

3
(3) Axis Speed

Limits
General axis angular velocity limitations (A1-A6)

4
(4) Axis Accel-

eration Limits

General axis angular acceleration limitations (A1-

A6)

5 (5) TCP Limits General TCP velocity and acceleration limitations

6
(6) Joint Pa-

rameters

(Revolute) joint(s) parameters: State targets (posi-

tion, velocity), internal mechanics (equilibrium pos.,

spring stiffn., damping coeff.), bearings (friction tor-

ques, damping coeff.)

7
(7) Motor Pa-

rameters

Electrical motor(s) (asynchronous machine (ASM)

with squirrel cage rotor (three-phase)) parameters:

El. ratings (power, voltage etc.), el. parameters (sta-

tor resistance, reactance, etc.) and mechanical pa-

rameters (rotor inertia, etc.)

8

(8) Transmis-

sion Parame-

ters

Cycloidal transmission (gear box) parameters: teeth

numbers (gear ratio), efficiency, inertia, etc.

9
(9) Motor Driv-

ers Parameters

Six-pulse three phase converter parameters: DC

link voltage, switching freq., sample time, etc.

The applied method allows convenient and centralized changes of any parame-

ters without the application of changes to the simulation model block diagram.

Furthermore, the spreadsheet can be easily modified or extended by adding

further worksheets if required.

109

6.4.3 Simulation Model Parameterization

The parameterization of the Simulink/ Simulink Simscape model was imple-

mented exclusively using the robotPara variable available from the MATLAB

“base” Workspace. This is in accordance with the drafted conceptual design

(section 5.2.3) and exemplarily shown for the ASM1 block of the base subsys-

tem in FIGURE 6.39 below.

FIGURE 6.39: Screen capture of the ASM1 block parameterization

6.5 Data Set File Structure

The final general file structure of the simulation programs data set folder

“BT_ABB_IRB_2600_Robot_Sim._v_A” is shown in the subsequent FIGURE

6.40.

The amount and types of the individual files of the corresponding subfolders are

written in brackets behind/ below the individual related subfolder.

110

FIGURE 6.40: General file structure of the data set of the simulation model

6.6 Operating Manual

In contrary to the task planning of the project plan (Appendix 2. Project Plan),

the creation of the operating manual was shifted to an earlier project state in

order to provide guidance for the external testing of the preliminary version of

the simulation program accomplished by the thesis supervisors and client(s).

The operating manual consist of the sections Prerequisites, Introduction, Instal-

lation, Operation, Change of Parameters, CAD Model Update, Extensions/ Mod-

ifications and Troubleshooting and was designed as an independent document.

Despite the fact that the operating manual mainly bases on and particularly re-

fers to the thesis document at hand, it is highly recommended to also consider

the contents of the operating manual due to some helpful contents of the manu-

al are not covered by the thesis work document. Furthermore, it is highly rec-

ommended to refer to the operating manual before/ during the first use of the

simulation model and also whenever errors occur (e.g. during compiling and/ or

simulation (solving)).

The operating manual can be found from Appendix 5. Operating Manual.

111

6.7 Optional Tasks

The Optional Tasks section contains the documentation of the elaboration of

two optional tasks performed in context of the accomplishment of the thesis

work at hand. The accomplishments of the optional tasks are described suffi-

ciently but narrowed to their main contents due to their optional character.

6.7.1 Simplified Joint Actuation Motor Model(s)

During testing and debugging of the simulation model (see section 7) equipped

with AC asynchronous motor (ASM) models and drivers (version “A”,

“BT_ABB_IRB_2600_Robot_Sim._v_A”), large computation times and high

computational efforts for solving the model were revealed. With the help of sev-

eral further tests, the high impact of the complexity of the AC ASM models and

drivers on the solving time and required resources was investigated.

Based on that, a non-binding agreement of an optional task covering the crea-

tion of a second version of the simulation model ((version “B”,

“BT_ABB_IRB_2600_Robot_Sim._v_B”) was made with the TAMK’s client in

order to achieve:

 Decrease of the simulation model’s motor models and drivers complexi-

ties

 Decrease of the number of values required for the appropriate parame-

terization of the motor models and drivers

 Decrease of the computation time and computational efforts in the con-

text of simulation model solving

 Increase of the comprehensibility of the simulation model by the reduc-

tion of the overall complexity

Due to the low overall complexity, the small number of required parameters, the

high availability of required parameters from freely accessible datasheets, a

decreased motor driver complexity and the typical usage for positioning tasks/

applications, a (universal and ideal) DC motor type (block) was chosen for the

accomplishment of the optional task.

112

Exemplarily, the “Robot Link 3 Subsystem” of the Simulink/ Simulink Simscape

simulation model with the applied DC motor model and driver is shown below

(FIGURE 6.41).

FIGURE 6.41: Simulink screen capture of the Robot Link 3 Subsystem with a DC motor model

In contrast to the AC ASM models, the DC motor models and drivers were di-

rectly parameterized with explicit values in the corresponding block parameter

windows. The motor model parameters were gathered, compiled and if re-

quired, extrapolated from several datasheets (e.g. from ABB Motors and Me-

chanical Inc.14, mainly based on the power rating values of the substituted AC

ASM models. The “DC Motor 4 Driver” sub subsystem of the “Robot Link 3

Subsystem” (FIGURE 6.41 above) is shown in the FIGURE 6.42 below.

14

 ABB Motors and Mechanical Inc., formerly ”Baldor Electric Company”
http://www.motionusa.com.s3-website-us-east-1.amazonaws.com/baldor/BR1202-F.pdf (Read
on 02.04.2019)

http://www.motionusa.com.s3-website-us-east-1.amazonaws.com/baldor/BR1202-F.pdf

113

FIGURE 6.42: Simulink screen capture of the DC Motor 4 Driver subsystem

Despite the first impression of the appearance of the subsystem may not nec-

essarily suggests a low complexity, the subsystem consists mainly of simple

blocks (e.g. “Divide” or “Abs”). The function principle bases on the limitation of

the applicable electric power (calculated from the set value and the maximum

motor power). A controlled ideal voltage source draws any required but also

measured current. If the maximum applicable electric power is exceeded, the

voltage of the ideal voltage source is lowered to decrease the power the appro-

priate level. Equal to the driver of the AC ASM model, the DC motor driver was

designed in a way to expect scalar input values within the range from +1 to -1.

The application of DC motor models led to considerable decreases of the com-

putational time and computational efforts for simulation model solving.

6.7.2 Virtual Identification Measurements

As the industrial robot manufacturer ABB and developer of the simulation soft-

ware ABB RobotStudio claims that the simulated virtual robots behave very re-

alistic and similar to their real counterparts (ABB Asea Brown Boveri Ltd.

2019f), the idea emerged to obtain missing Simulink Simscape simulation mod-

el parameters from virtual identification measurements conducted in the ABB

RobotStudio simulation environment.

114

Therefore, introductory as well as more sophisticated ABB RobotStudio pro-

gramming methods were investigated from ABB Asea Brown Boveri Ltd. (2019f)

and ABB Asea Brown Boveri Ltd. (2019g) firstly.

In order to obtain missing frictional parameters of the simulation model, the

subsequently presented procedure was developed and tested within the ABB

RobotStudio 6.08 (license provided from TAMK) virtual environment:

Starting from the mathematical dynamic description of the robotic system (equa-

tion (4.14)):

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) + 𝒇(�̇�) = 𝝉 (6.5)

In order to extract frictional torques only related to the individual joint/ axis in-

vestigated, disturbing influences from all other axes and non-frictional torque

sources need to be eliminated/ minimized. Therefore:

Reaching a state of constant velocity to eliminate/ minimize all moments of iner-

tia:

𝑴(𝒒) �̈�⏟
=𝟎

= 𝟎
(6.6)

Elimination/ minimization of centrifugal and Coriolis torques, e.g. by the align-

ment of the centers of masses of all moving masses with the investigated axis:

𝑪(𝒒, �̇�)�̇� = 𝟎 (6.7)

Elimination/ minimization of the influence of the gravitational acceleration, e.g.

by the alignment of the investigated axis with the direction of the gravitational

acceleration:

𝒈(𝒒) = 𝟎 (6.8)

115

Equation (6.5) is now reduced to:

𝒇(�̇�) = 𝝉 (6.9)

Substituting the friction f vector by a common static friction model considering

viscous (Fm1) and Coulomb frictions (Fm2) (6 x 6-dimensional diagonal matrices,

containing the individual constant friction coefficients/ torques) (equation (4.20)):

𝒇(�̇�) = 𝑭m1 �̇� + 𝑭m2 𝑠𝑖𝑔𝑛(�̇�) = 𝝉 (6.10)

Exemplarily for the first robotic manipulator’s axis (scalar expression):

𝐹m1,1 �̇�1,mot + 𝐹m2,1 𝑠𝑖𝑔𝑛(�̇�1,mot) = 𝜏1,mot (6.11)

Conducting motor torque measurements at the time t1 for two different joint mo-

tion velocities, e.g. v50 and v100, using the RAPID15 GetMotorTorque()

function in the RobotStudio environment (motor side joint velocities can be read

with the help of the TestSignRead() function):

FIGURE 6.43: Exemplary plot of a trapezoidal joint velocity profile of the robot’s first axis

15

 RAPID is a high-level programming language of ABB Asea Brown Boveri Ltd. for industrial
robot programming

�̇�1,mot(𝑡)

𝑡

�̇�1,mot,v100

�̇�1,mot,v50

𝑡1

116

Applying the measurement results (explicit values):

�̇�1,mot,v50, �̇�1,mot,v100, 𝜏1,mot,v50, 𝜏1,mot,v100 (6.12)

To the general common mathematical equation of linear functions:

𝑦(𝑥) = 𝑚𝑥 + 𝑏 (6.13)

Leads to the determination of the individual Coulomb friction torque:

𝐹m2,1 =

(𝜏1,mot,v50 ∙ �̇�1,mot,v100) − (𝜏1,mot,v100 ∙ �̇�1,mot,v50)

[(�̇�1,mot,v100 ∙ 𝑠𝑖𝑔𝑛(�̇�1,mot,v50)) − (�̇�1,mot,v50 ∙ 𝑠𝑖𝑔𝑛(�̇�1,mot,v100))]
 !
≥0 [Nm]

(6.14)

And the individual viscous friction coefficient:

𝐹m1,1 =
𝜏1,mot,v100 − (𝐹m2,1 ∙ 𝑠𝑖𝑔𝑛(�̇�1,mot,v100))

�̇�1,mot,v100
 !
≥0 [Nms] (6.15)

The described procedure needs to be applied for each other axis individually.

Furthermore, the described procedure does not cover any non-linear frictional

effects and may suffer from inaccuracies due to superposition with other non-

considered effects and changes of frictional values due to the individual robot’s

poses applied for the identification measurements.

The described procedure of virtual measurements for the identification of fric-

tional coefficients and torques was tested only. Due to a lack of processing time

at the end of the accomplishment of the thesis work, the identification was not

finished satisfyingly. Therefore, parameter values not determined during the

procedures described in section 6.4.1 were set zero or to very small values (e.g.

1E-12) in order to prevent “division-by-zero“ errors in the context of numerical

solving of the simulation model (e.g. Coulomb friction torques of the joint bear-

ings).

Additional information concerning the topic of missing parameters/ incomplete

parameterization are discussed in section 10.

117

7 TESTING AND DEBUGGING

The procedure of testing and debugging was accomplished constantly and par-

allel to every stage of the creation of the simulation model but more distinct dur-

ing the stage of code programming. Generally, testing and debugging was

mainly characterized by the trial-and-error method aiming at the validation of the

investigated individual objects and all possible variations of objects interactions.

Testing and debugging was mainly conducted in the MATLAB and/ or Simulink/

Simulink Simscape environment, partly with the help of the included debugging

tools.

Parallel-to-creation testing revealed common typical programming bugs evoked

by faulty copy-and-paste actions, typing mistakes, faulty indexing, etc.

In addition to the constant testing during the process of the creation of the simu-

lation program, a separate short testing phase was accomplished after the fina-

lization of a first preliminary version of the simulation program. Therefore, the

preliminary simulation program version, along with a first version of the operat-

ing manual, was provided to the thesis supervisors and client(s) (external test-

ing). Furthermore, testing was also executed by the author (internal testing).

In the case of internal testing, testing and debugging was divided into the sub-

tasks of testing and debugging the MATLAB program part on one hand, and the

Simulink/ Simulink Simscape program part on the other hand. As internal testing

revealed a number of faults, only the most significant are listed exemplarily be-

low:

MATLAB program part:

 Testing revealed a simple but grave unit conversion error within the

MATLAB inverse_kinematics.m file. In the case of a linear tool

movement, the initial robot manipulator’s pose (qA) needs to be derived

from the starting point “A” workspace coordinates [xA yA zA], defined by a

user input in the unit [mm], using the MATLAB inverse kinematics solver.

The MATLAB kinematics solver expects coordinate inputs in the unit [m],

but inputs were passed into the solver in the unit [mm].

118

This led to a conspicuously high level of computation time consumption

and computational resources usage for the inverse kinematics solving.

The rectification of the unit error caused a drastic decrease of the overall

computation time and the usage of computational resources.

Simulink/ Simulink Simscape program part:

 Due to the non-existent appropriate control systems structures, the inter-

nal Simulink/ Simscape program testing part was narrowed to the valida-

tion of a small number of basic functions. In this context, rotational direc-

tion errors of the axes 1, 2, 5, and 6 were identified during observations

of the simulation model’s animation in the MATLAB Mechanics Explorer

(deviations from the definition; section 3.3).

The errors were rectified within MATLAB get_joint_move.m file by the

alignment of algebraic signs at the corresponding code lines.

At the time of the creation of this document, the results/ feedback concerning

the external testing accomplished by the external parties were not provided to

the author and thus neither recorded nor rectified.

119

8 OPERATION OF THE SIMULATION MODEL

The document at hand is primarily meant for the documentation of the accom-

plished work during the progress of the execution of the bachelor’s thesis. Fur-

thermore, the allowed extent of the document is limited.

Therefore, no instructions and/ or further explanations concerning the operation

of the simulation model were included in the thesis document itself but can be

obtained from the earlier mentioned and comprehensive operating manual to be

found from Appendix 5. Operating Manual.

120

9 CONCLUSION

The thesis work, recorded at the document at hand, aimed at the development

and implementation of a MATLAB Simulink simulation model of an ABB IRB

2600-12/1.85 six axis articulated arm industrial robot for the purpose of educa-

tional use in control system design.

The created simulation model, in its recent state, is considered as a compre-

hensive and fully functional application that meets the requirements, covers op-

tional accomplished tasks and can be used for the educational purposes it was

initially meant for, as it:

 Bases on a Simulink Simscape Multibody simulation model derived from

the specific industrial robot’s CAD model

 Is in accordance with the main technical specifications of the real indus-

trial robot (axes definitions and limitations, frame definitions, etc.)

 Is in accordance with the common and generally accepted robotic ma-

nipulators theory (e.g. DH-formalism)

 Covers a fully kinematic robot model

 Covers a common dynamic robot model considering gravitational accel-

eration and a linear friction model (viscous and Coulomb frictions)

 Contains detailed and realistic joint actuation models (joint actuation mo-

tor types, motor drivers, gearbox types, driveline characteristics, etc.)

 Shows a simplified and assumption based but realistic first parametriza-

tion, covering the manipulator’s links mass and inertia properties (mass-

es, CoM, MoI, PoI), motor models (electrical and mechanical characteris-

tics) and gearboxes (ratios, inertias, efficiencies)

 Bases on well-documented, sufficiently commented and modular

MATLAB codes

 Contains convenient, descriptive and input filtering GUI

121

 Allows changing, modifying and extending the simulation model’s:

o CAD model

o Simulink Simscape Multibody model (block diagram)

o Simulink model (block diagram)

o MATLAB programs

o Parameterization

 Covers an additional second simulation model version (Version “v_B”)

with simplified DC joint actuation models/ subsystems

 Comes with a comprehensive operating manual covering instructions for

the operation, update and change/ modification of the simulation pro-

gram/ model

 Provides information for future project continuations like a method for vir-

tual identification measurements to obtain frictional parameters from the

ABB RobotStudio software

And:

 Provides a ready-to-use control system structures design environment

also covering simple predetermined PID controllers for testing purposes

 Allows appropriate observation, recording, storage and export of the

simulation results

 Allows comparisons of the Simulink/ Simulink Simscape simulation re-

sults to other simulation/ measuring results gained from other sources

122

Nevertheless, the simulation model suffers major incompleteness and weak-

nesses such as:

 Incomplete and/ or simplified and/ or estimated and/ or assumption

based parametrization

 Not performed simulation model validation due to the lack of appropriate

control system structures

Furthermore, the capabilities of the simulation model are limited due to the ap-

plied general simplifications and restrictions (section 3.7):

 Ideal rigid bodies such as links, joints, shafts, transmission gears, belts

etc.

 A linear friction model

 Missing consideration of backlashes and uncertainties (bearings and

transmissions)

 Generally neglected time delays

 Missing consideration of external (secondary) payloads like the end ef-

fector supply wiring

 Generally idealised simulation model’s elements representations, limited

to the level of detail provided by the corresponding Simulink/ Simulink

Simscape blocks

 Generally neglected thermal effects (e.g. temperature dependent trans-

mission lubricant viscosity)

123

10 OUTLOOK

Based on the statements related to the incompleteness, weaknesses and lim-

ited capabilities of the simulation model made in the conclusion (section 9), con-

tinuations of this thesis work are required in order to obtain a completely com-

prehensive and more accurate simulation model.

Following this, pending future tasks, accomplished in the context of further the-

sis works, semester projects, in-lecture projects, homework, laboratory works

etc., can be coarsely divided into three categories and named as:

Completion (of the parameterization) of the simulation model:

 Acquisition and implementation of more precise information concerning

link masses and inertias, motor-, gear/ transmission- and revolute joint

parameters such as inertias, electrical parameters, damping/ friction val-

ues, gear ratios, etc. from existing data sources and/ or virtual or real

(identification-) measurements.

Furthermore, the validation of the simulation model. This could also cov-

er measurements for comparisons between the MATLAB Simulink simu-

lation model, other simulation models and the real robotic system.

In the case of future accomplishment of identification measurements on

the virtual or real robotic system, the consideration of Al-Dois, Jha &

Mishra (2013) and Verdonck, Swevers & De Schutter (2007) is recom-

mended.

124

Modification of the simulation model:

 Adaption or change of the contemporary applied motor types and their

drives in order to reduce the complexity of the simulation model and/ or

lessen the computational efforts (e.g. by the modification of the simplified

joint actuation motor models presented in section 6.7.1).

Modifications/ changes of the manipulator’s CAD model, e.g. CAD as-

sembly constraints, link geometries or the end effector/ tool.

Extension of the simulation model:

 Implementation of further simulation model block diagrams and corre-

sponding parameters in order to reduce the number of general simplifica-

tions and restrictions.

Implementation of additional motion types such us point-to-point or circu-

lar movements. This could also cover the extension of available/ applied

velocity and/ or velocity/ acceleration profiles (e.g. S-Curve velocity pro-

file) in the context of motion planning.

Extensions of the solver constraints of the MATLAB inverse kinematics

solver gik() function are already prepared in the comments of the cor-

responding MATLAB file and can be applied.

Extensions of the end effectors/ tools capabilities within the coverage of

applicable Simulink Simscape domains like pneumatics and hydraulics.

Application of secondary payloads connected to the manipulator’s links,

e.g. added to CAD model.

The creation of a manipulator’s environment within the Simulink simula-

tion model with the help of additional geometries (e.g. a workbench).

125

REFERENCES

ABB Asea Brown Boveri Ltd. 2019a. Industrial Robots. IRB 2600. Printed on
19.03.2019. https://new.abb.com/products/robotics/industrial-robots/irb-2600

Hyyppä, A. 2015. Älykäs Huuva. Kone-ja tuotantotekniikka Kone-ja laiteau-
tomaatio. Tampereen ammattikorkeakoulu. Opinnäytetyö. Read on 27.02.2019.
http://urn.fi/URN:NBN:fi:amk-2015121520886

Rodewald, V. 2016. Design of an Intelligent Protection Shield. Mechanical and
Production Engineering. Tampere University of Applied Sciences. Bachelor's
thesis. Read on 27.02.2019. http://urn.fi/URN:NBN:fi:amk-2016061312819

Gerland, B. 2017. Designing and implementing a Robot Gripper using additive
manufacturing. Mechanical and Production Engineering. Tampere University of
Applied Sciences. Bachelor's thesis. Read on 27.02.2019.
http://urn.fi/URN:NBN:fi:amk-201703273754

Compton, Z. 2018. Creation of an Augmented Reality App for an Introduction to
Industrial Machine Mechanics. Interactive Media. Tampere University of Applied
Sciences. Bachelor's thesis. Read on 27.02.2019. http://urn.fi/URN:NBN:fi:amk-
2018053111731

ABB Asea Brown Boveri Ltd. 2019b. Industrial Robots. IRB 2600. Technical
specification - IRB 2600, M2004, Product specification. Printed on 16.02.2019.
https://search-ext.abb.com/library/Download.aspx?DocumentID=3HAC035959-
001&LanguageCode=en&DocumentPartId=&Action=Launch

ABB Asea Brown Boveri Ltd. 2019c. Operating Manual. RobotStudio. 5.14.
Document ID: 3HAC032104-001. Revision: E. Printed on 18.02.2019.
https://library.e.abb.com/public/4b4d0a7f1e14fcdac1257c13004f1121/3HAC032
104-en.pdf

Weber, W. 2017. Industrieroboter. Methoden der Steuerung und Regelung. 3rd
edition. München: Carl Hanser Verlag München. Printed on 18.02.2019.
https://doi.org/10.3139/9783446435780

Kelly, R., Santibáñez, V. & Loría., A. 2005. Control of Robot Manipulators in
Joint Space. 1st edition. London: Springer-Verlag London Limited. Printed on
21.02.2019. https://doi.org/10.1007/b135572

Siciliano, B. & Khatib, O. 2008. Springer Handbook of Robotics. 1st edition. Ber-
lin Heidelberg: Springer-Verlag Berlin Heidelberg. Printed on 21.02.2019.
https://doi.org/10.1007/978-3-540-30301-5

Siciliano, B., Sciavicco, L., Villani, L. & Oriolo, G. 2009. Robotics. Modelling,
Planning and Control. 1st edition. London: Springer-Verlag London Limited.
Printed on 21.02.2019. https://doi.org/10.1007/978-1-84628-642-1

https://new.abb.com/products/robotics/industrial-robots/irb-2600
https://new.abb.com/products/robotics/industrial-robots/irb-2600
http://urn.fi/URN:NBN:fi:amk-2015121520886
http://urn.fi/URN:NBN:fi:amk-2016061312819
http://urn.fi/URN:NBN:fi:amk-201703273754
http://urn.fi/URN:NBN:fi:amk-2018053111731
http://urn.fi/URN:NBN:fi:amk-2018053111731
https://search-ext.abb.com/library/Download.aspx?DocumentID=3HAC035959-001&LanguageCode=en&DocumentPartId=&Action=Launch
https://search-ext.abb.com/library/Download.aspx?DocumentID=3HAC035959-001&LanguageCode=en&DocumentPartId=&Action=Launch
https://library.e.abb.com/public/4b4d0a7f1e14fcdac1257c13004f1121/3HAC032104-en.pdf
https://library.e.abb.com/public/4b4d0a7f1e14fcdac1257c13004f1121/3HAC032104-en.pdf
https://doi.org/10.3139/9783446435780
https://doi.org/10.1007/b135572
https://doi.org/10.1007/978-3-540-30301-5
https://doi.org/10.1007/978-1-84628-642-1

126

Bajd, T., Mihelj, M., Lenarčič, J., Stanovnik, A. & Munih, M. 2010. Robotics. 1st
edition. Dordrecht: Springer Dordrecht. Printed on 06.04.2019.
https://doi.org/10.1007/978-90-481-3776-3

Grote, K. H., Bender, B. & Göhlich, D. 2018. Dubbel. Taschenbuch für den
Maschinenbau. 25th edition. Berlin: Springer-Verlag GmbH Deutschland. Print-
ed on 06.04.2019. https://doi.org/10.1007/978-3-662-54805-9

Pietruszka, W. D. 2014. MATLAB® und Simulink® in der Ingenieurpraxis. Mod-
ellbildung, Berechnung und Simulation. 4th edition. Wiesbaden: Springer
Fachmedien Wiesbaden. Printed on 18.02.2019. https://doi.org/10.1007/978-3-
658-06420-4

The MathWorks Inc. 2019a. Products. Overview: Simscape Multibody - Model
and simulate multibody mechanical systems. Read on 03.03.2019.
https://www.mathworks.com/products/simmechanics.html

The MathWorks Inc. 2019b. Support. Documentation: MATLAB - The Language
of Technical Computing. Release: R2018b. Printed on 16.02.2019.
https://www.mathworks.com/help/matlab/index.html

The MathWorks Inc. 2019c. Support. Documentation: Simulink - Simulation and
Model-Based Design. Release: R2018b. Printed on 16.02.2019.
https://www.mathworks.com/help/simulink/index.html

The MathWorks Inc. 2019d. Support. Documentation: Simscape - Model and
simulate multidomain physical systems. Release: R2018b. Printed on
16.02.2019. https://www.mathworks.com/help/physmod/simscape/index.html

Glöckler, M. 2018. Simulation mechatronischer Systeme. Grundlagen und
Beispiele für MATLAB® und Simulink®. 2nd edition. Wiesbaden: Springer
Fachmedien Wiesbaden. Printed on 16.02.2019. https://doi.org/10.1007/978-3-
658-20703-8

Nabtesco Corporation. 2019. Product. Component. RV-N. Read on 06.04.2019.
https://precision.nabtesco.com/en/products/detail/RV-N

Nabtesco Corporation. 2015. Precision Reduction Gear RV. N series. Technical
Information. Read on 06.04.2019.
https://www.nabtesco.de/fileadmin/user_upload/Downloads/Produkt_Brosch%C
3%BCren/RV-N_Rev.9_EN_no_drw_nabtesco.pdf

ABB Asea Brown Boveri Ltd. 2019d. Products. 3HAC030216-003. Detailed in-
formation for: 3HAC030216-003. Read on 06.04.2019.
https://new.abb.com/products/3HAC030216-003/rot-ac-motor-with-pinion

TAMAGAWA SEIKI Co., Ltd. 2019. Products. Servo Motors. TBL-iIV Series.
Catalog. AC Servomotors (TBL-iIV Series). Read on 06.04.2019.
https://www.tamagawa-
seiki.com/assets/img/downloads/pdf/servomotor/1699N2EJ_shusei.pdf

https://doi.org/10.1007/978-90-481-3776-3
https://doi.org/10.1007/978-3-662-54805-9
https://doi.org/10.1007/978-3-658-06420-4
https://doi.org/10.1007/978-3-658-06420-4
https://www.mathworks.com/products/simmechanics.html
https://www.mathworks.com/help/matlab/index.html
https://www.mathworks.com/help/simulink/index.html
https://www.mathworks.com/help/physmod/simscape/index.html
https://doi.org/10.1007/978-3-658-20703-8
https://doi.org/10.1007/978-3-658-20703-8
https://precision.nabtesco.com/en/products/detail/RV-N
https://www.nabtesco.de/fileadmin/user_upload/Downloads/Produkt_Brosch%C3%BCren/RV-N_Rev.9_EN_no_drw_nabtesco.pdf
https://www.nabtesco.de/fileadmin/user_upload/Downloads/Produkt_Brosch%C3%BCren/RV-N_Rev.9_EN_no_drw_nabtesco.pdf
https://new.abb.com/products/3HAC030216-003/rot-ac-motor-with-pinion
https://www.tamagawa-seiki.com/assets/img/downloads/pdf/servomotor/1699N2EJ_shusei.pdf
https://www.tamagawa-seiki.com/assets/img/downloads/pdf/servomotor/1699N2EJ_shusei.pdf

127

ABB Asea Brown Boveri Ltd. 2019e. Robotics. RobotStudio. Read on
02.04.2019. https://new.abb.com/products/robotics/robotstudio

ABB Asea Brown Boveri Ltd. 2019f. RobotStudio. Getting started: Tutorials for
RobotStudio. Read on 17.02.2019.
https://new.abb.com/products/robotics/robotstudio/how-to-use-it/getting-started

ABB Asea Brown Boveri Ltd. 2019g. RobotStudio. Tutorials for RobotStudio -
The world's most used offline programming tool for robotics. Read on
18.02.2019. https://new.abb.com/products/robotics/robotstudio/tutorials

Al-Dois, H., Jha, A. K. & Mishra, R. B. 2013. Application of Industrial Robots for
Producing Cores in a Foundry: Task Time Optimization. Journal of Applied Sci-
ence and Engineering 16 (2), 177-186. Printed on 23.02.2019.
https://doi.org/10.6180/jase.2013.16.2.09

Verdonck, W., Swevers, J. & De Schutter, J. 2007. Dynamic model identification
for industrial robots. An integrated experiment design and parameter estimation
approach. IEEE control systems 27 (5), 58-71. Printed on 23.02.2019.
https://doi.org/10.1109/MCS.2007.904659

Virikko, H. & Lamminsivu, R. 2017. Report Guide. Tampere University of Ap-
plied Sciences. Tampere. Printed on 10.02.2019.
https://intra.tamk.fi/documents/67978/1644670/Report+guide+2018.pdf/ece932
17-5f76-428a-b829-5c2c219f3de3

Diersen, P. 2017a. Dokumentationsrichtlinien für Bachelor/Master-Arbeiten,
Hausarbeiten und Projektberichte. Hannover University of Applied Sciences and
Arts. Hannover

Diersen, P. 2017b. Zitierhinweise für Hausarbeiten, Abschlussarbeiten und Pro-
jektdokumentationen. Hannover University of Applied Sciences and Arts. Han-
nover

Diersen, P. 2017c. Konstruktionslehre 1. Lecture script. Konstruktionslehre 1
lecture summer term 2017. Hannover University of Applied Sciences and Arts.
Hannover

https://new.abb.com/products/robotics/robotstudio
https://new.abb.com/products/robotics/robotstudio/how-to-use-it/getting-started
https://new.abb.com/products/robotics/robotstudio/tutorials
https://doi.org/10.6180/jase.2013.16.2.09
https://doi.org/10.1109/MCS.2007.904659
https://intra.tamk.fi/documents/67978/1644670/Report+guide+2018.pdf/ece93217-5f76-428a-b829-5c2c219f3de3
https://intra.tamk.fi/documents/67978/1644670/Report+guide+2018.pdf/ece93217-5f76-428a-b829-5c2c219f3de3

128

DECLARATION OF AUTHORSHIP

I hereby confirm that this bachelor’s thesis at hand is entirely my own work and

that I have not used any additional assistance or resources other than indicated.

All quotations, paraphrases, information and ideas that have been taken from

other sources (including the Internet as well as other electronic sources) and

other person’s work have been cited appropriately and provided with the corre-

sponding bibliographical references. The same is true of all drawings, sketches,

pictures and other illustrations that appear in the text. I’m aware that the neglect

to indicate the used sources is considered as fraud and plagiarism in which

case sanctions are imposed that can lead to the suspension or permanent ex-

pulsion of students in serious cases.

Olivier Preuss Tampere, 16.04.2019

129

APPENDICES

Appendix 1. Thesis Contract .. 130

Appendix 2. Project Plan .. 135

Appendix 3. List of Requirements .. 137

Appendix 4. Program Flow Charts ... 141

Appendix 5. Operating Manual .. 159

130

Appendix 1. Thesis Contract

 1 (5)

131

 2 (5)

132

 3 (5)

133

 4 (5)

134

 5 (5)

135

Appendix 2. Project Plan

 1 (2)

136

 2 (2)

137

Appendix 3. List of Requirements

 1 (4)

138

 2 (4)

139

 3 (4)

140

 4 (4)

141

Appendix 4. Program Flow Charts

 1 (18)

142

 2 (18)

143

 3 (18)

144

 4 (18)

145

 5 (18)

146

 6 (18)

147

 7 (18)

148

 8 (18)

149

 9 (18)

150

 10 (18)

151

 11 (18)

152

 12 (18)

153

 13 (18)

154

 14 (18)

155

 15 (18)

156

 16 (18)

157

 17 (18)

158

 18 (18)

159

Appendix 5. Operating Manual

 1 (36)

This page was intentionally left blank in order to make the subsequent operating

manual an independent document that can be extracted from the thesis docu-

ment separately.

160

 2 (36)

MANUAL

A Quick Start Guide for the MATLAB® Simulink®/

Simscape™ (Multibody™)1 Simulation Model of an

ABB2 IRB 2600-12/1.85 Industrial Robot Manipulator

Author: Olivier Preuss

First Issued: 05.03.2019

Last Edited: 16.04.2019

Recent Version: v05

Revision: A

Corresponding Document: Preuss, O. 2019. Simulation Model for a Six

Axis Articulated Arm Industrial Robot. Mechani-

cal and Production Engineering. Tampere Uni-

versity of Applied Sciences. Bachelor's thesis

1
 MATLAB®, Simulink®, Simscape™ and Simscape™ Multibody™ are trademarks or registered

trademarks of The MathWorks, Inc.
2
 ABB Asea Brown Boveri Ltd.

161

ABOUT THIS DOCUMENT 3 (36)

The purpose of the document at hand is a quick introduction to the start-up, the

operation and updating and extending/ modifying the MATLAB Simulink/ Sim-

ulink Simscape (Multibody) simulation of an ABB IRB 2600-12/1.85 industrial

robot manipulator, initially equipped with a Fronius3 Robacta Drive CMT welding

torch/ end effector. This document refers to the bachelor’s thesis: “Simulation

Model for a Six Axis Articulated Arm Industrial Robot”, by Olivier Preuss, pub-

lished in April 2019 at Tampere University of Applied Sciences (TAMK) in Tam-

pere, Finland.

Symbol: Meaning:

 Useful information/ hint.

! Important note, read carefully!

GENERAL INFORMATION

!

Do not delete or add any data from/ to the simulation data set. Also
do not rename, relocate or change the general structure(s) and
location(s) of any of folders or files of the data set. (Exceptions:
CAD MODEL UPDATE and EXTENSIONS/ MODIFICATIONS (re-
fer to the corresponding manual pages 179 and 182). Always use
“Save as” in order to retain an unchanged copy of the simulation.

For further information not covered by this manual, refer to the cor-
responding thesis document.

 In order to keep this document as short as possible, hyperlinks are used

to redirect to external web sources (provided by manufacturers/ develop-

ers/ other third parties) whenever reasonable.

 Any filenames.m or folder names are written in italicised, coloured font

and contain the file extension(s).

 MATLAB related naming and commands are written in Courier new

font.

 Other “commands”, “window names“, “button names” etc. are in quota-

tions marks.

3
 Fronius International GmbH

https://www.google.com/search?q=hyperlink

162

CONTENTS

0. PREREQUISITES ... 163

1. INTRODUCTION .. 164

2. INSTALLATION .. 165

3. OPERATION ... 166

4. CHANGE OF PARAMETERS ... 177

5. CAD MODEL UPDATE ... 179

6. EXTENSIONS/MODIFICATIONS ... 182

7. TROUBLESHOOTING .. 193

163

0. PREREQUISITES 5 (36)

The usage of the simulation program requires basic general knowledge of

MATLAB and Simulink/ Simulink Simscape. Basic knowledge of programming,

mechatronics, robotics and control systems are also recommended.

Additionally required:

Subject:
Required (R)/
Optional (O):

Note:

Personal
Computer
(PC)

R
Minimums: Processor: Intel®4 or AMD®5 x86-64,
RAM: 4GB, HDD: 4-6 GB free disk space,
Graphics: OpenGL®6 3.3 with 1GB GPU

Operating
System (OS)

R
Microsoft® Windows®7 7 Service Pack 1, Apple®
macOS®8 10.12, Linux®9: see10 or higher

Simulation
Software

R
MathWorks MATLAB R2018b or higher
(In accordance with the used OS)

CAD Software O
SolidWorksTM11 2001Plus, OR WildFire® 122.0,
OR Creo®12 1.0, OR Autodesk Inventor®13 2009
or higher

CAD Software
Plug-in

O
MathWorks Simscape Multibody Link Version 6,
R2018b (In accordance with the used CAD
software) or higher

Spreadsheet
Software

O Microsoft Excel®7 2010 and higher

Robot Manu-
facturers
Software

O ABB RobotStudio 6.08 and higher

Simulation model data set(s)/folder(s):

Folder Name:
Est. File Size [MB]:

Password:
Zipped: Unzipped:

BT_ABB_IRB_2600_Robot_Sim._v_A.zip
18 130 #20RbT19Sim!

BT_ABB_IRB_2600_Robot_Sim._v_B.zip

4
 Intel® is a registered trademark of Intel Corporation

5
 AMD® is a registered trademark of Advanced Micro Devices, Inc.

6
 OpenGL® is a registered trademark of Hewlett Packard Enterprise

7
 Microsoft®, Windows® and Excel® are trademarks or registered trademarks of Microsoft

Corporation
8
 Apple® and macOS® are registered trademarks of Apple Inc.

9
 Linux® is a registered trademark of The Linux Foundation®.

10
 https://www.mathworks.com/support/requirements/matlab-system-requirements.html

11
 SOLIDWORKS™ is a trademark of Dassault Systèmes®

12
 WildFire® and Creo® are registered trademarks of PTC Inc.

13
 Autodesk Inventor® is a registered trademark of Autodesk Inc.

https://www.mathworks.com/support/requirements/matlab-system-requirements.html

164

1. INTRODUCTION 6 (36)

The simulation program and its flow can be divided into two consecutive main

program parts – an initial and looped MATLAB part and a following non-looped

Simulink/ Simulink Simscape part.

The MATLAB program part acquires and provides all required data for the Sim-

ulink/ Simulink Simscape simulation, represented by five main simulation varia-

bles (check section EXTENSIONS/ MODIFICATIONS (page 182) for more de-

tailed information), saved to the MATLAB “Workspace” (base) after execution.

The contents/ values of the main simulation variables are determined with the

help of the import of external data, user inputs and commands received from

three graphical user interfaces (GUI) and a number of evaluation algorithms.

Two different types of motion planning are also covered by the MATLAB pro-

gram part.

The Simulink/ Simulink Simscape program part virtually represents the real ro-

botic system as a block diagram structure and uses the values of the formerly

mentioned main simulation variables for the model parameterization. In contrast

to the flow of the MATLAB program part, it is mostly ran manually (creation of a

control system structure, execution of the simulation, evaluation of the results,

etc.)

The subsequently shown simplified overall program flow chart may supports

understanding the general flow of the simulation procedure.

Open Simulink/Simulink Simscape Simulation Model

Program
Part 2:

Simulink/
Simulink

Simscape

Joint Movement
Planning (GUI)

Linear Movement
Planning (GUI)

START

Initialization

Data Import

Main GUI

END

Update

Result Evaluation (Manually)

Simulation Execution (Manually)

Control Systems Structure Creation (Manually)

Manual Restart

Change

Program
Part 1:

MATLAB

165

2. INSTALLATION 7 (36)

The instructions of step one and step two given in this section, INSTALLATION,

only need to be executed once after the initial acquisition of the simulation pro-

gram data set. Step three needs to be repeated whenever starting or restarting

the MATLAB software or for any other necessary reason (e.g. after changing

the work directory/ folder).

1. Extract the BT_ABB_IRB_2600_Robot_Sim._v_A folder from the

BT_ABB_IRB_2600_Robot_Sim._v_A.zip file. While/ before the extrac-

tion procedure you will be asked for a password – use the password

listed in the second table of the section PREREQUISITES (page 163).

2. Save the extracted BT_ABB_IRB_2600_Robot_Sim._v_A folder to a

proper work directory and folder.

3. Run MATLAB and browse to the work folder prepared in step two. The

MATLAB “Address Field” and “Current Folder” sub windows should now

look like this:

The installation is now completed. Continue with the section OPERATION

(page 166).

166

3. OPERATION 8 (36)

The section OPERATION covers instructions for the operation of the unedited,

original simulation program. The subsequently shown instructions and/ or se-

quences may not be applicable for extended/ modified versions of the simula-

tion program.

As mentioned in the INTRODUCTION (page 164), the simulation program can

be divided in two parts, therefore, the instructions for the operation are also di-

vided into two consecutive parts: MATLAB and Simulink/ Simulink Simscape.

Refer to the section INSTALLATION (page 165) before continuing.

MATLAB:

1. Type runSim; to the MATLAB “Command Window” and press “Enter”.

2. If not already existent, MATLAB now automatically installs the required

Simscape Multibody Multiphysics Library R2018b Version 2.7.0.0. Press

“OK” to close the “Installation Successful” window and to continue.

3. The “Robot System Import/Update” window now appears. Press “Im-

port/Update Robot System now” (The import procedure may take several

seconds).

4. If executed successfully, the “main_ui” window containing the “Simulation

Control Panel” should open and appear similar to:

167

 9 (36)

The “main_ui” window is always existent (loop) while running the
MATLAB program part and allows updating or changing the varia-
ble contents at any time (except during the ”joint_move_ui” or
“lin_path_ui” windows are open). If brought to the background, re-
store the window(s) from the task bar of your operating system.

!
Always use the “Exit” button of the “main_ui” window to terminate
the simulation program properly without any errors.

5. To update any data listed in Panel 1, “Basic Data/Requirements”, press

the “Update” button. Make sure to replace/ update the files to be updated

from before pressing the “Update” button! A “Data Update” window will

appear - press the "Update now" button to continue, press the "Cancel"

button to terminate the update procedure.

Following this, two other windows will appear in a sequence. Press the

"Install" button of the first "Library Installation" window if you wish to up-

date the Simscape Multibody Multiphysics Library. Press "Cancel" to skip

this step. Press the "Import/Update Robot System now" button of the

second "Robot System Import/Update" window if you wish to update the

robotModel and importInfo variables. Press "Cancel" to skip this

step. The simVar, smiData and robotPara variables are updated au-

tomatically.

168

 10 (36)

6. The simulation of the Simulink/ Simulink Simscape simulation model re-

quires a motion planning in order to provide the required set values for

the (revolute) joints of the robotic manipulator’s model. Press the “Joint

Movement” or “Linear Movement” button of Panel 2 “Motion Planning” to

start the procedure of planning the desired motion (see the figure of the

“main_ui” window below step four). (In this manual, only the “Linear

Movement” procedure is presented. The “Joint Movement” procedure is

quite similar; therefore, the subsequent instructions are also valid.)

7. A separate GUI (“lin_path_ui” or “joint_move_ui” window(s)) will be

opened. Read the information given in the Panel “General Information” of

the “lin_path_ui” window carefully!

!

All input fields need to be defined by appropriate input values. Mo-
tion planning cannot be executed successfully without completely
and correctly filled input fields. Inputs are filtered and checked for
being a number and being within the allowed boundaries. You may
obtain the joint/ axis angle limitations, the movement parameters
limits and the workspace limitations from the corresponding thesis
document (section 3.3, TABLE 3.1) and/ or the ABB_IRB_2600-12-
1.85_Parameters.xlsx spreadsheet and/ or the robotic manipulator
manufacturer’s documents.

169

 11 (36)

8. Define all input fields by applying appropriate values. Press the “Contin-

ue” button of the Panel “Ready!” to calculate the trajectory and to return

to the “main_ui” window.

!

Motion planning of linear movements requires solving inverse
kinematics in order to calculate a trajectory in joint space
(from the workspace trajectory). Joint movements in contrast
are directly planned in joint space. Therefore, motion planning
of linear movements can take seconds up to several minutes,
depending on the length and orientation of the linear path and
the performance of the used computer!

9. Make sure that the status of the corresponding entry of Panel 2, “Motion

Planning” (see the figure of the “main_ui” window below step four) is

“Ready” and the “Last updated” timestamp is within a comprehensible

range.

10. You may restart the procedure of motion planning to change or update

the desired movement type from the “main_ui” window as often as re-

quired.

!

Consider that only one movement type can be finally defined as
input for the Simulink/ Simulink Simscape simulation mode (either
“Joint Movement” OR “Linear Movement”). When repeating motion
planning for updating or changing the movement type, former re-
sults are overwritten or deleted!

11. To terminate the MATLAB program part and to start the Simulink/ Sim-

ulink Simscape program part, press the “Open Simulink” button of Panel

3 “Simulation” of the “main_ui” window. Pressing the “Open Simulink”

button will also cause printing the recommended minimum simulation

time to the MATLAB “Command Window”. Furthermore, the main simula-

tion variables are made visible in the MATLAB “Workspace”. The Sim-

ulink/ Simulink Simscape environment containing the simulation model

will be opened and all other windows will be closed. Before pressing the

“Open Simulink” button, make sure that the status of all entries of Panel

1, “Basic Data/Requirements” and one of the entries of Panel 2 “Motion

Planning” are “Ready” and the “Last updated” timestamps are within a

comprehensible range.

170

 12 (36)

If not, check the MATLAB “Current Folder”, the content of the folder (see

EXTENSIONS/ MODIFICATIONS (page 182)) and try to update the data

using the “Update” button and repeat the procedure of motion planning.

12. Continue with the instructions for SIMULINK/ SIMULINK SIMSCAPE

(page 171).

171

SIMULINK/ SIMULINK SIMSCAPE 13 (36)

1. Continuing from step eleven of the MATLAB sub section (page 166) of

this section, the Simulink/ Simulink Simscape environment (window)

should be visible and appear similar to:

2. Type at minimum the minimum recommended simulation time, printed to

the MATLAB “Command Window”, into the “Simulation stop time” field of

the Simulink/ Simulink Simscape environment (see mark a) in the figure

above) (you may also add a small margin).

3. Enter the “Control Systems” (here exemplarily “Controller Joint 1 (Axis

1)”) subsystem of the simulation model (see mark b) in the figure above).

172

 14 (36)

The “Control Systems” subsystem consists of six second level (sub sub-

system) control structure subsystems – one for each joint/ axis of the ro-

botic manipulator’s simulation model. Neglecting the individual input and

output signals of the single control systems, all individual systems do

have same structure. Therefore, the subsequent instructions are also val-

id for the joint controllers of the other axes.

4. Add/ create the desired control system design/ structure block dia-

gram(s). Before the creation, read the information written below each of

the three blue shaded (background) areas. (The control system structure

must not be necessarily kept inside the areas (left: input, middle: control-

ler, right: output). The separation is only meant as suggestion for keeping

a clear structure of the block diagram(s).)

!

When creating control system structures, consider that the
drivers of the joint motors of the unedited Simulink/ Simulink
Simscape simulation model were designed in a way to expect
scalar values within the range from -1 to +1 as the controlled
value (input). Thus: “+1” = “100% power in the positive direc-
tion” and “-1” = “100% power in the negative direction”.

173

 15 (36)

If you wish to apply any other changes than changes of the control
system structures to the Simulink/ Simulink Simscape simulation
model, it is highly recommended to refer to the EXTENSIONS/
MODIFICATIONS section (page 182) in advance.

5. Repeat the procedures of step three and step four for each of the other

control structure sub subsystems.

6. Navigate back to the main structure of the Simulink/ Simulink Simscape

simulation model (see figure below step 1). Adjust the “Configuration Pa-

rameters” of the simulation model if necessary (e.g. solver settings) (see

mark c) in the figure below step 1).

7. Run the simulation (see mark d) in the figure below step 1) and wait until

the solving was completed. Alternatively, you are also able to view simu-

lation results live while model solving is executed as explained subse-

quently (step eight). You may abort the model solving before finishing,

e.g. when simulation results seem to be obviously faulty, in order to save

time.

Computation time may vary significantly, depending on the used
simulation settings (e.g. trajectory length, solver type, solver step

size, operating system and soft- and hardware).

!
Always take into consideration that simulation results can be faulty
and do not necessarily represent real systems behaviour.

8. Enter the “Measurements” subsystem (see mark e) in the figure below

step 1). In contrast to the “Control System” subsystem, the second level

subsystems of the “Measurements” subsystem are organized by the type

of the measured values (joint angles, velocities, accelerations and tor-

ques) and not by the origin of the value (revolute joint blocks 1-6 of the

Simulink/ Simulink Simscape simulation model). The structures of the

sub subsystems are quite similar. Therefore, the subsequent exemplary

instructions related to the “Joint Angles” sub subsystem are also valid for

the other sub subsystems.

9. Enter the sub subsystem covering the measurements wished to be

viewed (as mentioned above, here exemplarily “Joint Angles”).

174

 16 (36)

10. Measurements are taken and recorded with Simulink “Scope” blocks. As

shown in the figure above, signals to be measured (actual values) are

taken from the signal bus and routed to the according “Scope” block(s).

In the case of the joint angles measurement, the set values of the joint

angles, calculated in the MATLAB program part, are also fed to the cor-

responding “Scope” block(s) for comparison purposes. Both, actual and

set value signals are also led through “Gain” blocks for the purpose of

unit conversion.

!

Consider that all bus signal values have SI units or derived SI
units. For increasing the comprehensibility of the measured
values, signals of the “Joint Angles”, “Joint Velocities” and
“Joint Accelerations” sub subsystems are converted from the
unit radiant [rad] to the unit degree [°], whereas in the “Joint
Torques” sub subsystem the unit [Nm] is measured. You may
undo the predefined unit conversion by changing the gain
values of the preceding “Gain” blocks of each scope input
signal to one (1).

11. Double-click the “Scope” block to view the graphs of the measured input

signals (see figure above, here exemplarily “Joint Angle Axis 1).

175

 17 (36)

12. Evaluate the measurement result(s). Print and/ or save the graph(s)/ re-

sult(s) if necessary. Also check all other measurements of interest.

Change the predefined appearance of the scope window to align it
with your own requirements. E.g. go to “View”, “Layout” and “2x1”to
create two separated signal graphs with the same time axis inside
the graph window.

13. To view the 3D animation/ simulation of the Simulink Simscape simula-

tion model, represented by the .stl geometry files gained from the CAD

model and the calculated kinematics and dynamics, change from the

Simulink/ Simulink Simscape environment window to the MATLAB envi-

ronment window. The opened window should appear like shown below, if

not, change the tab of the MATLAB window to “MECHANICS EXPLOR-

ERS” manually.

176

 18 (36)

You may enable the visibility of the frames and the centers of
masses of the links (rigid bodies) of the Simulink Simscape simula-
tion model (see figure below, use the marked buttons of the “ME-
CHANICS EXPLORERS” (mark f)).

14. Evaluate the results and save them if needed. To restart the MATLAB

program part in order to change parameters or motion planning, repeat

the procedure of the MATLAB subsection of this section (page 166) start-

ing from step one. If you wish to terminate the simulation program, just

close MATLAB and MATLAB Simulink as usual.

f)

177

4. CHANGE OF PARAMETERS 19 (36)

All parameters of the simulation model are stored in an external Microsoft Excel

spreadsheet in order to provide a centralized and clearly arranged parameter

compilation. All required parameters are imported from the spreadsheet during

the initialization of the simulation program and are provided to the Simulink/

Simulink Simscape simulation model via the MATLAB “Workspace” (base).

Therefore, do not change any variable entries within the Simulink/ Simulink

Simscape block(s) (diagrams) settings to change parameters.

The full name of the Microsoft Excel spreadsheet is:

ABB_IRB_2600-12-1.85_Parameters.xlsx

The spreadsheet can be found from the relative file path:

../BT_ABB_IRB_2600_Robot_Sim._v_A\Data\Robot Parameters\

ABB_IRB_2600-12-1.85_Parameters.xlsx

The general structure and contents of the spreadsheet are listed in the subse-

quent table:

Sheet
No.:

Sheet Name: Content(s)/ Purpose(s):

1
(1) General Robot
Information

Handling capacity, reach, weight

2 (2) Axis Range Limits General (angular) axis limitations (A1-A6)

3 (3) Axis Speed Limits General axis angular velocity limitations (A1-A6)

4
(4) Axis Acceleration
Limits

General axis angular acceleration limitations (A1-
A6)

5 (5) TCP Limits General TCP velocity and acceleration limitations

6 (6) Joint Parameters

(Revolute) joint(s) parameters: State targets (po-
sition, velocity), internal mechanics (equilibrium
pos., spring stiffn., damping coeff.), bearings
(friction torques, damping coeff.)

7 (7) Motor Parameters

Electrical motor(s) (asynchronous machine
(ASM) with squirrel cage rotor (three-phase))
parameters: El. ratings (power, voltage etc.), el.
parameters (stator resistance, reactance, etc.)
and mechanical parameters (rotor inertia, etc.)

8
(8) Transmission Pa-
rameters

Cycloidal transmission (gear box) parameters:
teeth numbers (gear ratio), efficiency, inertia, etc.

9
(9) Motor Drivers
Parameters

Six-pulse three phase converter parameters: DC
link voltage, switching freq., sample time, etc.

178

 20 (36)

!

When simplifying parameters e.g. by adding several viscous damp-
ing and/ or friction coefficients to one overall value, always check
the corresponding application(s)/ block(s) from the Simulink/ Sim-
ulink Simscape simulation model in advance (e.g. different angular
velocities due to transmission gears)! This is also valid for inertias
where gear ratios typically cause squared impacts (e.g.
r = 130, → r^2 = 16900!).

!

It is strongly recommended not to change the structure (this in-
cludes the exact names and sequences of the sheets, cell loca-
tions, etc.) of the spreadsheet. Own sheets can be added after the
last original sheet “(9) Motor Drivers Parameters”.

1. Navigate to the (relative) file path of the spreadsheet mentioned above.

Save a copy of the unedited spreadsheet to any proper location before

continuing.

2. Open the spreadsheet and navigate to the sheet(s) containing the pa-

rameter(s) to be changed (check the structure and contents table above).

3. Apply the desired changes - always consider the corresponding unit(s)

and cell format (number, text, etc.)!

4. Save all changes (overwrite; do not change the file path or file name) and

close the spreadsheet.

5. Run the simulation (see section OPERATION (page 166)) and check if

the values of the robotPara variable (see section EXTENSIONS/ MOD-

IFICATIONS (page 182)) are in accordance with the applied changes.

6. If any error(s) occur(s), firstly check the section TROUBLESHOOTING

(page 193). Then repeat the procedure of this section starting from step

one.

179

5. CAD MODEL UPDATE 21 (36)

This section covers instructions for updating the MATLAB and Simulink/ Sim-

ulink Simscape data of the simulation model based on the CAD model. The up-

date procedure needs to be applied after each change of the CAD model (as-

sembly) of the robotic manipulator.

Always check if desired changes could possibly be implemented
without changing and updating the CAD model in advance. E.g.
adding simple geometries or changing the mass of a robotic ma-
nipulator’s link and/ or the end effector/ tool can be accomplished
within the MATLAB and/ or Simulink/ Simulink Simscape environ-
ment. For further information refer to the section EXTENSIONS/
MODIFICATIONS (page 182).

!

When applying changes to the CAD model (assembly), always
consider that the Simulink Simscape block diagrams general struc-
ture is derived from the CAD model structure but cannot be
adapted automatically. Therefore, do not change the existing CAD
model constraints between in the links (revolute), or link 6 and the
end effector/ tool (rigid). Furthermore it is strongly recommended
not to change the overall number of individual parts (seven) of the
CAD model assembly (e.g. when adding a secondary payload to
one of the robotic manipulator’s links, use “unite” or similar func-
tions in order to obtain one rigid body). For a complete listing of the
structure (including constraints, naming and data types) of the CAD
model assembly refer to the corresponding thesis document (sec-
tion 6.1, TABLE 6.1 and TABLE 6.2).

1. Make sure that you are using one of the suitable CAD software listed in

the first table of PREREQUISITES (page 163, table of requirements).

2. If the Simscape Multibody Link Plug-In is not already installed to your

CAD software, go to

https://www.mathworks.com/help/physmod/smlink/ug/installing-and-

linking-simmechanics-link-software.html14 and follow the instructions

carefully.

3. Run the CAD software and apply the desired changes to the robotic ma-

nipulator’s individual parts and/ or assembly.

14

 The MathWorks Inc. 2019. Support. Documentation: Simscape Multibody Link Plug-In. Install
the Simscape Multibody Link Plug-In. Release: R2019a. Read on 23.03.2019

https://www.mathworks.com/help/physmod/smlink/ug/installing-and-linking-simmechanics-link-software.html
https://www.mathworks.com/help/physmod/smlink/ug/installing-and-linking-simmechanics-link-software.html

180

 22 (36)

4. Create an empty folder: Simulink Simscape Data (exact name) and save

it to any proper directory.

5. Create and export the Simscape Multibody model (.xml file) from your

CAD software to the Simulink Simscape Data folder created in step four,

using the Simscape Multibody Link Plug-In. (Use .stl geometry file for-

mat). For assistance, explore

https://www.mathworks.com/help/physmod/smlink/index.html15. The con-

tent of the Simulink Simscape Data folder should now look like shown

below:

6. In MATLAB, navigate to the (relative) file path

../BT_ABB_IRB_2600_Robot_Sim._v_A\Data\Simulink Simscape Data

7. Save all files shown in the MATLAB “Current Folder” sub window to any

proper folder and directory in order to create backup data.

8. Rename the ABB_IRB_2600_12_185_Simscape_DataFile.m file to

oldDataFile.m.

9. Delete all files shown in the MATLAB “Current Folder” sub window ex-

cept oldDataFile.m and ABB_IRB_2600_12_185_Simscape.slx.

10. Copy all newly created files from the Simulink Simscape Data folder

(step five) to the MATLAB “Current Folder”.

15

 The MathWorks Inc. 2019. Support. Documentation: Simscape Multibody Link Plug-In.
Release: R2019a. Read on 23.03.2019

https://www.mathworks.com/help/physmod/smlink/index.html

181

 23 (36)

11. Type smimport('ABB_IRB_2600_12_185_Simscape.xml',…

'ImportMode','dataFile','DataFileName',…

'ABB_IRB_2600_12_185_Simscape_DataFile',…

'PriorDataFile','oldDataFile.m'); to the MATLAB “Command

Window” and press “Enter”.

!

Never use 'modelAndDataFile' instead of 'dataFile' as

the value for the 'ImportMode' input argument to call smim-

port()! This would cause an update of the complete Sim-

ulink/ Simulink Simscape block diagram and not only its data
set!

12. Wait until MATLAB finished the procedure. Read the procedure report

printed to the MATLAB “Command Window” carefully and follow the in-

structions if necessary.

13. Check if the new ABB_IRB_2600_12_185_Simscape_DataFile.m file ex-

ists in the MATLAB “Current Folder” sub window.

14. Delete the oldDataFile.m file via the MATLAB “Current Folder” sub win-

dow.

15. Open the ABB_IRB_2600_12_185_Simscape.slx Simulink/ Simulink

Simscape simulation model and check for any errors.

16. If any error(s) occur(s), firstly check the TROUBLESHOOTING section

(page 193). Then repeat the procedure of this section starting from step

one. You may restore the original Simulink Simscape Data folder from

the backup data created in step seven if the error(s) cannot be solved.

182

6. EXTENSIONS/ MODIFICATIONS 24 (36)

The section EXTENSIONS/ MODIFICATIONS provides useful hints and general

information concerning the structure and flow of the complete simulation pro-

gram (covering the MATLAB and the Simulink/ Simulink Simscape parts). Be-

cause of the wide variety of applicable extensions/ modifications, this section

does not contain any specific instruction sequences. Several example exten-

sions/ modifications are shown at the end of this section.

!

Adding, removing or modifying any data of the original data set can
cause fatal errors. Always save a copy of the original data sepa-
rately before applying any changes. Save your work periodically.

Before applying any changes to the simulation program, it is recommend to first-

ly get familiarized with its overall structure in general and its single components

in particular. Therefore, read the sections INTRODUCTION (page 164) and

CHANGE OF PARAMETERS (page 177) in advance. You may also check the

program flow charts of the MATLAB .m files from the appendices of the corre-

sponding thesis document (Appendix 4. Program Flow Charts).

The general structure of the simulation programs data set folder is shown in the

subsequent figure. (In the context of TROUBLESHOOTING (page 193), you

may also ensure the completeness of the data set.)

183

 25 (36)

The structure, dependencies and interactions of the MATLAB .m files and ex-

ternal data (within the data set) are depicted in the figure below. The directions

of connections refer to the real data flow (from the left to the right: calls, from

the right to the left: returns). Check the contents of the MATLAB .m files or the

program flow charts from the appendices of the corresponding thesis document

(Appendix 4. Program Flow Charts) to learn more about the input and output

variables/ arguments of each function/ .m file.

184

 26 (36)

As mentioned in the INTRODUCTION (page 164), all required data of/ for the

simulation (program) are stored to five main variables which are made visible/

accessible in the MATLAB “Workspace” (base) with the transition from the

MATLAB to the Simulink/ Simulink Simscape program part. Consider the sub-

sequent tables and explanations in order to obtain more detailed information

concerning the main simulation variables.

Name: Type: Description/Purpose:
Initialized/
Changed by:

simVar
1x1 struct
(9 fields)

Contains all required data for
the execution of the MATLAB
program part. Provides the re-
sults of the MATLAB program
part to the Simulink/ Simulink
Simscape program part.

Initialized by

simVar_init(),

changed by all
other functions of
the MATLAB pro-
gram part

smiData
1x1 struct
(3 fields)

Contains the block parameter
values of the imported Sim-
scape Multibody simulation
model automatically created
during the procedure of the ex-

ecution of the smimport()

function.

Created by
smimport(),

initialized by
load_smiData(

)

robotPara
1x1 struct
(7 fields)

Contains mainly values for the
parameterization of the block(s)
(diagram(s)) of the Simulink/
Simulink Simscape simulation
model.

ro-

bot_para_xls_

import()

robotModel
1x1 Rigid-
BodyTree

Contains the robotic manipula-
tor’s simulation model kinematic
structure (represented by rigid
bodies connected by joints) and
corresponding parameters. importrobot()

importInfo

1x1 Rigid-
BodyTree-
ImportInfo

Contains information concern-
ing the import procedure of the

importrobot() function.

185

 27 (36)

The variables robotModel and importInfo are the returning values/ vari-

ables/ objects of the MATLAB importrobot() function. If required, further

information concerning the importrobot() function can be obtained from

https://www.mathworks.com/help/robotics/ref/importrobot.html16. General infor-

mation concerning the robotModel and importInfo variables can also be

found there. To get more detailed information about the robotModel

(RigidBodyTree) variable, go to

https://www.mathworks.com/help/robotics/ref/robotics.rigidbodytree-

class.html17. It is strongly recommended to not to apply any changes to these

variables manually.

Type show(robotModel); to the MATLAB “Command Window”

and press “Enter” to view a 3D plot of the robot’s general structure.

Use showdetails(importInfo); in the same manner to print

the contents of the importInfo variable to the MATLAB “Com-

mand Window” in a readable format.

The smiData variable is loaded from the

ABB_IRB_2600_12_185_Simscape_DataFile.m file using the

load_smiData() function. The

ABB_IRB_2600_12_185_Simscape_DataFile.m in turn is a model data file de-

rived from the Simulink Simscape Multibody Import .xml file

(ABB_IRB_2600_12_185_Simscape.xml) using the smimport() function (for

more information refer to section CAD MODEL UPDATE (page 179)).

The simVar and robotPara variables were designed from the author in the

context of the accomplishment of the corresponding thesis work/ document. The

robotPara variable is created by the robot_para_xls_import() function

which in turn reads values from the ABB_IRB_2600-12-1.85_Parameters.xlsx

spreadsheet file.

16

 The MathWorks Inc. 2019. Support. Documentation: Robotics System Toolbox. Manipulator
Algorithms. Functions. Importrobot. Release: R2019a. Read on 24.03.2019
17

 The MathWorks Inc. 2019. Support. Documentation: Robotics System Toolbox. Manipulator
Algorithms. Classes. robotics.RigidBodyTree class. Release: R2019a. Read on 24.03.2019

https://www.mathworks.com/help/robotics/ref/importrobot.html
https://www.mathworks.com/help/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/robotics/ref/robotics.rigidbodytree-class.html

186

 28 (36)

The simVar variable is initialized by the simVar_init() function and re-

ceived and returned from all functions of the MATLAB program part in order to

allow all functions to read/ write information from/ to one centralized variable.

See the tables below to learn more about the structures and contents of the

simVar and robotPara variables.

Variable:
Fields (First

Level):
Description/ Purpose:

simVar

uiInput

Contains further subfields and sub subfields;
contains inputs of the graphical user interfaces

“joint_move_ui()” and “lin_path_ui()”.

uiControl

Contains further subfields (e.g. exeUpdate); for

control functionalities of the main graphical user
interface “main_ui”.

statusFlags

Contains (flag-) values (either “1” = “true” or “0” =
”false”); for the interaction/ control functionalities
between the different graphical user interfaces.

updateTime

Contains the update times of updated/ loaded /
created/ executed data/ libraries/ programs (e.g.
Simscape Multibody Multiphysics Library) for the
“Last updated:” labels in the “main_ui” GUI win-
dow.

linPathPlan

Contains further subfields (e.g. pRes); contains

the results of the linear trajectory planning

lin_traj_planning() (for

get_lin_move() internal use).

initVal

Contains further subfields (e.g. qStartA); con-

tains the initial pose (and velocities) of the Sim-
ulink/ Simulink Simscape simulation model.

targetVal

Contains further subfields (e.g. qTargetB); con-

tains the target pose (and velocities) of the Sim-
ulink/ Simulink Simscape simulation model.

gik

Contains a further subfield (qRes); stores the

(unformatted) results of the inverse kinematics

(inverse_kinematics()).

qSetValues

Contains further subfields (q1SV…q6SV); con-

tains the (formatted) set values of the joint an-
gles for the Simulink/ Simulink Simscape simula-
tion model.

187

 29 (36)

Variable:
Fields (First

Level):
Description/ Purpose:

robotPara

generalRo

eralRo-

botInfo

Contains further subfields (e.g. capacity);

contains general information of the real robotic
manipulator.

axisLim-

its

Contains further subfields (e.g. range); contains

axis/ joint limitations of the Simulink/ Simulink
Simscape simulation model equal to the axis/
joint limitations of the real robotic manipulator

(e.g. for input filtering in “joint_move_ui()”

and “lin_path_ui()”).

tcpLimits

Contains values (e.g. velocity); contains TCP

limitations of the Simulink/ Simulink Simscape
simulation model equal to the TCP limitations of
the real robotic manipulator(e.g. for input filtering

“joint_move_ui()” and “lin_path_ui()”).

jointPara

Contains further subfields and sub subfields (e.g.

stateTar); contains values for the parameteri-

zation of the revolute joint block(s) (diagram(s))
of the Simulink/ Simulink Simscape simulation
model.

motorPara

Contains further subfields and sub subfields (e.g.

ratPow); contains values for the parameteriza-

tion of the joint motor/ driver block(s) (dia-
gram(s)) of the Simulink/ Simulink Simscape
simulation model.

transmPa-

ra

Contains further subfields and sub subfields (e.g.

nCdt); contains values for the parameterization

of the joint transmission block(s) (diagram(s)) of
the Simulink/ Simulink Simscape simulation
model.

motDrivPa

ra

Contains further subfields and sub subfields (e.g.

vdc); contains values for the parameterization of

the joint motor driver block(s) (diagram(s)) of the
Simulink/ Simulink Simscape simulation model.

It is recommended to only read the original variables structures and not to apply

any changes to them. If required, add your own structures/ entries to the varia-

bles without overwriting the existing contents.

Use the MATLAB “Workspace” sub window to view the variables
contents by double-clicking them.

188

 30 (36)

Example 1: Modification of Robot Model (Links (Bodies)/ Joints) Properties

As mentioned in section CAD MODEL UPDATE (page 179), some simple

changes of the properties (links (solids/ rigid bodies) masses, centers of mass-

es, inertia properties, joint properties, rigid transformations, etc.) of the robotic

manipulator’s simulation model can be applied without changing and updating

the CAD model. In this example, the change of the mass of the end effector/

tool of the simulation model is shown exemplarily.

 Use the MATLAB “Current Folder” sub window or the “Address Field” to

navigate to the relative path:

../BT_ABB_IRB_2600_Robot_Sim._v_A\Data\Simulink Simscape Data.

 Open the ABB_IRB_2600_12_185_Simscape_DataFile.m file from

the MATLAB “Current Folder” sub window by double-clicking.

 Change to the MATALB “Editor” sub window to view the code of the

ABB_IRB_2600_12_185_Simscape_DataFile.m file. Search for the

code line: smiData.Solid(6).ID = 'Weld-

ing_End_Effector*:*Standard'; (line 196 in this case, see mark

a) in the figure below). (Consider that the end effector body is represent-

ed by the solid body with the index six (6).)

 Go to smiData.Solid(6).mass (line 190) and apply the desired

changes (see mark b) in the figure above) (consider the corresponding

unit written as comment behind the value).

 Save (overwrite) the applied changes.

b)

a)

189

 31 (36)

When changing e.g. the center of mass of a body (e.g. smiDa-
ta.Solid(6).CoM, line 191 in the figure above) always check the cor-
responding origin of this value from the Simulink Simscape simula-
tion model block diagram in advance.

Example 2: Adding/ branching off Signal Bus Signals

Within the Simulink/ Simulink Simscape simulation model, all sig-
nals are routed with the help of a signal bus system (exception:
values/ parameters directly or indirectly (“From Workspace” block)
obtained from the MATLAB “Workspace” (base)).

!

Simulink and Simulink Simscape use different signal domains. Al-
ways use “PS-Simulink Converter“ or “Simulink-PS Converter“
blocks for interfacing when adding or branching off bus signals
(bus signals are in the Simulink signal domain and use SI units or
derived SI units only).

The example adding/ branching off signal bus signals is exemplarily shown for

adding/ branching off signal bus signals within the “Controller Joint 1 (Axis 1)”

subsystem.

 Within the Simulink Simscape simulation model environment/ window,

navigate to the “Control Systems” subsystem. Then enter the sub sub-

system “Controller Joint 1 (Axis 1)”:

c)

e)

190

 32 (36)

 For branching off signals from the signal bus, double-click an existing

“Bus Element In” block (here “ControllerSystemIn-

Bus.Joint1OutBus.Angle” exemplarily, see mark c) in the figure above).

 Search for the desired signal in the bus structure depictured in the

opened window. Mark the signal(s) to be added (here “ElectricalTorque”

exemplarily) and press the “Add blocks for selected signals” button, see

mark d) in the figure above). The new “Bus Element In” block(s) will ap-

pear in the block diagram underneath the existing one(s). Alternatively,

you can add “Bus Element In” blocks from the Simulink “Library”.

 For adding any signal(s) to the signal bus, double-click an existing “Bus

Element Out” block (here “ControllerJoint1OutBus.ControlledValue” ex-

emplarily, (see mark e) in the second last figure). A window will appear,

similar to the one shown in the figure above. Instead of the “Add blocks

for selected signals” button, now press the “Add a new signal” button

(same appearance). A new signal will be added to the bus structure de-

pictured in the opened window. Furthermore, a new “Bus Element Out”

block will be added in the block diagram underneath the existing one.

Apply appropriate naming to the added bus signal. Alternatively, you can

add “Bus Element Out” blocks from the Simulink “Library”.

d)

191

Example 3: Change of the Joint Motor and Motor Driver 33 (36)

Subsequently, the change of the motor and the motor driver of Joint 1 of the

Simulink Simscape simulation model is shown exemplarily.

 Within the Simulink Simscape simulation model environment/ window,

firstly navigate to the “Simscape Robot Model” subsystem. Secondly, en-

ter the sub subsystem “Robot Base Subsystem”, following that, enter the

third level subsystem “Joint 1 Drive System”.

 Delete the “ASM 1 Driver”, “Phase Permute (Delta)” and “ASM 1 (Squir-

rel Cage)” blocks (see the marked area in the figure above). If not re-

quired for own signal routing purposes, also delete the “ASM 1 Meas-

urements” and “Joint1DriveOutBus.AsmMeasure” blocks.

 Create/ Insert the new motor model (and driver if required) and connect it

to the existing mechanical rotational conserving lines “R” (rod) and “C”

(case).

Only signal(s)/ block(s) from the same Simulink Simscape domain
can be connected directly (e.g. “Driveline”, “Electrical”, etc.) (con-
sider the different colours of the signals of the different domains).
For interfacing, use “Interface” blocks (e.g. “Rotational Simscape
Intft” block) to be found from the Simulink “Library” -> Simscape
Multibody Multiphysics Library.

192

 34 (36)

 Use the existing “Machine 1 Inertia” and “Machine 1 Viscous Damping”

blocks for representing the mechanical behaviour/ properties of the mo-

tor. Therefore, change the corresponding parameters in the

ABB_IRB_2600-12-1.85_Parameters.xlsx spreadsheet (see section

CHANGE OF PARAMETERS (page 177)). To disable the mentioned

predefined blocks, e.g. when neglecting mechanical influences of the

motors on the simulation model, set the specific parameters to zero.

(Setting the specific parameters to zero can possibly cause various er-

rors – try to use small values near zero (e.g. 1E-12) to avoid these errors

whenever occurred.)

Alternatively, you can delete the variable entries of the blocks settings

and type in the desired values directly.

Consider adapting the control system structures, to be found from the

“Control Systems” subsystem, in order to align the type(s) of the con-

trolled value(s) with the expected input(s) of the new motor and its driver

(in this context, also refer to step ten of the sub section SIMULINK/ SIM-

ULINK SIMSCAPE of the section OPERATION (page 171)).

193

7. TROUBLESHOOTING 35 (36)

The TROUBLESHOOTING section is meant for identifying and fixing errors oc-

curred in the context of using an unedited or an edited version of the simulation

program. Because of the high number of possible mistakes/ errors/ faults, only a

few typical, common and very specific, matters can be handled within this sec-

tion. Check the entries listed in the subsequent table whenever unknown errors

occurred and apply all applicable solutions/ corrections.

Also explore https://www.mathworks.com/help/ for further help.
(The MathWorks Inc. 2019. Support. Documentation. Release:
R2019a. Read on 23.03.2019)

Description(s)/ Error(s)/ Fault(s): Explanation(s)/ Solution(s):

For an unknown reason, I cannot
use the GUI and/ or close any win-
dow(s) and/ or exit the simulation
program.

Go to the MATLAB “Command Win-
dow”, place the cursor at any position
inside and press “CTRL+D”. This should
terminate all active MATLAB tasks.

I changed the robot parameters in
the robot parameters spreadsheet.
The changes are not applied to the
MATLAB or/ and Simulink/ Sim-
ulink Simscape environment(s).

Consider that the MATLAB program
needs to be run again after applying
changes to the robot parameters. Use
the “Update” button in the “main_ui” or
restart the program from the MATLAB

“Command Window” using runSim;.

Make sure that you saved the applied
changes by overwriting the existing
spreadsheet. Do not use “Save as”.

I changed the robot parameters in
the robot parameters spreadsheet.
MATLAB or/ and Simulink/ Sim-
ulink Simscape now report various
errors.

Check the applied changes for typos,
incorrect separators, incorrect units and
incorrect cell formats.

I changed values in MATLAB or/
and Simulink/ Simulink Simscape
environment(s) manually. Now var-
ious errors are reported (e.g. ex-
ceeded variable boundaries).

Ensure that the correct separators were
used. Example: one point zero five:
Incorrect: 1,05
Correct: 1.05

Motion planning of linear move-
ments takes a lot more time and
computational efforts than the mo-
tion planning of joint movements.

Motion planning of linear movements
requires solving inverse kinematics in
order to calculate a trajectory in joint
space (from the workspace trajectory).
Joint movements in contrast are directly
planned in joint space. Therefore, mo-
tion planning of linear movements re-
quires more computational time and ef-
forts.

https://www.mathworks.com/help/

194

 36 (36)

Description(s)/ Error(s)/ Fault(s): Explanation(s)/ Solution(s):

Compiling and solving the Sim-
ulink/ Simulink Simscape simula-
tion model is very slow and causes
high CPU, RAM and disk usage.

The simulation model at hand is com-
prehensive and detailed – a high de-
mand of computational performance is
considered as normal. You may close all
other running applications on your com-
puter in order to provide MATLAB the
maximum of available CPU, RAM and
disk capacities.

I opened the Simulink/ Simulink
Simscape simulation model manu-
ally from its folder. Several blocks
are marked in a red colour and I
cannot compile/ run the simulation
without errors.

Always run the GUI in advance in order
to provide the required data and varia-
bles via the MATLAB “Workspace”
(base) to the Simulink/ Simulink Sim-
scape simulation model.

I executed the simulation and tried
to run the GUI again using

runSim; in the MATLAB “Com-

mand Window”. MATLAB reports
‘…’ is not found the current folder.

Check the MATLAB “Current Folder”,
must be:
../BT_ABB_IRB_2600_Robot_Sim._v_A
or:
../BT_ABB_IRB_2600_Robot_Sim._v_B

I executed the Simulink/ Simulink
Simscape simulation. Result eval-
uation revealed that the set values
did not reached steady states until
the end of the simulation time.

Make sure that the value of the Sim-
ulink/ Simulink Simscape simulation
time is equal to or higher than the mini-
mum recommend simulation time print-
ed to the MATLAB “Command Window”
after pressing the “Open” button in the
“main_ui”.

I tried to extend the Simulink Sim-
scape simulation model block dia-
gram. I was not able to connect a
Simulink block to a Simulink Sim-
scape block or signal (or vice ver-
sa) (e.g. “Scope” block).

Simulink and Simulink Simscape use
different signal domains. Always use
“PS-Simulink Converter“ or “Simulink-
PS Converter“ blocks for interfacing.
Also ensure to apply appropriate set-
tings of the converter blocks (units, input
handling).

I disconnected a block from the
Simulink Simscape simulation
model block diagram for testing
purposes. The Simulink “Diagnos-
tic viewer” now reports various er-
rors when trying to compile/ run the
simulation.

Simulink Simscape block diagrams do
always need exactly one “Solver Con-
figuration” block. All blocks of the block
diagram need to be directly or indirectly
(via other blocks) connected the “Solver
Configuration” block.

The screen of my computer does
not display anything. I cannot open
the manual and check the trouble-
shooting section.

Try to reduce your personal environ-
mental impact by avoiding printing use-
less manual documents next time.

	Appendix1ThesisContract
	Appendix2ProjectPlan
	Appendix3ListofRequirements
	Appendix4ProgramFlowCharts
	Appendix5Manual
	PREREQUISITES
	INTRODUCTION
	INSTALLATION
	OPERATION
	MATLAB
	SIMULINKSIMULINKSIMSCAPE
	CHANGEOFPARAMETERS
	CADMODELUPDATE
	EXTENSIONS_MODIFICATIONS
	TROUBLESHOOTING

