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Virtual system mappings and simulations are fundamental and contemporary engineering 
methods, especially within the widely spread field of complex, multi-domain mechatronic robotic 
systems. Therefore, companies as well as educational institutions typically try to apply the most 
recent simulation methods and software in order to achieve future-oriented and successful 
teaching, studies and researches.  
The client of the thesis work at hand, Tampereen Ammattikorkeakoulu (TAMK) owns an ABB 
industrial robot manipulator that operates, among others, as a MIG/ MAG welding robot. Relat-
ed to that, this thesis work aimed at the development and implementation of a MATLAB® Sim-
ulink® simulation model of an ABB IRB 2600-12/1.85 six axis articulated arm industrial robot for 
the purpose of educational use in control system design. The main objectives were: Design and 
implementation of a modular, maintainable and extendable simulation model based on a 
MATLAB® Simulink® Simscape

TM
 Multibody

TM
 model, derived from the robot’s CAD model. The 

simulation model shall be used as a ready-to-use environment for control system structures 
design and include sufficient parameterization as well as user interface(s), motion planning and 
an operating manual.  
 
In the context of the accomplishment, firstly the entirety of requirements was identified. In order 
to clearly outline the work extent and to meet the requirements satisfyingly, necessary defini-
tions and regulations were formulated; this also covered general simplifications and restrictions. 
Task related, corresponding, common and state-of-the-art theory was studied and gathered 
from appropriate sources and adapted if required. The conceptual design was related to the 
preliminary determination of general matters e.g. the project structure and simulation flow but 
also of particular tasks e.g. the design of joint actuation models and graphical user interfaces. 
Finally, the conceptual design was implemented under the continuous consideration of the pro-
jects requirements, previously determined definitions and regulations and the corresponding 
theory. 
The result of this thesis work is considered as a comprehensive and fully functional simulation 
program/ model that meets the client’s requirements, covers optional accomplished tasks and 
can be used for the educational purposes it was initially meant for.  
Nevertheless, the simulation model at its state at the finalization of the thesis work at hand, 
suffers weaknesses, incompleteness and limited capabilities due to incomplete parameteriza-
tion, not conducted model validation and necessarily applied simplifications. Therefore, future 
continuations of this thesis work, e.g. in the context of further thesis works or semester projects, 
need to be applied to obtain a fully comprehensive and accurate simulation model. 
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1 INTRODUCTION 

 

From a general perspective, the origin of this thesis work bases on the demand 

of providing contemporary teaching methods to pupils and students. In this con-

text, simulation is an important share of the teaching content, especially within 

the widely spread engineering domain. 

Due to the continuous and rapid development of powerful simulation software 

during the last decades, nowadays complex systems can be virtually mapped 

and simulated with moderate effort. In parallel to that, the capabilities and avail-

abilities of computer systems in general, but also common PCs, increased mas-

sively while the costs decreased. Furthermore, software developers often pro-

vide discounted or free (academic) software versions for general educational 

purposes to the institutions or to the students/ pupils directly. 

In sum, this allows educational institutions to include the most recent simulation 

methods and software in teaching, studies and researches with moderate ad-

ministrational and financial efforts. 

 

From a more particular perspective, the topic of this thesis work was initiated by 

lecturers of the engineering department of the Tampereen Ammattikorkeakoulu1 

(TAMK). The TAMK owns an ABB2 IRB 2600-12/1.85 industrial robot manipula-

tor that operates, among others, as a MIG/ MAG welding robot equipped with a 

Fronius3 Robacta Drive CMT welding solution (which also includes the torch 

end effector). Unified with other ABB components and additional applications 

and equipment, the entirety represents a multifunctional robot cell located at the 

TAMK production engineering laboratory (room F0-19). The industrial manipula-

tor was and is still used for teaching, laboratory-, project- and thesis works but 

also in the context of the accomplishment of external commercial customer or-

ders. 

The purpose of the thesis work is the development of a MATLAB® Simulink®4 

simulation model of an ABB IRB 2600 six axis articulated arm industrial robot 

for educational use in control system design.   

                                            
1
 English: Tampere University of Applied Sciences 

2
 ABB Asea Brown Boveri Ltd. 

3
 Fronius International GmbH  

4
 MATLAB

®
 Simulink

®
 is a registered trademark of The MathWorks, Inc. 
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The simulation model shall be used as a ready-to-use environment for control 

system structures designed and implemented by pupils/ students. Thus, the 

simulation model shall include all components to execute, monitor and record 

kinematic and dynamic simulations of the robot, except the controller structures 

themselves. Additionally, the simulation model shall be easily varied, e.g. 

change of motor types, change of computer aided design (CAD) data and/ or 

extended, e.g. with pneumatics, hydraulics or any other applicable elements 

within the MATLAB Simulink (this also covers Simulink® Simscape™ and Sim-

scape™ Multibody™)5 environment. Furthermore, MATLAB Simulink simulation 

results shall be comparable to results gained from hand calculations, other sim-

ulation types or real measurements. 

 

 

FIGURE 1.1: ABB IRB 2600 industrial robot (ABB Asea Brown Boveri Ltd. 2019a) 

 

In the context of recent thesis works at the TAMK, the industrial manipulator 

was thematised in: Älykäs Huuva (Hyyppä 2015), Design of an Intelligent Pro-

tection Shield (Rodewald 2016), Designing and implementing a Robot Gripper 

using additive manufacturing (Gerland 2017), Creation of an Augmented Reality 

App for an Introduction to Industrial Machine Mechanics (Compton 2018).   

                                            
5
 Simulink

®
  Simscape™ and Simscape™ Multibody™ are trademarks or registered trademarks 

of The MathWorks, Inc. 
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2 TASK DEFINITION 

 

In addition to the description of the purpose of this thesis, written in the second 

last paragraph of the section 1, a conclusion of the thesis objectives is listed 

subsequently. The objectives were defined by the customer (TAMK) and do 

contain required as well as optional elements.  

 

Important note: The administrative part of the accomplishment of the thesis 

work also included a conclusion of a contract between the receiving institution 

(client; TAMK) and the author. This thesis contract also contains a complete 

listing of the thesis objectives and can be found from the appendices as Appen-

dix 1. Thesis Contract. The corresponding project plan is available from Appen-

dix 2. Project Plan. 

 

The thesis work bases on the industrial robot manipulator of the type: ABB IRB 

2600-12/1.85. Due to the topic of the thesis (simulation), processes and their 

outcomes are mainly related to software such as simulation software (MATLAB/ 

Simulink/ ABB RobotStudio) and CAD software. In this context, more details 

can be obtained from the thesis contract (Appendix 1. Thesis Contract) or the 

list of requirements (Appendix 3. List of Requirements). 

The simulation model to be created shall base on the MATLAB programming 

language which also covers Simulink and Simscape block diagrams. Predefined 

MATLAB/ Simulink contents like toolboxes, classes, functions, blocks, etc. shall 

be preferred and used whenever available to accomplish a task.  

As a minimum requirement, the interaction between the user and the simulation 

model shall be realised via the MATLAB command window. The creation of a 

(graphical) user interface(s) is optional, but if implemented, the design shall be 

kept simple and intuitive.  

The simulation model shall include a graphical representation of the robot 

based on a CAD model with a sufficient precision implemented via Simulink 

Simscape Multibody. The simulation model shall represent the real robotic sys-

tem with all its properties such as geometry and dimensions, physics, etc. as 

sufficient as an appropriate effort of the acquisition of the properties allows.   
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Identification measurements taken from the real robotic system are not part of 

the thesis. Required data shall be acquired from product documents, software 

sources, third parties, etc. 

In case of not obtainable data, simplifications and assumptions are allowed but 

to be clearly revealed and founded in a sufficient way. 

The simulation model shall use the BASE coordinate system (frame) as its main 

coordinate system. The BASE coordinate system shall be in coincidence with 

the WORLD coordinate system and represent a reference coordinate system 

which acts as reference for target definitions and end effector orientations. All 

coordinate systems are right-handed Cartesian coordinate systems. 

The home configuration, axis designations, initial angular positions, angular limi-

tations and directions of rotation (signs) of the simulation model shall be in ac-

cordance with the defaults of the real robotic system defined by the manufac-

turer. 

The simulation model shall include two types of motion planning. Firstly, a linear 

path planning from coordinate “A” to coordinate “B”, specified by the user in the 

reference coordinate system. Secondly, the values of the angles of every indi-

vidual rotational (revolute) joint of the robot model shall be allowed as user input 

for the motion planning of a joint movement. 

The structure of the simulation model shall be created in a modular way. Main-

taining, editing, updating and extending the model shall be possible with mod-

erate effort. The program flow and the operation of the model shall be designed 

clearly structured. Simulation results gained from MATLAB Simulink shall be 

comparable to measurements taken from the real robot system and/ or the ABB 

RobotStudio software, which is optional. Furthermore, a short concise instruc-

tion document for the operation and service of the simulation model shall be 

created. 

The simulation model shall generally base on the SI base units and derived 

units, exceptions are allowed if meaningful and sufficiently justified.  
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3 DEFINTIONS AND REGULATIONS 

 

In order to ensure a consistent content within this thesis work, the following def-

initions and regulations are valid for the complete thesis work. This also covers 

all the documents and data created in the context of the accomplishment of this 

work such as documentations, program codes, the simulation model, CAD data, 

etc. 

 

 

3.1 Units 

 

Only SI-units and derived SI-units are used. Deviating from this, the units “per-

centage [%]” and “degree [°]” are used in the context of user inputs (user inter-

faces and robot parameters spreadsheet) and simulation result measurements 

(Simulink Simscape environment) in order to increase the comprehensibility of 

the provided/ measured values.  

 

 

3.2 Gravitational Acceleration 

 

The value of the gravitational acceleration is in accordance with the MATLAB 

Simulink default settings and defined as: 

 

𝑔 = 9.80665 
m

s2
 (3.1) 

 

The direction is defined as the negative direction of the z-axis (Z0) of the base 

frame (see FIGURE 3.2). 

 

 

3.3 Manipulator Axes 

 

The definitions of the manipulator’s axes and the corresponding rotational direc-

tions of the revolute joints are in accordance with the manufacturer’s definitions 

and are shown below (FIGURE 3.1).  
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FIGURE 3.1: ABB IRB 2600 robot axes and rotational directions definitions 

 

TABLE 3.1: Assignments and limitations of the manipulator’s axes (ABB Asea Brown Boveri 
Ltd. 2019b, 11) 

n: Axis: Name: Symbol: Upper Limit [°]: Lower Limit [°]: 

1 Axis 1 A q1 +180 -180 

2 Axis 2 B q2 +155 -95 

3 Axis 3 C q3 +75 -180 

4 Axis 4 D q4 +400* -400* 

5 Axis 5 E q5 +120 -120 

6 Axis 6 F q6 +400** -400** 

*: (+ 251 rev. to - 251 rev. Max.) **: (+ 274 rev. to - 274 rev. Max.) 

 

 

3.4 Coordinate Systems (Frames) 

 

Coordinate systems (frames) are always right-handed Cartesian coordinate sys-

tems.  
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3.4.1 Base Coordinate System 

 

The base coordinate system (frame) (index 0, see FIGURE 3.2) definition is in 

accordance with the common definition: The x-y-plane of the base frame is in 

coincidence with the set-up area of the base of the robot. The z-axis of the base 

frame is in coincidence with the robot’s first revolute joint axis (Axis 1, A) and 

points away from the x-y-plane.  

The described definition of the base frame is in accordance with the manufac-

turer’s definition (ABB Asea Brown Boveri Ltd. 2019c, 24-28). 

 

 

FIGURE 3.2: ABB IRB 2600 robot coordinate systems definitions 

 

 

3.4.2 World Coordinate System 

 

The world coordinate system (frame) is in coincidence with the base coordinate 

system.  

Y
6
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X
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O
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0
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3.4.3 Reference Coordinate System 

 

The reference coordinate system (frame) is in coincidence with the base coor-

dinate system. 

 

 

3.4.4 Tool/ End Effector Coordinate System  

 

The tool/ end effector coordinate system (frame) (index 6, see FIGURE 3.2) 

definition is in accordance with the common definition: The x-y-plane of the tool/ 

end effector frame is in coincidence with the tool mounting surface of the last 

(seventh) link of the manipulator. The z-axis of the tool/ end effector frame is in 

coincidence with the manipulator’s last revolute joint axis (Axis 6, F) and points 

away from the x-y-plane. The origin of the tool/ end effector coordinate system 

O6 (see FIGURE 3.2) is called tool center point (TCP). 

The described definition of the tool/ end effector frame is in accordance with the 

manufacturer’s definition (ABB Asea Brown Boveri Ltd. 2019c, 24-28). 

 

 

3.5 Home Position 

 

The home position of the manipulator is shown FIGURE 3.1. In the home posi-

tion, the manipulator’s pose is defined by the angular values of the axes: 

 

𝑞1 … 𝑞6 = 0 ° (3.2) 

 

This axes configuration also acts as the reference for any angular joint move-

ments. 

 

 

3.6 Tool/ End Effector Orientation 

 

In the context of simulation model user inputs, the tool/ end effector orientation 

is described with the common definition of the ZYX-Euler angles [α β γ].   
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The base frame of the manipulator (see sub section 3.4.1) is the reference 

frame for the description of the tool/ end effector orientation. This topic is dis-

cussed more detailed in section 4.1.3.  

 

 

3.7 General Simplifications and Restrictions of the Simulation Model 

 

Real robotic systems are highly dynamic and complex structures. The robotic 

system’s static and dynamic behaviour is influenced by means of effects origi-

nated in their type, application, conditions, environment etc. Despite the fact 

that some of the effects cause non-negligible impacts on the system’s behav-

iour, simplifications are necessarily made and restrictions applied in order to 

keep the thesis work within a manageable extent. Furthermore, the created 

simulation is meant for educational purposes with emphasis on control system 

design at undergraduate level. Therefore, the complexity of the model needs to 

cover main characteristics of the real system but also needs to be kept at a 

moderate level to ensure the traceability of its behaviour.  

 

 

3.7.1 Air Resistances 

 

Influences caused by forces evoked by the movement of the real robotic system 

in its ambient atmosphere (air) are neglected.  

Justification: Air resistance influences were not mentioned by any source listed 

in the references in the context of industrial robots, therefore, they were consid-

ered as negligible. This is only valid for the robotic system itself. In case of the 

simulation of loads with large dimensions, e.g. sheet metals, combined with 

high velocity movements, non-negligible deviations can occur which are not 

considered by the simulation model. 

 

 

3.7.2 Rigidities 

 

All types of bodies of the simulation model such as links, joints, shafts, trans-

mission gears, belts, etc. are considered as ideal rigid bodies.   
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Justification: The determination of the non-rigid properties of the real robotic 

system components can only be obtained from non-public manufacturer’s data 

and/ or sophisticated measurements not covered by the scope of the thesis 

work. If obtained, elasticities can be taken into consideration by adding the cor-

responding blocks within the Simulink environment. 

 

 

3.7.3 Frictions 

 

The simulation of frictions is limited to the number of Simulink Simscape blocks 

of main elements of the real robotic system modelled in the simulation model 

and their individual level of detail (e.g. viscous rotor damping). This covers only 

constant and linear frictional effects such as breakaway frictions, Coulomb fric-

tions and (linear) viscous (damping) frictions. Non-linear frictional effects are not 

implemented but can be added to the Simulink block diagram(s) if required and 

if sufficient parameters are available. 

 

 

3.7.4 Bearings 

 

Only joint bearings are simulated separately within the simulation model. The 

assumption is made that the effects related to the bearing of each individual 

component (e.g. motor) are sufficiently covered by the applicable parameters of 

the corresponding individual Simulink block.  

 

 

3.7.5 Backlashes and Uncertainties 

 

All types of backlashes, e.g. originated from bearings and transmissions are 

neglected. All types of uncertainties of the real robotic system, especially geo-

metrical uncertainties are neglected.  

Justification: At the case at hand, both backlashes and uncertainties can only 

be obtained from non-public manufacturer’s data and/ or sophisticated meas-

urements not covered by the scope of the thesis work.   
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3.7.6 Time Delays (Dead-Times) 

 

Time delays occur on the real robotic system, originated from the specific be-

haviour of each physical component and their interactions within the complete 

system. This also covers time delays caused by the differences of continuous 

signals considered in the theory and non-continuous (= discrete) signals typical-

ly processed in real systems, especially in the context of control systems (We-

ber 2017, 177). Furthermore, the simulation bases on computation and is exe-

cuted on PCs with non-real-time operating systems, thus discrete signals are 

used and time delays also depend on the recent workload of the PC. 

Because sophisticated measurements are necessary to identify the time delays 

of the real robotic system, time delays are not considered in the simulation. 

If obtained, time delays can be taken into consideration during control system 

design in the Simulink environment using appropriate Simulink blocks. 

 

 

3.7.7 External Loads 

 

The simulation model represents the real robotic system only equipped with a 

welding torch end effector. The welding system is not connected to the real ro-

botic manipulator, except the end effector and its supply wiring. In this context, 

the end effector supply wiring is not included in the simulation model because 

the modelling of its specific behaviour is considered as too complex. 

If required, external loads, e.g. represented by rigid bodies, can be added to the 

CAD model within the CAD software or the simulation model within the Simulink 

Simscape environment.  

 

 

3.7.8 Electric Motors 

 

The level of detail of the electric motor models (joint actuation) of the simulation 

model is limited to the level of details of the corresponding Simulink Simscape 

blocks (diagrams). This covers typical electrical (e.g. voltage, power, impedanc-

es, etc.) and mechanical (e.g. viscous rotor damping) parameters only.  
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3.7.9 Transmission Gears 

 

The level of detail of the transmission gears/ gearboxes is limited to the level of 

detail of the corresponding Simulink Simscape blocks (diagrams) e.g. non-

uniform transmission behaviour. Transmission gears parameterization covers 

gear ratios, (rotational) inertias, input to output efficiencies and output to input 

efficiencies only. The values of (rotational) inertias of the transmission gears are 

always related to the input shaft (motor side).  

 

 

3.7.10 Other Electric Components and Computers 

 

The level of detail of the electric components of the simulation model, e.g. motor 

driver circuits, is limited to the level of detail of the corresponding Simulink Sim-

scape blocks (diagrams) e.g. parasitic capacities. 

Specific features and properties of the manufacturer’s computational units and 

power systems are not identified or implemented in any way due to the lack of 

sufficient acquirable sources.  

 

 

3.7.11 Thermal Effects 

 

Thermal effects are generally not considered in the context of this thesis work 

(e.g. transmission lubricant viscosity) but can be considered by additional Sim-

ulink blocks or appropriate parameterization of existent blocks with specific pre-

pared but deactivated functionalities (e.g. transmission gears/ gearbox blocks). 

 

 

3.7.12 Environment 

 

Influences on the real robotic system caused by environmental effects such as 

any kinds of external forces, vibrations, energy supply fluctuations, electromag-

netic disturbances, atmospheric changes, etc. cannot be considered due to a 

lack of acquirable information and/ or their unpredictable character.  
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4 THEORY 

 

The subsequently described theory only covers the particular topics which were 

necessarily needed to accomplish the tasks related to this thesis work. If not 

defined divergently, the general overall usage of formulas, symbols, naming, 

indexing and units relates to the content described in this theory section. 

 

 

4.1 Industrial Robot Manipulators 

 

At the present state and in the context of modern technologies and societies, 

the term “robot” is often used loosely to describe a particular machine or appli-

cation from a huge variety of subareas (e.g. industrial robots, service robots, 

etc.). Several national and international systematic definitions, classifications 

and standardizations exist in order to define and categorize each robot precise-

ly. A short but concise definition of industrial robots: 

 

A manipulating industrial robot is an automatically controlled, re-
programmable, multipurpose manipulator programmable in three or 
more axes, which may be either fixed in place or mobile for use in 
industrial automation applications (Kelly, Santibáñez & Loría 2005, 
4). 

 

Due to the predetermination of a particular robot type (ABB IRB 2600) to be 

used in this thesis work, the theory is narrowed to stationary (fixed in place) in-

dustrial robot manipulators with (six axes) serial kinematics.  

 

Real industrial robot manipulators as well as their theoretical abstractions do 

usually consist of several elements but can be broken down into two types of 

kinematic main elements, links (rigid bodies) and joints, as shown subsequently 

(FIGURE 4.1).  
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FIGURE 4.1: ABB IRB 2600 individual robot elements assignment 

 

TABLE 4.1: Assignment and typecast of the ABB IRB 2600 robot elements 

No.: (Trivial-)Name: Element Type: Connection Link i+1 to Link i via: 

0 Base 

(Rigid Body) 

Link 

Revolute Joint 

(f = 1) 

1 Shoulder 

2 Lower Arm 

3 Upper Arm 

4 Wrist 

5 Wrist  

6 
Wrist 

(End Effector) 

 

 

4.1.1 Articulated Arm Manipulators 

 

From the perspective of mechanics, manipulators are commonly distinguished 

by their kinematic structure. The structures are generally divided into the fields 

of serial and parallel kinematics, whereby in the case at hand the serial kine-

matics were considered only.  

0 

1 

3 

2 

4 

5 

6 
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Serial kinematic structures are characterized by an open kinematic chain, a 

chain of links connected by (kinematic) joints, typically revolute or prismatic 

joints. Links are considered as ideal rigid bodies with surfaces that are geomet-

rically perfect in both position and shape. Each link has its own fixed frame. 

A kinematic joint is a connection between two bodies that allows relative motion 

with a particular number of degrees-of-freedom f (DOF) and without any clear-

ances. In the case at hand, the robotic manipulator only contains of a number of 

six single revolute (R) joints, whereby a revolute joint itself is a lower-pair-joint 

(surface contact) with one DOF. (Siciliano & Khatib 2008, 18-19) 

 

𝑓 = 1 (4.1) 

 

Hence, each revolute joint allows only one direction of motion and is represent-

ed by one motion variable: 

 

𝑞i (4.2) 

 

In general, the z-axis of the i-1-coordinate frame is in coincidence with the i-

revolute axis of the joint, see FIGURE 4.2 below. 

 

 

FIGURE 4.2: Exemplary depiction of a kinematic structure’s coordinate frames (DH-formalism)  
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The motion variable qi typically describes the angle between the fixed frames of 

the two links connected to the joint. The motion variables of the robot, six in this 

case, are collected conveniently in the column vector q: 

 

𝒒 = [

𝑞1

𝑞2

⋮
𝑞6

] (4.3) 

 

The robotic manipulator at hand contains six single revolute joints, whereby 

every single revolute joint increases the DOF of the robot by one. Thus, the six 

axis robotic manipulator has six DOF:  

 

𝑛 = 𝐹 = 𝑓 = 6 (4.4) 

 

In theory, this allows the end effector (also tool), or more precisely, the TCP to 

reach every point within the workspace (neglecting the angular joint limitations 

of real robotic systems).  

 

 

4.1.2 Direct Kinematics 

 

In general, the theory of kinematics describes the motion of a kinematic struc-

ture without the consideration of forces and/ or torques causing that motion (Si-

ciliano & Khatib 2008, 9). In the general context of robotics and in the particular 

context of this document, the theory of kinematics was split up into direct (also 

forward) kinematics (section 4.1.2) and the inverse kinematics (section 4.1.3). 

 

Note: The kinematic structure of the robotic manipulator (RigidBodyTree) was 

automatically generated during the procedure of the Simulink Simscape Multi-

body CAD model import. Direct kinematics are automatically solved in the Sim-

ulink/ Simulink Simscape environment during the computation of the solution of 

the simulation model. Inverse kinematics, required for motion planning purposes 

(see section 4.2), are solved using the predefined MATLAB inverse kinematics 

solver (GeneralizedInverseKinematics; gik()).   
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Therefore, the subsequently described theories of direct and inverse kinematics 

were narrowed to the basic required extent. 

 

Continuing from the descriptions of the previous section 4.1.1, the robotic ma-

nipulator’s kinematic structure is described by an open chain, a series of rigid 

bodies (links) and joints, whereby the first (fixed) link (index 0) is typically 

named “base” and the last link (index 6 in this case) is typically named “end ef-

fector” or “tool”. 

The purpose of the theory of direct kinematics is the description of the end ef-

fector’s/ tool’s position and orientation, relative to a reference (fixed base frame, 

index 0), as a function of the joints motion variables (united in the 6 x 1-

dimensional vector q), hence, in joint-space (Siciliano, Sciavicco, Villani & Orio-

lo 2009, 58). 

In the case at hand, the six DOF of the robotic system are divided into the posi-

tion of the tool frame (O6) (three DOF) and the orientation of the tool frame (an-

other three DOF) with respect to the reference frame (O0). This is typically de-

scribed by a 4 x 4-matrix: 

 

𝑻(𝒒)6
0 = [𝒙6

0(𝒒) 𝒚6
0(𝒒) 𝒛6

0(𝒒) 𝒑6
0(𝒒)

0 0 0 1
] (4.5) 

 

Whereby 𝒑6
0 is a 3 x 1-dimensional vector that points from the origin of the fixed 

frame (O0) to the origin of the tool frame (O6) (= Cartesian coordinates of the 

TCP) and 𝒙6
0 , 𝒚6

0 , 𝒛6
0 are each 3 x 1-dimensional unit vectors that describe the 

orientation of the tool frame, both position and orientation with respect to the 

fixed reference frame (see FIGURE 4.3 below).   
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FIGURE 4.3: Exemplary description of the relative tool position and orientation (Siciliano, Sci-
avicco, Villani & Oriolo 2009, 59, modified). 

 

To obtain the description of the tool position and orientation depending on the 

properties of the kinematic structure, so called homogeneous transformations, 

represented by homogenous transformation matrices: 

 

𝑨i
i−1(𝑞i) (4.6) 

 

Need to be applied. In the case at hand, a sequence of six homogenous trans-

formations is required to obtain the transformation from the base frame to the 

tool frame:  

 

𝑻(𝒒)6
0 = 𝑨1

0(𝑞1) 𝑨2
1(𝑞2) 𝑨3

2(𝑞3) 𝑨4
3(𝑞4) 𝑨5

4(𝑞5) 𝑨6
5(𝑞6) (4.7) 

 

This procedure is exemplarily depictured in the subsequent FIGURE 4.4.  

𝑧0 

𝒑6
0 

𝒛6
0 

𝒚6
0 

𝒙6
0 

𝑂6 

𝑂0 

𝑥0 

𝑦0 
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FIGURE 4.4: Exemplary depiction of homogenous frame transformations (Siciliano, Sciavicco, 
Villani & Oriolo 2009, 61). 

 

The homogenous transformation matrices in turn are each based on a se-

quence of four fundamental matrix operations: 

 

𝑨i
i−1 = 𝑅𝑜𝑡(𝑧i−1, 𝜃i) ∙ 𝑇𝑟𝑎𝑛𝑠(𝑧i−1, 𝑑i) ∙ 𝑇𝑟𝑎𝑛𝑠(�⃗�i−1, 𝑎i) ∙ 𝑅𝑜𝑡(�⃗�i, 𝛼i) (4.8) 

 

The described method as well as the parameters θi, di, ai and αi (the so called 

Denavit-Hartenberg (DH) parameters), are based on and determined during the 

application of the quasi-standard (but non-unique!) Denavit-Hartenberg formal-

ism for the general determination of the frames of a kinematic structure: 

 

 Axis zi along the i + 1-joint axis. 

 Oi is located at the intersection of the zi axis with the common normal to 

the zi−1 axis and the zi axis. 

 Axis xi along the common normal to the axes zi−1 and zi with positive di-

rection from i-joint to i + 1-joint. 

 Axis yi is chosen in a way to obtain a right-handed frame. 

 

(Siciliano, Sciavicco, Villani & Oriolo 2009, 62). (See also FIGURE 4.2)  
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Typically, the DH parameters are united in n x 1-dimensional parameters vec-

tors each:  

 

𝜽, 𝒅, 𝒂, 𝜶 (4.9) 

 

In the case at hand, the elements of the 6 x 1-dimensional parameter vectors d, 

a and α are fixed values based on/ derived from the mechanical structure (ge-

ometry) of the robotic system. The elements of the 6 x 1-dimensional parameter 

vector θ are variable parameters (values) and defined by the elements (values) 

of the joint position/ motion variable q. 

 

 

4.1.3 Inverse Kinematics 

 

The inverse kinematics theory aims at the determination of the required values 

of the joint position variable in order to describe a given position and orientation 

of the end effector (relative to the reference frame), hence, inverse kinematics is 

the inversion of the direct kinematics (Siciliano & Khatib 2008, 27). Furthermore, 

inverse kinematics are an important and fundamental part of robotic manipula-

tors theory, especially in the context of motion planning, e.g. for the calculation 

of a linear reference trajectory for welding applications. 

In contrary to the direct kinematics, where orientation and pose of the end effec-

tor are always same for the same set of joint position variable values (= unique), 

solving the inverse kinematics is a much more complex problem due to: 

 

 The corresponding equations are typically non-linear; closed-form solu-

tions do not necessarily exist.  

 Multiple solutions may exist. 

 An infinite number of solutions may exist. 

 Possibly no admissible solutions are available due to the specific ma-

nipulator’s kinematic structure. 

 

(Siciliano, Sciavicco, Villani & Oriolo 2009, 90-91).  
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Modern commonly used applications like e.g. MATLAB use numerical methods 

for the solving the inverse kinematics problem. As closed-form solutions are 

typically related to the analytical solving method, numerical solving does not 

suffer this problem. Furthermore, and in contrary to the analytical method, nu-

merical methods are independent from the specific robot manipulators type. In 

turn, numerical solving can be less performant in some cases and typically does 

not allow the computation of all possible solutions (theoretically 16 possible and 

admissible (without limitations) solutions in the case of a six axis (revolute) joint 

manipulator). (Siciliano & Khatib 2008, 28) 

 

The problem of the existence of multiple solutions of the inverse kinematics 

needs to be considered especially in the robotic simulation context and is ex-

emplarily shown in FIGURE 4.5 below. From the mathematical perspective, 

both poses (solid and dashed lines) represent a valid solution for same prede-

termined pose and orientation of the end effector.  

 

 

FIGURE 4.5: Example of a multiple solution problem of inverse kinematics (Siciliano, Sciavicco, 
Villani & Oriolo 2009, 93, modified) 

 

The problem of an infinite number of solutions of the inverse kinematics is relat-

ed the superior topic of the so called singularities, which also play an important 

role in robotics theory. In this context, an example related to the description of 

the end effector’s position orientation is discussed subsequently.  
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Therefore, continuing from equation (4.5): 

While the three elements of the vector 𝒑6
0 are sufficient to determine the tool 

position within the reference frame, the orientation of the tool needs to be de-

scribed with nine values, due to each of the unit vectors 𝒙6
0 , 𝒚6

0 , 𝒛6
0 is 3  x 1-

dimensional. The orientation of the tool frame can also be described with only 

three variables α, β, γ, the so called Euler angles, and with the help of three rota-

tional matrices (Weber 2017, 39). Amongst a number of other possible variants 

of the Euler angles formulation, in this case the order Z-Y-X was used to meet 

the thesis requirements and to be in line with the standard MATLAB formulation. 

To obtain the unit vectors from the Euler angles, three rotational transformations 

need to be applied to the tool frame in the corresponding and predetermined 

order: 

 

𝑹0
6 =  𝑹z(𝛼) 𝑹y′(𝛽) 𝑹x′′(𝛾) (4.10) 

 

 Whereby: 

𝑹…(… ) = [
cos (… ) −sin (… ) 0
sin (… ) cos (… ) 0

0 0 1

] (4.11) 

 

Similar to the all other vector/ matrix robotics kinematic theory formulations, the 

Euler angles formulation suffers from non-uniqueness and can cause serious 

problems like the so called “Gimbal Lock”, e.g. in the case of a spherical robot 

manipulator’s wrist (as applicable for the industrial robot type of this thesis 

work). 

For appropriate and more efficient computation, modern (numerical) robotic cal-

culation algorithms, e.g. like implemented in MATLAB, are based on the usage 

of the so called and, most important, unique unit quaternion: 

 

𝝐 = 𝜖0 + 𝜖1 𝑖 + 𝜖2 𝑗 + 𝜖3 𝑘 (4.12) 

 

Whereby 𝜖0, 𝜖1, 𝜖2 and 𝜖3 are scalars and i, j and k are operators satisfying: 

 

𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1 (4.13) 
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Euler angles can be converted into the unit quaternion and vice versa, e.g. us-

ing standard conversion tables obtainable from respective literature. (Siciliano & 

Khatib 2008, 13) 

As the Euler angle formulation is more comprehensible and therefore used for 

user input purposes, the Euler angles are converted to the unit quaternion using 

the MATLAB eul2quat() function before passed in to the MATLAB inverse 

kinematics solver.  

 

The problem of not admissible solutions caused by the specific manipulator’s 

kinematic structure can be solved by the provision of a sufficient number of de-

grees of freedom and/ or an appropriate set of workspace limitations. 

 

 

4.1.4 Dynamics 

 

As the theory of kinematics describes the robot manipulator’s motion without the 

consideration of any forces or torques, the theory of dynamics covers the scope 

of kinematics as well as forces and torques. Equal to the theory of kinematics, 

the theory of dynamics can also be split up into direct (forward) and inverse dy-

namics.  

Direct dynamics theory typically describes the robot manipulator’s joint motion 

(accelerations), from which forces and torques can be calculated, for any given 

joint actuation forces/ torques. Inverse dynamics in turn allow determining the 

joint actuation forces required for any specific robotic manipulator’s motion 

(specified by a trajectory). In the context of practical applications, direct dynam-

ics are usually used for simulation purposes. Inverse dynamics in contrast are 

typically implemented for the appropriate calculations related to feedforward 

(FF) control (as part of control system structures). (Siciliano & Khatib 2008, 36)  

 

Due to the fact that control system design was not part of this thesis work, the 

theory of inverse dynamics is not discussed any further.  

Additionally and according to the purpose of the thesis work at hand, the robot 

manipulator’s dynamics of the simulation model created were not to be solved 

by the author by own program codes.   
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Instead, the simulation model’s dynamics are solved numerically within the 

“background” of the Simulink Simscape Multibody environment. Therefore, the 

(direct) dynamics theory is only slightly touched in this section in order to pre-

sent the fundamental coherences between the general theory and the simula-

tion model.  

 

Most commonly, dynamics of robot manipulators are described by either the  

Newton–Euler formulation or the Lagrange formulation (Siciliano & Khatib 2008, 

44). Using the joint-space, neglecting external forces applied to the robot ma-

nipulator (free robotic motion) but considering gravitational and frictional effects, 

both the Newton–Euler formulation and the Lagrange formulation will lead to 

(Kelly, Santibáñez & Loría 2005, 77): 

 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) + 𝒇(�̇�) = 𝝉 (4.14) 

 

Whereby: 

 

𝒒, �̇�, �̈� (4.15) 

 

Are the n-dimensional vectors of the (revolute) joint positions, velocities and 

accelerations. 

 

The n x n-dimensional matrix: 

 

𝑴(𝒒) (4.16) 

 

Is the (joint-space related) inertia matrix. In the context of the simulation model, 

the inertia matrix is represented by the rigid bodies (links) of the Simulink Sim-

scape Multibody simulation model and their individual properties (masses, Cen-

ters of Mass (CoM), Moments of Inertia (MoI) and Products of Inertia (PoI)), de-

rived from the imported CAD model assembly of the industrial robot.  
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The n x n-dimensional matrix: 

 

𝑪(𝒒, �̇�) (4.17) 

 

Is the so called centrifugal and Coriolis matrix. In combination with the vector of 

the joint velocities, the centrifugal and Coriolis matrix represents the centrifugal 

and Coriolis torques of the dynamic model evoked by the robotic motion. In the 

context of the simulation model, the centrifugal and Coriolis phenomena are 

fully covered by the Simscape Multibody simulation environment.  

 

The n-dimensional vector: 

 

𝒈(𝒒) (4.18) 

 

Is the vector of gravitational torques. This vector represents torques within the 

dynamic model evoked by the effect of gravitational accelerations applied to 

every element (rigid bodies; links) of the simulation model.  

 

In the context of the simulation model, gravitational effects are simulated within 

the Simulink Simscape Multibody environment. Also refer to section 3.2. 

 

The n-dimensional vector: 

 

𝒇(�̇�) (4.19) 

 

Is the friction torque vector. The appearance of the friction vector depends on 

the applied frictional model. In the case at hand, a common static friction model 

considering viscous (Fm1) and Coulomb frictions (Fm2) was applied and therefore 

the friction vector f is substituted by: 

 

𝒇(�̇�) =  𝑭m1 �̇� +  𝑭m2 𝑠𝑖𝑔𝑛(�̇�) (4.20) 
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Whereby Fm1 and Fm2 are n x n-dimensional diagonal matrices, containing the 

individual constant friction coefficients/ torques (Kelly, Santibáñez & Loría 2005, 

76). 

 

In the context of the simulation model, the viscous friction coefficient matrix Fm1 

is represented by the entirety of the viscous damping/ friction parameters and 

the Coulomb friction torque matrix Fm2 is represented by the entirety of the Cou-

lomb friction torque parameters applied to the Simulink Simscape simulation 

model. 

 

The n-dimensional vector: 

 

𝝉 (4.21) 

 

Contains the individual joint torques. In the context of the simulation model, the 

torques of the joint actuation motor models, transformed by the transmission 

gear models, are applied to the joint torque vector of the dynamic model. Based 

on that the simulation model’s motion is solved within the Simulink Simscape 

Multibody environment. 

 

 

4.2 Motion Planning 

 

In contrast to the theories of kinematics (section 4.1.2 and section 4.1.3) and 

the theory of dynamics (section 4.1.4), motion planning is not automatically cal-

culated by MATLAB Simulink at any point, therefore, the theory of motion plan-

ning is discussed more comprehensively and more detailed. 

 

The purpose of robotic manipulators is the execution of predefined tasks within 

their workspace, based on controlled motions of the combination of the ele-

ments of the complete robotic system. In this context, typically two main prob-

lems need to be considered and solved: The avoidance of collisions of the ma-

nipulator’s elements with the environment and the correct positioning and orien-

tation of the manipulator’s tool.   
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Because collision avoidance was not a part of the thesis work, the subsequent 

theory only focuses on motion planning with emphasis to the manipulator’s tool. 

Depending on the task to be accomplished, a proper motion type needs to be 

chosen from the range of existing types of robotic motions such as, point-to-

point (PTP) movements, linear movements, circular movements etc. According 

to the task definition, only linear and joint movements were taken into consider-

ation. After the determination of a motion type, the motion needs to be planned 

in order to obtain set values, also references, for the closed-loop control system 

structures of the manipulator.  

The task of motion planning is part of the covering topic “robot navigation” which 

in turn can be divided into three sub tasks: path planning, trajectory planning 

and control design (Kelly, Santibáñez & Loría 2005, 13). 

Path planning covers the determination of a curve between the initial and the 

final position and orientation of the manipulator’s end effector, avoiding colli-

sions with obstacles (Kelly, Santibáñez & Loría 2005, 14).  

Control design is thematised in section 4.3. 

Trajectory planning is about generating a time dependent trajectory from the 

curve obtained during the process of path planning, typically defined in work-

space coordinates. (The so obtained trajectory is also called reference trajecto-

ry). (Kelly, Santibáñez & Loría 2005, 14) 

 

Based on the demands from the task definition, in this case joint and linear (re-

ferring to the welding application) movement types were considered only. In this 

context, motion planning is also narrowed to movements from a starting (A) to 

target (B) position (and orientation of the manipulator’s tool).  

As the joint movement type does not require following a defined path of the ma-

nipulator’s tool within the workspace and already operates in joint (space) coor-

dinates, no path planning is required. Linear motions by contrast require a de-

fined movement of the tool along a defined (linear) path. In general, this defined 

paths, also called continuous paths (CP), are formulated in workspace coordi-

nates and require a sufficient path planning in order to enable the robot follow-

ing the demanded path.  
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4.2.1 Linear Trajectory Planning 

 

If not defined divergently, the theory of this section 4.2.1 and the subsequent 

section 4.2.2 base exclusively on the theory described in Weber (2017, 71-105). 

 

A linear path (defined in the robotic manipulator’s workspace), to be followed by 

the robot’s TCP (e.g. for the creation of a weld seam), can be described by a 

vector pp. This vector is defined as: 

 

𝒑p =  𝒑tgt − 𝒑stt  (4.22) 

 

Whereby the ptgt vector is a vector aiming at the target point “B” of the linear 

workspace path and the pstt vector is a vector aiming at the start point “A” of the 

linear workspace path. Both are position vectors originated in the origin of the 

reference frame (O0). See FIGURE 4.6 below. 

 

 

FIGURE 4.6: Vector based linear workspace path formulation (Weber 2017, 86, modified) 

 

The time dependent movement of the TCP along the vector pp can be de-

scribed with the help of the newly introduced, scalar and time dependent path 

parameter sp(t). 

 

Furthermore, time counting starts with the start of the motion at tstart = t0 = 0 s, 

hence:   

pstt 

p
tgt

 O
0
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𝑠p(𝑡start) =  𝑠p(𝑡0) = 𝑠p(0 s) = 0 m (4.23) 

 

Accordingly, time counting ends with the end of the motion at tend, hence: 

 

𝑠p(𝑡end) =  𝑠abs (4.24) 

 

Whereby sabs is the absolute length of the vector 𝒑p and calculated from: 

 

𝑠abs = |𝒑p| =  |𝒑tgt − 𝒑stt| =

√(𝑝tgt,z − 𝑝stt,z)
2

+ (𝑝tgt,y − 𝑝stt,y)
2

+ (𝑝tgt,x − 𝑝stt,x)
2
  

(4.25) 

 

The time dependent workspace trajectory vector p(t), originated in the origin of 

the reference frame (O0) and pointing at the desired contemporary TCP work-

space position (= origin of the tool frame O6) can be now described as: 

 

𝒑(𝑡) = 𝒑stt + [𝑠p(𝑡) ∙
(𝒑tgt − 𝒑stt)

𝑠abs
] (4.26) 

 

As the variables ptgt and pstt are initially directly defined (e.g. by a user input) 

and the variable sabs only needs to be calculated once, the path parameter sp(t) 

needs to be described more detailed. 

Therefore, the necessary assumption of a motion starting from a resting state 

and ending at a resting state is made, thus: 

 

�̇�p(𝑡start) = �̇�p(0 s) =  𝑣p(0 s) = 0 
m

s
     (4.27) 

 

And: 

 

�̇�p(𝑡end) =  𝑣p(𝑡end) = 0 
m

s
     (4.28) 
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For any further determination of the path parameter sp(t), its specific course 

needs to be determined. This is typically accomplished by the determination of 

the path velocity �̇�p(𝑡) =  𝑣p(𝑡) by a so called velocity profile or by the determi-

nation of the path acceleration �̈�p(𝑡) = 𝑎p(𝑡) by a so called acceleration profile.  

As a simple trapezoidal velocity profile only consists of linear and continuous 

functions, the derivation of the velocity (profile) �̇�p(𝑡), the acceleration (profile) 

�̈�p(𝑡) reveals that the motion is not (sufficiently) jerk-free (jerk 𝑗 = 𝑠p(𝑡)), see 

FIGURE 4.7. 

 

 

FIGURE 4.7: Trapezoidal velocity profile (left) and the corresponding acceleration profile (right) 
(Weber 2017, 75, modified) 

 

This in turn could cause harmful vibrations and stresses of the robotic system. 

In order obtain a smooth motion, a sinusoidal acceleration profile was chosen. 

The motion is basically described by (general formulation): 

 

�̈�(𝑡) = �̂� ∙ sin2 (
𝜋

𝑡s
∙ 𝑡)      (4.29) 

 

(Whereby �̂� describes the peak value of the acceleration and 𝑡s describes the 

length of the considered time span) and, along with the corresponding velocity 

profile and the corresponding position graph, depicted in FIGURE 4.8 below.  

�̇�p(𝑡) �̈�p(𝑡) 
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FIGURE 4.8: Sinusoidal acceleration profile and corresponding velocity and position graphs 
(Weber 2017, 79, modified) 

 

For a further mathematical description, firstly the new time variables 𝑡acc, 𝑡dec 

and 𝑡end are introduced accordingly to the definition shown in FIGURE 4.8 

above. 

As the aim of the determination of the sinusoidal acceleration profile is to obtain 

an appropriate description of the path parameter sp(t), equation (4.29) needs to 

be integrated two times for each of the three distinctive motion phases: 

 

The motion phase of acceleration (0 ≤ t < tacc) is described by: 

 

𝑠p(𝑡) = 𝑎m ∙  {(
1

4
∙ 𝑡2) + [

𝑡acc
2

8𝜋2
∙ (cos (

2𝜋

𝑡acc
∙ 𝑡) − 1)]}  (4.30) 

 

The motion phase of continuous velocity (tacc < t ≤ tdec) is described by: 

 

𝑠p(𝑡) = 𝑣m ∙ [𝑡 − (
1

2
∙ 𝑡acc)]   (4.31) 

  

�̈�p(𝑡) �̇�p(𝑡) 

𝑠p(𝑡) 

𝑡acc 𝑡acc 

𝑡acc 

𝑡dec 

𝑡dec 

𝑡dec 

𝑡end 

𝑡end 

𝑡end 

𝑠abs 

−𝑎m 

 

𝑎m 

  

𝑣m 
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The motion phase of deceleration (tdec < t ≤ tend) is described by: 

 

𝑠p(𝑡) =
𝑎m

2
∙  {[𝑡end ∙ (𝑡 + 𝑡acc)] − [

(𝑡2 +  𝑡end
2 + 2 ∙ 𝑡acc

2 )

2
]

+ [
𝑡acc

2

4𝜋2
∙ (1 − cos (

2𝜋

𝑡acc
∙ (𝑡 − 𝑡dec)))]}  

(4.32) 

 

Whereby the value 𝑎m describes the maximum applied (desired) path accelera-

tion value and 𝑣m describes the maximum applied (desired) path velocity value. 

Both are necessarily predetermined by user inputs or obtained from any other 

source in advance. 

 

In the case of short trajectory and/ or high acceleration values, the maximum 

desired path velocity value 𝑣m can possibly not be reached and needs to be 

adapted to the maximum reachable path velocity. For obvious practical matters, 

the value of the maximum applied path acceleration 𝑎m is kept constant. Start-

ing from this, the maximum reachable path velocity can be calculated from: 

 

𝑣m,max =  √
𝑎m ∙ 𝑠abs

2
   (4.33) 

 

Then be compared to the maximum desired path velocity value 𝑣m and adapted 

if necessary. The procedure is depicted in the flow chart shown in FIGURE 4.9: 

below. 

 

FIGURE 4.9: Flow chart: adaption of the applicable path velocity (Weber 2017, 77, modified)  

𝑣m =  √
𝑎m ∙ 𝑠abs

2
  

𝑣m >  √
𝑎m ∙ 𝑠abs

2
 ? 

𝑣m, 𝑎m, 𝑠abs 
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true 
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Finally, the time variables 𝑡acc, 𝑡dec and 𝑡end are calculated from (same length of 

the acceleration and deceleration phases (= symmetric velocity profile)): 

 

𝑡acc =
2 ∙ 𝑣m

𝑎m
   (4.34) 

 

𝑡end =
𝑠abs

𝑣m
+ 𝑡acc   (4.35) 

 

𝑡dec = 𝑡end − 𝑡acc   (4.36) 

 

 

4.2.2 Joint Trajectory Planning 

 

In contrast to the linear trajectory planning which requires subsequent solving of 

the inverse kinematics in order to obtain the joint-space trajectory from the 

workspace trajectory, joint trajectory planning is directly accomplished in the 

joint-space. 

The general procedure of joint trajectory planning is similar to the procedure of 

linear trajectory planning and also uses a sinusoidal acceleration profile, but the 

path parameter is now: 

 

𝒒p(𝑡) = [𝑞1,p(𝑡) 𝑞2,p(𝑡) 𝑞3,p(𝑡) 𝑞4,p(𝑡) 𝑞5,p(𝑡) 𝑞6,p(𝑡)]T (4.37) 

 

Instead of sp(t). Hence, the joint trajectory planning needs to be applied for each 

of the joint position variables (= robot manipulator’s axes) individually, six times 

in this particular case. 

 

𝒒(𝑡) = [𝑞1(𝑡) 𝑞2(𝑡) 𝑞3(𝑡) 𝑞4(𝑡) 𝑞5(𝑡) 𝑞6(𝑡)]T (4.38) 

 

In theory, the individual joint trajectory planning procedures could be executed 

independently from each other’s, which is called asynchronous motion and typi-

cally causes non-obvious trajectory courses and a higher overall mechanical 

stress level of the robotic manipulator.  
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Therefore, the decision was made to fully synchronize all individual axis trajec-

tories. The fully synchronized trajectory motion is characterized by the same 

lengths of each of the three distinctive motion phases for each axis as exempla-

rily shown for a trapezoidal velocity profile in FIGURE 4.10 below. 

 

 

FIGURE 4.10: Exemplary depiction of a fully synchronized axis motion (velocity) 

 

Whereby the slowest axis is necessarily the so called leading axis and deter-

mines the length of the motion phase of acceleration, of continuous velocity and 

of deceleration for all other non-leading axes. 

For the identification of the leading axis, firstly the overall traveling times of all 

individual axes need to be calculated, using the theory described for the linear 

trajectory planning but substituting: 

 

𝒑tgt = 𝑞i,tgt   (4.39) 

 

𝒑stt = 𝑞i,stt   (4.40) 

 

Thus: 

 

𝑞i,abs =  |𝑞i,tgt − 𝑞i,stt| (4.41) 

  

𝑡1,dec = 

𝑡2,dec = 

𝑡3,dec 

𝑣1,m(𝑡), 𝑣2,m(𝑡), 𝑣3,m(𝑡) 

𝑣1,m(𝑡) 

 

,  

 

𝑡 

𝑡1,acc = 

𝑡2,acc = 

𝑡3,acc 

𝑡1,end = 

𝑡2,end = 

𝑡3,end 
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And: 

 

𝑣m =  𝑣i,m  [
rad

s
]  (4.42) 

 

𝑎m =  𝑎i,m  [
rad

s2
]  (4.43) 

 

𝑡acc =  𝑡i,acc (4.44) 

 

𝑡dec =  𝑡i,dec (4.45) 

 

𝑡end =  𝑡i,end (4.46) 

 

Hence: 

 

𝑣i,m,max =  √
𝑎i,m ∙ 𝑞i,abs

2
   (4.47) 

 

𝑡i,acc =
2 ∙ 𝑣i,m

𝑎i,m
   (4.48) 

 

𝑡i,end =
𝑞i,abs

𝑣i,m
+ 𝑡i,acc   (4.49) 

 

𝑡i,dec = 𝑡i,end − 𝑡i,acc   (4.50) 

 

Then the maximum traveling time is calculated from: 

 

𝑡end,max = max (𝑡i,end )   (4.51) 

 

This also identifies the leading axis. If once determined, the maximum traveling 

time is now valid for all axes, thus:  
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𝑡𝑖,end = 𝑡end,max   (4.52) 

 

Accordingly, the values of 𝑡acc and 𝑡dec of the leading axis are applied for all 

other axes: 

 

𝑡i,acc = 𝑡acc,max   (4.53) 

 

𝑡i,dec = 𝑡end,max   (4.54) 

 

Subsequently, the individual maximum desired path velocity and acceleration 

values of the non-leading axes need to be adapted to the new time variable val-

ues with: 

 

𝑣i,m =
𝑞i,abs

𝑡i,dec
  (4.55) 

 

And: 

 

𝑎i,m =
2 ∙ 𝑣i,m

𝑡i,acc
  (4.56) 

 

Finally, the individual joint-space trajectories can be calculated from: 

 

𝑞i(𝑡) = 𝑞i,stt + [𝑞i,p(𝑡) ∙
(𝑞i,tgt − 𝑞i,stt)

𝑞i,abs
] (4.57) 

 

Using: 

 

The motion phase of acceleration (0 ≤ t < ti,acc) is described by: 

 

𝑞i,p(𝑡) = 𝑎i,m ∙  {(
1

4
∙ 𝑡2) + [

𝑡i,acc
2

8𝜋2
∙ (cos (

2𝜋

𝑡i,acc
∙ 𝑡) − 1)]}  (4.58) 
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The motion phase of continuous velocity (ti,acc < t ≤ ti,dec) is described by: 

 

𝑞i,p(𝑡) = 𝑣i,m ∙ [𝑡 − (
1

2
∙ 𝑡i,acc)]   (4.59) 

 

The motion phase of deceleration (ti,dec < t ≤ ti,end) is described by: 

 

𝑞i,p(𝑡) =
𝑎i,m

2
∙  {[𝑡i,end ∙ (𝑡 + 𝑡i,acc)] − [

(𝑡2 + 𝑡i,end
2 + 2 ∙ 𝑡i,acc

2 )

2
]

+ [
𝑡i,acc

2

4𝜋2
∙ (1 − cos (

2𝜋

𝑡i,acc
∙ (𝑡 − 𝑡i,dec)))]}  

(4.60) 

 

 

4.3 Control Systems 

 

As the topic of robotic manipulator control is highly sophisticated and compre-

hensive, only coarse and narrowed outlines of the topic are discussed in this 

section. Furthermore, the scope of the thesis work did not covered any control 

system design, but common control system theory was considered in order to 

create an environment that meets the requirements for state of the art control 

systems design. 

 

In a first distinction, the field of robot control can be divided into the area of 

force control and the areas of position/ motion control, whereby hybrid forms 

also exist. The force control is typically meant for the purpose of the control of 

forces and torques applied from the robot to its environment or vice versa (We-

ber 2017, 23). 

In the case at hand, only free robotic motion was considered and therefore, the 

topic of force control was not discussed any further. 

Continuing from that, position control is related to the task of controlling the ro-

bot manipulator to reach a specific set-point (Kelly, Santibáñez & Loría 2005, 

135). Motion control in contrast is related to the task of controlling desired ma-

nipulator’s motions, or more precise, following a desired trajectory (Kelly, San-

tibáñez & Loría 2005, 224).  
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Both position and motion control are independent from external forces and tor-

ques.  

Furthermore, a distinction can be made between internal (joint) robot control 

and external robot control as shown in the subsequent FIGURE 4.11. 

 

 

FIGURE 4.11: Schematic depiction of internal and external robot control (Weber 2017, 25, mod-
ified) 

 

From FIGURE 4.11 above can be obtained that external robot control requires: 

 

 Additional external measuring devices 

 Inverse kinematics solving 

 Subsequent internal control system structures  

 

Because external measuring devices were not covered by the thesis scope, the 

theory of external robot control was neglected but without excluding possible 

future implementations of external control to the simulation model, because in-

ternal robot control is subordinated to external robot control. 
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As joint actuations (e.g. by servomotors) as well as joint variable measurements 

(e.g. by the servomotor’s resolver) are typically joint-space related, internal ro-

bot control can be considered as the fundamental control system type of a 

common industrial robot. 

Following this, it must be considered that changes of one specific joint variable 

in most of the cases also causes impacts on all other joint variables of the ro-

botic manipulator’s system, therefore multi-variable control is required for ap-

propriate control of the typically non-linear coupled robotic structure. (Weber 

2017, 25) 

In this context, another distinction is made between the so called centralized 

and decentralized control. Decentralized control bases on the assumption of a 

robotic manipulator consisting of a number of n independent systems to be con-

trolled (n joint variables), whereby coupling effects are treated as disturbances 

(Siciliano, Sciavicco, Villani & Oriolo 2009, 309). 

Centralized control in contrast includes the decentralized control structures but 

also considerers the inter-system connections and dependencies (influences 

based on the typically non-linear couplings within the simulation model) (Sicili-

ano, Sciavicco, Villani & Oriolo 2009, 327). 

Based on that, the superordinate structure, centralized control, was again not 

further considered but without excluding possible future implementations of a 

centralized control to the simulation model. 

A typical and common scheme of a closed-loop single-input single-output (SI-

SO) decentralized control system structure, including up-streamed inverse kin-

ematics, is shown below (FIGURE 4.12). 

 

 

FIGURE 4.12: Decentralized SISO control system structure (Bajd, Mihelj, Lenarčič, Stanovnik & 
Munih 2010, 78, modified) 
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Theoretically, decentralized control system structures can be of the types: 

 

 Single-input single-output (single variable control without feedforward 

control (e.g. individual joint position qi)) 

 Multiple-input single-output (MISO) (single variable control with feedfor-

ward control (e.g. individual joint position qi)) 

 Single-input multiple-output (SIMO) (cascaded control system without 

feedforward control) 

 Multiple-input multiple-output (MIMO) (cascaded control system with 

feedforward control)  

 

Whereby the cascaded (SIMO) control system structures, as shown in FIGURE 

4.13, are proven and common in the context of all kinds of (electric motor driv-

en) positioning tasks. 

 

 

FIGURE 4.13: Schematic depiction of a decentralized cascaded SIMO control system structure 
(Grote, Bender & Göhlich 2018, T112, modified) 

 

This cascaded decentralized structure can be extended to a more performant 

MIMO structure with moderate efforts by the implementation of a superior cen-

tralized feedforward control system (also called Computed Torque Feedforward 

Control), as shown in the subsequent FIGURE 4.14.  
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FIGURE 4.14: Schematic depiction of a decentralized cascaded MIMO control system structure 
with centralized feedforward control (Grote, Bender & Göhlich 2018, T112, modified) 

 

 

4.4 MATLAB Simulink 

 

The software MATLAB is a numerical computing environment based on vector- 

and matrix operations, suitable for the operating systems (OS) Microsoft® Win-

dows®6, Apple® macOS®7 and Linux®8. MATLAB provides numerical calcula-

tions and visualisations using its own high-level programming language. Nowa-

days, MATLAB is widespread in the research, development and industry and 

mainly used in the context of mathematical and engineering sciences. (Pie-

truszka 2014, 1) 

MATLAB also contains the graphical development environment Simulink. Sim-

ulink provides modelling and simulation of dynamic systems (linear and non-

linear) mainly based on block diagrams. In- and outputs of the simulation can be 

provided and evaluated directly in the Simulink environment but also indirectly 

from the MATLAB Workspace or M-files. This also allows further processing of 

the Simulink simulation results within the MATALB environment. (Pietruszka 

2014, 167)   

                                            
6
 Microsoft® Windows® is a registered trademark of Microsoft Corporation 

7
 Apple® and macOS® are registered trademarks of Apple Inc. 

8
  Linux® is a registered trademark of The Linux Foundation® 
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Simulink itself provides several integrated tools such as Stateflow®9 or Sim-

scape. Simscape is a tool for modelling and simulating multi-domain physical 

systems typically occurring within the area of mechatronic systems. Simscape is 

also mainly based on block diagrams, covering electrical, mechanical, and hy-

draulic components. (Pietruszka 2014, 353)  

Focusing on mechanical issues, Simscape Multibody provides a multibody sim-

ulation environment for three-dimensional (3D) mechanical systems which also 

covers the import of CAD model assemblies. As it is a part of the Simulink envi-

ronment, in general, Simulink functionalities can be applied in the Simscape 

environment and models can be parameterised using MATLAB variables and 

expressions. (The MathWorks Inc. 2019a)  

 

 

4.5 Programming 

 

A wide variety of programming languages, types, methods and supporting tools 

exist, typically related to the specific problem to be solved. The problems solved 

in the context of the thesis work at hand were mainly related to the technical 

domain and the working environments were predetermined. Hence, program-

ming was accomplished using the MATLAB programming language (text-based) 

within the MATLAB environment and block diagrams (graphical) within the Sim-

ulink/ Simulink Simscape environment exclusively.  

Program planning was managed following the typical basic programming pro-

cedure: 

 

1. Identification of the demanded/ required program outputs 

2. Identification of the available/ required program inputs 

3. Determination of the required processing program code 

 

In this context, the outlines, the main program flow, the main characteristics and 

functionalities were sufficiently described and documented visually using appro-

priate tools for the creation of program flow charts like PapDesigner10 Version 

2.2.0.8.04.  

                                            
9
 Stateflow® is a registered trademark of The MathWorks, Inc. 

10
 Copyright© friedrich-folkmann.de 2017  
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Additionally, the basic code creation rules were applied: 

 

 Sufficient code comments  

 Consistent naming of data, variables, functions, etc. 

 Modular code structures  

 A descriptive header for each individual code, exemplarily shown below: 

 

%########################################################## 

% 

% Project   : 

% File Name   :          

% Author   :             

% Date Created  :       

% Purpose   : 

% Revision History : 

% 

% Date        Author              Revision          Changes 

% 

%########################################################## 
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5 CONCEPTUAL DESIGN 

 

Related to the general purpose and requirements of the thesis work, the simula-

tion model is mainly centred around a Simulink Simscape Multibody representa-

tion (block diagram) of the real robotic system, based on and derived from its 

CAD model.  

Firstly, the level of completeness (compared to the real robotic system) of an 

automatically generated Simulink Simscape Multibody simulation model was 

examined with the help of a prepared CAD model of the ABB IRB 2600-12/1.85 

industrial robot (provided by the TAMK) and the MATLAB smimport() func-

tion. (The procedure of the preparation of the CAD model is precisely described 

in section 6.1). FIGURE 5.1 shows the Simulink Simscape Multibody block dia-

gram automatically derived from the CAD model assembly of the industrial ro-

bot.  

 

 

FIGURE 5.1: Automatically generated Simscape Multibody model block diagram  

 

The block diagram fully represents the manipulator’s kinematic structure, con-

sisting of the two basic elements, (revolute) joints and rigid bodies (links) 

blocks. Rigid Transform blocks are used to describe the geometrical relation-

ships between the individual links and joints.  

It can be clearly seen that the joint actuation systems are completely missing.  
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Thus, no control, signal or measurement system structures exist. Furthermore, 

no parameterization was applied, except the kinematic parameters (DH-

parameters, joint types) and mass/ inertia/ graphical appearance (CoM, MoI, 

PoI, etc.) parameters derived from the CAD model during the automatic genera-

tion. 

Therefore, the conceptual design of the Simulink/ Simulink Simscape model 

was mainly related to the identified and summarized tasks to be accomplished 

listed below:  

 

 Design of the robot manipulator’s joint actuation (bearings, transmis-

sions, motors, motor drivers (inverters)) 

 Design of appropriate simulation model signal processing (acquisition, 

routing, provision) 

 Design of appropriate preparations for control system structures 

 Design of measurement systems 

 

Furthermore, the task of identifying and outlining appropriate solutions for gath-

ering, determining, processing and providing all the required information to the 

simulation model was pending.  

The decision was made to accomplish these tasks within the MATLAB environ-

ment, whereby the main tasks can be expressed as:  

 

 Parameterization of the simulation model (acquisition, preparation and 

provision of the parameters) 

 Set values (reference values, reference trajectories) calculation and pro-

vision  

 

 

5.1 General Simulation Program Structure 

 

The draft of the general simulation program structure, depicted as simplified 

function diagram, is shown in the subsequent FIGURE 5.2.  
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FIGURE 5.2: General simulation program structure diagram 

 

The image shown above should be self-explanatory and was used as guidance 

for clearly structured progresses of the processed work.  

As the required CAD data of the robotic manipulator only needed to be built and 

assembled once and are already provided to the simulation program, the pro-

cess of the CAD model handling was not specified any further in the diagram 

but is discussed sufficiently in section 6.1.  

 

 
5.2 Simulink/ Simulink Simscape 

 

5.2.1 Simscape Multibody Model 

 

Due to the similarities of the automatically generated Simulink Simscape Multi-

body block diagram structure (FIGURE 5.1) to the general kinematic structure 

(open, serial kinematic chain) of the real robotic system, the decision was made 

to retain the already existent general block diagram structure unchanged. 

FIGURE 5.3 shows a sketch of the concept of the simulation model’s Simscape 

block diagram.  
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FIGURE 5.3: Freehand sketch of the concept of the simulation model’s Simscape block diagram 

 

In accordance with the (kinematic) theory (section 4.1), the number of degrees 

of freedom is equal to the number of joints (with f = 1), thus the robotic structure 

consists of n = F = f = 6 (revolute) joints and seven rigid bodies (considering link 

6 and the end effector as one body due to the rigid connection). Therefore, a 

number of seven subsystems shall represent the kinematic structure of the ma-

nipulator. The subsystems shall be in series, rigidly linked and connected to a 

signal bus. Each subsystem shall mainly contain one rigid body (link i), the (i+1 

revolute) joint and the corresponding joint actuation (except the end effector 

subsystem). The general subsystem structure shall be same for all other sub-

systems, except the end effector subsystem which only shall contain the end 

effector rigidly connected to link 6. Exemplarily, a sketch of the concept of a 

subsystem is shown in FIGURE 5.4 below. 

 

 

FIGURE 5.4: Freehand sketch of the concept of a subsystem of the Simscape block diagram  
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The main task of the conceptual design was related to the determination of 

general concepts and structures - the specific contents of the further (sub) sub-

system were unknown at this point. Therefore, the “black-box-method” was 

used for the depiction of required elements/ blocks of the subsystems block di-

agram. 

The rigid body (sub) subsystem and (revolute) joint block already existed (see 

FIGURE 5.1) and no further specifications were needed. 

The measurement (sub) subsystem was not drafted any further as its structure 

and contents were highly dependent on the specific obtainable signals of the 

finally implemented individual elements/ blocks of the block diagram. Neverthe-

less, the discussion of the control system theory (section 4.3) revealed that 

each Subsystem i Measurement Subsystem at minimum needs to capture at 

minimum the corresponding: 

 

 Joint position, velocity and acceleration variables 𝑞i, �̇�i, �̈�i 

 Joint torque variable 𝜏i 

 

A sufficient description of the finally implemented measurement subsystem can 

be found from the later section 6.2.4. 

 

A sketch of the concept of a joint actuation (sub) subsystem is shown in FIG-

URE 5.5 below. 

 

 

FIGURE 5.5: Freehand sketch of the concept of a joint actuation subsystem   
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The motor block of the Joint i+1 Actuation Subsystem (FIGURE 5.5) shall be 

chosen from the range of predefined motor model blocks of the Simulink Sim-

scape Library. 

The motor type of the real robotic system was identified as alternating current 

(AC) asynchronous motor (see section 6.4.1). Therefore, the decision was 

made that an Asynchronous Machine Squirrel Cage (ASM) model block from 

the Simulink Simscape Electrical Library shall be implemented as it meets the 

characteristics of the real motor best (from the range of available library ele-

ments). 

 

 

FIGURE 5.6: Screen capture of a Simulink Simscape Asynchronous Machine block  

 

Similar to the motor block, the gearbox block of the Joint i+1 Actuation Subsys-

tem shall be chosen from the range of predefined gearbox model blocks of the 

Simulink Simscape Library. 

The gearbox type of the real robotic system was identified as cycloidal reduction 

gear (see section 6.4.1). Therefore, the decision was made that a Cycloidal 

Drive model block from the Simulink Simscape Driveline Library shall be imple-

mented as it is the only available and reasonable applicable library element. 

 

 

FIGURE 5.7: Screen capture of a Simulink Simscape Cycloidal Drive block  
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According to the requirements, predefined MATLAB/ MATLAB Simulink (Sim-

scape) contents should always be preferred if reasonable and applicable. In the 

case of the motor driver subsystem, the decision was made that the required 

function principles and blocks of the MATLAB Simulink Simscape “Asynchro-

nous Machine Scalar Control” (pe_asm_scalar_control) example block 

diagram shall be utilized as it is applicable to the chosen motor model block and 

meets the requirements best. 

 

 

FIGURE 5.8: Screen capture of the MATLAB Simulink Simscape “Asynchronous Machine Sca-
lar Control” example block diagram 

 

From FIGURE 5.5 can be obtained that the motor driver subsystem input needs 

to be aligned to the controlled value from the joint controller subsystem. In this 

context, it needs to be mentioned again that control system structure design 

was not part of the thesis scope and therefore, later and from external parties 

applied control system structures and the corresponding controlled values were 

unknown at this point. Therefore, and in order to increase the comprehensibility 

of the simulation model, the decision was made that the motor driver shall be 

created in a way to expect scalar values (similar to the mentioned example) 

within the range from -1 to +1 as the controlled value. Thus: “+1” = “100% pow-

er in the positive direction” and “-1” = “100% power in the negative direction”. 

In the case of more sophisticated control system structure design to be applied 

by an external party (SIMO, MIMO), the motor driver subsystem can be adapted 

accordingly if required.   
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The signal processing block of the Joint i+1 Actuation Subsystem shall only be 

implemented if required, e.g. for signal bundling, depending on the final struc-

ture and contents of the joint actuation subsystem unknown at this point. 

Additional elements/ blocks shall also be implemented if the finally applied pre-

defined motor and/ or gearbox blocks not include all required simulation model 

parameters (e.g. viscous rotor damping). 

 

 

5.2.2 Simulink 

 

The simulation model is meant for the purpose of control structure system de-

sign in an educational context. Therefore, the decision was made that the ap-

pearance of the Simulink block diagram shall be similar to the appearance of a 

common basic closed-loop control system block diagram, as shown in FIGURE 

5.9 below. 

 

 

FIGURE 5.9: Block diagram of a common basic closed-loop control system structure 

 

As Simulink Simscape (Multibody) is a sub environment of Simulink, the 

Simspace Multibody model of the robotic system (as described in the previous 

section 5.2.1) shall be implemented as a subsystem of the overlaying Simulink 

block diagram. In the context of FIGURE 5.9, the Multibody block diagram 

would be then embedded in the “System” block.  

From FIGURE 5.9 can also be obtained that a controller subsystem and signal-

ling were needed to complete the demanded Simulink block diagram structure.  

Therefore, summarizing the theory formerly discussed in section 4.3 and the 

additionally studied theory from the literature Weber (2017), Kelly, Santibáñez & 

Loría (2005) and Bajd, Mihelj, Lenarčič, Stanovnik & Munih (2010):   

- 

r(t) 
Controller System 

e(t) u(t) 

+ 

y(t) 

z(t) 
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A number of n decentralized MIMO structures is necessarily the fundamental 

control system structure to be provided within the simulation model in order to 

enable the design and implementation of any other control system structure. 

Hence, the control system structure to be designed and implemented in the 

context of the thesis work shall cover at minimum: 

 

 A superior control system structure carrying the individual decentralized 

control system structures in order to provide an environment for central-

ized control if required 

 Six independent (decentralized) control system structures, one for each 

of the simulation model’s (revolute) joints (joint variables (q1-q6)) 

 Multiple inputs covering joint-space position set values as well as meas-

ured actual values of the joint actuation systems (e.g. joint position, ve-

locity, acceleration and torque) 

 Multiple outputs covering the joint space controlled values as well as the 

controlled values of the joint actuation systems (e.g. motor driver set val-

ue) 

 

For signalling between the individual Simulink and Simulink/ Simscape subsys-

tems and any other (sub) subsystems, all signalling options available from the 

Simulink Signal Routing Library were investigated and rated. Based on that, the 

decision was made that a signal bus shall be used, as it provides a minimum 

amount of signal lines (= clear overview) but maximum comprehensibility, 

adaptability and extensibility (compared to e.g. direct wiring or “From” & “Goto” 

blocks). 

Because the signal bus only allows transferring Simulink domain signals, con-

verting shall be applied for interfacing from/ to other signal domains when add-

ing or branching off bus signals (e.g. “PS-Simulink Converter“ or “Simulink-PS 

Converter“ blocks). Furthermore, the decision was made to only transfer SI unit 

and derived SI unit signal values within the bus (except signals originally without 

unit) in order to prevent errors, as the bus signals are values without any unit. 

Therefore, unit conversion shall also be applied when adding or branching off 

bus signals if required.  
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5.2.3 Parameter Provision 

 

In order to enable an efficient and convenient provision of the parameters of the 

individual elements/ blocks of the Simulink and Simulink Simscape block dia-

grams, parameterization shall be implemented indirectly via the simulation 

model variables obtainable from the MATLAB Workspace (see later section 

5.3.1). 

 

 

FIGURE 5.10: Screen capture of an exemplary block parameterization  

 

This method provides a structured and centralized compilation of all simulation 

model parameters in one or more variables which in turn allow a quick and ex-

tensive access for viewing and/ or modifications of individual parameters. 

 

 

5.3 MATLAB 

 

As described in the introductory paragraphs of this section (5), the simulation 

program can be divided into a Simulink/ Simulink Simscape part and a MATLAB 

part. The previous sections 5.1 and 5.2 describe the simulation model’s general 

overall structure, its individual elements and their functional dependencies.  

In order to also determine sequential dependencies between the individual ele-

ments and functionalities, a general flow chart, shown in FIGURE 5.11 below 

was created.  
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FIGURE 5.11: General Simulation Program Flow Chart 

 

Based on the previously determined main tasks of the MATLAB program part:  

 

 Simulation model parameterization 

 Set values calculation and provision  

 

And the main contents and functionalities obtainable form FIGURE 5.2 and 

FIGURE 5.11, appropriate conceptual designs were elaborated and are pre-

sented and discussed within the subsequent sections 5.3.1, 5.3.2 and 5.3.3. 

 

5.3.1 Simulation Model Variables 

 

In the context of the previously mentioned automatically generated Simulink 

Simscape Multibody simulation model from the CAD model, using the MATLAB 

smimport() function, the “ABB_IRB_2600_12_185_Simscape_Data.m” file 

was automatically created. The corresponding and predetermined MATLAB var-

iable of this file is smiData. 

Furthermore, the predetermined variables robotModel and importInfo are 

automatically created from the MATLAB importrobot() function, required for 

inverse kinematics solving (see section 5.3.3) .  
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As it is highly recommended not to change these predetermined, required and 

automatically generated variables: 

 

 smiData 

 robotModel 

 importInfo 

 

The decision was made to create new own variables for the MATLAB program 

part. Therefore, the variable: 

 

 robotPara 

 

Shall be used to store the simulation model parameters in SI and/ or derived SI 

units, imported from the externally provided robot parameters compilation. The 

creation/ initialization of the variable and the subsequent storing of the parame-

ters shall be accomplished within a separate MATLAB function. 

 

The variable: 

 

 simVar 

 

Shall be created in order to act as the main working variable of the MATLAB 

program part. In detail, the variable shall be passed into and returned from each 

individual MATLAB function for data transfer. Hence, the variable shall store all 

required information captured and calculated during the MATLAB program exe-

cution, which finally also covers the trajectory set values to be provided to the 

Simulink/ Simulink Simscape environment. The variable shall also be created by 

a separate MATLAB function to ensure the comprehensibility of its structure and 

contents. 

 

Both variables shall be stored at the MATLAB “base” Workspace in order to en-

able visibility for the user and easy access for the Simulink/ Simulink Simscape 

environment.   
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5.3.2 Graphical User Interfaces 

 

Referring to the requirements of the simulation model, user inputs/ interactions 

are at minimum to be performed via the MATLAB Command Window. Due the 

number and extent of all required individual elements of the MATLAB program 

part (see subsequent section 5.3.3), controlling the simulation program/ model 

via the MATLAB Command Windows was considered as inconvenient, ineffi-

cient, complex and may require additional syntax/ command knowledge. Based 

on that, the decision was made that the optional task of the implementation of 

graphical user interfaces (GUI) shall be accomplished.  

Therefore, the graphical interfaces shall be created with the MATLAB graphical 

user interface development environment (GUIDE) tool, whereby, according to 

FIGURE 5.11, three GUI shall be created: 

 

 Main GUI 

 Joint Movement Planning GUI 

 Linear Movement Planning GUI 

 

Each GUI in turn is represented by a .fig file which represents the contents 

and appearance of the corresponding GUI window itself and a corresponding 

.m file. The .m file contains the required code for the implementation of the GUI 

functionalities (which covers the initial GUI parametrization (e.g. labelling of text 

boxes), callback functions (reactions on user interactions, e.g. user presses a 

button) and additional sub functions if required). Thus, six .m/ .fig files are 

required for the implementation of the GUI of the MATLAB program part. 

Moreover, each GUI shall contain sufficient input filtering such as: 

 

 Input value type check (number, text, etc.) 

 Input value limitations/ range check (e.g. axes angular limitations) 

 

For each individual input value of a GUI and an: 

 

 Input completeness check (entirety of required input values) 

 

In the context of all input values of the corresponding GUI.  
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Additionally, each GUI shall contain required descriptions and/ or descriptive 

images to provide guidance and comprehensibility. 

A sketch of the conceptualized appearance of the Main (G)UI window is shown 

in FIGURE 5.12 below. 

 

 

FIGURE 5.12: Freehand sketch of the concept of the Main (G)UI window 

 

A sketch of the conceptualized appearance of the Motion (G)UI windows is 

shown in FIGURE 5.13 below, whereby the concept shall be valid for both (line-

ar and joint movement) and therefore need to be adapted to the specific re-

quirements (e.g. corresponding description/ descriptive image, number and 

format of input values, etc.).  
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FIGURE 5.13: Freehand sketch of the concept of the Motion (G)UI window 

 

Further preconfigured (graphical elements), e.g. MATLAB dialog boxes, shall be 

used to display further guidance, information, warnings and errors (e.g. in case 

of the application of non-appropriate input values). 

 

 

5.3.3 Programs & Program Flow Charts 

 

For the purposes of modularity and comprehensibility, the decision was made 

that each main task/ procedure of the MATLAB program shall be represented 

by an individual MATLAB .m function file. 

Example: simVar_init.m shall only contain the simVar_init() function. 

Some .m function files may contain further sub functions which shall only be 

called locally (within the corresponding function). 

 

Summarizing the contents described in the previous sections 5.2.3, 5.3.1 and 

5.3.2, the conceptual design determined the need of four functions for the crea-

tion of variables, six functions for the GUI representations and one function for 

the import of robot parameters.  
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For the purpose of the installation of a required MATLAB Simulink Simscape 

Library (see FIGURE 5.2) another separate function shall be created. 

Furthermore, the conceptual design of the robotic manipulator’s motion refer-

ence trajectory design was pending. Therefore, the conceptualization of a linear 

robotic movement planning was depicted in a flow chart diagram (see FIGURE 

5.14) and described below. 

The conceptualization of a linear robotic movement planning is presented ex-

emplarily and also valid for the joint movement planning but without the need of 

solving the inverse kinematics.  

 

 

FIGURE 5.14: Flow chart diagram of the linear movement planning 
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Firstly, the robot’s kinematic structure, represented by a MATLAB Rigid-

BodyTree object robotModel, needs to be derived from the existing Simulink 

Simscape Multibody model with the MATLAB importrobot() function. Fol-

lowing this, the desired starting (A) workspace position 𝒑start = [𝑥A 𝑦A 𝑧A], work-

space target (B) position 𝒑target = [𝑥B 𝑦B 𝑧B] and the corresponding motion pa-

rameters (velocity vTCP, acceleration aTCP and interpolation resolution k) shall be 

obtained from the user via the GUI (see FIGURE 5.13) 

Subsequently, the workspace trajectory p(t) vector shall be calculated from the 

user inputs within a separate function and accordingly to the elaborated theory 

(section 4.2.1). It must be considered that the theory of the calculation of the 

time dependent workspace trajectory vector p(t) is formulated analytically (= 

continuous time). As the simulation model bases on computational calculations, 

firstly a discrete time series (= k x 1-dimesional time vector t) shall be deter-

mined and then used to calculate discrete values of the k x 3-dimensional work-

space trajectory vector p(t). 

Following this, a separate function shall be created for inverse kinematics solv-

ing in order to calculate the required k x 6-dimensional reference joint-space 

trajectory q(t) vector from the workspace trajectory vector p(t). Therefore the 

MATALAB GeneralizedInverseKinematics solver shall be used. Its cor-

responding MATLAB function gik()shall be called with the robotModel ob-

ject and appropriate ConstraintInputs objects, to be determined in advance 

and accordingly to the requirements (e.g. tool orientation).  

Then, the reference joint-space trajectory q(t) vector shall be united with the 

time vector t in order to create a k x 7-dimensional reference trajectory set value 

vector qSV. This vector shall be stored at the MATLAB Workspace “base” to be 

accessible for the Simulink/ Simulink Simscape program part and act as control 

system set values. 

 

Exemplarily, the program flow chart (PFC) of the inverse kinematics function  

inverse_kinematics() is shown in FIGURE 5.15 below.  
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FIGURE 5.15: Program flow chart of the inverse_kinematics() function 

 

The procedure for the joint trajectory planning shall be same but without the 

inverse kinematics as the reference joint-space trajectory can be calculated di-

rectly form the user inputs.  

 

Finally, a main function shall be created to represent the general program flow, 

depictured in and obtainable from page 1(18) of Appendix 4. Program Flow 

Charts.   
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In order to provide a convenient start of the simulation program (without typing 

calling parameters) by the user from the MATALB Command Window, the main 

function shall in turn be called by another superordinate but concise function. 

 

Summarized, the programs to be created, listed and described in TABLE 5.1 

below, shall be designed during the accomplishment considering the elaborated 

definitions and regulations, theory and conceptual design. 

 

TABLE 5.1: Listing and description of the conceptualized MATLAB function(s) (files) 

MATLAB .m/ .fig 

(Function) 

File(s): 

Description: 

Corresp. PFC 

(Appendix 4. 

Program Flow 

Charts) Page: 

runSim.m 

Entry point of the simulation; shall call 

the main() function and shall be called 

with runSim; from the MATALB Com-

mand Window. 

16(18) 

init.m 

Shall call all required initialization func-

tions ((e.g. simVar_init()) and/ or 

initialize/ install all required variables/ 

libraries/ data. 

4(18) 

simVar_init.

m 
Shall initialize the simVar variable. 17(18) 

load_smiData

.m 

Shall load the smiData variable from 

"ABB_IRB_2600_12_185_Simscape_Da

taFile.m". 

10(18) 

mul-

ti_physics_l

ib.m 

Shall install the required Simscape 

Multibody Multiphysics Library. 
13(18) 

ro-

bot_import.m 

Shall import and/ or update the robotic 

system/ structure (RigidBodyTree) 

from the Simulink Simscape model 

(.slx). 

14(18) 
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TABLE 5.1: Listing and description of the conceptualized MATLAB function(s) (files) 

MATLAB .m/ .fig 

(Function) 

File(s): 

Description: 

Corresp. PFC 

(Appendix 4. 

Program Flow 

Charts) Page: 

ro-

bot_para_xls

_import.m 

Shall create the robotPara variable 

and import simulation model parameters 

from the parameter spreadsheet. 

15(18) 

main.m Main function (and corresponding GUI); 

shall represent the general program 

flow. Shall call all other necessary func-

tions in order to gather user inputs and 

to calculate and provide the required 

data for the Simulink simulation. 

11(18) 

main_ui.m 

12(18) 
main_ui.fig 

joint_move_u

i.m 

Shall obtain and filter required user in-

puts for the trajectory planning of a joint 

movement of the robotic manipulator 

(includes the corresponding GUI). 

6(18) 
joint_move_u

i.fig 

joint_traj_p

lanning.m 

Shall calculate the joint space trajectory 

of a joint movement with a sin2 accelera-

tion profile in full synchronous mode  

7(18) 

lin_path_ui.

m 

Shall obtain and filter required user in-

puts for the trajectory planning of a line-

ar movement of the robotic manipulator 

(includes the corresponding GUI). 

8(18) 
lin_path_ui.

fig 

lin_traj_pla

nning.m 

Shall calculate the workspace trajectory 

of a linear movement with a sin2 accel-

eration profile.  

9(18) 

in-

verse_kinema

tics.m 

Shall solve the inverse kinematics of the 

robotic manipulator for each waypoint of 

a linear movement (p(t) -> q(t)) based 

on Cartesian start and target user inputs 

using the MATLAB gik() solver func-

tion. 

6(18) 
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6 ACCOMPLISHMENT 

 

The accomplishment generally based on the basic ideas, structures, methods 

and solutions elaborated in the conceptual design (section 5). Under continuous 

consideration of the definitions and regulations (section 3) and, if required, the 

methods and knowledge gained from the theory (section 4), the accomplish-

ment was conducted. Adaptions were made whenever necessary in order to 

meet the requirements (Appendix 3. List of Requirements) satisfyingly and to 

increase the simulation model’s quality. Adaptions as well as substantial devia-

tions from the individual corresponding conceptual design are mentioned ac-

cordingly. 

Additional required unspecific/ general information, knowledge and help/ guid-

ance were obtained from The MathWorks Inc. (2019b), The MathWorks Inc. 

(2019c), The MathWorks Inc. (2019d) and Glöckler (2018) during the MATLAB 

and Simulink/ Simulink Simscape programming. 

Due to the repetitive character of the most of the tasks processed during the 

accomplishment procedure (mainly caused by the repetitive structure of the ro-

botic manipulator’s simulation model), accomplishments are primarily presented 

and documented in an exemplary manner within this section.  

 

 

6.1 CAD Model 

 

Used CAD software: Dassault Systèmes® SolidWorksTM11 Premium 2014, x64-

Edition, SP 2.0 

Additional Software: MathWorks Simscape Multibody Link Version 6, Release: 

R2018b, Win64, plug-in for SolidWorks 2001Plus and higher 

 

The first step of the creation of the simulation model was related to the prepara-

tion of the manipulator’s CAD model. Therefore, the CAD data of the robot links 

and the end effector were separated from the .x_t parasolid file of the robot 

welding cell provided by the client (TAMK).  

                                            
11

 SOLIDWORKS™ is a trademark of Dassault Systèmes® 
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Following this, the separated data (see TABLE 6.1) were edited individually in 

order to define the material, density, weight and colouration of each part. 

Subsequently, the parts were assembled using appropriate constraints (see 

TABLE 6.1) to create a fully functional representation of the real robotic system 

(see FIGURE 6.2). The last step covered the generation of Simscape Multibody 

environment import files using the MathWorks Simscape Multibody Link plug-in 

for SolidWorks (see TABLE 6.2). The obtained import files were needed to cre-

ate the manipulator’s Simscape Multibody simulation model automatically, using 

the MATLAB smimport() function. The previously described procedure is also 

depicted in FIGURE 6.1 below. 

 

 

FIGURE 6.1: Procedure of the generation of the Simscape Multibody model import files 

 
TABLE 6.1: List of SolidWorks parts and assemblies of the manipulator 

SolidWorks Parts 

No.: Name: Type: 
Assembly Constraint Type 

Link i+1 to Link I : 

0 IRB2600_12_185_base 

SolidWorks 

Part 

Document 

(.sldprt) 

Revolute 

(Coincidence of the sur-

faces and axes of the 

CAD model representing 

the revolute joints) (see 

FIGURE 6.2) 

1 IRB2600_12_185_link1 

2 IRB2600_12_185_link2 

3 IRB2600_12_185_link3 

4 IRB2600_12_185_link4 

5 IRB2600_12_185_link5 

6 IRB2600_12_185_link6 Rigid 

7 Welding_End_Effector - 

SolidWorks Assembly 

Name: Type: 

ABB_IRB_2600_12_185_Simscape SolidWorks Assembly Document(.sldasm) 

  

Information: 
Model geometries 
from CAD sources 
(.igs, .prt, .step,  
.stl, .x_t, etc.)  

Output: 
Simscape Multibody 
environment import 
files: 
.xml file 
.stl data 

Compatible CAD Software  
(e.g. SolidWorks) 

Simscape  
Multibody Link  

Plug-In 

Model 
Assembly 

Additional Information: 
Additional geometries, assembly constraints, 

materials, densities, weights, frames, colours, etc.   
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TABLE 6.2: List of Simscape Multibody simulation model input files of the manipulator 

Simscape Multibody Simulation Model Files: .stl 

No.: Name: Type: 

0 IRB2600_12_185_base_Standard_sldprt 

.stl 

1 IRB2600_12_185_link1_Standard_sldprt 

2 IRB2600_12_185_link2_Standard_sldprt 

3 IRB2600_12_185_link3_Standard_sldprt 

4 IRB2600_12_185_link4_Standard_sldprt 

5 IRB2600_12_185_link5_Standard_sldprt 

6 IRB2600_12_185_link6_Standard_sldprt 

7 Welding_End_Effector_Standard_sldprt 

Simscape Multibody Simulation Model Files: .xml 

- ABB_IRB_2600_12_185_Simscape .xml 

 

 

 

FIGURE 6.2: Screen capture of the SolidWorks assembly of the robot manipulator 
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6.2 Simulink Simulation Model  

 

In contrary to the chronology of the process of the accomplishment of the thesis 

work, the final general structure of the simulation model is already shown at the 

beginning of this section. The idea behind is, to firstly give an overview over the 

final simulation model’s Simulink block diagrams individual elements (see FIG-

URE 6.3), which are then presented and described in detail within the following 

subsections 6.2.1 - 6.2.4.  

The final Simulink/ Simulink Simscape simulation model file 

“ABB_IRB_2600_12_185_Simscape.slx” can be found from the “Simulink Sim-

scape Data” folder of the complete data set (see section 6.5), along with all oth-

er required corresponding data (e.g. .stl files). 

 

 

FIGURE 6.3: Screen capture of the final simulation model’s Simulink block diagram 

 

 

6.2.1 Simulink Simscape Multibody Robot Model 

 

As conceptualized, the basic Simscape Multibody model of the robotic system 

was generated automatically from the pre-processed CAD data, more precise 

the “ABB_IRB_2600_12_185_Simscape.xml” file (section 6.1, TABLE 6.2), us-

ing the MATLAB smimport() function.   

6.2.3 

6.2.1 

6.2.2 
6.2.4 
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The basic Simscape Multibody model (see section 5, FIGURE 5.1)  was then 

elaborated as conceptualized (adding further subsystems, joint actuation, sig-

nalling etc.), see FIGURE 6.4 below, and implemented as a subsystem of the 

overlaying Simulink block diagram (see mark 6.2.1 in FIGURE 6.3). 

All corresponding data (block parameters) of the automatically generated Sim-

scape Multibody model are stored in the also automatically generated 

“ABB_IRB_2600_12_185_Simscape_DataFile.m” file. 

 

The Simscape Multibody robot model itself (FIGURE 6.4) consists of the first 

(sub) subsystem (Robot Base Subsystem) rigidly linked to the World Frame and 

all other (sub) subsystems which are sequentially rigidly linked to their prede-

cessors. All (sub) subsystems do have the same general structure and are con-

nected to the signal bus (except the Robot End Effector Subsystem). 

The World Frame, Mechanism Configuration and Solver Configuration blocks 

contain the basic parametrization and references of the Simscape simulation 

environment (e.g. value and direction of the gravitational acceleration) and are a 

basic requirement for every Simulink Simscape model. 

 

 

FIGURE 6.4: Screen capture of the final simulation model’s Simulink Simscape robot model 

 

Exemplarily for the other sub (subsystems), FIGURE 6.5 shows the Robot Base 

(sub) Subsystem of the Simscape robot model (see mark a) FIGURE 6.4).  

f) 

a) 
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The Base Body (sub) subsystem of the Robot Base Subsystem contains a Solid 

block representing the rigid body of the base (link 0) and Rigid Transform blocks 

for the required appropriate fixed frame transformations (kinematic structure) as 

automatically generated. The Base Body (sub) subsystem is rigidly connected 

to its predecessor (World Frame in this case (LinkageWorld)) and to the corre-

sponding joint (Joint 1). 

The Joint 1 block (Revolute Joint) represents the real revolute joint of the ro-

bot’s system and is rigidly connected to the Base Body (sub) subsystem on the 

input side and to the corresponding kinematic successor (Link 1) on the output 

side (LinkageBaseLink1). Deviating from the conceptual design, no additional 

sensor elements/ blocks were applied to measure the joint variables 𝑞1, �̇�1, �̈�1 

and 𝜏1 from the corresponding joint as the block provides these values via inter-

nal sensing. 

Also deviating from the conceptual design, the Joint 1 Drive System (sub) sub-

system does not only apply the motor torque to the Joint 1 block (port “t”) but 

also receives joint velocity feedback (�̇�1) (port “w”) for interfacing purposes (see 

description of FIGURE 6.6). Both, the Joint 1 Drive System (sub) subsystem 

(mark b) FIGURE 6.5) and the Joint 1 block are connected to the signal bus. 

Signals from different signal domains (e.g. Simscape Multibody and Simulink 

domain) are converted with PS-Simulink Converter or Simulink-PS Converter 

blocks before added to or branched off the signal bus.  

 

 

FIGURE 6.5: Screen capture of the Simscape simulation model’s Robot Base Subsystem  

b) 
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The block diagram of the (sub) subsystem of the Joint 1 Drive System (mark b) 

FIGURE 6.5) is shown in FIGURE 6.6 below.  

As conceptualized, the ASM 1 Driver (sub) subsystem (mark c) FIGURE 6.6) 

receives the corresponding controlled value from the Controller Joint 1 subsys-

tem (via the signal bus) and drives the joint actuating ASM 1 block using the 

three-phase voltage supply (blue coloured electrical domain).  

The ASM 1 block represents the real AC asynchronous joint motor and is driven 

in delta configuration using a Phase Permute (Delta) block in order to gain max-

imum motor torque. The joint actuation (ASM 1) block provides its (mechanical) 

torque via the rotational conserving ports “R” (Rod) and “C” (Case) to the Rota-

tional Simscape Interface 1, using the Simscape mechanical rotational domain 

network (green coloured domain). The joint actuation (ASM 1) torque cannot 

directly be applied to the corresponding joint as the joint actuation is performed 

within the Simscape Multibody domain (red coloured signalling domain) and 

therefore interfacing with joint velocity feedback (�̇�1) is required.  

The Machine 1 Inertia block and Machine 1 Viscous Damping block were added 

to the mechanical rotational network to simulate the mechanical characteristics 

of the joint actuation motor not covered by the corresponding block (ASM 1). 

The real gearbox of the robotic system is represented by the Cycloidal 

Transm.1 block also implemented in the mechanical rotational network. As the 

Cycloidal Transm.1 block does not provide the inertia parameter of the gearbox 

to be simulated, the Transm. 1 Inertia block was applied.  

The Joint 1 Bearing Friction block represents the (linear) friction model of the 

real bearing of the corresponding joint (Joint 1) and covers breakaway friction 

as well as Coulomb and viscous friction. Block parameterization is described in 

the later sections 6.4.2 and 6.4.3.  
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FIGURE 6.6: Screen capture of the Simscape simulation model’s Joint 1 Drive Subsystem (1/2) 

 

The block diagram of the ASM 1 Driver (sub) subsystem (mark c) FIGURE 6.6) 

is shown in FIGURE 6.7 below.  

According to the conceptual design (section 5.2.1), the ASM 1 Driver (sub) sub-

system was created utilizing the basic function principles and blocks of the 

MATLAB Simulink Simscape “Asynchronous Machine Scalar Control” 

(pe_asm_scalar_control) example block diagram. During the creation, 

several adaptions were applied whereby the signal limitation and the rotational 

direction reversing are the most considerable. The signal limitation was imple-

mented to narrow the expected scalar input value range to -1 to +1, using the 

Signal Limiter block (Saturation) (mark d) FIGURE 6.7) (Thus: “+1” = “100% 

power in the positive direction” and “-1” = “100% power in the negative direc-

tion”). The Rotational Direction Reverser (sub) subsystem (mark e) FIGURE 

6.7) determines the rotational direction of the corresponding joint actuation mo-

tor (ASM 1) by permuting two of the three voltage supply phases, depending on 

the sign of the controlled value (Control Signal).  

c) 
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FIGURE 6.7: Screen capture of the Simscape simulation model’s ASM1 Driver Subsystem 

 

As the Robot End Effector Subsystem (mark f) FIGURE 6.4) differs from the 

other (sub) subsystems, its block diagram is shown in FIGURE 6.8 below. Ac-

cordant to the conceptual design, it only contains the rigidly connected rigid 

body (sub) subsystems of link 6 (Link 6 Body) and the end effector/ tool (End 

Effector Body) in order to represent the robot manipulator’s last kinematic ele-

ment. 

 

 

FIGURE 6.8: Screen capture of the Simscape simulation model’s Robot End Effector Subsys-
tem 

  

d) 

e) 
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6.2.2 Signal Bus 

 

Within the Simulink/ Simulink Simscape simulation model, all signals are routed 

with the help of a signal bus structure (see mark 6.2.2 in FIGURE 6.3) (excep-

tion: values/ parameters directly or indirectly obtained from the MATLAB Work-

space (base) using From Workspace blocks). Each (sub) subsystem connected 

to the signal bus contains InBus blocks (mark g)) to branch off individual signals 

form the signal bus and OutBus blocks (mark h)) to add signals to the signal 

bus as exemplarily shown for the Joint 1 Drive System (sub) subsystem in FIG-

URE 6.9 below. 

 

 

FIGURE 6.9: Screen capture of the Simscape simulation model’s Joint 1 Drive Subsystem (2/2) 

 

Sub busses were created within the signal bus in order to bundle individual but 

related signals meaningfully within a number of subordinated sub busses.  

FIGURE 6.10 exemplarily shows the structure of the InBus (ControllerSystem-

InBus) of the Control System subsystem (mark 6.2.3 in FIGURE 6.3). The in-

coming individual (joint and motor) signals of each Simscape model’s (sub) 

subsystem (e.g. Robot Base Subsystem) Angle, Velo, Acc, Torque, Drive are 

bundled within the corresponding sub busses Joint1OutBus – Joint6OutBus.  

g) 

h) 
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FIGURE 6.10: Screen capture of the signal bus structure of the Control System subsystem In-
Bus 

 

The naming of the individual bus signals and sub busses was applied in a con-

sistent and explanatory manner; therefore, no overall listing of the bus systems 

individual signals is given here.  

Alternatively, all signal types measured and available from the signal bus of the 

final Simulink/ Simscape simulation model are listed in TABLE 6.3 below. 

 

TABLE 6.3: Listing of the available signal bus signal types 

Signal Description: Related Symbol(s): 

Joint Position Variables/ Values 𝑞1 … 𝑞6 

Joint Velocity Variables/ Values �̇�1 … �̇�6 

Joint Acceleration Variables/ Values �̈�1 … �̈�6 

Joint Torque Variables/ Values 𝜏1 … 𝜏6 

Controlled Variables/ Values 𝑢1 … 𝑢6 

Motor (ASM) Electrical Torque Variables/ Values 𝜏1,e … 𝜏6,e 

Motor (ASM) Rotor Velocity Variables/ Values 𝜔1,m … 𝜔6,m 

Motor (ASM) Slip Variables/ Values 𝑠1 … 𝑠6 
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As already mentioned in section 6.2.1, PS-Simulink Converter or Simulink-PS 

Converter blocks were implemented for interfacing when adding or branching 

off bus signals if required, as the signal bus only transfers Simulink domain sig-

nals. For error prevention purposes, only SI unit and derived SI unit signal val-

ues are transferred within the bus (except signals originally without any unit). 

Therefore, unit conversion blocks were added wherever required (e.g. within the 

Measurement System). 

 

 

6.2.3 Control System Structures 

 

Accordant to the conceptual design (section 5.2.2), a superior control system 

structure, the Control Systems subsystem, was implemented as a subsystem of 

the overlaying Simulink block diagram (see mark 6.2.3 in FIGURE 6.3). 

The Control System’s subsystem carries six (individual) decentralized control 

system structures (sub) subsystems (Controller Joint 1 (Axis 1) – Controller 

Joint 6 (Axis 6)), one for each of the simulation model’s (revolute) joints, which 

are connected to the signal bus and shown in the subsequent FIGURE 6.11. 

The subsystem can be used as an environment for centralized control if re-

quired. 

 

 

FIGURE 6.11: Screen capture of the Control System subsystem of the Simulink block diagram 

  

i) 
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Apart from the deviating input and output signals of the individual Controller 

Joint (sub) subsystems, all (sub) subsystems do have the same structure, ex-

emplarily shown for the Controller Joint 1 (Axis 1) (sub) subsystem (mark i) 

FIGURE 6.11) in FIGURE 6.12 below. 

Each Controller Joint (sub) subsystem is divided into three areas (blue shaded 

areas, FIGURE 6.12), left: input area (mark j)), middle: controller area (mark k)) 

and right: output area (mark l)), whereby applied block diagrams must not be 

necessarily kept inside the areas, since the separation is only meant as a sug-

gestion for the purpose of a clear structure. Explanatory notes are given below 

each area. 

The input area provides the corresponding joint-space position set values (ref-

erence trajectory) using a From Workspace block in order to obtain the refer-

ence values (q1SV) from the simVar variable from the MATLAB ”base” Work-

space. Furthermore, the measured actual values of the corresponding Joint 

block, joint position 𝑞1 and joint velocity �̇�1 are branched of the signal bus. 

The controller area is initially equipped with a simple closed-loop controller 

structure and a Scope block. The predefined PID Controller block as well as the 

Scope block were implemented for testing purposes only and do not provide an 

appropriate control system structure of the simulation model. 

The output area contains the signal of the controlled value of the corresponding 

joint actuation (sub) subsystem (ASM 1 Driver) added to the signal bus. 

 

As each Controller Joint (sub) subsystem is connected to the signal bus, all sig-

nals of the bus structure listed in the previous TABLE 6.3 are available within 

each (sub) subsystem. Following this and deviating from the conceptual design, 

the implemented Controller Joint (sub) subsystems are MISO instead of MIMO 

structures, as only one corresponding output (controlled value; u1…u6) is avail-

able for each (sub) subsystem at the contemporary state. This decision was 

made based on the lack of information of the types and amount of the specific 

controlled values to be implemented by the individual user and application. 

Due to the usage of a signal bus, further signals can be branched off and/ or 

added to the signal bus and therefore lead out from and/ or added to the Con-

troller Joint (sub) subsystems by the user whenever required.   
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FIGURE 6.12: Screen capture of the Controller Joint 1 (Axis 1) (sub) subsystem 

 

 

6.2.4 Measurements 

 

In contrary to the conceptual design (section 5.2.2), the measurements subsys-

tems were outsourced from the individual subsystems of the Simulink Simscape 

Multibody model and implemented bundled as a subsystem of the overlaying 

Simulink block diagram (see mark 6.2.4 in FIGURE 6.3). As all measured sig-

nals are available from the signal bus anyways, no additional structures were 

applied in the context of the implementation of the Measurements subsystem. 

The Measurements subsystem consists of the four (sub) subsystems: 

 

 Joint Angles (𝑞1 … 𝑞6) 

 Joint Velocities (�̇�1 … �̇�6) 

 Joint Accelerations (�̈�1 … �̈�6) 

 Joint Torques (𝜏1 … 𝜏6) 

 

Whereby the (sub) subsystems are organized by the type of the measured val-

ues (angle, velocity, etc.) instead of the origin of the values (corresponding Joint 

1-6 blocks) as shown in the subsequent FIGURE 6.13. Necessarily, each (sub) 

subsystem is connected to the signal bus.  

k) 

j) l) 



78 

 

 

 

FIGURE 6.13: Screen capture of the Measurements subsystem of the Simulink block diagram 

 

Exemplarily, the structure of the Joint Angles (sub) subsystem (mark m) FIG-

URE 6.13) is shown in FIGURE 6.14 below. 

Measurements are taken with Scope blocks within every (sub) subsystem as 

they provide displaying (plotting), live viewing, logging, formatting, examining 

and exporting the captured individual input signals.  

In the case of the Joint Angles (sub) subsystem, six Scope blocks were imple-

mented, one for each of the six joint position variables/ joint angles (𝑞1 … 𝑞6) to 

be observed, as shown in the subsequent FIGURE 6.14. Each Scope block re-

ceives the corresponding joint-space position set values (q1SV…q6SV, refer-

ence trajectories), gained from the simVar variable using From Workspace 

blocks. Furthermore, each Scope block receives the corresponding measured 

actual values of the joint positions/ joint angles (𝑞1 … 𝑞6). This allows the direct 

comparison of each of the corresponding actual and reference values of each 

axis as exemplarily shown in the signal plot (FIGURE 6.15) of the Joint Angle 

Axis 1 Scope block (mark n) FIGURE 6.14).   

m) 
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FIGURE 6.14: Screen capture of the Joint Angles (sub) subsystem of the Measurements sub-
system 

 

 

FIGURE 6.15: Screen capture of a Joint Angle Axis 1 Scope block signal plot 
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In contrary to the Joint Angle (sub) subsystem, the Joint Velocities, Joint Accel-

erations and Joint Torques (sub) subsystems only contain two Scope blocks 

each, whereby the individual six signals are bundled related to the principal ax-

es (indices 1-3) and the minor axes (indices 4-6) (see FIGURE 6.16).  

 

 

FIGURE 6.16: Screen capture of the Joint Velocities (sub) subsystem of the Measurements 
subsystem 

 

To in increase the comprehensibility of the measured values, the signals of the 

Joint Angles, Joint Velocities and Joint Accelerations (sub) subsystems are 

converted from the units [rad], [rad/s] and [rad/s^2] to the units [°], [°/s] and 

[°/s^2], whereas the Joint Torques (sub) subsystem uses the unit [Nm]. The 

predefined unit conversions can be adapted by changing the gain values of the 

preceding Gain blocks (see exemplary mark o) in FIGURE 6.16) of each Scope 

input signal. 

 

The 3D animation/ simulation of the Simulink Simscape Multibody simulation 

model, represented by the .stl geometry files gained from the CAD model and 

the calculated kinematics and dynamics, can be viewed from the MATLAB Me-

chanics Explorers window as exemplarily shown in FIGURE 6.17 below.   

o) 
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FIGURE 6.17: Screen capture of the robot’s Simscape Multibody model simulation animation 
(Mechanics Explorer)  

 

 

6.3 MATLAB Program(s) 

 

Equally to the structure of section 6.2, the final structure/ flow of the MATLAB 

Program (part) is presented at the beginning of this section and therefore depic-

tured in FIGURE 6.18 below. The MATLAB General Program Flow chart does 

only cover the main elements of the program, since a complete semantic de-

scription of the MATLAB program requires all 18 individual program flow charts, 

available from Appendix 4. Program Flow Charts.  
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FIGURE 6.18: Flow chart of the MATLAB General Program Flow 

 

 

6.3.1 Program & Program Structure(s) 

 

The MATLAB programming was accomplished by following the basic theoretical 

programming procedure (section 4.5) and applying the elaborated requirements 

and specifications of the corresponding conceptual design (section 5.3). The 

structure, dependencies and interactions of the MATLAB .m/ .fig files and all 

external data (within the data set) are depicted in the subsequent FIGURE 6.19.   
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The directions of connections refer to the real data flow (from the left to the 

right: calls, from the right to the left: returns). Further information concerning the 

shown folders are given in section 6.5.  

 

 

FIGURE 6.19: MATLAB program(s) structure and function/ file dependencies  
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Comparing the contents of FIGURE 6.19 and TABLE 5.1 reveals that the:  

 

 update_all.m 

 get_joint_move.m 

 get_lin_move.m 

 

Functions/ files were finally created and implemented but not specified in the 

conceptual design. Justification: The need of the mentioned functions/ files was 

not foreseeable at the state of the conceptual design. Hence, no concepts were 

prepared at that point.  

The conceptual designs, including the corresponding program flow charts, were 

therefore elaborated during the phase of accomplishment. The descriptions of 

the functions/ files are listed in TABLE 6.4 below. 

 

TABLE 6.4: Listing and description of additionally implemented MATLAB function(s) (files) 

MATLAB .m/ 

.fig File(s): 
Description: 

Corresp. PFC 

(Appendix 4. 

Program Flow 

Charts) Page: 

up-

date_all.m 

Update of required variables/ libraries/ data 

(simVar, robotPara, smiData, robot-

Model, importInfo variables and Sim-

scape Multibody Multiphysics Library). 

18(18) 

get_joint_m

ove.m 

Calls joint_move_ui(), then calls 

joint_traj_planning() to calculate 

the joint movement trajectory. Finally writes 

the calculation results into the simulation 

variable simVar in the required format. 

2(18) 

get_lin_mov

e.m 

 

Calls lin_path_ui(), then calls 

lin_traj_planning() to calculate the 

linear movement trajectory. Finally writes 

the calculation results into the simulation 

variable simVar in the required format. 

3(18) 
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All other functions/ files were implemented as conceptualized and described in 

section 5.3.3, TABLE 5.1. 

The limited extent of the document at hand does not allow detailed discussions 

of the explicit contents and functionalities of each individual function (.m/ .fig 

file) and the interactions/ dependencies between them. As the corresponding 

theory, conceptual design and program flow charts are available from the doc-

ument at hand and function codes are also described by file headers and com-

ments sufficiently, no further explanations are given here. 

Excerpts of the final MATLAB code are presented and described more detailed 

in the later section 6.3.3. 

 

 

6.3.2 Simulation Model Variables 

 

As conceptualized in section 5.3.1, the simulation program requires the entirety 

of five variables: 

 

 smiData 

 robotModel 

 importInfo 

 robotPara 

 simVar 

 

Which are generated and filled with all required data within the MATLAB pro-

gram part.  

The smiData variable is loaded from the 

ABB_IRB_2600_12_185_Simscape_DataFile.m file using the 

load_smiData() function. The 

ABB_IRB_2600_12_185_Simscape_DataFile.m in turn is the automatically 

generated model data file derived from the Simulink Simscape Multibody Import 

.xml file (ABB_IRB_2600_12_185_Simscape.xml) using the MATLAB smim-

port() function.  
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The predetermined variables robotModel and importInfo are automatically 

created in the context of the usage of the MATLAB importrobot() function. 

The robotPara variable is created by the robot_para_xls_import() func-

tion. The robot parameter values are read from the ABB_IRB_2600-12-

1.85_Parameters.xlsx spreadsheet file and stored in the robotPara variable 

(the variable’s first level structure is shown in FIGURE 6.20). Hence, the pur-

pose of the robotPara variable is the parameterization of the Simulink/ Sim-

ulink Simscape simulation model as conceptualized and also described more 

detailed in the later sections 6.4.2 and 6.4.3. 

 

 

FIGURE 6.20: Screen capture of the first level of the structure of the robotPara variable 

 

The simVar variable is initialized by the simVar_init() function and re-

ceived and returned from all functions of the MATLAB program part in order to 

allow all functions to read/ write information from/ to one centralized variable. 

The simVar variable (the variable’s first level structure is shown in FIGURE 

6.21) also contains and provides the set values (of the reference trajectories) of 

the control systems structures of the Simulink/ Simulink Simscape simulation 

model.   
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FIGURE 6.21: Screen capture of the first level of the structure of the simVar variable 

 

Summarized, the variables smiData, robotModel and importInfo are only 

used within the MATLAB program part exclusively, whereby the robotPara 

and simVar variables are used in both the MATLAB and the Simulink/ Simulink 

Simscape program parts. 

All variables are made visible/ accessible in the MATLAB “base” Workspace 

with the transition from the MATLAB to the Simulink/ Simulink Simscape pro-

gram part, along with the minimum recommended simulation time (in the 

MATLAB Command Window) as shown in FIGURE 6.22 below. 

 

 

FIGURE 6.22: Screen capture of the MATLAB Command Window and Workspace after the 
successful MATLAB program execution  

 

All five variables are also described in the TABLE 6.5 below, whereby the  

robotPara variable is described more detailed in the subsequent TABLE 6.6 

and the simVar variable in the subsequent TABLE 6.7.   
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TABLE 6.5: Descriptions of the five simulation variables 

Name: Type: Description/ Purpose: 
Initialized/ Created/ 

Changed by: 

simVar 
1x1 struct 

(9 fields) 

Contains all required data for 

the execution of the MATLAB 

program part. Provides the 

results of the MATLAB pro-

gram part to the Simulink/ 

Simulink Simscape program 

part. 

Initialized by 

simVar_init(), 

changed by all oth-

er functions of the 

MATLAB program 

part. 

smiData 
1x1 struct 

(3 fields) 

Contains the block parameter 

values of the imported Sim-

scape Multibody simulation 

model automatically created 

during the procedure of the 

execution of the smimport() 

function. 

Created by smim-

port(), 

initialized by 

load_smiData() 

robotPara 
1x1 struct 

(7 fields) 

Contains values for the pa-

rameterization of the block(s) 

(diagram(s)) of the Simulink/ 

Simulink Simscape simulation 

model. 

ro-

bot_para_xls_i

mport() 

robotModel 
1x1 Rigid-

BodyTree 

Contains the robotic manipu-

lator’s simulation model’s kin-

ematic structure (represented 

by rigid bodies connected by 

joints) and corresponding pa-

rameters. 
importrobot() 

importInfo 

1x1 Rigid-

BodyTree-

ImportInfo 

Contains information concern-

ing the import procedure of 

the importrobot() func-

tion. 
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TABLE 6.6: Detailed description of the robotPara variable 

Variable: 
Fields (First 

Level): 
Description/ Purpose: 

robotPara 

generalRo

eralRo-

botInfo 

Contains further subfields (e.g. capacity); 

contains general information of the real robotic 

manipulator. 

axisLim-

its 

Contains further subfields (e.g. range); contains 

axis/ joint limitations of the Simulink/ Simulink 

Simscape simulation model equal to the axis/ 

joint limitations of the real manipulator (e.g. for 

input filtering in joint_move_ui() and 

lin_path_ui()) . 

tcpLimits 

Contains values (e.g. velocity); contains TCP 

limitations of the Simulink/ Simulink Simscape 

simulation model equal to the TCP limitations of 

the real manipulator (e.g. for input filtering in 

joint_move_ui() and lin_path_ui()) . 

jointPara 

Contains further subfields and sub subfields (e.g. 

stateTar); contains values for the parameteri-

zation of the revolute joint block(s) (diagram(s)) 

of the Simulink/ Simulink Simscape simulation 

model. 

motorPara 

Contains further subfields and sub subfields (e.g. 

ratPow); contains values for the parameteriza-

tion of the joint motor/ driver block(s) (dia-

gram(s)) of the Simulink/ Simulink Simscape 

simulation model. 

transmPa-

ra 

Contains further subfields and sub subfields (e.g. 

nCdt); contains values for the parameterization 

of the joint transmission block(s) (diagram(s)) of 

the Simulink/ Simulink Simscape simulation 

model. 

motDrivPa

ra 

Contains further subfields and sub subfields (e.g. 

vdc); contains values for the parameterization of 

the joint motor driver block(s) (diagram(s)) of the 

Simulink/ Simulink Simscape simulation model. 
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TABLE 6.7: Detailed description of the simVar variable 

Variable: 
Fields (First 

Level): 
Description/ Purpose: 

simVar 

uiInput 

Contains further subfields and sub subfields; 

contains inputs of the graphical user interfaces 

joint_move_ui() and  lin_path_ui(). 

uiControl 

Contains further subfields (e.g. exeUpdate); for 

control functionalities of the main graphical user 

interface main_ui. 

statusFlags 

Contains (flag-) values (either “1” = “true” or “0”  

= ”false”); for the interaction/ control functionali-

ties between the different graphical user inter-

faces. 

updateTime 

Contains the update times of updated/ loaded/ 

created/ executed data/ libraries/ programs (e.g. 

Simscape Multibody Multiphysics Library) for the 

“Last updated:” labels in the main_ui GUI win-

dow. 

linPathPlan 

Contains further subfields (e.g. pRes); contains 

the results of the linear trajectory planning 

lin_traj_planning() (for 

get_lin_move() internal use). 

initVal 

Contains further subfields (e.g. qStartA); con-

tains the initial pose (and velocities) of the Sim-

ulink/ Simulink Simscape simulation model. 

targetVal 

Contains further subfields (e.g. qTargetB); con-

tains the target pose (and velocities) of the Sim-

ulink/ Simulink Simscape simulation model. 

gik 

Contains a further subfield (qRes); stores the 

(unformatted) results of the inverse kinematics   

(inverse_kinematics()). 

qSetValues 

Contains further subfields (q1SV…q6SV); con-

tains the (formatted) set values of the joint an-

gles for the Simulink/ Simulink Simscape simula-

tion model. 
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6.3.3 Motion Planning 

 

Motion planning was implemented within the MATLAB program part, closely 

following the created flow chart diagram (FIGURE 5.14) and program flow 

charts described in the conceptual design (section 5.3.3) and using the methods 

and equations of the corresponding theory comprehensively elaborated and 

described in the sections 4.2.1 and 4.2.2. 

For exemplarily purposes, an excerpt of the code of the in-

verse_kinematics() function (part of the linear movement planning) is 

shown and described below. The excerpt is related to the core of the in-

verse_kinematics() function, solving the robot manipulator’s inverse kine-

matics with the MATLAB GeneralizedInverseKinematics solver. 

 

28| gik = robotics.GeneralizedInverseKinematics(  

29|              'RigidBodyTree',robotModel,'ConstraintInputs',… 

29|                              {'position','aiming','joint'}); 

 . 

 . 

 . 

70| for k=2:length(simVar.linPathPlan.pRes) 

 …| 

73| positionConst.TargetPosition = simVar.linPathPlan.pRes(k,:); 

74| aimConst.TargetPoint =         simVar.linPathPlan.pRes(k,:); 

 …| 

77| jointConst.Bounds = [ 

78|                   (simVar.gik.qRes(:,k-1)- maxJointChange)… 

78|                   (simVar.gik.qRes(:,k-1)+ maxJointChange)]; 

 …| 

81| [simVar.gik.qRes(:,k),solInfo] = gik( 

81|                                simVar.gik.qRes(:,k-1),…  

82|                                positionConst, aimConst,… 

82|                                jointConst); 

83| end 

 

In line 28 and 29, the GeneralizedInverseKinematics System object™ 

gik is created. The gik object bases on the robotic manipulator’s model’s kin-

ematic structure, mapped by a RigidBodyTree object, in turn represented by 

the robotModel variable. During the gik object creation, a set of the kinemat-

ic constraints objects (ConstraintInputs), to be applied for the later inverse 

kinematics solving, need to be predetermined. In the cased at hand, the posi-

tion, aiming and joint constraint objects were predetermined and are 

created from the corresponding classes accordingly.  
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The position constraint position causes the end effector/ tool (tip of the weld-

ing torch) to match the contemporary waypoint of the linear trajectory, whereby 

the aiming constraint aiming causes the tool’s z-axis (Ztool) to aim at the con-

temporary waypoint at the same time. An explanatory depiction is shown in the 

subsequent FIGURE 6.23 .  

 

 

FIGURE 6.23: Depiction of the linear movement’s end effector position and pose  

 

As there were no additional constraints defined related to the restriction of the 

tools pose, the rotation of the tool around its z-axis is not restricted and there-

fore determined by the inverse kinematics solver. Typically, the z-axis rotation 

remains unchanged by the inverse kinematics solver (qRes6,k = 0 °), unless a 

rotation is absolutely required to reach the contemporary waypoint within the 

workspace. If required, the tool’s z-axis rotation can be constrained/ restricted 

by the user utilizing predefined constraint creation code available from the in-

verse_kinematics.m file.  

Due to the non-uniqueness of the inverse kinematics, the joint constraint joint 

was predefined in order to limit the maximum changes of the angular joint val-

ues (q1 - q6) between each robot’s pose related to the waypoint of the linear 

(workspace) trajectory.  
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Solving the inverse kinematics is accomplished individually for each waypoint of 

the linear (workspace) trajectory (stored in the simVar.linPathPlan.pRes 

variable, see FIGURE 6.24) within the for-loop from code line 70 to line 83. As 

the inverse kinematics solver is a numerical solver, solving always requires an 

initial guess of the robot manipulator’s resulting pose (q1,k - q6,k). Therefore, the 

start pose of the robot manipulator (qStartA(1) - qStartA(6) variables) 

(k = 1) is solved once before the solver loop (line 70 to line 83), using the 

home pose of the manipulator (q1,1 - q6,1 = 0 °) as initial guess. This also justifies 

the for-loop’s index k starting from the value 2.  

In line 73 and 74, the position and aiming constraint objects are updated to the 

related contemporary waypoint (k) of the linear trajectory.  

In line 77 and 78, the joint constraint object is updated to the contemporary 

maximum allowed angular joint changes, based on the robot’s pose related to 

the previous waypoint (k-1) and gained form the simVar.gik.qRes variable. 

In line 81 and 82, the gik object is solved for the related robot manipulator’s 

pose of the contemporary waypoint (k), using the GeneralizedInverseKin-

ematics solver. The solving is accomplished using the robot’s previous pose 

(k-1) as initial guess. The results (qRes(1,k) – qRes(6,k)) are stored in 

the simVar.gik.qRes variable. 

 

 

FIGURE 6.24: Screen capture of the simVar.linPathPlan and simVar.linPathPlan.pRes variables 
(example)  

 

Within the inverse_kinematics() function, the inverse kinematics results 

are stored in the 6 x k-dimensional variable simVar.gik.qRes.   
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Deviating from the conceptual design, the inverse kinematics results are not 

provided to the MATLAB Workspace using the initially conceptualized k x 7-

dimensional reference trajectory set value variable qSV.  

As the joint-space position set values (inverse kinematics results) of the Joint 

Controller (sub) subsystem are individually obtained from the MATLAB ”base” 

Workspace using From Workspace blocks, the set values are stored in the six 

individual k x 2-dimensional variables (simVar.qSetValues.q1SV - 

simVar.qSetValues.q6SV). These variables are created by the 

get_lin_move.m function, whereby the first column of each of variable con-

tains the explicit time series values and the second column contains the corre-

sponding joint position/ angle values as exemplarily shown in FIGURE 6.25 be-

low. 

 

 

FIGURE 6.25: Screen capture of the simVar.qSetValues and simVar.qSetValues.q1SV varia-
bles (example) 

 

 

6.3.4 Graphical User Interfaces 

 

The graphical user interfaces were implemented closely following the deter-

mined conceptual design (section 5.3.2) and the corresponding program flow 

charts, using the MATLAB GUIDE tool. The three GUI are represented by their 

corresponding MATLAB .m and .fig files each: 
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 Main GUI: main_ui.m & main_ui.fig 

 Joint Movement GUI: joint_move_ui.m & joint_move_ui.fig 

 Linear Movement GUI: lin_path_ui.m & lin_path_ui.fig 

 

From the user’s perspective, the three GUI and a number of further MATLAB 

message boxes/ dialog boxes implemented map the complete MATLAB pro-

gram part. 

 

The main graphical user interface main_ui is the central GUI of the MATLAB 

program part and shown in FIGURE 6.26 below. All other program functionali-

ties and GUI are accessed from the main_ui window, can be repeated as of-

ten as required and also automatically return there, except the case of opening 

the Simulink simulation model or the exiting of the MATLAB program part.  

Status labels (see mark p) FIGURE 6.26) indicate whether the corresponding 

entry (e.g. simVar) is ready (“Ready!” text and a green shaded label) or not 

ready (“Not Ready!” text and a red shaded label). Deviating from the conceptual 

design sketch (FIGURE 5.12), Last updated timestamp labels (see mark q) 

FIGURE 6.26) were added for each corresponding entry in order to allow the 

user to check when the corresponding entry was updated and/ or a specific pro-

cedure was executed. 

By pressing the Update button of the main_ui window (see mark r) FIGURE 

6.26), the update procedure is activated and the update_all() function is 

called. The update procedure is guided by further information provided via 

MATLAB message boxes/ dialog boxes and leads to the update of all five simu-

lation variables (also the not listed importInfo variable) and the Simscape 

Multibody Multiphysics Library.  

After the successful execution, the corresponding Last updated timestamp la-

bels are refreshed accordingly and the program returns to the main_ui win-

dow.  

The joint movement planning GUI joint_move_ui is accessed by pressing 

the Joint Movement button (see mark s) FIGURE 6.26) and shown in FIGURE 

6.27.   
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The linear movement planning GUI lin_path_ui is accessed by pressing the 

Linear Movement button (see mark t) FIGURE 6.26) and shown in FIGURE 

6.28.  

 

 

FIGURE 6.26: Screen capture of the MATLAB main GUI main_ui 

 

Both movement GUI, joint_move_ui and lin_path_ui provide specific 

corresponding descriptions/ instructions and a descriptive image based on the 

CAD model assembly of the robot manipulator’s model. The input areas for the 

start and target poses/ positions were adapted accordingly to the corresponding 

movement type. For the increase of the comprehensibility, robot axis angles 

inputs (Pose, A1-A6) were implemented using the unit [°] and workspace coor-

dinates (Position, [x y z]) using the unit [mm]. Non-SI unit inputs ([%], [°], [mm/s] 

and [mm]) were also implemented within the Movement Parameters definition 

area in order to provide common input value formats.  

r) 

q) 

 

s) 

t) 

v) 

u) 

p) 
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FIGURE 6.27: Screen capture of the MATLAB joint movement GUI joint_move_ui 

 

 

FIGURE 6.28: Screen capture of the MATLAB linear movement GUI lin_path_ui 

 

Furthermore, all inputs of the movement GUI are filtered for being a number and 

being within the allowed boundaries, whereby the corresponding boundaries are 

gained from the robotPara variable (and therefore from the parameter 

spreadsheet). All input procedures are looped and show error or warning mes-

sages as long as inputs are faulty and/ or incomplete, exemplarily depicted in 

FIGURE 6.29 below.  
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FIGURE 6.29: Screen capture of an invalid input MATLAB error message box 

 

In the case of correct and complete inputs, pressing the Continue button of the 

movement GUI will cause closing the related GUI window and the execution of 

the related trajectory calculation. After the successful trajectory calculation, the 

program returns automatically to the main_ui window and the corresponding 

Last updated timestamp labels are refreshed accordingly.  

Motion Planning can only be prepared for either the Joint Movement or the Lin-

ear Movement at a time. Hence, only the latest executed motion planning result 

is available, whereas former results are deleted and the corresponding Status 

Label is set to the “Not Ready!” state. 

 

The Simulink/ Simulink Simscape program part is accessed by pressing the 

Open Simulink button of the main_ui window (see mark u) FIGURE 6.26). 

With the initiation of this procedure, the MATLAB program part is terminated, all 

variables are made visible/ accessible in the MATLAB “base” Workspace and 

the minimum recommended simulation time is printed to the MATLAB as shown 

in the earlier FIGURE 6.22. 

 

The MATALB Program part can only be exited without errors from the main_ui 

window using the Exit button (see mark v) FIGURE 6.26). In the case of the 

cancelation of the MATLAB program using the Exit button, all variables are de-

leted, thus, no variables are made visible/ accessible in the MATLAB Work-

space. 

 

 

6.4 Simulation Model Parameters 

 

The task of the simulation model parameterization covered firstly the acquisition 

of all required and obtainable parameters of the model.   



99 

 

Secondly, the preparation and compilation of the entirety of parameters of the 

Simulink Simscape simulation model was accomplished. Thirdly, the conceptu-

alized method of the provision of the parameters to the simulation model was 

applied. 

 

 

6.4.1 Parameter Acquisition 

 

The subsection of the parameter acquisition is divided into another two sub 

subsections, the approximation of the industrial robot’s CAD model part/ body 

masses and the acquisition of all other applied parameters. This separation was 

made due to the distinctive characters of the methods of acquisition. 

 

The first attempt made in the context of the acquisition of main parameters of 

the simulation model based on a request sent to the Finnish branch ABB (Fin-

land) Oy, of the industrial robot’s manufacturer ABB Asea Brown Boveri Ltd. in 

order to obtain: 

 

 Links masses and links CoM coordinates 

 (Joint actuation) motor types and their main electrical and mechanical 

parameters (e.g. rotor inertia, viscous damping coefficients)  

 Gearbox types, ratios, efficiencies and inertias  

 

The manufacturer replied that none of the requested data can be shared. 

 

As identification measurements were not covered by the scope of the thesis 

work, disassembling of the industrial robot was not a realistic option and due to 

the general lack of freely accessible information, the subsequently explained 

methods were conducted: 

 

From non-public manufacturer’s maintenance and spare parts lists documents 

of the industrial robot, owned and provided by the client (TAMK), the subse-

quently listed information were obtained exemplarily for the robot’s third axis 

gearbox:  



100 

 

TABLE 6.8: ABB IRB 2600 gearbox spare part information (axis 3) 

Position: Axis: Spare Part Number: Type: Variants: 

3 Axis-3 3HAC028705-004 RV-42N, i=126 
IRB 2600 

IRB 2600ID 

 

And exemplarily for the robot’s axis 4, 5 & 6 (joint actuation) motors: 

 

TABLE 6.9: ABB IRB 2600 motor spare part information (axis 4, 5 & 6) 

Position: Spare Part Number: AC Motor with Pinion: 

4 3HAC030216-003 Axis-4, -5 & -6 

 

In the case of the gearboxes, common internet search engines were used in 

order to obtain more detailed information. The finding was made that “RV-42N” 

is a specific model of a 2-stage high-precision cycloidal reduction gear of the 

RV®12 -N series of the Nabtesco Corporation. 

 

 

FIGURE 6.30: Cycloidal reduction gear of the RV-N series of the Nabtesco Corporation (Nab-
tesco Corporation 2019a) 

 

With the help of the ratio value “i” and the type description “RV-42N” (see TA-

BLE 6.8), the gearbox model and its parameters were searched and found from 

the official technical datasheet of the Nabtesco Corporation (Nabtesco Corpora-

tion 2015) as shown below (FIGURE 6.31, FIGURE 6.32 and FIGURE 6.33).   

                                            
12

 RV® is a registered trademark of the Nabtesco Corporation 



101 

 

 

FIGURE 6.31: Manufacturer’s rating table of the RV-N series cycloidal reduction gear (Nabtesco 
Corporation 2015, 8, modified) 

 

 

FIGURE 6.32: Manufacturer’s rating table of the RV-N series cycloidal reduction gear (continua-
tion) (Nabtesco Corporation 2015, 9, modified) 

 

 

FIGURE 6.33: Manufacturer’s efficiency table of the RV42-N cycloidal reduction gear (Nabtesco 
Corporation 2015, 36) 

 

In the case of the motors, the information of an AC asynchronous motor type 

was also found from the robot manufacturer’s maintenance documents.   
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Furthermore, the information of the country of origin and the motors net weight 

(amongst others) were obtained from the industrial robot’s manufacturer’s web-

site (ABB Asea Brown Boveri Ltd. 2019d):  

 

Country of Origin:  Japan (JP) 

Product Net Weight:  1.7 kg 

 

 

FIGURE 6.34: ABB IRB 2600 Axis 4, 5 & 6 AC motor (ABB Asea Brown Boveri Ltd. 2019d) 

 

With the help of the above mentioned information and the information printed to 

the label of the motor, the motor manufacturer was identified as: TAMAGAWA 

SEIKI Co., Ltd. As the TAMAGAWA SEIKI Co., Ltd. only offers one applicable 

AC asynchronous servomotor product series, TBL-I IV Series, the assumption 

was made that motors with similar characteristics and parameters can be found 

form the manufacturer’s product catalogue (TAMAGAWA SEIKI Co., Ltd. 2019) 

as shown in the subsequent FIGURE 6.35 and FIGURE 6.36. 

 

 

FIGURE 6.35: TBL-I IV series compact size AC servomotor basic specifications (TAMAGAWA 
SEIKI Co., Ltd. 2019, 2, modified)  
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FIGURE 6.36: TSM3204 400W AC200V torque characteristic diagram (TAMAGAWA SEIKI Co., 
Ltd. 2019, 8) 

 

The described procedures were repeated for all other gearboxes and motors. 

All obtained parameters were collected, evaluated if necessary and stored at 

the corresponding entries of the worksheets (“(8) Transmission Parameters” 

and “(7) Motor Parameters”) of the “ABB_IRB_2600-12-1.85_Parameters.xlsx” 

spreadsheet (see also section 6.4.2).  

 

 

CAD Model Rigid Body (Link) Masses: 

 

Due to the lack of available information and resources, the decision was made 

to approximate the individual link masses based on the geometrical information 

available from the CAD model. The approximation based on the approach of an 

average equally distributed overall density ρ*. 

 

Firstly, the overall volume Vtot of the CAD model of the industrial robot was de-

termined by the summation of the individual link volumes, excluding the tool/ 

end effector. 

 

𝑉tot =  ∑ 𝑉 i

6

i=0

=  102.85 ∙ 10−3 m3 (6.1) 

  



104 

 

Secondly, the overall mass of the real robotic system without any further appli-

cations mtot was obtained from the manufacturer’s product specifications docu-

ment (ABB Asea Brown Boveri Ltd. 2019b, 12): 

 

𝑚tot = 284 kg (6.2) 

 

Subsequently, the average equally distributed overall density ρ* was calculated: 

 

𝜌∗ =
𝑚tot

𝑉tot
=

284 kg

102.85 ∙ 10−3 m3
= 2761.26 

kg

m3
 (6.3) 

 

The average equally distributed overall density ρ* was then applied to each in-

dividual CAD part within the CAD environment. Furthermore, the weight of the 

welding torch end effector was gained from a real measurement using a com-

mon scale and also applied to the virtual CAD representation. 

 

Based on the available geometrical information and the density ρ*, the CAD 

software automatically calculated the rigid body (link) parameters such as: 

 CoM, MoI, PoI 

 Frames; (main) axes of inertia  
 

Exemplarily, link 2 of the robot manipulator’s CAD model is shown in the subse-

quent FIGURE 6.37, showing the calculated and displayed frame of the main 

axes (Ix, Iy, Iz; CoM related).   
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FIGURE 6.37: Screen capture of link 2 of the robot manipulator’s CAD model 

 

The approximated mass of the link 2 part of the simulation model was calculat-

ed exemplarily by hand: 

 

𝑚2 =  𝑉2 ∙ 𝜌∗ =  15.67 ∙ 10−3 m3 ∙ 2761.26 
kg

m3
= 43.28 kg (6.4) 

 

TABLE 6.10 below contains a listing of the individual solid body volumes and 

approximated link masses of the virtual representations of the manipulator’s 

links.  
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TABLE 6.10: Robot manipulator’s link mass and volume information 

i: Link i: 
Solid Body Volume 

Vi [m
3]: 

Overall Density 

ρ* [kg/m3]: 

Approx. Link 

Mass mi [kg]: 

0 Base 31.82E-03 

2761.26 

87.87 

1 Link 1 25.31E-03 69.88 

2 Link 2 15.67E-03 43.28 

3 Link 3 23.58E-03 65.11 

4 Link 4 6.02E-03 16.62 

5 Link 5 0.36E-03 0.99 

6 Link 6 0.0087E-03 0.24 

Σ 102.85E-03 - 284 

End Effector - - 5.25 

 

The acquisition of all other parameters not covered by this section of the docu-

ment is continued in section 6.7.2 in the context of the optional task of virtual 

identification measurements. 

 

 

6.4.2 Parameter Spreadsheet 

 

Based on the general requirements of the modularity, extensibility and conven-

ient usage of the simulation program, the decision was made to provide the pa-

rameters of the Simulink Simscape simulation model block diagram blocks indi-

rectly but automatically via variables (FIGURE 6.39) from the MATLAB Work-

space as described in the conceptual design (section 5.2.3 and 5.3.1). As the 

contents of the parameter variables of the simulation model need to be obtained 

from any source as well, the decision was made to compile and save all re-

quired parameters in an external but centralized file. This centralized file in turn 

is then read during the initialization of the simulation program in order to write 

the model parameters to the corresponding (MATLAB Workspace) variable  

robotPara. Therefore, a Microsoft® Excel®13 spreadsheet: 

 
“ABB_IRB_2600-12-1.85_Parameters.xlsx”  

                                            
13

  Microsoft® Excel® is a registered trademark of Microsoft Corporation 
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Containing the clearly arranged parameter compilation was created. Deviating 

from the unit definitions and regulations (section 3.1), the units [°], [°/s] and 

[°/s^2] were used for some parameter ranges of the spreadsheet to enable the 

input of values from the manipulator’s manufacturer’s documents directly with-

out any unit conversions. 

Exemplarily, the sixth worksheet (Joint Parameters) of the spreadsheet is 

shown in the FIGURE 6.38 below. 

 

 

FIGURE 6.38: Screen capture of the (8) Joint Parameters worksheet of the parameters spread-
sheet 

 

The general structure and contents of the spreadsheet are listed in the subse-

quent TABLE 6.11.  
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TABLE 6.11: Structure and contents of the parameters spreadsheet 

Sheet 

No.: 
Sheet Name: Content(s)/ Purpose(s): 

1 
(1) General Ro-

bot Information 
Handling capacity, reach, weight 

2 
(2) Axis Range 

Limits 
General (angular) axis limitations (A1-A6) 

3 
(3) Axis Speed 

Limits 
General axis angular velocity limitations (A1-A6) 

4 
(4) Axis Accel-

eration Limits 

General axis angular acceleration limitations (A1-

A6) 

5 (5) TCP Limits General TCP velocity and acceleration limitations 

6 
(6) Joint Pa-

rameters 

(Revolute) joint(s) parameters: State targets (posi-

tion, velocity), internal mechanics (equilibrium pos., 

spring stiffn., damping coeff.), bearings (friction tor-

ques, damping coeff.) 

7 
(7) Motor Pa-

rameters 

Electrical motor(s) (asynchronous machine (ASM) 

with squirrel cage rotor (three-phase)) parameters: 

El. ratings (power, voltage etc.), el. parameters (sta-

tor resistance, reactance, etc.) and mechanical pa-

rameters (rotor inertia, etc.) 

8 

(8) Transmis-

sion Parame-

ters 

Cycloidal transmission (gear box) parameters: teeth 

numbers (gear ratio), efficiency, inertia, etc. 

9 
(9) Motor Driv-

ers Parameters 

Six-pulse three phase converter parameters: DC 

link voltage, switching freq., sample time, etc. 

 

The applied method allows convenient and centralized changes of any parame-

ters without the application of changes to the simulation model block diagram. 

Furthermore, the spreadsheet can be easily modified or extended by adding 

further worksheets if required.   
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6.4.3 Simulation Model Parameterization 

 

The parameterization of the Simulink/ Simulink Simscape model was imple-

mented exclusively using the robotPara variable available from the MATLAB 

“base” Workspace. This is in accordance with the drafted conceptual design 

(section 5.2.3) and exemplarily shown for the ASM1 block of the base subsys-

tem in FIGURE 6.39 below. 

 

 

FIGURE 6.39: Screen capture of the ASM1 block parameterization 

 

 

6.5 Data Set File Structure 

 

The final general file structure of the simulation programs data set folder 

“BT_ABB_IRB_2600_Robot_Sim._v_A” is shown in the subsequent FIGURE 

6.40. 

The amount and types of the individual files of the corresponding subfolders are 

written in brackets behind/ below the individual related subfolder.  
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FIGURE 6.40: General file structure of the data set of the simulation model  

 

 

6.6 Operating Manual  

 

In contrary to the task planning of the project plan (Appendix 2. Project Plan), 

the creation of the operating manual was shifted to an earlier project state in 

order to provide guidance for the external testing of the preliminary version of 

the simulation program accomplished by the thesis supervisors and client(s). 

The operating manual consist of the sections Prerequisites, Introduction, Instal-

lation, Operation, Change of Parameters, CAD Model Update, Extensions/ Mod-

ifications and Troubleshooting and was designed as an independent document.  

Despite the fact that the operating manual mainly bases on and particularly re-

fers to the thesis document at hand, it is highly recommended to also consider 

the contents of the operating manual due to some helpful contents of the manu-

al are not covered by the thesis work document. Furthermore, it is highly rec-

ommended to refer to the operating manual before/ during the first use of the 

simulation model and also whenever errors occur (e.g. during compiling and/ or 

simulation (solving)). 

The operating manual can be found from Appendix 5. Operating Manual. 
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6.7 Optional Tasks 

 

The Optional Tasks section contains the documentation of the elaboration of 

two optional tasks performed in context of the accomplishment of the thesis 

work at hand. The accomplishments of the optional tasks are described suffi-

ciently but narrowed to their main contents due to their optional character.  

 

 

6.7.1 Simplified Joint Actuation Motor Model(s) 

 

During testing and debugging of the simulation model (see section 7) equipped 

with AC asynchronous motor (ASM) models and drivers (version “A”, 

“BT_ABB_IRB_2600_Robot_Sim._v_A”), large computation times and high 

computational efforts for solving the model were revealed. With the help of sev-

eral further tests, the high impact of the complexity of the AC ASM models and 

drivers on the solving time and required resources was investigated.  

Based on that, a non-binding agreement of an optional task covering the crea-

tion of a second version of the simulation model ((version “B”, 

“BT_ABB_IRB_2600_Robot_Sim._v_B”) was made with the TAMK’s client in 

order to achieve: 

 

 Decrease of the simulation model’s motor models and drivers complexi-

ties 

 Decrease of the number of values required for the appropriate parame-

terization of the motor models and drivers 

 Decrease of the computation time and computational efforts in the con-

text of simulation model solving 

 Increase of the comprehensibility of the simulation model by the reduc-

tion of the overall complexity 

 

Due to the low overall complexity, the small number of required parameters, the 

high availability of required parameters from freely accessible datasheets, a 

decreased motor driver complexity and the typical usage for positioning tasks/ 

applications, a (universal and ideal) DC motor type (block) was chosen for the 

accomplishment of the optional task.  
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Exemplarily, the “Robot Link 3 Subsystem” of the Simulink/ Simulink Simscape 

simulation model with the applied DC motor model and driver is shown below 

(FIGURE 6.41). 

 

 

FIGURE 6.41: Simulink screen capture of the Robot Link 3 Subsystem with a DC motor model 

 

In contrast to the AC ASM models, the DC motor models and drivers were di-

rectly parameterized with explicit values in the corresponding block parameter 

windows. The motor model parameters were gathered, compiled and if re-

quired, extrapolated from several datasheets (e.g. from ABB Motors and Me-

chanical Inc.14, mainly based on the power rating values of the substituted AC 

ASM models. The “DC Motor 4 Driver” sub subsystem of the “Robot Link 3 

Subsystem” (FIGURE 6.41 above) is shown in the FIGURE 6.42 below. 

  

                                            
14

 ABB Motors and Mechanical Inc., formerly ”Baldor Electric Company” 
http://www.motionusa.com.s3-website-us-east-1.amazonaws.com/baldor/BR1202-F.pdf (Read 
on 02.04.2019) 

http://www.motionusa.com.s3-website-us-east-1.amazonaws.com/baldor/BR1202-F.pdf
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FIGURE 6.42: Simulink screen capture of the DC Motor 4 Driver subsystem 

 

Despite the first impression of the appearance of the subsystem may not nec-

essarily suggests a low complexity, the subsystem consists mainly of simple 

blocks (e.g. “Divide” or “Abs”). The function principle bases on the limitation of 

the applicable electric power (calculated from the set value and the maximum 

motor power). A controlled ideal voltage source draws any required but also 

measured current. If the maximum applicable electric power is exceeded, the 

voltage of the ideal voltage source is lowered to decrease the power the appro-

priate level. Equal to the driver of the AC ASM model, the DC motor driver was 

designed in a way to expect scalar input values within the range from +1 to -1. 

The application of DC motor models led to considerable decreases of the com-

putational time and computational efforts for simulation model solving.  

 

 

6.7.2 Virtual Identification Measurements 

 

As the industrial robot manufacturer ABB and developer of the simulation soft-

ware ABB RobotStudio claims that the simulated virtual robots behave very re-

alistic and similar to their real counterparts (ABB Asea Brown Boveri Ltd. 

2019f), the idea emerged to obtain missing Simulink Simscape simulation mod-

el parameters from virtual identification measurements conducted in the ABB 

RobotStudio simulation environment.  
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Therefore, introductory as well as more sophisticated ABB RobotStudio pro-

gramming methods were investigated from ABB Asea Brown Boveri Ltd. (2019f) 

and ABB Asea Brown Boveri Ltd. (2019g) firstly.  

In order to obtain missing frictional parameters of the simulation model, the 

subsequently presented procedure was developed and tested within the ABB 

RobotStudio 6.08 (license provided from TAMK) virtual environment: 

 

Starting from the mathematical dynamic description of the robotic system (equa-

tion (4.14)): 

 

𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝒈(𝒒) + 𝒇(�̇�) = 𝝉 (6.5) 

 

In order to extract frictional torques only related to the individual joint/ axis in-

vestigated, disturbing influences from all other axes and non-frictional torque 

sources need to be eliminated/ minimized. Therefore: 

 

Reaching a state of constant velocity to eliminate/ minimize all moments of iner-

tia: 

 

𝑴(𝒒) �̈�⏟
=𝟎

= 𝟎 
(6.6) 

 

Elimination/ minimization of centrifugal and Coriolis torques, e.g. by the align-

ment of the centers of masses of all moving masses with the investigated axis: 

 

𝑪(𝒒, �̇�)�̇� = 𝟎 (6.7) 

 

Elimination/ minimization of the influence of the gravitational acceleration, e.g. 

by the alignment of the investigated axis with the direction of the gravitational 

acceleration: 

 

𝒈(𝒒) = 𝟎 (6.8) 
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Equation (6.5) is now reduced to: 

 

𝒇(�̇�) = 𝝉 (6.9) 

 

Substituting the friction f vector by a common static friction model considering 

viscous (Fm1) and Coulomb frictions (Fm2) (6 x 6-dimensional diagonal matrices, 

containing the individual constant friction coefficients/ torques) (equation (4.20)): 

 

𝒇(�̇�) =  𝑭m1 �̇� +  𝑭m2 𝑠𝑖𝑔𝑛(�̇�) = 𝝉 (6.10) 

 

Exemplarily for the first robotic manipulator’s axis (scalar expression): 

 

𝐹m1,1 �̇�1,mot +  𝐹m2,1 𝑠𝑖𝑔𝑛(�̇�1,mot) = 𝜏1,mot (6.11) 

 

Conducting motor torque measurements at the time t1 for two different joint mo-

tion velocities, e.g. v50 and v100, using the RAPID15 GetMotorTorque() 

function in the RobotStudio environment (motor side joint velocities can be read 

with the help of the TestSignRead() function): 

 

 

FIGURE 6.43: Exemplary plot of a trapezoidal joint velocity profile of the robot’s first axis  

                                            
15

 RAPID is a high-level programming language of ABB Asea Brown Boveri Ltd. for industrial 
robot programming 

�̇�1,mot(𝑡) 

𝑡 

�̇�1,mot,v100 

�̇�1,mot,v50 

𝑡1 
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Applying the measurement results (explicit values): 

 

�̇�1,mot,v50, �̇�1,mot,v100, 𝜏1,mot,v50, 𝜏1,mot,v100 (6.12) 

 

To the general common mathematical equation of linear functions: 

 

𝑦(𝑥) = 𝑚𝑥 + 𝑏 (6.13) 

 

Leads to the determination of the individual Coulomb friction torque: 

 

𝐹m2,1 = 

(𝜏1,mot,v50 ∙ �̇�1,mot,v100) − (𝜏1,mot,v100 ∙ �̇�1,mot,v50)

[(�̇�1,mot,v100 ∙ 𝑠𝑖𝑔𝑛(�̇�1,mot,v50)) − (�̇�1,mot,v50 ∙ 𝑠𝑖𝑔𝑛(�̇�1,mot,v100))]
 !
≥0 [Nm] 

(6.14) 

 

And the individual viscous friction coefficient: 

 

𝐹m1,1 =
𝜏1,mot,v100 − (𝐹m2,1 ∙ 𝑠𝑖𝑔𝑛(�̇�1,mot,v100))

�̇�1,mot,v100
 !
≥0 [Nms] (6.15) 

 

The described procedure needs to be applied for each other axis individually. 

Furthermore, the described procedure does not cover any non-linear frictional 

effects and may suffer from inaccuracies due to superposition with other non-

considered effects and changes of frictional values due to the individual robot’s 

poses applied for the identification measurements. 

The described procedure of virtual measurements for the identification of fric-

tional coefficients and torques was tested only. Due to a lack of processing time 

at the end of the accomplishment of the thesis work, the identification was not 

finished satisfyingly. Therefore, parameter values not determined during the 

procedures described in section 6.4.1 were set zero or to very small values (e.g. 

1E-12) in order to prevent “division-by-zero“ errors in the context of numerical 

solving of the simulation model (e.g. Coulomb friction torques of the joint bear-

ings).  

Additional information concerning the topic of missing parameters/ incomplete 

parameterization are discussed in section 10.  
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7 TESTING AND DEBUGGING 

 

The procedure of testing and debugging was accomplished constantly and par-

allel to every stage of the creation of the simulation model but more distinct dur-

ing the stage of code programming. Generally, testing and debugging was 

mainly characterized by the trial-and-error method aiming at the validation of the 

investigated individual objects and all possible variations of objects interactions. 

Testing and debugging was mainly conducted in the MATLAB and/ or Simulink/ 

Simulink Simscape environment, partly with the help of the included debugging 

tools.  

Parallel-to-creation testing revealed common typical programming bugs evoked 

by faulty copy-and-paste actions, typing mistakes, faulty indexing, etc. 

In addition to the constant testing during the process of the creation of the simu-

lation program, a separate short testing phase was accomplished after the fina-

lization of a first preliminary version of the simulation program. Therefore, the 

preliminary simulation program version, along with a first version of the operat-

ing manual, was provided to the thesis supervisors and client(s) (external test-

ing). Furthermore, testing was also executed by the author (internal testing). 

 

In the case of internal testing, testing and debugging was divided into the sub-

tasks of testing and debugging the MATLAB program part on one hand, and the 

Simulink/ Simulink Simscape program part on the other hand. As internal testing 

revealed a number of faults, only the most significant are listed exemplarily be-

low: 

 

MATLAB program part: 

 

 Testing revealed a simple but grave unit conversion error within the 

MATLAB inverse_kinematics.m file. In the case of a linear tool 

movement, the initial robot manipulator’s pose (qA) needs to be derived 

from the starting point “A” workspace coordinates [xA yA zA], defined by a 

user input in the unit [mm], using the MATLAB inverse kinematics solver. 

The MATLAB kinematics solver expects coordinate inputs in the unit [m], 

but inputs were passed into the solver in the unit [mm]. 
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This led to a conspicuously high level of computation time consumption 

and computational resources usage for the inverse kinematics solving. 

The rectification of the unit error caused a drastic decrease of the overall 

computation time and the usage of computational resources. 

 

Simulink/ Simulink Simscape program part: 

 

 Due to the non-existent appropriate control systems structures, the inter-

nal Simulink/ Simscape program testing part was narrowed to the valida-

tion of a small number of basic functions. In this context, rotational direc-

tion errors of the axes 1, 2, 5, and 6 were identified during observations 

of the simulation model’s animation in the MATLAB Mechanics Explorer 

(deviations from the definition; section 3.3). 

The errors were rectified within MATLAB get_joint_move.m file by the 

alignment of algebraic signs at the corresponding code lines.  

 

 

At the time of the creation of this document, the results/ feedback concerning 

the external testing accomplished by the external parties were not provided to 

the author and thus neither recorded nor rectified.  
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8 OPERATION OF THE SIMULATION MODEL 

 

The document at hand is primarily meant for the documentation of the accom-

plished work during the progress of the execution of the bachelor’s thesis. Fur-

thermore, the allowed extent of the document is limited.  

Therefore, no instructions and/ or further explanations concerning the operation 

of the simulation model were included in the thesis document itself but can be 

obtained from the earlier mentioned and comprehensive operating manual to be 

found from Appendix 5. Operating Manual. 
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9 CONCLUSION 

 

The thesis work, recorded at the document at hand, aimed at the development 

and implementation of a MATLAB Simulink simulation model of an ABB IRB 

2600-12/1.85 six axis articulated arm industrial robot for the purpose of educa-

tional use in control system design.  

The created simulation model, in its recent state, is considered as a compre-

hensive and fully functional application that meets the requirements, covers op-

tional accomplished tasks and can be used for the educational purposes it was 

initially meant for, as it: 

 

 Bases on a Simulink Simscape Multibody simulation model derived from 

the specific industrial robot’s CAD model 

 Is in accordance with the main technical specifications of the real indus-

trial robot (axes definitions and limitations, frame definitions, etc.) 

 Is in accordance with the common and generally accepted robotic ma-

nipulators theory (e.g. DH-formalism) 

 Covers a fully kinematic robot model 

 Covers a common dynamic robot model considering gravitational accel-

eration and a linear friction model (viscous and Coulomb frictions) 

 Contains detailed and realistic joint actuation models (joint actuation mo-

tor types, motor drivers, gearbox types, driveline characteristics, etc.) 

 Shows a simplified and assumption based but realistic first parametriza-

tion, covering the manipulator’s links mass and inertia properties (mass-

es, CoM, MoI, PoI), motor models (electrical and mechanical characteris-

tics) and gearboxes (ratios, inertias, efficiencies) 

 Bases on well-documented, sufficiently commented and modular 

MATLAB codes 

 Contains convenient, descriptive and input filtering GUI 
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 Allows changing, modifying and extending the simulation model’s: 

o CAD model 

o Simulink Simscape Multibody model (block diagram) 

o Simulink model (block diagram) 

o MATLAB programs 

o Parameterization 

 Covers an additional second simulation model version (Version “v_B”) 

with simplified DC joint actuation models/ subsystems 

 Comes with a comprehensive operating manual covering instructions for 

the operation, update and change/ modification of the simulation pro-

gram/ model 

 Provides information for future project continuations like a method for vir-

tual identification measurements to obtain frictional parameters from the 

ABB RobotStudio software 

 

And: 

 

 Provides a ready-to-use control system structures design environment 

also covering simple predetermined PID controllers for testing purposes  

 Allows appropriate observation, recording, storage and export of the 

simulation results 

 Allows comparisons of the Simulink/ Simulink Simscape simulation re-

sults to other simulation/ measuring results gained from other sources   
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Nevertheless, the simulation model suffers major incompleteness and weak-

nesses such as: 

 

 Incomplete and/ or simplified and/ or estimated and/ or assumption 

based parametrization  

 Not performed simulation model validation due to the lack of appropriate 

control system structures 

 

Furthermore, the capabilities of the simulation model are limited due to the ap-

plied general simplifications and restrictions (section 3.7): 

 

 Ideal rigid bodies such as links, joints, shafts, transmission gears, belts 

etc. 

 A linear friction model 

 Missing consideration of backlashes and uncertainties (bearings and 

transmissions) 

 Generally neglected time delays  

 Missing consideration of external (secondary) payloads like the end ef-

fector supply wiring 

 Generally idealised simulation model’s elements representations, limited 

to the level of detail provided by the corresponding Simulink/ Simulink 

Simscape blocks 

 Generally neglected thermal effects (e.g. temperature dependent trans-

mission lubricant viscosity) 
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10 OUTLOOK 

 

Based on the statements related to the incompleteness, weaknesses and lim-

ited capabilities of the simulation model made in the conclusion (section 9), con-

tinuations of this thesis work are required in order to obtain a completely com-

prehensive and more accurate simulation model.  

Following this, pending future tasks, accomplished in the context of further the-

sis works, semester projects, in-lecture projects, homework, laboratory works 

etc., can be coarsely divided into three categories and named as: 

 

 

Completion (of the parameterization) of the simulation model:  

 

 Acquisition and implementation of more precise information concerning 

link masses and inertias, motor-, gear/ transmission- and revolute joint 

parameters such as inertias, electrical parameters, damping/ friction val-

ues, gear ratios, etc. from existing data sources and/ or virtual or real 

(identification-) measurements.  

 

Furthermore, the validation of the simulation model. This could also cov-

er measurements for comparisons between the MATLAB Simulink simu-

lation model, other simulation models and the real robotic system. 

In the case of future accomplishment of identification measurements on 

the virtual or real robotic system, the consideration of Al-Dois, Jha & 

Mishra (2013) and Verdonck, Swevers & De Schutter (2007) is recom-

mended.  



124 

 

Modification of the simulation model: 

 

 Adaption or change of the contemporary applied motor types and their 

drives in order to reduce the complexity of the simulation model and/ or 

lessen the computational efforts (e.g. by the modification of the simplified 

joint actuation motor models presented in section 6.7.1). 

 

Modifications/ changes of the manipulator’s CAD model, e.g. CAD as-

sembly constraints, link geometries or the end effector/ tool. 

 

 

Extension of the simulation model:  

 

 Implementation of further simulation model block diagrams and corre-

sponding parameters in order to reduce the number of general simplifica-

tions and restrictions. 

 

Implementation of additional motion types such us point-to-point or circu-

lar movements. This could also cover the extension of available/ applied 

velocity and/ or velocity/ acceleration profiles (e.g. S-Curve velocity pro-

file) in the context of motion planning. 

 

Extensions of the solver constraints of the MATLAB inverse kinematics 

solver gik() function are already prepared in the comments of the cor-

responding MATLAB file and can be applied. 

 

Extensions of the end effectors/ tools capabilities within the coverage of 

applicable Simulink Simscape domains like pneumatics and hydraulics. 

 

Application of secondary payloads connected to the manipulator’s links, 

e.g. added to CAD model. 

 

The creation of a manipulator’s environment within the Simulink simula-

tion model with the help of additional geometries (e.g. a workbench).  
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This page was intentionally left blank in order to make the subsequent operating 

manual an independent document that can be extracted from the thesis docu-

ment separately. 
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MANUAL 

 

 

 

A Quick Start Guide for the MATLAB® Simulink®/  

Simscape™ (Multibody™)1 Simulation Model of an  

ABB2 IRB 2600-12/1.85 Industrial Robot Manipulator 

 

 

 

 

Author:      Olivier Preuss 

First Issued:     05.03.2019 

Last Edited:     16.04.2019 

Recent Version:    v05 

Revision:     A 

 

Corresponding Document:  Preuss, O. 2019. Simulation Model for a Six 

Axis Articulated Arm Industrial Robot. Mechani-

cal and Production Engineering. Tampere Uni-

versity of Applied Sciences. Bachelor's thesis 

  

                                            
1
 MATLAB®, Simulink®, Simscape™ and Simscape™ Multibody™ are trademarks or registered 

trademarks of The MathWorks, Inc. 
2
 ABB Asea Brown Boveri Ltd. 
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ABOUT THIS DOCUMENT 3 (36) 

 

The purpose of the document at hand is a quick introduction to the start-up, the 

operation and updating and extending/ modifying the MATLAB Simulink/ Sim-

ulink Simscape (Multibody) simulation of an ABB IRB 2600-12/1.85 industrial 

robot manipulator, initially equipped with a Fronius3 Robacta Drive CMT welding 

torch/ end effector. This document refers to the bachelor’s thesis: “Simulation 

Model for a Six Axis Articulated Arm Industrial Robot”, by Olivier Preuss, pub-

lished in April 2019 at Tampere University of Applied Sciences (TAMK) in Tam-

pere, Finland.  

 

Symbol: Meaning: 

 Useful information/ hint. 

! Important note, read carefully! 

 

GENERAL INFORMATION 

 

! 

Do not delete or add any data from/ to the simulation data set. Also 
do not rename, relocate or change the general structure(s) and 
location(s) of any of folders or files of the data set. (Exceptions: 
CAD MODEL UPDATE and EXTENSIONS/ MODIFICATIONS (re-
fer to the corresponding manual pages 179 and 182). Always use 
“Save as” in order to retain an unchanged copy of the simulation. 

 

 
For further information not covered by this manual, refer to the cor-
responding thesis document. 

 

 In order to keep this document as short as possible, hyperlinks are used 

to redirect to external web sources (provided by manufacturers/ develop-

ers/ other third parties) whenever reasonable. 

 Any filenames.m or folder names are written in italicised, coloured font 

and contain the file extension(s). 

 MATLAB related naming and commands are written in Courier new 

font. 

 Other “commands”, “window names“, “button names” etc. are in quota-

tions marks.  

                                            
3
 Fronius International GmbH 

https://www.google.com/search?q=hyperlink
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0. PREREQUISITES 5 (36) 

 

The usage of the simulation program requires basic general knowledge of 

MATLAB and Simulink/ Simulink Simscape. Basic knowledge of programming, 

mechatronics, robotics and control systems are also recommended. 

 

Additionally required: 

 

Subject: 
Required (R)/  
Optional (O): 

Note: 

Personal 
Computer 
(PC) 

R 
Minimums: Processor: Intel®4 or AMD®5 x86-64, 
RAM: 4GB, HDD: 4-6 GB free disk space, 
Graphics: OpenGL®6 3.3 with 1GB GPU 

Operating 
System (OS) 

R 
Microsoft® Windows®7 7 Service Pack 1, Apple® 
macOS®8 10.12, Linux®9: see10 or higher  

Simulation 
Software 

R 
MathWorks MATLAB R2018b or higher 
(In accordance with the used OS) 

CAD Software  O 
SolidWorksTM11 2001Plus, OR WildFire® 122.0, 
OR Creo®12 1.0, OR Autodesk Inventor®13 2009 
or higher  

CAD Software 
Plug-in 

O 
MathWorks Simscape Multibody Link Version 6, 
R2018b (In accordance with the used CAD 
software) or higher 

Spreadsheet 
Software 

O Microsoft Excel®7 2010 and higher 

Robot Manu-
facturers 
Software 

O ABB RobotStudio 6.08 and higher 

 

Simulation model data set(s)/folder(s): 
 

Folder Name: 
Est. File Size [MB]: 

Password: 
Zipped: Unzipped: 

BT_ABB_IRB_2600_Robot_Sim._v_A.zip 
18 130 #20RbT19Sim! 

BT_ABB_IRB_2600_Robot_Sim._v_B.zip 

  

                                            
4
 Intel® is a registered trademark of Intel Corporation 

5
 AMD® is a registered trademark of Advanced Micro Devices, Inc. 

6
 OpenGL® is a registered trademark of Hewlett Packard Enterprise 

7
 Microsoft®, Windows® and Excel® are trademarks or registered trademarks of Microsoft 

Corporation  
8
 Apple® and macOS® are registered trademarks of Apple Inc. 

9
 Linux® is a registered trademark of The Linux Foundation®. 

10
 https://www.mathworks.com/support/requirements/matlab-system-requirements.html 

11
 SOLIDWORKS™ is a trademark of Dassault Systèmes® 

12
 WildFire® and Creo® are registered trademarks of PTC Inc. 

13
 Autodesk Inventor® is a registered trademark of Autodesk Inc. 

https://www.mathworks.com/support/requirements/matlab-system-requirements.html
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1. INTRODUCTION 6 (36) 

 

The simulation program and its flow can be divided into two consecutive main 

program parts – an initial and looped MATLAB part and a following non-looped 

Simulink/ Simulink Simscape part. 

The MATLAB program part acquires and provides all required data for the Sim-

ulink/ Simulink Simscape simulation, represented by five main simulation varia-

bles (check section EXTENSIONS/ MODIFICATIONS (page 182) for more de-

tailed information), saved to the MATLAB “Workspace” (base) after execution. 

The contents/ values of the main simulation variables are determined with the 

help of the import of external data, user inputs and commands received from 

three graphical user interfaces (GUI) and a number of evaluation algorithms. 

Two different types of motion planning are also covered by the MATLAB pro-

gram part. 

The Simulink/ Simulink Simscape program part virtually represents the real ro-

botic system as a block diagram structure and uses the values of the formerly 

mentioned main simulation variables for the model parameterization. In contrast 

to the flow of the MATLAB program part, it is mostly ran manually (creation of a 

control system structure, execution of the simulation, evaluation of the results, 

etc.)  

The subsequently shown simplified overall program flow chart may supports 

understanding the general flow of the simulation procedure. 

 

  

Open Simulink/Simulink Simscape Simulation Model 

Program 
Part 2: 

Simulink/ 
Simulink 

Simscape 

Joint Movement  
Planning (GUI) 

Linear Movement 
Planning (GUI) 

START 

Initialization 

Data Import 

Main GUI 

END 

Update 

Result Evaluation (Manually) 

Simulation Execution (Manually) 

Control Systems Structure Creation (Manually) 

Manual Restart 

Change 

Program 
Part 1: 

MATLAB 
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2. INSTALLATION 7 (36) 

 

The instructions of step one and step two given in this section, INSTALLATION, 

only need to be executed once after the initial acquisition of the simulation pro-

gram data set. Step three needs to be repeated whenever starting or restarting 

the MATLAB software or for any other necessary reason (e.g. after changing 

the work directory/ folder). 

 

1. Extract the BT_ABB_IRB_2600_Robot_Sim._v_A folder from the 

BT_ABB_IRB_2600_Robot_Sim._v_A.zip file. While/ before the extrac-

tion procedure you will be asked for a password – use the password 

listed in the second table of the section PREREQUISITES (page 163). 

2. Save the extracted BT_ABB_IRB_2600_Robot_Sim._v_A folder to a 

proper work directory and folder.  

3. Run MATLAB and browse to the work folder prepared in step two. The 

MATLAB “Address Field” and “Current Folder” sub windows should now 

look like this: 

 

 

 

The installation is now completed. Continue with the section OPERATION 

(page 166).  
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3. OPERATION 8 (36) 

 

The section OPERATION covers instructions for the operation of the unedited, 

original simulation program. The subsequently shown instructions and/ or se-

quences may not be applicable for extended/ modified versions of the simula-

tion program.  

As mentioned in the INTRODUCTION (page 164), the simulation program can 

be divided in two parts, therefore, the instructions for the operation are also di-

vided into two consecutive parts: MATLAB and Simulink/ Simulink Simscape. 

Refer to the section INSTALLATION (page 165) before continuing. 

 

MATLAB: 

 

1. Type runSim; to the MATLAB “Command Window” and press “Enter”. 

2. If not already existent, MATLAB now automatically installs the required 

Simscape Multibody Multiphysics Library R2018b Version 2.7.0.0. Press 

“OK” to close the “Installation Successful” window and to continue. 

3. The “Robot System Import/Update” window now appears. Press “Im-

port/Update Robot System now” (The import procedure may take several 

seconds). 

4. If executed successfully, the “main_ui” window containing the “Simulation 

Control Panel” should open and appear similar to: 
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The “main_ui” window is always existent (loop) while running the 
MATLAB program part and allows updating or changing the varia-
ble contents at any time (except during the ”joint_move_ui” or 
“lin_path_ui” windows are open). If brought to the background, re-
store the window(s) from the task bar of your operating system. 

 

! 
Always use the “Exit” button of the “main_ui” window to terminate 
the simulation program properly without any errors. 

 

5. To update any data listed in Panel 1, “Basic Data/Requirements”, press 

the “Update” button. Make sure to replace/ update the files to be updated 

from before pressing the “Update” button! A “Data Update” window will 

appear - press the "Update now" button to continue, press the "Cancel" 

button to terminate the update procedure. 

 

 

 

Following this, two other windows will appear in a sequence. Press the 

"Install" button of the first "Library Installation" window if you wish to up-

date the Simscape Multibody Multiphysics Library. Press "Cancel" to skip 

this step. Press the "Import/Update Robot System now" button of the 

second "Robot System Import/Update" window if you wish to update the 

robotModel and importInfo variables. Press "Cancel" to skip this 

step. The simVar, smiData and robotPara variables are updated au-

tomatically. 
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6. The simulation of the Simulink/ Simulink Simscape simulation model re-

quires a motion planning in order to provide the required set values for 

the (revolute) joints of the robotic manipulator’s model. Press the “Joint 

Movement” or “Linear Movement” button of Panel 2 “Motion Planning” to 

start the procedure of planning the desired motion (see the figure of the 

“main_ui” window below step four). (In this manual, only the “Linear 

Movement” procedure is presented. The “Joint Movement” procedure is 

quite similar; therefore, the subsequent instructions are also valid.) 

7. A separate GUI (“lin_path_ui” or “joint_move_ui” window(s)) will be 

opened. Read the information given in the Panel “General Information” of 

the “lin_path_ui” window carefully! 

 

 

 

! 

All input fields need to be defined by appropriate input values. Mo-
tion planning cannot be executed successfully without completely 
and correctly filled input fields. Inputs are filtered and checked for 
being a number and being within the allowed boundaries. You may 
obtain the joint/ axis angle limitations, the movement parameters 
limits and the workspace limitations from the corresponding thesis 
document (section 3.3, TABLE 3.1) and/ or the ABB_IRB_2600-12-
1.85_Parameters.xlsx spreadsheet and/ or the robotic manipulator 
manufacturer’s documents.  
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8. Define all input fields by applying appropriate values. Press the “Contin-

ue” button of the Panel “Ready!” to calculate the trajectory and to return 

to the “main_ui” window.  

 

! 

Motion planning of linear movements requires solving inverse 
kinematics in order to calculate a trajectory in joint space 
(from the workspace trajectory). Joint movements in contrast 
are directly planned in joint space. Therefore, motion planning 
of linear movements can take seconds up to several minutes, 
depending on the length and orientation of the linear path and 
the performance of the used computer! 

 

9. Make sure that the status of the corresponding entry of Panel 2, “Motion 

Planning” (see the figure of the “main_ui” window below step four) is 

“Ready” and the “Last updated” timestamp is within a comprehensible 

range. 

10. You may restart the procedure of motion planning to change or update 

the desired movement type from the “main_ui” window as often as re-

quired.  

 

! 

Consider that only one movement type can be finally defined as 
input for the Simulink/ Simulink Simscape simulation mode (either 
“Joint Movement” OR “Linear Movement”). When repeating motion 
planning for updating or changing the movement type, former re-
sults are overwritten or deleted! 

 

11. To terminate the MATLAB program part and to start the Simulink/ Sim-

ulink Simscape program part, press the “Open Simulink” button of Panel 

3 “Simulation” of the “main_ui” window. Pressing the “Open Simulink” 

button will also cause printing the recommended minimum simulation 

time to the MATLAB “Command Window”. Furthermore, the main simula-

tion variables are made visible in the MATLAB “Workspace”. The Sim-

ulink/ Simulink Simscape environment containing the simulation model 

will be opened and all other windows will be closed. Before pressing the 

“Open Simulink” button, make sure that the status of all entries of Panel 

1, “Basic Data/Requirements”  and one of the entries of Panel 2 “Motion 

Planning” are “Ready” and the “Last updated” timestamps are within a 

comprehensible range.  
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If not, check the MATLAB “Current Folder”, the content of the folder (see 

EXTENSIONS/ MODIFICATIONS (page 182)) and try to update the data 

using the “Update” button and repeat the procedure of motion planning. 

 

 

 

12. Continue with the instructions for SIMULINK/ SIMULINK SIMSCAPE 

(page 171).  
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SIMULINK/ SIMULINK SIMSCAPE 13 (36)  

 

1. Continuing from step eleven of the MATLAB sub section (page 166) of 

this section, the Simulink/ Simulink Simscape environment (window) 

should be visible and appear similar to: 

 

 

 
2. Type at minimum the minimum recommended simulation time, printed to 

the MATLAB “Command Window”, into the “Simulation stop time” field of 

the Simulink/ Simulink Simscape environment (see mark a) in the figure 

above) (you may also add a small margin). 

3. Enter the “Control Systems” (here exemplarily “Controller Joint 1 (Axis 

1)”) subsystem of the simulation model (see mark b) in the figure above). 
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The “Control Systems” subsystem consists of six second level (sub sub-

system) control structure subsystems – one for each joint/ axis of the ro-

botic manipulator’s simulation model. Neglecting the individual input and 

output signals of the single control systems, all individual systems do 

have same structure. Therefore, the subsequent instructions are also val-

id for the joint controllers of the other axes. 

 

 

 

4. Add/ create the desired control system design/ structure block dia-

gram(s). Before the creation, read the information written below each of 

the three blue shaded (background) areas. (The control system structure 

must not be necessarily kept inside the areas (left: input, middle: control-

ler, right: output). The separation is only meant as suggestion for keeping 

a clear structure of the block diagram(s).) 

 

! 

When creating control system structures, consider that the 
drivers of the joint motors of the unedited Simulink/ Simulink 
Simscape simulation model were designed in a way to expect 
scalar values within the range from -1 to +1 as the controlled 
value (input). Thus: “+1” = “100% power in the positive direc-
tion” and “-1” = “100% power in the negative direction”. 
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If you wish to apply any other changes than changes of the control 
system structures to the Simulink/ Simulink Simscape simulation 
model, it is highly recommended to refer to the EXTENSIONS/ 
MODIFICATIONS section (page 182) in advance. 

 

5. Repeat the procedures of step three and step four for each of the other 

control structure sub subsystems. 

6. Navigate back to the main structure of the Simulink/ Simulink Simscape 

simulation model (see figure below step 1). Adjust the “Configuration Pa-

rameters” of the simulation model if necessary (e.g. solver settings) (see 

mark c) in the figure below step 1). 

7. Run the simulation (see mark d) in the figure below step 1) and wait until 

the solving was completed. Alternatively, you are also able to view simu-

lation results live while model solving is executed as explained subse-

quently (step eight). You may abort the model solving before finishing, 

e.g. when simulation results seem to be obviously faulty, in order to save 

time. 

 

 

Computation time may vary significantly, depending on the used 
simulation settings (e.g. trajectory length, solver type, solver step 

size, operating system and soft- and hardware). 
 

! 
Always take into consideration that simulation results can be faulty 
and do not necessarily represent real systems behaviour. 

 

8. Enter the “Measurements” subsystem (see mark e) in the figure below 

step 1). In contrast to the “Control System” subsystem, the second level 

subsystems of the “Measurements” subsystem are organized by the type 

of the measured values (joint angles, velocities, accelerations and tor-

ques) and not by the origin of the value (revolute joint blocks 1-6 of the 

Simulink/ Simulink Simscape simulation model). The structures of the 

sub subsystems are quite similar. Therefore, the subsequent exemplary 

instructions related to the “Joint Angles” sub subsystem are also valid for 

the other sub subsystems.  

9. Enter the sub subsystem covering the measurements wished to be 

viewed (as mentioned above, here exemplarily “Joint Angles”). 
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10. Measurements are taken and recorded with Simulink “Scope” blocks. As 

shown in the figure above, signals to be measured (actual values) are 

taken from the signal bus and routed to the according “Scope” block(s). 

In the case of the joint angles measurement, the set values of the joint 

angles, calculated in the MATLAB program part, are also fed to the cor-

responding “Scope” block(s) for comparison purposes. Both, actual and 

set value signals are also led through “Gain” blocks for the purpose of 

unit conversion. 

 

! 

Consider that all bus signal values have SI units or derived SI 
units. For increasing the comprehensibility of the measured 
values, signals of the “Joint Angles”, “Joint Velocities” and 
“Joint Accelerations” sub subsystems are converted from the 
unit radiant [rad] to the unit degree [°], whereas in the “Joint 
Torques” sub subsystem the unit [Nm] is measured. You may 
undo the predefined unit conversion by changing the gain 
values of the preceding “Gain” blocks of each scope input 
signal to one (1). 

 

11. Double-click the “Scope” block to view the graphs of the measured input 

signals (see figure above, here exemplarily “Joint Angle Axis 1). 
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12. Evaluate the measurement result(s). Print and/ or save the graph(s)/ re-

sult(s) if necessary. Also check all other measurements of interest. 

 

 

Change the predefined appearance of the scope window to align it 
with your own requirements. E.g. go to “View”, “Layout” and “2x1”to 
create two separated signal graphs with the same time axis inside 
the graph window. 

 

13. To view the 3D animation/ simulation of the Simulink Simscape simula-

tion model, represented by the .stl geometry files gained from the CAD 

model and the calculated kinematics and dynamics, change from the 

Simulink/ Simulink Simscape environment window to the MATLAB envi-

ronment window. The opened window should appear like shown below, if 

not, change the tab of the MATLAB window to “MECHANICS EXPLOR-

ERS” manually. 
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You may enable the visibility of the frames and the centers of 
masses of the links (rigid bodies) of the Simulink Simscape simula-
tion model (see figure below, use the marked buttons of the “ME-
CHANICS EXPLORERS” (mark f)). 

 

 
 

14. Evaluate the results and save them if needed. To restart the MATLAB 

program part in order to change parameters or motion planning, repeat 

the procedure of the MATLAB subsection of this section (page 166) start-

ing from step one. If you wish to terminate the simulation program, just 

close MATLAB and MATLAB Simulink as usual.  

f) 
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4. CHANGE OF PARAMETERS 19 (36) 

 

All parameters of the simulation model are stored in an external Microsoft Excel 

spreadsheet in order to provide a centralized and clearly arranged parameter 

compilation. All required parameters are imported from the spreadsheet during 

the initialization of the simulation program and are provided to the Simulink/ 

Simulink Simscape simulation model via the MATLAB “Workspace” (base). 

Therefore, do not change any variable entries within the Simulink/ Simulink 

Simscape block(s) (diagrams) settings to change parameters. 

 

The full name of the Microsoft Excel spreadsheet is:  

ABB_IRB_2600-12-1.85_Parameters.xlsx 

 

The spreadsheet can be found from the relative file path: 

../BT_ABB_IRB_2600_Robot_Sim._v_A\Data\Robot Parameters\ 

ABB_IRB_2600-12-1.85_Parameters.xlsx 

 

The general structure and contents of the spreadsheet are listed in the subse-

quent table: 

Sheet 
No.: 

Sheet Name: Content(s)/ Purpose(s): 

1 
(1) General Robot 
Information 

Handling capacity, reach, weight  

2 (2) Axis Range Limits General (angular) axis limitations (A1-A6) 

3 (3) Axis Speed Limits General axis angular velocity limitations (A1-A6) 

4 
(4) Axis Acceleration 
Limits 

General axis angular acceleration limitations (A1-
A6)  

5 (5) TCP Limits General TCP velocity and acceleration limitations 

6 (6) Joint Parameters 

(Revolute) joint(s) parameters: State targets (po-
sition, velocity), internal mechanics (equilibrium 
pos., spring stiffn., damping coeff.), bearings 
(friction torques, damping coeff.) 

7 (7) Motor Parameters 

Electrical motor(s) (asynchronous machine 
(ASM) with squirrel cage rotor (three-phase)) 
parameters: El. ratings (power, voltage etc.), el. 
parameters (stator resistance, reactance, etc.) 
and mechanical parameters (rotor inertia, etc.) 

8 
(8) Transmission Pa-
rameters 

Cycloidal transmission (gear box) parameters: 
teeth numbers (gear ratio), efficiency, inertia, etc. 

9 
(9) Motor Drivers 
Parameters 

Six-pulse three phase converter parameters: DC 
link voltage, switching freq., sample time, etc. 
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! 

When simplifying parameters e.g. by adding several viscous damp-
ing and/ or friction coefficients to one overall value, always check 
the corresponding application(s)/ block(s) from the Simulink/ Sim-
ulink Simscape simulation model in advance (e.g. different angular 
velocities due to transmission gears)! This is also valid for inertias 
where gear ratios typically cause squared impacts (e.g.  
r = 130, → r^2 = 16900!). 

 

! 

It is strongly recommended not to change the structure (this in-
cludes the exact names and sequences of the sheets, cell loca-
tions, etc.) of the spreadsheet. Own sheets can be added after the 
last original sheet “(9) Motor Drivers Parameters”. 

 
1. Navigate to the (relative) file path of the spreadsheet mentioned above. 

Save a copy of the unedited spreadsheet to any proper location before 

continuing. 

2. Open the spreadsheet and navigate to the sheet(s) containing the pa-

rameter(s) to be changed (check the structure and contents table above). 

 
 

3. Apply the desired changes - always consider the corresponding unit(s) 

and cell format (number, text, etc.)! 

4. Save all changes (overwrite; do not change the file path or file name) and 

close the spreadsheet.  

5. Run the simulation (see section OPERATION (page 166)) and check if 

the values of the robotPara variable (see section EXTENSIONS/ MOD-

IFICATIONS (page 182)) are in accordance with the applied changes. 

6. If any error(s) occur(s), firstly check the section TROUBLESHOOTING 

(page 193). Then repeat the procedure of this section starting from step 

one.   



179 

 

5. CAD MODEL UPDATE 21 (36) 

 

This section covers instructions for updating the MATLAB and Simulink/ Sim-

ulink Simscape data of the simulation model based on the CAD model. The up-

date procedure needs to be applied after each change of the CAD model (as-

sembly) of the robotic manipulator.  

 

 

Always check if desired changes could possibly be implemented 
without changing and updating the CAD model in advance. E.g.  
adding simple geometries or changing the mass of a robotic ma-
nipulator’s link and/ or the end effector/ tool can be accomplished 
within the MATLAB and/ or Simulink/ Simulink Simscape environ-
ment. For further information refer to the section EXTENSIONS/ 
MODIFICATIONS (page 182). 

 

! 

When applying changes to the CAD model (assembly), always 
consider that the Simulink Simscape block diagrams general struc-
ture is derived from the CAD model structure but cannot be 
adapted automatically. Therefore, do not change the existing CAD 
model constraints between in the links (revolute), or link 6 and the 
end effector/ tool (rigid). Furthermore it is strongly recommended 
not to change the overall number of individual parts (seven) of the 
CAD model assembly (e.g. when adding a secondary payload to 
one of the robotic manipulator’s links, use “unite” or similar func-
tions in order to obtain one rigid body). For a complete listing of the 
structure (including constraints, naming and data types) of the CAD 
model assembly refer to the corresponding thesis document (sec-
tion 6.1, TABLE 6.1 and TABLE 6.2 ). 

 

1. Make sure that you are using one of the suitable CAD software listed in 

the first table of PREREQUISITES (page 163, table of requirements). 

2. If the Simscape Multibody Link Plug-In is not already installed to your 

CAD software, go to 

https://www.mathworks.com/help/physmod/smlink/ug/installing-and-

linking-simmechanics-link-software.html14 and follow the instructions 

carefully. 

3. Run the CAD software and apply the desired changes to the robotic ma-

nipulator’s individual parts and/ or assembly.   

                                            
14

 The MathWorks Inc. 2019. Support. Documentation: Simscape Multibody Link Plug-In. Install 
the Simscape Multibody Link Plug-In. Release: R2019a. Read on 23.03.2019 

https://www.mathworks.com/help/physmod/smlink/ug/installing-and-linking-simmechanics-link-software.html
https://www.mathworks.com/help/physmod/smlink/ug/installing-and-linking-simmechanics-link-software.html
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4. Create an empty folder: Simulink Simscape Data (exact name) and save 

it to any proper directory. 

5. Create and export the Simscape Multibody model (.xml file) from your 

CAD software to the Simulink Simscape Data folder created in step four, 

using the Simscape Multibody Link Plug-In. (Use .stl geometry file for-

mat). For assistance, explore 

https://www.mathworks.com/help/physmod/smlink/index.html15. The con-

tent of the Simulink Simscape Data folder should now look like shown 

below: 

 

 

 

6. In MATLAB, navigate to the (relative) file path 

../BT_ABB_IRB_2600_Robot_Sim._v_A\Data\Simulink Simscape Data 

7. Save all files shown in the MATLAB “Current Folder” sub window to any 

proper folder and directory in order to create backup data. 

8. Rename the ABB_IRB_2600_12_185_Simscape_DataFile.m file to 

oldDataFile.m. 

9. Delete all files shown in the MATLAB “Current Folder” sub window ex-

cept oldDataFile.m and ABB_IRB_2600_12_185_Simscape.slx. 

10.  Copy all newly created files from the Simulink Simscape Data folder 

(step five) to the MATLAB “Current Folder”. 

  

                                            
15

 The MathWorks Inc. 2019. Support. Documentation: Simscape Multibody Link Plug-In. 
Release: R2019a. Read on 23.03.2019 

https://www.mathworks.com/help/physmod/smlink/index.html
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11.  Type smimport('ABB_IRB_2600_12_185_Simscape.xml',… 

'ImportMode','dataFile','DataFileName',… 

'ABB_IRB_2600_12_185_Simscape_DataFile',… 

'PriorDataFile','oldDataFile.m'); to the MATLAB “Command 

Window” and press “Enter”. 

 

! 

Never use 'modelAndDataFile' instead of 'dataFile' as 

the value for the 'ImportMode' input argument to call smim-

port()! This would cause an update of the complete Sim-

ulink/ Simulink Simscape block diagram and not only its data 
set! 

 

12. Wait until MATLAB finished the procedure. Read the procedure report 

printed to the MATLAB “Command Window” carefully and follow the in-

structions if necessary. 

13. Check if the new ABB_IRB_2600_12_185_Simscape_DataFile.m file ex-

ists in the MATLAB “Current Folder” sub window. 

14. Delete the oldDataFile.m file via the MATLAB “Current Folder” sub win-

dow. 

15. Open the ABB_IRB_2600_12_185_Simscape.slx Simulink/ Simulink 

Simscape simulation model and check for any errors. 

16. If any error(s) occur(s), firstly check the TROUBLESHOOTING section 

(page 193). Then repeat the procedure of this section starting from step 

one. You may restore the original Simulink Simscape Data folder from 

the backup data created in step seven if the error(s) cannot be solved.  
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The section EXTENSIONS/ MODIFICATIONS provides useful hints and general 

information concerning the structure and flow of the complete simulation pro-

gram (covering the MATLAB and the Simulink/ Simulink Simscape parts). Be-

cause of the wide variety of applicable extensions/ modifications, this section 

does not contain any specific instruction sequences. Several example exten-

sions/ modifications are shown at the end of this section.  

 

! 

Adding, removing or modifying any data of the original data set can 
cause fatal errors. Always save a copy of the original data sepa-
rately before applying any changes. Save your work periodically. 

 

Before applying any changes to the simulation program, it is recommend to first-

ly get familiarized with its overall structure in general and its single components 

in particular. Therefore, read the sections INTRODUCTION (page 164) and 

CHANGE OF PARAMETERS (page 177) in advance. You may also check the 

program flow charts of the MATLAB .m files from the appendices of the corre-

sponding thesis document (Appendix 4. Program Flow Charts). 

 

The general structure of the simulation programs data set folder is shown in the 

subsequent figure. (In the context of TROUBLESHOOTING (page 193), you 

may also ensure the completeness of the data set.) 
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The structure, dependencies and interactions of the MATLAB .m files and ex-

ternal data (within the data set) are depicted in the figure below. The directions 

of connections refer to the real data flow (from the left to the right: calls, from 

the right to the left: returns). Check the contents of the MATLAB .m files or the 

program flow charts from the appendices of the corresponding thesis document 

(Appendix 4. Program Flow Charts) to learn more about the input and output 

variables/ arguments of each function/ .m file. 
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As mentioned in the INTRODUCTION (page 164), all required data of/ for the 

simulation (program) are stored to five main variables which are made visible/ 

accessible in the MATLAB “Workspace” (base) with the transition from the 

MATLAB to the Simulink/ Simulink Simscape program part. Consider the sub-

sequent tables and explanations in order to obtain more detailed information 

concerning the main simulation variables. 

 

Name: Type: Description/Purpose: 
Initialized/ 
Changed by: 

simVar 
1x1 struct 
(9 fields) 

Contains all required data for 
the execution of the MATLAB 
program part. Provides the re-
sults of the MATLAB program 
part to the Simulink/ Simulink 
Simscape program part. 

Initialized  by 

simVar_init(), 

changed by all 
other functions of 
the MATLAB pro-
gram part  

smiData 
1x1 struct 
(3 fields) 

Contains the block parameter 
values of the imported Sim-
scape Multibody simulation 
model automatically created 
during the procedure of the ex-

ecution of the smimport() 

function. 

Created by 
smimport(), 

initialized by 
load_smiData(

) 

robotPara 
1x1 struct 
(7 fields) 

Contains mainly values for the 
parameterization of the block(s) 
(diagram(s)) of the Simulink/ 
Simulink Simscape simulation 
model. 

ro-

bot_para_xls_

import() 

robotModel 
1x1 Rigid-
BodyTree 

Contains the robotic manipula-
tor’s simulation model kinematic 
structure (represented by rigid 
bodies connected by joints) and 
corresponding parameters.  importrobot() 

importInfo 

1x1 Rigid-
BodyTree-
ImportInfo 

Contains information concern-
ing the import procedure of the 

importrobot() function. 
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The variables robotModel and importInfo are the returning values/ vari-

ables/ objects of the MATLAB importrobot() function. If required, further 

information concerning the importrobot() function can be obtained from 

https://www.mathworks.com/help/robotics/ref/importrobot.html16. General infor-

mation concerning the robotModel and importInfo variables can also be 

found there. To get more detailed information about the robotModel 

(RigidBodyTree) variable, go to 

https://www.mathworks.com/help/robotics/ref/robotics.rigidbodytree-

class.html17. It is strongly recommended to not to apply any changes to these 

variables manually. 

 

 

Type show(robotModel); to the MATLAB “Command Window” 

and press “Enter” to view a 3D plot of the robot’s general structure. 

Use showdetails(importInfo); in the same manner to print 

the contents of the importInfo variable to the MATLAB “Com-

mand Window” in a readable format. 

 

The smiData variable is loaded from the 

ABB_IRB_2600_12_185_Simscape_DataFile.m file using the 

load_smiData() function. The 

ABB_IRB_2600_12_185_Simscape_DataFile.m in turn is a model data file de-

rived from the Simulink Simscape Multibody Import .xml file 

(ABB_IRB_2600_12_185_Simscape.xml) using the smimport() function (for 

more information refer to section CAD MODEL UPDATE (page 179)). 

 

The simVar and robotPara variables were designed from the author in the 

context of the accomplishment of the corresponding thesis work/ document. The 

robotPara variable is created by the robot_para_xls_import() function 

which in turn reads values from the ABB_IRB_2600-12-1.85_Parameters.xlsx 

spreadsheet file.  

  

                                            
16

 The MathWorks Inc. 2019. Support. Documentation: Robotics System Toolbox. Manipulator 
Algorithms. Functions. Importrobot. Release: R2019a. Read on 24.03.2019 
17

 The MathWorks Inc. 2019. Support. Documentation: Robotics System Toolbox. Manipulator 
Algorithms. Classes. robotics.RigidBodyTree class. Release: R2019a. Read on 24.03.2019 

https://www.mathworks.com/help/robotics/ref/importrobot.html
https://www.mathworks.com/help/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/robotics/ref/robotics.rigidbodytree-class.html
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The simVar variable is initialized by the simVar_init() function and re-

ceived and returned from all functions of the MATLAB program part in order to 

allow all functions to read/ write information from/ to one centralized variable. 

See the tables below to learn more about the structures and contents of the 

simVar and robotPara variables. 

 

Variable: 
Fields (First 

Level): 
Description/ Purpose: 

simVar 

uiInput 

Contains further subfields and sub subfields; 
contains inputs of the graphical user interfaces 

“joint_move_ui()” and “lin_path_ui()”. 

uiControl 

Contains further subfields (e.g. exeUpdate); for 

control functionalities of the main graphical user 
interface “main_ui”. 

statusFlags 

Contains (flag-) values (either “1” = “true” or “0” = 
”false”); for the interaction/ control functionalities 
between the different graphical user interfaces. 

updateTime 

Contains the update times of updated/ loaded / 
created/ executed data/ libraries/ programs (e.g. 
Simscape Multibody Multiphysics Library) for the 
“Last updated:” labels in the “main_ui” GUI win-
dow. 

linPathPlan 

Contains further subfields (e.g. pRes); contains 

the results of the linear trajectory planning 

lin_traj_planning() (for 

get_lin_move() internal use). 

initVal 

Contains further subfields (e.g. qStartA); con-

tains the initial pose (and velocities) of the  Sim-
ulink/ Simulink Simscape simulation model. 

targetVal 

Contains further subfields (e.g. qTargetB); con-

tains the target pose (and velocities) of the Sim-
ulink/ Simulink Simscape simulation model. 

gik 

Contains a further subfield (qRes); stores the 

(unformatted) results of the inverse kinematics   

(inverse_kinematics()). 

qSetValues 

Contains further subfields (q1SV…q6SV); con-

tains the (formatted) set values of the joint an-
gles for the Simulink/ Simulink Simscape simula-
tion model. 
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Variable: 
Fields (First 

Level): 
Description/ Purpose: 

robotPara 

generalRo

eralRo-

botInfo 

Contains further subfields (e.g. capacity); 

contains general information of the real robotic 
manipulator. 

axisLim-

its 

Contains further subfields (e.g. range); contains 

axis/ joint limitations of the Simulink/ Simulink 
Simscape simulation model equal to the axis/ 
joint limitations of the real robotic manipulator 

(e.g. for input filtering in “joint_move_ui()” 

and “lin_path_ui()”). 

tcpLimits 

Contains values (e.g. velocity); contains TCP 

limitations of the Simulink/ Simulink Simscape 
simulation model equal to the TCP limitations of 
the real robotic manipulator(e.g. for input filtering 

“joint_move_ui()” and “lin_path_ui()”). 

jointPara 

Contains further subfields and sub subfields (e.g. 

stateTar); contains values for the parameteri-

zation of the revolute joint block(s) (diagram(s)) 
of the Simulink/ Simulink Simscape simulation 
model. 

motorPara 

Contains further subfields and sub subfields (e.g. 

ratPow); contains values for the parameteriza-

tion of the joint motor/ driver block(s) (dia-
gram(s)) of the Simulink/ Simulink Simscape 
simulation model. 

transmPa-

ra 

Contains further subfields and sub subfields (e.g. 

nCdt); contains values for the parameterization 

of the joint transmission block(s) (diagram(s)) of 
the Simulink/ Simulink Simscape simulation 
model. 

motDrivPa

ra 

Contains further subfields and sub subfields (e.g. 

vdc); contains values for the parameterization of 

the joint motor driver block(s) (diagram(s)) of the 
Simulink/ Simulink Simscape simulation model. 

 

It is recommended to only read the original variables structures and not to apply 

any changes to them. If required, add your own structures/ entries to the varia-

bles without overwriting the existing contents. 

 

 
Use the MATLAB “Workspace” sub window to view the variables 
contents by double-clicking them. 
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Example 1: Modification of Robot Model (Links (Bodies)/ Joints) Properties 

 

As mentioned in section CAD MODEL UPDATE (page 179), some simple 

changes of the properties (links (solids/ rigid bodies) masses, centers of mass-

es, inertia properties, joint properties, rigid transformations, etc.) of the robotic 

manipulator’s simulation model can be applied without changing and updating 

the CAD model. In this example, the change of the mass of the end effector/ 

tool of the simulation model is shown exemplarily. 

 

 Use the MATLAB “Current Folder” sub window or the “Address Field” to 

navigate to the relative path: 

../BT_ABB_IRB_2600_Robot_Sim._v_A\Data\Simulink Simscape Data. 

 Open the ABB_IRB_2600_12_185_Simscape_DataFile.m file from 

the MATLAB “Current Folder” sub window by double-clicking. 

 Change to the MATALB “Editor” sub window to view the code of the 

ABB_IRB_2600_12_185_Simscape_DataFile.m file. Search for the 

code line: smiData.Solid(6).ID = 'Weld-

ing_End_Effector*:*Standard'; (line 196 in this case, see mark 

a) in the figure below). (Consider that the end effector body is represent-

ed by the solid body with the index six (6).) 

 

 
 

 Go to smiData.Solid(6).mass (line 190) and apply the desired 

changes (see mark b) in the figure above) (consider the corresponding 

unit written as comment behind the value). 

 Save (overwrite) the applied changes. 

  

b) 

a) 
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When changing e.g. the center of mass of a body (e.g. smiDa-
ta.Solid(6).CoM, line 191 in the figure above) always check the cor-
responding origin of this value from the Simulink Simscape simula-
tion model block diagram in advance. 

 

 

Example 2: Adding/ branching off Signal Bus Signals 

 

 

Within the Simulink/ Simulink Simscape simulation model, all sig-
nals are routed with the help of a signal bus system (exception: 
values/ parameters directly or indirectly (“From Workspace” block) 
obtained from the MATLAB “Workspace” (base)). 

 

! 

Simulink and Simulink Simscape use different signal domains. Al-
ways use “PS-Simulink Converter“ or “Simulink-PS Converter“ 
blocks for interfacing when adding or branching off bus signals 
(bus signals are in the Simulink signal domain and use SI units or 
derived SI units only). 

 

The example adding/ branching off signal bus signals is exemplarily shown for 

adding/ branching off signal bus signals within the “Controller Joint 1 (Axis 1)” 

subsystem. 

 

 Within the Simulink Simscape simulation model environment/ window, 

navigate to the “Control Systems” subsystem. Then enter the sub sub-

system “Controller Joint 1 (Axis 1)”: 

 

  

c) 

e) 



190 

 

 32 (36) 

 For branching off signals from the signal bus, double-click an existing 

“Bus Element In” block (here “ControllerSystemIn-

Bus.Joint1OutBus.Angle” exemplarily, see mark c) in the figure above). 

 

 
 

 Search for the desired signal in the bus structure depictured in the 

opened window. Mark the signal(s) to be added (here “ElectricalTorque” 

exemplarily) and press the “Add blocks for selected signals” button, see 

mark d) in the figure above). The new “Bus Element In” block(s) will ap-

pear in the block diagram underneath the existing one(s). Alternatively, 

you can add “Bus Element In” blocks from the Simulink “Library”. 

 

 For adding any signal(s) to the signal bus, double-click an existing “Bus 

Element Out” block (here “ControllerJoint1OutBus.ControlledValue” ex-

emplarily, (see mark e) in the second last figure). A window will appear, 

similar to the one shown in the figure above. Instead of the “Add blocks 

for selected signals” button, now press the “Add a new signal” button 

(same appearance). A new signal will be added to the bus structure de-

pictured in the opened window. Furthermore, a new “Bus Element Out” 

block will be added in the block diagram underneath the existing one. 

Apply appropriate naming to the added bus signal. Alternatively, you can 

add “Bus Element Out” blocks from the Simulink “Library”.  

d) 
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Subsequently, the change of the motor and the motor driver of Joint 1 of the 

Simulink Simscape simulation model is shown exemplarily. 

 

 Within the Simulink Simscape simulation model environment/ window, 

firstly navigate to the “Simscape Robot Model” subsystem. Secondly, en-

ter the sub subsystem “Robot Base Subsystem”, following that, enter the 

third level subsystem “Joint 1 Drive System”. 

 

 

 

 Delete the “ASM 1 Driver”, “Phase Permute (Delta)” and “ASM 1 (Squir-

rel Cage)” blocks (see the marked area in the figure above). If not re-

quired for own signal routing purposes, also delete the “ASM 1 Meas-

urements” and “Joint1DriveOutBus.AsmMeasure” blocks.  

 Create/ Insert the new motor model (and driver if required) and connect it 

to the existing mechanical rotational conserving lines “R” (rod) and “C” 

(case). 

 

 

Only signal(s)/ block(s) from the same Simulink Simscape domain 
can be connected directly (e.g. “Driveline”, “Electrical”, etc.) (con-
sider the different colours of the signals of the different domains). 
For interfacing, use “Interface” blocks (e.g. “Rotational Simscape 
Intft” block) to be found from the Simulink “Library” -> Simscape 
Multibody Multiphysics Library. 
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 Use the existing “Machine 1 Inertia” and “Machine 1 Viscous Damping” 

blocks for representing the mechanical behaviour/ properties of the mo-

tor. Therefore, change the corresponding parameters in the 

ABB_IRB_2600-12-1.85_Parameters.xlsx spreadsheet (see section 

CHANGE OF PARAMETERS (page 177)). To disable the mentioned 

predefined blocks, e.g. when neglecting mechanical influences of the 

motors on the simulation model, set the specific parameters to zero. 

(Setting the specific parameters to zero can possibly cause various er-

rors – try to use small values near zero (e.g. 1E-12) to avoid these errors 

whenever occurred.)  

Alternatively, you can delete the variable entries of the blocks settings 

and type in the desired values directly. 

Consider adapting the control system structures, to be found from the 

“Control Systems” subsystem, in order to align the type(s) of the con-

trolled value(s) with the expected input(s) of the new motor and its driver 

(in this context, also refer to step ten of the sub section SIMULINK/ SIM-

ULINK SIMSCAPE of the section OPERATION  (page 171)). 
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The TROUBLESHOOTING section is meant for identifying and fixing errors oc-

curred in the context of using an unedited or an edited version of the simulation 

program. Because of the high number of possible mistakes/ errors/ faults, only a 

few typical, common and very specific, matters can be handled within this sec-

tion. Check the entries listed in the subsequent table whenever unknown errors 

occurred and apply all applicable solutions/ corrections. 

 

 

Also explore https://www.mathworks.com/help/ for further help. 
(The MathWorks Inc. 2019. Support. Documentation. Release: 
R2019a. Read on 23.03.2019) 

 

Description(s)/ Error(s)/ Fault(s): Explanation(s)/ Solution(s): 

For an unknown reason, I cannot 
use the GUI and/ or close any win-
dow(s) and/ or exit the simulation 
program. 

Go to the MATLAB “Command Win-
dow”, place the cursor at any position 
inside and press “CTRL+D”. This should 
terminate all active MATLAB tasks. 

I changed the robot parameters in 
the robot parameters spreadsheet. 
The changes are not applied to the 
MATLAB or/ and Simulink/ Sim-
ulink Simscape environment(s). 

Consider that the MATLAB program 
needs to be run again after applying 
changes to the robot parameters. Use 
the “Update” button in the “main_ui” or 
restart the program from the MATLAB 

“Command Window” using runSim;. 

Make sure that you saved the applied 
changes by overwriting the existing 
spreadsheet. Do not use “Save as”. 

I changed the robot parameters in 
the robot parameters spreadsheet. 
MATLAB or/ and Simulink/ Sim-
ulink Simscape now report various 
errors. 

Check the applied changes for typos, 
incorrect separators, incorrect units and 
incorrect cell formats. 

I changed values in MATLAB or/ 
and Simulink/ Simulink Simscape 
environment(s) manually. Now var-
ious errors are reported (e.g. ex-
ceeded variable boundaries). 

Ensure that the correct separators were 
used. Example: one point zero five:  
Incorrect: 1,05  
Correct: 1.05 

Motion planning of linear move-
ments takes a lot more time and 
computational efforts than the mo-
tion planning of joint movements. 

Motion planning of linear movements 
requires solving inverse kinematics in 
order to calculate a trajectory in joint 
space (from the workspace trajectory). 
Joint movements in contrast are directly 
planned in joint space. Therefore, mo-
tion planning of linear movements re-
quires more computational time and ef-
forts. 

  

https://www.mathworks.com/help/
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Description(s)/ Error(s)/ Fault(s): Explanation(s)/ Solution(s): 

Compiling and solving the Sim-
ulink/ Simulink Simscape simula-
tion model is very slow and causes 
high CPU, RAM and disk usage. 

The simulation model at hand is com-
prehensive and detailed – a high de-
mand of computational performance is 
considered as normal. You may close all 
other running applications on your com-
puter in order to provide MATLAB the 
maximum of available CPU, RAM and 
disk capacities. 

I opened the Simulink/ Simulink 
Simscape simulation model manu-
ally from its folder. Several blocks 
are marked in a red colour and I 
cannot compile/ run the simulation 
without errors. 

Always run the GUI in advance in order 
to provide the required data and varia-
bles via the MATLAB “Workspace” 
(base) to the Simulink/ Simulink Sim-
scape simulation model. 

I executed the simulation and tried 
to run the GUI again using 

runSim; in the MATLAB “Com-

mand Window”. MATLAB reports 
‘…’ is not found the current folder. 

Check the MATLAB “Current Folder”, 
must be: 
../BT_ABB_IRB_2600_Robot_Sim._v_A 
or: 
../BT_ABB_IRB_2600_Robot_Sim._v_B 

I executed the Simulink/ Simulink 
Simscape simulation. Result eval-
uation revealed that the set values 
did not reached steady states until 
the end of the simulation time. 

Make sure that the value of the Sim-
ulink/ Simulink Simscape simulation 
time is equal to or higher than the mini-
mum recommend simulation time print-
ed to the MATLAB “Command Window” 
after pressing the “Open” button in the 
“main_ui”. 

I tried to extend the Simulink Sim-
scape simulation model block dia-
gram. I was not able to connect a 
Simulink block to a Simulink Sim-
scape block or signal (or vice ver-
sa) (e.g. “Scope” block). 

Simulink and Simulink Simscape use 
different signal domains. Always use 
“PS-Simulink Converter“ or “Simulink-
PS Converter“ blocks for interfacing. 
Also ensure to apply appropriate set-
tings of the converter blocks (units, input 
handling). 

I disconnected a block from the 
Simulink Simscape simulation 
model block diagram for testing 
purposes. The Simulink “Diagnos-
tic viewer” now reports various er-
rors when trying to compile/ run the 
simulation. 

Simulink Simscape block diagrams do 
always need exactly one “Solver Con-
figuration” block. All blocks of the block 
diagram need to be directly or indirectly 
(via other blocks) connected the “Solver 
Configuration” block. 

The screen of my computer does 
not display anything. I cannot open 
the manual and check the trouble-
shooting section. 

Try to reduce your personal environ-
mental impact by avoiding printing use-
less manual documents next time. 
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