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Virtual system mappings and simulations are fundamental and contemporary engineering
methods, especially within the widely spread field of complex, multi-domain mechatronic robotic
systems. Therefore, companies as well as educational institutions typically try to apply the most
recent simulation methods and software in order to achieve future-oriented and successful
teaching, studies and researches.

The client of the thesis work at hand, Tampereen Ammattikorkeakoulu (TAMK) owns an ABB
industrial robot manipulator that operates, among others, as a MIG/ MAG welding robot. Relat-
ed to that, this thesis work aimed at the development and implementation of a MATLAB® Sim-
ulink® simulation model of an ABB IRB 2600-12/1.85 six axis articulated arm industrial robot for
the purpose of educational use in control system design. The main objectives were: Design and
implementation of a modular, maintainable and extendable simulation model based on a
MATLAB® Simulink® Simscape ™ Multibody™ model, derived from the robot's CAD model. The
simulation model shall be used as a ready-to-use environment for control system structures
design and include sufficient parameterization as well as user interface(s), motion planning and
an operating manual.

In the context of the accomplishment, firstly the entirety of requirements was identified. In order
to clearly outline the work extent and to meet the requirements satisfyingly, necessary defini-
tions and regulations were formulated; this also covered general simplifications and restrictions.
Task related, corresponding, common and state-of-the-art theory was studied and gathered
from appropriate sources and adapted if required. The conceptual design was related to the
preliminary determination of general matters e.g. the project structure and simulation flow but
also of particular tasks e.g. the design of joint actuation models and graphical user interfaces.
Finally, the conceptual design was implemented under the continuous consideration of the pro-
jects requirements, previously determined definitions and regulations and the corresponding
theory.

The result of this thesis work is considered as a comprehensive and fully functional simulation
program/ model that meets the client’s requirements, covers optional accomplished tasks and
can be used for the educational purposes it was initially meant for.

Nevertheless, the simulation model at its state at the finalization of the thesis work at hand,
suffers weaknesses, incompleteness and limited capabilities due to incomplete parameteriza-
tion, not conducted model validation and necessarily applied simplifications. Therefore, future
continuations of this thesis work, e.g. in the context of further thesis works or semester projects,
need to be applied to obtain a fully comprehensive and accurate simulation model.
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CONTENTS

1 INTRODUCTION ... 1
2 TASKDEFINITION ... 3
3 DEFINTIONS AND REGULATIONS ......cuuiiiiiiiiiiiiiiiiiieeeee 5
ST UNIES et 5
3.2 Gravitational Acceleration ...........ccooooiiiiiiiiciii e 5
3.3 Manipulator AXES .....ccooiiiie e 5
3.4 Coordinate Systems (Frames) ............uuuuuuuiiiimiiiiiiiiiiiiiiiieee 6
3.4.1 Base Coordinate System.........cccooooiiiiiiiiiiii e, 7

3.4.2 World Coordinate System...........ccoeeviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 7

3.4.3 Reference Coordinate System............ooooviiiiiiiiiiiiicce e, 8

3.4.4 Tool/ End Effector Coordinate System ...........ccccvvvvviiiiiiiiiiiineinnnn. 8

3.5 HOME POSItION.....ooiiie e 8
3.6 Tool/ End Effector Orientation ............cooveeiiiiiiiii e 8
3.7 General Simplifications and Restrictions of the Simulation Model .......... 9
3.7.1 Air RESIStaNCEeS. ......uuiiieiiiieee e 9

B A T [ o [ 1= 9

3.7.3 FrICHONS ... 10

3.7.4 BANNGS ...coeiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeee e 10

3.7.5 Backlashes and Uncertainties ... 10

3.7.6 Time Delays (Dead-Times)........cccuueiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeee 11

3.7.7 External Loads..........cooii i 11

3.7.8 EleCtriC MOLOIS......ceeiiei e 11

3.7.9 TransmisSSION GEArS .........ccevviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee e eeeeeeees 12
3.7.100ther Electric Components and Computers...........cccevvvvieeneeennn. 12

3.7 11Thermal EffeCtS.......oovviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 12

3.7 A2ENVIFONMENT ... 12

4 THEORY ..o 13
4.1 Industrial Robot Manipulators ............cccooiiiiiiii e, 13
4.1.1 Articulated Arm Manipulators ..........ccoouviiiiiiiiiiieic e 14

4.1.2 Direct KinematiCs.........ccoeiiiiiiiiieie e 16

4.1.3 Inverse KinematiCS .......ooovviiiiiiiiii e 20

R D )Y g =1 o [ RPN 23

4.2 Motion Planning ....ccoooeeoeoiiieeeee 26
4.2.1 Linear Trajectory Planning............coooeeiiiiiiiiiiiiciee e, 28

4.2.2 Joint Trajectory Planning ................eeeueeieiiiimiiiiiiiiiiiiiiiiiiinees 33

4.3 Control SYSteMS....ccooeeeeeeeeee e 37
4.4 MATLAB SimMUINK ...ccooeiiieeeeeeeeeeeeeeeeeeee e 41
4.5 ProgramiMing......ccoooooeeeemuiiieeeeeeeeeeeatia e e e et eeab e e e e 42



CONTENTS (CONTINUATION)

5 CONCEPTUAL DESIGN.......uuuuuiiiiiiiiiiniiniiiiiinienennnnessnnsnnnnsnnnnnnnnnnnnnnnes 44
5.1 General Simulation Program Structure ..............ccccviiiiiiiiiiniee, 45
5.2 Simulink/ SIMulink SIMSCAPE ......ccoeeeiiiiiiiiiie e 46

5.2.1 Simscape Multibody Model............cccooviiiiiiiiiiiiiceeeee e 46
SIS 11 .11 ] 1o | 51
5.2.3 Parameter ProViSioNn ...........coouuiiiiiiiii e 53
IR (Y N I 53
5.3.1 Simulation Model Variables ............ccccevvviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee 54
5.3.2 Graphical User Interfaces..........ccoooveeeiiiiiiiiiiiiiee e 56
5.3.3 Programs & Program Flow Charts...........ccccccceeiiiiiiiiiiiiiiceeeee, 58

6 ACCOMPLISHMENT ... 64
6.1 CAD MOGEL.......uueiiiiiiiii e 64
6.2 Simulink Simulation Model .............cccooi e 67

6.2.1 Simulink Simscape Multibody Robot Model............ccccccvvvrrinnnnn. 67
6.2.2 Signal BUS ... 73
6.2.3 Control System StruCtures............ccoeevviiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeee 75
6.2.4 MeasUIrEMENtS.........uuiiii e 77
6.3 MATLAB Program(S)..........u i uuuuueuiiiiiiiiiiiiniiiiiniiiiiieeseeeseaensneees 81
6.3.1 Program & Program Structure(S)........coovvvmiviiiiiiieiiiieiiieee e 82
6.3.2 Simulation Model Variables ..........ccccooovviiiiiiiiiiie e 85
6.3.3 Motion Planning........ccouiiiiiiiiii e 91
6.3.4 Graphical User Interfaces.........ccccovveeeiiiiiiiiiiiii e 94
6.4 Simulation Model Parameters ...........oooovuiiiiiiiiiiecce e 98
6.4.1 Parameter ACQUISITION ...........coiiiiiiiiiiiiii e 99
6.4.2 Parameter Spreadsheet ...........ccoooviiiiiiiiiiiii 106
6.4.3 Simulation Model Parameterization ............cccccvvvvvviiiiiiiiiinnnnnnn. 109
6.5 Data Set File Structure...........ccovviiiiiiiiic e 109
6.6 Operating Manual...............oouiiiiiiiii e 110
6.7 OPtioNal TASKS ....uuiiiiie i e 111
6.7.1 Simplified Joint Actuation Motor Model(S) ..........ccccuviiieeieeennnnns 111
6.7.2 Virtual Identification Measurements.............cccooeeeeviiiiiiiiiinneeen, 113

7 TESTING AND DEBUGGING........cuuuuiiiiiiiiiiiiiiiinnnees 117

8 OPERATION OF THE SIMULATION MODEL ... 119

O CONGCLUSION ...ttt snsssnnsnnnnnnns 120

10 OQUTLOOK ... 123

REFERENGCES ......oooeeiiiitiiieee s annnsnnnnnnns 125

DECLARATION OF AUTHORSHIP ......cuutiiiiiiiiiiiiiiiiiiiiieeeeneee 128

APPENDICES. ... ... 129



ABBREVIATIONS AND TERMS

3D
ABB
AC
ASM
CAD
CoM
CP

DC

DH
DOF

FF

GUI
GUIDE
HsH
IRB
MAG
MATLAB®'
MIG
MIMO
MISO
Mol
PFC
Pol

PTP

Sl
SIMO
SISO
STL/ .stl
TAMK
TCP
XML/ xml

Three-Dimensional
Asea Brown Boveri
Alternating Current
Asynchronous Machine (Motor)
Computer Aided Design
Center of Mass
Continuous Path

Direct Current
Denavit-Hartenberg
Degree of Freedom
Feedforward

Graphical User Interface

Graphical User Interface Development Environment

Hannover University of Applied Sciences and Arts

Industrial Robot

Metal Active Gas Welding
Matrix Laboratory

Metal Inert Gas Welding
Multiple-Input Multiple-Output
Multiple-Input Single-Output
Moment of Inertia

Program Flow Chart

Product of Inertia

Point-to-Point

Systeme International (d’unités)
Single-Input Multiple-Output
Single-Input Single-Output
Stereolithography

Tampere University of Applied Sciences
Tool Center Point

Extensible Markup Language

" MATLAB® is a registered trademark of The MathWorks, Inc.



LIST OF FIGURES

FIGURE 1.1: ABB IRB 2600 industrial robot (ABB Asea Brown Boveri Ltd.

{0 e 7 R 2
FIGURE 3.1: ABB IRB 2600 robot axes and rotational directions definitions......6
FIGURE 3.2: ABB IRB 2600 robot coordinate systems definitions ..................... 7
FIGURE 4.1: ABB IRB 2600 individual robot elements assignment.................. 14
FIGURE 4.2: Exemplary depiction of a kinematic structure’s coordinate frames
(DH-FOrM@IISM ... 15
FIGURE 4.3: Exemplary description of the relative tool position and orientation
(Siciliano, Sciavicco, Villani & Oriolo 2009, 59, modified). ...........cccccccviiiinnnnnes 18
FIGURE 4.4: Exemplary depiction of homogenous frame transformations
(Siciliano, Sciavicco, Villani & Oriolo 2009, 61)........cccovivmiiiieieeeeeeeeee e 19
FIGURE 4.5: Example of a multiple solution problem of inverse kinematics
(Siciliano, Sciavicco, Villani & Oriolo 2009, 93, modified) ............cccoevvviieennen.n. 21
FIGURE 4.6: Vector based linear workspace path formulation (Weber 2017, 86,
gL o [1il=Te ) PR 28
FIGURE 4.7: Trapezoidal velocity profile (left) and the corresponding
acceleration profile (right) (Weber 2017, 75, modified) ...........ccccovveeeeiiiriiniinnn, 30
FIGURE 4.8: Sinusoidal acceleration profile and corresponding velocity and
position graphs (Weber 2017, 79, modified) .......ccccooerrrrimiiiiiiieeee e 31
FIGURE 4.9: Flow chart: adaption of the applicable path velocity (Weber 2017,
A A 121 T 1= 1 32
FIGURE 4.10: Exemplary depiction of a fully synchronized axis motion (velocity)
.......................................................................................................................... 34
FIGURE 4.11: Schematic depiction of internal and external robot control (Weber
2017, 25, MOAIfied) ..coeeeeeeeeee e 38
FIGURE 4.12: Decentralized SISO control system structure (Bajd, Mihelj,
Lenarci€, Stanovnik & Munih 2010, 78, modified) ..........cccccceeeiiiiiiiiiiiiee e 39
FIGURE 4.13: Schematic depiction of a decentralized cascaded SIMO control
system structure (Grote, Bender & Gohlich 2018, T112, modified)................... 40

FIGURE 4.14: Schematic depiction of a decentralized cascaded MIMO control
system structure with centralized feedforward control (Grote, Bender & Gohlich
2018, T112, MOAIfied) ... e e e e 41
FIGURE 5.1: Automatically generated Simscape Multibody model block
(o[ F=To | r= 1 o ¢ ST PPPPPRPRPPRN 44



LIST OF FIGURES (CONTINUATION)

FIGURE 5.2: General simulation program structure diagram ..............cccc......... 46
FIGURE 5.3: Freehand sketch of the concept of the simulation model’s
Simscape block diagrami............oouuiiiiiii i 47
FIGURE 5.4: Freehand sketch of the concept of a subsystem of the Simscape
(o] oTe3 g =T r=1 1 4 47
FIGURE 5.5: Freehand sketch of the concept of a joint actuation subsystem ..48
FIGURE 5.6: Screen capture of a Simulink Simscape Asynchronous Machine

FIGURE 5.7: Screen capture of a Simulink Simscape Cycloidal Drive block....49
FIGURE 5.8: Screen capture of the MATLAB Simulink Simscape
“Asynchronous Machine Scalar Control” example block diagram..................... 50

FIGURE 5.9: Block diagram of a common basic closed-loop control system

] (1o (0 =PSRRI 51
FIGURE 5.10: Screen capture of an exemplary block parameterization........... 53
FIGURE 5.11: General Simulation Program Flow Chart..........cccccccvviiiiiiinnnnn. 54
FIGURE 5.12: Freehand sketch of the concept of the Main (G)Ul window ....... 57
FIGURE 5.13: Freehand sketch of the concept of the Motion (G)UI window ....58
FIGURE 5.14: Flow chart diagram of the linear movement planning ................ 59
FIGURE 5.15: Program flow chart of the inverse_kinematics() function ........... 61

FIGURE 6.1: Procedure of the generation of the Simscape Multibody model

0] 0o i 0 71 1= 3 65
FIGURE 6.2: Screen capture of the SolidWorks assembly of the robot
g F= 1T 01U =1 o 66

FIGURE 6.3: Screen capture of the final simulation model’'s Simulink block
(o 1E=T o =1 o S SPUPTRRN 67
FIGURE 6.4: Screen capture of the final simulation model’s Simulink Simscape
o] o o] 8 2T T L= 68
FIGURE 6.5: Screen capture of the Simscape simulation model’s Robot Base
SUDSYSIEM ... 69
FIGURE 6.6: Screen capture of the Simscape simulation model’s Joint 1 Drive
SUDSYSTEM (1/2) e 71
FIGURE 6.7: Screen capture of the Simscape simulation model's ASM1 Driver
SUDSYSIEM ... 72



VI

LIST OF FIGURES (CONTINUATION)

FIGURE 6.8: Screen capture of the Simscape simulation model's Robot End

Effector SUDSYStEM ......oooiiiiii e 72
FIGURE 6.9: Screen capture of the Simscape simulation model’s Joint 1 Drive
SUDSYSTEM (2/2)) ... 73

FIGURE 6.10: Screen capture of the signal bus structure of the Control System
SUDSYSIEM INBUS......eeee e 74

FIGURE 6.11: Screen capture of the Control System subsystem of the Simulink

(o] oY1 Q[ F=To | =1 o PP 75
FIGURE 6.12: Screen capture of the Controller Joint 1 (Axis 1) (sub) subsystem
.......................................................................................................................... 77

FIGURE 6.13: Screen capture of the Measurements subsystem of the Simulink
(o] oTe3 Qo 1= | =1 1 ¢ 78
FIGURE 6.14: Screen capture of the Joint Angles (sub) subsystem of the
Measurements SUDSYSIEM ..o 79
FIGURE 6.15: Screen capture of a Joint Angle Axis 1 Scope block signal plot 79
FIGURE 6.16: Screen capture of the Joint Velocities (sub) subsystem of the
Measurements SUDSYSIEM .........oooviiiiii 80
FIGURE 6.17: Screen capture of the robot’'s Simscape Multibody model
simulation animation (Mechanics EXplorer) ............vieeiiiiiiiiiiiccce e, 81
FIGURE 6.18: Flow chart of the MATLAB General Program Flow.................... 82
FIGURE 6.19: MATLAB program(s) structure and function/ file dependencies.83
FIGURE 6.20: Screen capture of the first level of the structure of the robotPara
(V2= 1 E= 1 o] = RPN 86
FIGURE 6.21: Screen capture of the first level of the structure of the simVar

VariaDIe ... 87
FIGURE 6.22: Screen capture of the MATLAB Command Window and
Workspace after the successful MATLAB program execution .............cccc.uuee.... 87

FIGURE 6.23: Depiction of the linear movement’s end effector position and

[0 1T 3PP 92
FIGURE 6.24: Screen capture of the simVar.linPathPlan and
simVar.linPathPlan.pRes variables (example) .........ccccoo 93
FIGURE 6.25: Screen capture of the simVar.qSetValues and
simVar.qSetValues.q1SV variables (example)...........ccceeeeeiiiii 94

FIGURE 6.26: Screen capture of the MATLAB main GUI main_ui ................... 96



VI

LIST OF FIGURES (CONTINUATION)

FIGURE 6.27: Screen capture of the MATLAB joint movement GUI

(o L L 2 0.0 )= LSRR 97
FIGURE 6.28: Screen capture of the MATLAB linear movement GUI lin_path_ui
.......................................................................................................................... 97

FIGURE 6.29: Screen capture of an invalid input MATLAB error message box98
FIGURE 6.30: Cycloidal reduction gear of the RV-N series of the Nabtesco

Corporation (Nabtesco Corporation 2019a) .........cccovviiiiiiiiiiiie e 100
FIGURE 6.31: Manufacturer’s rating table of the RV-N series cycloidal reduction
gear (Nabtesco Corporation 2015, 8, modified) ..........ccccoeeeeiiiiiiiiiiiieiiieeeeee, 101
FIGURE 6.32: Manufacturer’s rating table of the RV-N series cycloidal reduction
gear (continuation) (Nabtesco Corporation 2015, 9, modified) ....................... 101
FIGURE 6.33: Manufacturer’s efficiency table of the RV42-N cycloidal reduction
gear (Nabtesco Corporation 2015, 36).......ccoeeeeiiiiiiiii 101
FIGURE 6.34: ABB IRB 2600 Axis 4, 5 & 6 AC motor (ABB Asea Brown Boveri
[ (o T2 0l e o ) TR 102
FIGURE 6.35: TBL-I IV series compact size AC servomotor basic specifications
(TAMAGAWA SEIKI Co., Ltd. 2019, 2, modified)...........ccccccummrmrimeiiiiiiiiininnnnns 102
FIGURE 6.36: TSM3204 400W AC200V torque characteristic diagram
(TAMAGAWA SEIKI Co., Ltd. 2019, 8) ....uvriiiiiiiiiiiiiiiiiiiiiiiieeeee 103
FIGURE 6.37: Screen capture of link 2 of the robot manipulator's CAD model
........................................................................................................................ 105
FIGURE 6.38: Screen capture of the (8) Joint Parameters worksheet of the
parameters spreadsheet ... 107
FIGURE 6.39: Screen capture of the ASM1 block parameterization............... 109

FIGURE 6.40: General file structure of the data set of the simulation model..110
FIGURE 6.41: Simulink screen capture of the Robot Link 3 Subsystem with a
[T 4o (o] il 4T o [= ] 112
FIGURE 6.42: Simulink screen capture of the DC Motor 4 Driver subsystem 113
FIGURE 6.43: Exemplary plot of a trapezoidal joint velocity profile of the robot’s
L] 8= D 115



VI

LIST OF TABLES

TABLE 3.1: Assignments and limitations of the manipulator's axes (ABB Asea
Brown Boveri Ltd. 20190, 11)..co e 6
TABLE 4.1: Assignment and typecast of the ABB IRB 2600 robot elements ....14
TABLE 5.1: Listing and description of the conceptualized MATLAB function(s)

1T 62
TABLE 6.1: List of SolidWorks parts and assemblies of the manipulator.......... 65
TABLE 6.2: List of Simscape Multibody simulation model input files of the
[ F=T 11 01U F=1 o 66
TABLE 6.3: Listing of the available signal bus signal types .................ccccooeee. 74
TABLE 6.4: Listing and description of additionally implemented MATLAB
fUNCLON(S) (fIl€S) ..uneeeeieeeee e 84
TABLE 6.5: Descriptions of the five simulation variables .......................coee. 88
TABLE 6.6: Detailed description of the robotPara variable ............................... 89
TABLE 6.7: Detailed description of the simVar variable.................................... 90
TABLE 6.8: ABB IRB 2600 gearbox spare part information (axis 3) ............... 100
TABLE 6.9: ABB IRB 2600 motor spare part information (axis 4, 5 & 6)......... 100
TABLE 6.10: Robot manipulator’s link mass and volume information............. 106

TABLE 6.11: Structure and contents of the parameters spreadsheet............. 108



1 INTRODUCTION

From a general perspective, the origin of this thesis work bases on the demand
of providing contemporary teaching methods to pupils and students. In this con-
text, simulation is an important share of the teaching content, especially within
the widely spread engineering domain.

Due to the continuous and rapid development of powerful simulation software
during the last decades, nowadays complex systems can be virtually mapped
and simulated with moderate effort. In parallel to that, the capabilities and avail-
abilities of computer systems in general, but also common PCs, increased mas-
sively while the costs decreased. Furthermore, software developers often pro-
vide discounted or free (academic) software versions for general educational
purposes to the institutions or to the students/ pupils directly.

In sum, this allows educational institutions to include the most recent simulation
methods and software in teaching, studies and researches with moderate ad-

ministrational and financial efforts.

From a more particular perspective, the topic of this thesis work was initiated by
lecturers of the engineering department of the Tampereen Ammattikorkeakoulu’
(TAMK). The TAMK owns an ABB? IRB 2600-12/1.85 industrial robot manipula-
tor that operates, among others, as a MIG/ MAG welding robot equipped with a
Fronius® Robacta Drive CMT welding solution (which also includes the torch
end effector). Unified with other ABB components and additional applications
and equipment, the entirety represents a multifunctional robot cell located at the
TAMK production engineering laboratory (room F0-19). The industrial manipula-
tor was and is still used for teaching, laboratory-, project- and thesis works but
also in the context of the accomplishment of external commercial customer or-
ders.

The purpose of the thesis work is the development of a MATLAB® Simulink®
simulation model of an ABB IRB 2600 six axis articulated arm industrial robot

for educational use in control system design.

! English: Tampere University of Applied Sciences

2 ABB Asea Brown Boveri Ltd.

® Fronius International GmbH

* MATLAB® Simulink® is a registered trademark of The MathWorks, Inc.
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The simulation model shall be used as a ready-to-use environment for control
system structures designed and implemented by pupils/ students. Thus, the
simulation model shall include all components to execute, monitor and record
kinematic and dynamic simulations of the robot, except the controller structures
themselves. Additionally, the simulation model shall be easily varied, e.g.
change of motor types, change of computer aided design (CAD) data and/ or
extended, e.g. with pneumatics, hydraulics or any other applicable elements
within the MATLAB Simulink (this also covers Simulink® Simscape™ and Sim-
scape™ Multibody™)® environment. Furthermore, MATLAB Simulink simulation
results shall be comparable to results gained from hand calculations, other sim-

ulation types or real measurements.

FIGURE 1.1: ABB IRB 2600 industrial robot (ABB Asea Brown Boveri Ltd. 2019a)

In the context of recent thesis works at the TAMK, the industrial manipulator
was thematised in: Alykas Huuva (Hyyppa 2015), Design of an Intelligent Pro-
tection Shield (Rodewald 2016), Designing and implementing a Robot Gripper
using additive manufacturing (Gerland 2017), Creation of an Augmented Reality

App for an Introduction to Industrial Machine Mechanics (Compton 2018).

® Simulink® Simscape™ and Simscape™ Multibody™ are trademarks or registered trademarks
of The MathWorks, Inc.



2 TASK DEFINITION

In addition to the description of the purpose of this thesis, written in the second
last paragraph of the section 1, a conclusion of the thesis objectives is listed
subsequently. The objectives were defined by the customer (TAMK) and do

contain required as well as optional elements.

Important note: The administrative part of the accomplishment of the thesis
work also included a conclusion of a contract between the receiving institution
(client; TAMK) and the author. This thesis contract also contains a complete
listing of the thesis objectives and can be found from the appendices as Appen-
dix 1. Thesis Contract. The corresponding project plan is available from Appen-

dix 2. Project Plan.

The thesis work bases on the industrial robot manipulator of the type: ABB IRB
2600-12/1.85. Due to the topic of the thesis (simulation), processes and their
outcomes are mainly related to software such as simulation software (MATLAB/
Simulink/ ABB RobotStudio) and CAD software. In this context, more details
can be obtained from the thesis contract (Appendix 1. Thesis Contract) or the
list of requirements (Appendix 3. List of Requirements).

The simulation model to be created shall base on the MATLAB programming
language which also covers Simulink and Simscape block diagrams. Predefined
MATLAB/ Simulink contents like toolboxes, classes, functions, blocks, etc. shall
be preferred and used whenever available to accomplish a task.

As a minimum requirement, the interaction between the user and the simulation
model shall be realised via the MATLAB command window. The creation of a
(graphical) user interface(s) is optional, but if implemented, the design shall be
kept simple and intuitive.

The simulation model shall include a graphical representation of the robot
based on a CAD model with a sufficient precision implemented via Simulink
Simscape Multibody. The simulation model shall represent the real robotic sys-
tem with all its properties such as geometry and dimensions, physics, etc. as
sufficient as an appropriate effort of the acquisition of the properties allows.
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Identification measurements taken from the real robotic system are not part of
the thesis. Required data shall be acquired from product documents, software
sources, third parties, etc.

In case of not obtainable data, simplifications and assumptions are allowed but
to be clearly revealed and founded in a sufficient way.

The simulation model shall use the BASE coordinate system (frame) as its main
coordinate system. The BASE coordinate system shall be in coincidence with
the WORLD coordinate system and represent a reference coordinate system
which acts as reference for target definitions and end effector orientations. All
coordinate systems are right-handed Cartesian coordinate systems.

The home configuration, axis designations, initial angular positions, angular limi-
tations and directions of rotation (signs) of the simulation model shall be in ac-
cordance with the defaults of the real robotic system defined by the manufac-
turer.

The simulation model shall include two types of motion planning. Firstly, a linear
path planning from coordinate “A” to coordinate “B”, specified by the user in the
reference coordinate system. Secondly, the values of the angles of every indi-
vidual rotational (revolute) joint of the robot model shall be allowed as user input
for the motion planning of a joint movement.

The structure of the simulation model shall be created in a modular way. Main-
taining, editing, updating and extending the model shall be possible with mod-
erate effort. The program flow and the operation of the model shall be designed
clearly structured. Simulation results gained from MATLAB Simulink shall be
comparable to measurements taken from the real robot system and/ or the ABB
RobotStudio software, which is optional. Furthermore, a short concise instruc-
tion document for the operation and service of the simulation model shall be
created.

The simulation model shall generally base on the Sl base units and derived

units, exceptions are allowed if meaningful and sufficiently justified.



3 DEFINTIONS AND REGULATIONS

In order to ensure a consistent content within this thesis work, the following def-
initions and regulations are valid for the complete thesis work. This also covers
all the documents and data created in the context of the accomplishment of this
work such as documentations, program codes, the simulation model, CAD data,

etc.

3.1 Units

Only Sl-units and derived Sl-units are used. Deviating from this, the units “per-
centage [%]” and “degree [°]” are used in the context of user inputs (user inter-
faces and robot parameters spreadsheet) and simulation result measurements
(Simulink Simscape environment) in order to increase the comprehensibility of
the provided/ measured values.

3.2 Gravitational Acceleration

The value of the gravitational acceleration is in accordance with the MATLAB

Simulink default settings and defined as:
m
g = 9.80665 (3.1)

The direction is defined as the negative direction of the z-axis (Zy) of the base
frame (see FIGURE 3.2).

3.3 Manipulator Axes
The definitions of the manipulator’'s axes and the corresponding rotational direc-

tions of the revolute joints are in accordance with the manufacturer’s definitions
and are shown below (FIGURE 3.1).



FIGURE 3.1: ABB IRB 2600 robot axes and rotational directions definitions

TABLE 3.1: Assignments and limitations of the manipulator's axes (ABB Asea Brown Boveri

Ltd. 2019b, 11)

n: Axis: | Name: | Symbol: Upper Limit [°]: Lower Limit [°]:
1 Axis 1 A a1 +180 -180
2 | Axis?2 B Q2 +155 -95
3 | Axis3 C (o +75 -180
4 | Axis 4 D Ja +400* -400*
5 | Axis5 E gs +120 -120
6 | Axis6 F Je +400** -400**
*: (+ 251 rev. to - 251 rev. Max.) **: (+ 274 rev. to - 274 rev. Max.)

3.4 Coordinate Systems (Frames)

Coordinate systems (frames) are always right-handed Cartesian coordinate sys-
tems.



3.4.1 Base Coordinate System

The base coordinate system (frame) (index 0, see FIGURE 3.2) definition is in
accordance with the common definition: The x-y-plane of the base frame is in
coincidence with the set-up area of the base of the robot. The z-axis of the base
frame is in coincidence with the robot’s first revolute joint axis (Axis 1, A) and
points away from the x-y-plane.

The described definition of the base frame is in accordance with the manufac-
turer’s definition (ABB Asea Brown Boveri Ltd. 2019c, 24-28).

FIGURE 3.2: ABB IRB 2600 robot coordinate systems definitions

3.4.2 World Coordinate System

The world coordinate system (frame) is in coincidence with the base coordinate

system.



3.4.3 Reference Coordinate System

The reference coordinate system (frame) is in coincidence with the base coor-

dinate system.

3.4.4 Tooll End Effector Coordinate System

The tool/ end effector coordinate system (frame) (index 6, see FIGURE 3.2)
definition is in accordance with the common definition: The x-y-plane of the tool/
end effector frame is in coincidence with the tool mounting surface of the last
(seventh) link of the manipulator. The z-axis of the tool/ end effector frame is in
coincidence with the manipulator’s last revolute joint axis (Axis 6, F) and points
away from the x-y-plane. The origin of the tool/ end effector coordinate system
Oe (see FIGURE 3.2) is called tool center point (TCP).

The described definition of the tool/ end effector frame is in accordance with the
manufacturer’s definition (ABB Asea Brown Boveri Ltd. 2019c, 24-28).

3.5 Home Position

The home position of the manipulator is shown FIGURE 3.1. In the home posi-

tion, the manipulator’s pose is defined by the angular values of the axes:

ql q6 = 0 ° (32)

This axes configuration also acts as the reference for any angular joint move-

ments.

3.6 Tool/ End Effector Orientation

In the context of simulation model user inputs, the tool/ end effector orientation

is described with the common definition of the ZYX-Euler angles [a B y].
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The base frame of the manipulator (see sub section 3.4.1) is the reference
frame for the description of the tool/ end effector orientation. This topic is dis-

cussed more detailed in section 4.1.3.

3.7 General Simplifications and Restrictions of the Simulation Model

Real robotic systems are highly dynamic and complex structures. The robotic
system’s static and dynamic behaviour is influenced by means of effects origi-
nated in their type, application, conditions, environment etc. Despite the fact
that some of the effects cause non-negligible impacts on the system’s behav-
iour, simplifications are necessarily made and restrictions applied in order to
keep the thesis work within a manageable extent. Furthermore, the created
simulation is meant for educational purposes with emphasis on control system
design at undergraduate level. Therefore, the complexity of the model needs to
cover main characteristics of the real system but also needs to be kept at a

moderate level to ensure the traceability of its behaviour.

3.7.1 Air Resistances

Influences caused by forces evoked by the movement of the real robotic system
in its ambient atmosphere (air) are neglected.

Justification: Air resistance influences were not mentioned by any source listed
in the references in the context of industrial robots, therefore, they were consid-
ered as negligible. This is only valid for the robotic system itself. In case of the
simulation of loads with large dimensions, e.g. sheet metals, combined with
high velocity movements, non-negligible deviations can occur which are not

considered by the simulation model.

3.7.2 Rigidities

All types of bodies of the simulation model such as links, joints, shafts, trans-

mission gears, belts, etc. are considered as ideal rigid bodies.
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Justification: The determination of the non-rigid properties of the real robotic
system components can only be obtained from non-public manufacturer’s data
and/ or sophisticated measurements not covered by the scope of the thesis
work. If obtained, elasticities can be taken into consideration by adding the cor-

responding blocks within the Simulink environment.

3.7.3 Frictions

The simulation of frictions is limited to the number of Simulink Simscape blocks
of main elements of the real robotic system modelled in the simulation model
and their individual level of detail (e.g. viscous rotor damping). This covers only
constant and linear frictional effects such as breakaway frictions, Coulomb fric-
tions and (linear) viscous (damping) frictions. Non-linear frictional effects are not
implemented but can be added to the Simulink block diagram(s) if required and

if sufficient parameters are available.

3.7.4 Bearings

Only joint bearings are simulated separately within the simulation model. The
assumption is made that the effects related to the bearing of each individual
component (e.g. motor) are sufficiently covered by the applicable parameters of

the corresponding individual Simulink block.

3.7.5 Backlashes and Uncertainties

All types of backlashes, e.g. originated from bearings and transmissions are
neglected. All types of uncertainties of the real robotic system, especially geo-
metrical uncertainties are neglected.

Justification: At the case at hand, both backlashes and uncertainties can only
be obtained from non-public manufacturer’'s data and/ or sophisticated meas-

urements not covered by the scope of the thesis work.



11

3.7.6 Time Delays (Dead-Times)

Time delays occur on the real robotic system, originated from the specific be-
haviour of each physical component and their interactions within the complete
system. This also covers time delays caused by the differences of continuous
signals considered in the theory and non-continuous (= discrete) signals typical-
ly processed in real systems, especially in the context of control systems (We-
ber 2017, 177). Furthermore, the simulation bases on computation and is exe-
cuted on PCs with non-real-time operating systems, thus discrete signals are
used and time delays also depend on the recent workload of the PC.

Because sophisticated measurements are necessary to identify the time delays
of the real robotic system, time delays are not considered in the simulation.

If obtained, time delays can be taken into consideration during control system

design in the Simulink environment using appropriate Simulink blocks.

3.7.7 External Loads

The simulation model represents the real robotic system only equipped with a
welding torch end effector. The welding system is not connected to the real ro-
botic manipulator, except the end effector and its supply wiring. In this context,
the end effector supply wiring is not included in the simulation model because
the modelling of its specific behaviour is considered as too complex.

If required, external loads, e.g. represented by rigid bodies, can be added to the
CAD model within the CAD software or the simulation model within the Simulink

Simscape environment.

3.7.8 Electric Motors

The level of detail of the electric motor models (joint actuation) of the simulation
model is limited to the level of details of the corresponding Simulink Simscape
blocks (diagrams). This covers typical electrical (e.g. voltage, power, impedanc-

es, etc.) and mechanical (e.g. viscous rotor damping) parameters only.
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3.7.9 Transmission Gears

The level of detail of the transmission gears/ gearboxes is limited to the level of
detail of the corresponding Simulink Simscape blocks (diagrams) e.g. non-
uniform transmission behaviour. Transmission gears parameterization covers
gear ratios, (rotational) inertias, input to output efficiencies and output to input
efficiencies only. The values of (rotational) inertias of the transmission gears are

always related to the input shaft (motor side).

3.7.10 Other Electric Components and Computers

The level of detail of the electric components of the simulation model, e.g. motor
driver circuits, is limited to the level of detail of the corresponding Simulink Sim-
scape blocks (diagrams) e.g. parasitic capacities.

Specific features and properties of the manufacturer’'s computational units and
power systems are not identified or implemented in any way due to the lack of

sufficient acquirable sources.

3.7.11 Thermal Effects

Thermal effects are generally not considered in the context of this thesis work
(e.g. transmission lubricant viscosity) but can be considered by additional Sim-
ulink blocks or appropriate parameterization of existent blocks with specific pre-

pared but deactivated functionalities (e.g. transmission gears/ gearbox blocks).

3.7.12 Environment

Influences on the real robotic system caused by environmental effects such as
any kinds of external forces, vibrations, energy supply fluctuations, electromag-
netic disturbances, atmospheric changes, etc. cannot be considered due to a

lack of acquirable information and/ or their unpredictable character.
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4 THEORY

The subsequently described theory only covers the particular topics which were
necessarily needed to accomplish the tasks related to this thesis work. If not
defined divergently, the general overall usage of formulas, symbols, naming,

indexing and units relates to the content described in this theory section.

4.1 Industrial Robot Manipulators

At the present state and in the context of modern technologies and societies,
the term “robot” is often used loosely to describe a particular machine or appli-
cation from a huge variety of subareas (e.g. industrial robots, service robots,
etc.). Several national and international systematic definitions, classifications
and standardizations exist in order to define and categorize each robot precise-

ly. A short but concise definition of industrial robots:

A manipulating industrial robot is an automatically controlled, re-
programmable, multipurpose manipulator programmable in three or
more axes, which may be either fixed in place or mobile for use in
industrial automation applications (Kelly, Santibafiez & Loria 2005,
4).

Due to the predetermination of a particular robot type (ABB IRB 2600) to be
used in this thesis work, the theory is narrowed to stationary (fixed in place) in-

dustrial robot manipulators with (six axes) serial kinematics.

Real industrial robot manipulators as well as their theoretical abstractions do
usually consist of several elements but can be broken down into two types of
kinematic main elements, links (rigid bodies) and joints, as shown subsequently
(FIGURE 4.1).
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FIGURE 4.1: ABB IRB 2600 individual robot elements assignment

TABLE 4.1: Assignment and typecast of the ABB IRB 2600 robot elements
No.: | (Trivial-)Name: | Element Type: | Connection Link j+1 to Link ; via:

Base
Shoulder
Lower Arm
Upper Arm (Rigid Body) Revolute Joint
Wrist Link (F=1)
Wrist
Wrist
(End Effector)

o B~ W N =~ O

4.1.1 Articulated Arm Manipulators

From the perspective of mechanics, manipulators are commonly distinguished
by their kinematic structure. The structures are generally divided into the fields
of serial and parallel kinematics, whereby in the case at hand the serial kine-

matics were considered only.
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Serial kinematic structures are characterized by an open kinematic chain, a
chain of links connected by (kinematic) joints, typically revolute or prismatic
joints. Links are considered as ideal rigid bodies with surfaces that are geomet-
rically perfect in both position and shape. Each link has its own fixed frame.

A kinematic joint is a connection between two bodies that allows relative motion
with a particular number of degrees-of-freedom f (DOF) and without any clear-
ances. In the case at hand, the robotic manipulator only contains of a number of
six single revolute (R) joints, whereby a revolute joint itself is a lower-pair-joint
(surface contact) with one DOF. (Siciliano & Khatib 2008, 18-19)

F=1 (4.1)

Hence, each revolute joint allows only one direction of motion and is represent-

ed by one motion variable:

qi (4.2)

In general, the z-axis of the i-71-coordinate frame is in coincidence with the i-

revolute axis of the joint, see FIGURE 4.2 below.

Yi

FIGURE 4.2: Exemplary depiction of a kinematic structure’s coordinate frames (DH-formalism)
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The motion variable g; typically describes the angle between the fixed frames of
the two links connected to the joint. The motion variables of the robot, six in this

case, are collected conveniently in the column vector q:

q1

q=|"% 4.3)

de
The robotic manipulator at hand contains six single revolute joints, whereby

every single revolute joint increases the DOF of the robot by one. Thus, the six

axis robotic manipulator has six DOF:
n=F=f=6 (4.4)

In theory, this allows the end effector (also tool), or more precisely, the TCP to
reach every point within the workspace (neglecting the angular joint limitations

of real robotic systems).

4.1.2 Direct Kinematics

In general, the theory of kinematics describes the motion of a kinematic struc-
ture without the consideration of forces and/ or torques causing that motion (Si-
ciliano & Khatib 2008, 9). In the general context of robotics and in the particular
context of this document, the theory of kinematics was split up into direct (also

forward) kinematics (section 4.1.2) and the inverse kinematics (section 4.1.3).

Note: The kinematic structure of the robotic manipulator (RigidBodyTree) was
automatically generated during the procedure of the Simulink Simscape Multi-
body CAD model import. Direct kinematics are automatically solved in the Sim-
ulink/ Simulink Simscape environment during the computation of the solution of
the simulation model. Inverse kinematics, required for motion planning purposes
(see section 4.2), are solved using the predefined MATLAB inverse kinematics

solver (GeneralizedInverseKinematics; gik()).
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Therefore, the subsequently described theories of direct and inverse kinematics

were narrowed to the basic required extent.

Continuing from the descriptions of the previous section 4.1.1, the robotic ma-
nipulator’s kinematic structure is described by an open chain, a series of rigid
bodies (links) and joints, whereby the first (fixed) link (index 0) is typically
named “base” and the last link (index 6 in this case) is typically named “end ef-
fector” or “tool”.

The purpose of the theory of direct kinematics is the description of the end ef-
fector’s/ tool’s position and orientation, relative to a reference (fixed base frame,
index 0), as a function of the joints motion variables (united in the 6 x 17-
dimensional vector q), hence, in joint-space (Siciliano, Sciavicco, Villani & Orio-
lo 2009, 58).

In the case at hand, the six DOF of the robotic system are divided into the posi-
tion of the tool frame (Og) (three DOF) and the orientation of the tool frame (an-
other three DOF) with respect to the reference frame (Oy). This is typically de-

scribed by a 4 x 4-matrix:

T(q)g=[x2(§q) yg(gq) 22(()61) pgiq) (4.5)

Whereby p? is a 3 x 1-dimensional vector that points from the origin of the fixed
frame (Op) to the origin of the tool frame (Og) (= Cartesian coordinates of the
TCP) and x2 , y2 , z2 are each 3 x 7-dimensional unit vectors that describe the
orientation of the tool frame, both position and orientation with respect to the

fixed reference frame (see FIGURE 4.3 below).
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FIGURE 4.3: Exemplary description of the relative tool position and orientation (Siciliano, Sci-
avicco, Villani & Oriolo 2009, 59, modified).

To obtain the description of the tool position and orientation depending on the
properties of the kinematic structure, so called homogeneous transformations,

represented by homogenous transformation matrices:

AN (q) (4.6)

Need to be applied. In the case at hand, a sequence of six homogenous trans-
formations is required to obtain the transformation from the base frame to the

tool frame:

T(q)? = AY(q1) A3(q2) A3(q3) A3(qs) As(qs) A2(qe) 4.7)

This procedure is exemplarily depictured in the subsequent FIGURE 4.4.
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Ti (9)

FIGURE 4.4: Exemplary depiction of homogenous frame transformations (Siciliano, Sciavicco,
Villani & Oriolo 2009, 61).

The homogenous transformation matrices in turn are each based on a se-

quence of four fundamental matrix operations:

A" = Rot(Z_1,6;) - Trans(Z_,,d;) - Trans(%_1, ;) - Rot(¥;, a;) (4.8)

The described method as well as the parameters 6;, d,, a; and q; (the so called
Denavit-Hartenberg (DH) parameters), are based on and determined during the
application of the quasi-standard (but non-unique!) Denavit-Hartenberg formal-

ism for the general determination of the frames of a kinematic structure:

e Axis z along the /i + 71-joint axis.

e O is located at the intersection of the z axis with the common normal to
the z_4 axis and the z axis.

e Axis x; along the common normal to the axes z-1 and z with positive di-
rection from j-joint to i + 7-joint.

e Axis y;is chosen in a way to obtain a right-handed frame.

(Siciliano, Sciavicco, Villani & Oriolo 2009, 62). (See also FIGURE 4.2)
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Typically, the DH parameters are united in n x 7-dimensional parameters vec-

tors each:

0,d,aa (4.9)

In the case at hand, the elements of the 6 x 7-dimensional parameter vectors d,
a and a are fixed values based on/ derived from the mechanical structure (ge-
ometry) of the robotic system. The elements of the 6 x 7-dimensional parameter
vector @ are variable parameters (values) and defined by the elements (values)

of the joint position/ motion variable q.

4.1.3 Inverse Kinematics

The inverse kinematics theory aims at the determination of the required values
of the joint position variable in order to describe a given position and orientation
of the end effector (relative to the reference frame), hence, inverse kinematics is
the inversion of the direct kinematics (Siciliano & Khatib 2008, 27). Furthermore,
inverse kinematics are an important and fundamental part of robotic manipula-
tors theory, especially in the context of motion planning, e.g. for the calculation
of a linear reference trajectory for welding applications.

In contrary to the direct kinematics, where orientation and pose of the end effec-
tor are always same for the same set of joint position variable values (= unique),

solving the inverse kinematics is a much more complex problem due to:

e The corresponding equations are typically non-linear; closed-form solu-
tions do not necessarily exist.

e Multiple solutions may exist.

¢ An infinite number of solutions may exist.

e Possibly no admissible solutions are available due to the specific ma-

nipulator’s kinematic structure.

(Siciliano, Sciavicco, Villani & Oriolo 2009, 90-91).
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Modern commonly used applications like e.g. MATLAB use numerical methods
for the solving the inverse kinematics problem. As closed-form solutions are
typically related to the analytical solving method, numerical solving does not
suffer this problem. Furthermore, and in contrary to the analytical method, nu-
merical methods are independent from the specific robot manipulators type. In
turn, numerical solving can be less performant in some cases and typically does
not allow the computation of all possible solutions (theoretically 16 possible and
admissible (without limitations) solutions in the case of a six axis (revolute) joint
manipulator). (Siciliano & Khatib 2008, 28)

The problem of the existence of multiple solutions of the inverse kinematics
needs to be considered especially in the robotic simulation context and is ex-
emplarily shown in FIGURE 4.5 below. From the mathematical perspective,
both poses (solid and dashed lines) represent a valid solution for same prede-

termined pose and orientation of the end effector.

0

FIGURE 4.5: Example of a multiple solution problem of inverse kinematics (Siciliano, Sciavicco,
Villani & Oriolo 2009, 93, modified)

The problem of an infinite number of solutions of the inverse kinematics is relat-
ed the superior topic of the so called singularities, which also play an important
role in robotics theory. In this context, an example related to the description of

the end effector’s position orientation is discussed subsequently.
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Therefore, continuing from equation (4.5):

While the three elements of the vector p? are sufficient to determine the tool
position within the reference frame, the orientation of the tool needs to be de-
scribed with nine values, due to each of the unit vectors x2 , y2 , 22 is 3 x 1-
dimensional. The orientation of the tool frame can also be described with only
three variables a, f, v, the so called Euler angles, and with the help of three rota-
tional matrices (Weber 2017, 39). Amongst a number of other possible variants
of the Euler angles formulation, in this case the order Z-Y-X was used to meet
the thesis requirements and to be in line with the standard MATLAB formulation.
To obtain the unit vectors from the Euler angles, three rotational transformations

need to be applied to the tool frame in the corresponding and predetermined

order:
RG = R,(a) Ry (B) Ry (¥) (4.10)
Whereby:
cos(...) —sin(...) O
R (..) =|sin(..) cos(..) O (4.11)
0 0 1

Similar to the all other vector/ matrix robotics kinematic theory formulations, the
Euler angles formulation suffers from non-uniqueness and can cause serious
problems like the so called “Gimbal Lock”, e.g. in the case of a spherical robot
manipulator’s wrist (as applicable for the industrial robot type of this thesis
work).

For appropriate and more efficient computation, modern (numerical) robotic cal-
culation algorithms, e.g. like implemented in MATLAB, are based on the usage

of the so called and, most important, unique unit quaternion:

€e=¢cyteitejtek (4.12)

Whereby €, €,, €, and €5 are scalars and /, j and k are operators satisfying:

i2=j2=k?=ijk=-1 (4.13)
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Euler angles can be converted into the unit quaternion and vice versa, e.g. us-
ing standard conversion tables obtainable from respective literature. (Siciliano &
Khatib 2008, 13)

As the Euler angle formulation is more comprehensible and therefore used for
user input purposes, the Euler angles are converted to the unit quaternion using
the MATLAB eul2quat () function before passed in to the MATLAB inverse

kinematics solver.

The problem of not admissible solutions caused by the specific manipulator’s
kinematic structure can be solved by the provision of a sufficient number of de-

grees of freedom and/ or an appropriate set of workspace limitations.

4.1.4 Dynamics

As the theory of kinematics describes the robot manipulator’s motion without the
consideration of any forces or torques, the theory of dynamics covers the scope
of kinematics as well as forces and torques. Equal to the theory of kinematics,
the theory of dynamics can also be split up into direct (forward) and inverse dy-
namics.

Direct dynamics theory typically describes the robot manipulator’s joint motion
(accelerations), from which forces and torques can be calculated, for any given
joint actuation forces/ torques. Inverse dynamics in turn allow determining the
joint actuation forces required for any specific robotic manipulator's motion
(specified by a trajectory). In the context of practical applications, direct dynam-
ics are usually used for simulation purposes. Inverse dynamics in contrast are
typically implemented for the appropriate calculations related to feedforward

(FF) control (as part of control system structures). (Siciliano & Khatib 2008, 36)

Due to the fact that control system design was not part of this thesis work, the
theory of inverse dynamics is not discussed any further.

Additionally and according to the purpose of the thesis work at hand, the robot
manipulator’s dynamics of the simulation model created were not to be solved

by the author by own program codes.
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Instead, the simulation model’s dynamics are solved numerically within the
“pbackground” of the Simulink Simscape Multibody environment. Therefore, the
(direct) dynamics theory is only slightly touched in this section in order to pre-
sent the fundamental coherences between the general theory and the simula-

tion model.

Most commonly, dynamics of robot manipulators are described by either the
Newton—Euler formulation or the Lagrange formulation (Siciliano & Khatib 2008,
44). Using the joint-space, neglecting external forces applied to the robot ma-
nipulator (free robotic motion) but considering gravitational and frictional effects,
both the Newton—Euler formulation and the Lagrange formulation will lead to
(Kelly, Santibafnez & Loria 2005, 77):

M(@)g+Cqqq+g(@ +f@ =1 (4.14)

Whereby:

q.9.q (4.15)

Are the n-dimensional vectors of the (revolute) joint positions, velocities and

accelerations.

The n x n-dimensional matrix:

M(q) (4.16)

Is the (joint-space related) inertia matrix. In the context of the simulation model,
the inertia matrix is represented by the rigid bodies (links) of the Simulink Sim-
scape Multibody simulation model and their individual properties (masses, Cen-
ters of Mass (CoM), Moments of Inertia (Mol) and Products of Inertia (Pol)), de-
rived from the imported CAD model assembly of the industrial robot.



25

The n x n-dimensional matrix:

C(q,q (4.17)

Is the so called centrifugal and Coriolis matrix. In combination with the vector of
the joint velocities, the centrifugal and Coriolis matrix represents the centrifugal
and Coriolis torques of the dynamic model evoked by the robotic motion. In the
context of the simulation model, the centrifugal and Coriolis phenomena are

fully covered by the Simscape Multibody simulation environment.

The n-dimensional vector:

9(q) (4.18)

Is the vector of gravitational torques. This vector represents torques within the
dynamic model evoked by the effect of gravitational accelerations applied to

every element (rigid bodies; links) of the simulation model.

In the context of the simulation model, gravitational effects are simulated within

the Simulink Simscape Multibody environment. Also refer to section 3.2.

The n-dimensional vector:

f(@ (4.19)

Is the friction torque vector. The appearance of the friction vector depends on
the applied frictional model. In the case at hand, a common static friction model
considering viscous (Fn1) and Coulomb frictions (Fn2) was applied and therefore

the friction vector fis substituted by:

f(@ = Fyn1 q+ Fy, sign(q) (4.20)
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Whereby Fn1 and Fn, are n x n-dimensional diagonal matrices, containing the
individual constant friction coefficients/ torques (Kelly, Santibafiez & Loria 2005,
76).

In the context of the simulation model, the viscous friction coefficient matrix Fp1
is represented by the entirety of the viscous damping/ friction parameters and
the Coulomb friction torque matrix Fn is represented by the entirety of the Cou-
lomb friction torque parameters applied to the Simulink Simscape simulation

model.

The n-dimensional vector:

T (4.21)

Contains the individual joint torques. In the context of the simulation model, the
torques of the joint actuation motor models, transformed by the transmission
gear models, are applied to the joint torque vector of the dynamic model. Based
on that the simulation model’s motion is solved within the Simulink Simscape

Multibody environment.

4.2 Motion Planning

In contrast to the theories of kinematics (section 4.1.2 and section 4.1.3) and
the theory of dynamics (section 4.1.4), motion planning is not automatically cal-
culated by MATLAB Simulink at any point, therefore, the theory of motion plan-

ning is discussed more comprehensively and more detailed.

The purpose of robotic manipulators is the execution of predefined tasks within
their workspace, based on controlled motions of the combination of the ele-
ments of the complete robotic system. In this context, typically two main prob-
lems need to be considered and solved: The avoidance of collisions of the ma-
nipulator’'s elements with the environment and the correct positioning and orien-

tation of the manipulator’s tool.
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Because collision avoidance was not a part of the thesis work, the subsequent
theory only focuses on motion planning with emphasis to the manipulator’s tool.
Depending on the task to be accomplished, a proper motion type needs to be
chosen from the range of existing types of robotic motions such as, point-to-
point (PTP) movements, linear movements, circular movements etc. According
to the task definition, only linear and joint movements were taken into consider-
ation. After the determination of a motion type, the motion needs to be planned
in order to obtain set values, also references, for the closed-loop control system
structures of the manipulator.

The task of motion planning is part of the covering topic “robot navigation” which
in turn can be divided into three sub tasks: path planning, trajectory planning
and control design (Kelly, Santibanez & Loria 2005, 13).

Path planning covers the determination of a curve between the initial and the
final position and orientation of the manipulator’s end effector, avoiding colli-
sions with obstacles (Kelly, Santibafez & Loria 2005, 14).

Control design is thematised in section 4.3.

Trajectory planning is about generating a time dependent trajectory from the
curve obtained during the process of path planning, typically defined in work-
space coordinates. (The so obtained trajectory is also called reference trajecto-
ry). (Kelly, Santibanez & Loria 2005, 14)

Based on the demands from the task definition, in this case joint and linear (re-
ferring to the welding application) movement types were considered only. In this
context, motion planning is also narrowed to movements from a starting (A) to
target (B) position (and orientation of the manipulator’s tool).

As the joint movement type does not require following a defined path of the ma-
nipulator’s tool within the workspace and already operates in joint (space) coor-
dinates, no path planning is required. Linear motions by contrast require a de-
fined movement of the tool along a defined (linear) path. In general, this defined
paths, also called continuous paths (CP), are formulated in workspace coordi-
nates and require a sufficient path planning in order to enable the robot follow-

ing the demanded path.
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4.2.1 Linear Trajectory Planning

If not defined divergently, the theory of this section 4.2.1 and the subsequent

section 4.2.2 base exclusively on the theory described in Weber (2017, 71-105).

A linear path (defined in the robotic manipulator’'s workspace), to be followed by
the robot’'s TCP (e.g. for the creation of a weld seam), can be described by a

vector p,. This vector is defined as:

Pp = Ptgt — Pstt (4.22)

Whereby the pi: vector is a vector aiming at the target point “B” of the linear
workspace path and the psi; vector is a vector aiming at the start point “A” of the
linear workspace path. Both are position vectors originated in the origin of the
reference frame (Op). See FIGURE 4.6 below.

FIGURE 4.6: Vector based linear workspace path formulation (Weber 2017, 86, modified)

The time dependent movement of the TCP along the vector p, can be de-
scribed with the help of the newly introduced, scalar and time dependent path

parameter Sy(f).

Furthermore, time counting starts with the start of the motion at tyat = fp = 0 s,

hence:
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Sp(tstart) = Sp(tO) = Sp(o S) =0m (4-23)

Accordingly, time counting ends with the end of the motion at f.ng, hence:

Sp(tend) = Sabs (4.24)

Whereby saps is the absolute length of the vector p, and calculated from:

Sabs = |pp| = |ptgt - pstt' =

(4.25)
\/(ptgt,z - pstt,z)2 + (ptgt,y - pstt,y)2 + (ptgt,x - pstt,x)2

The time dependent workspace trajectory vector p(f), originated in the origin of
the reference frame (Op) and pointing at the desired contemporary TCP work-

space position (= origin of the tool frame Og) can be now described as:

(ptgt - Pstt)
Sabs

P() = Psee + |Sp(0) - (4.26)

As the variables pig: and psi are initially directly defined (e.g. by a user input)
and the variable saps Only needs to be calculated once, the path parameter sp(t)
needs to be described more detailed.

Therefore, the necessary assumption of a motion starting from a resting state

and ending at a resting state is made, thus:

Sp(tstart) = Sp(o s) = vp(o s)=0

m
— (4.27)
S

And:

m
Sp(tend) = vp(tend) =0 ? (4.28)
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For any further determination of the path parameter sy(f), its specific course
needs to be determined. This is typically accomplished by the determination of

the path velocity $,(t) = v,(t) by a so called velocity profile or by the determi-
nation of the path acceleration $,(t) = a,(t) by a so called acceleration profile.

As a simple trapezoidal velocity profile only consists of linear and continuous

functions, the derivation of the velocity (profile) $,(t), the acceleration (profile)
$,(t) reveals that the motion is not (sufficiently) jerk-free (jerk j = 5;,(t)), see

FIGURE 4.7.

5p(0) 5(0)
N N

FIGURE 4.7: Trapezoidal velocity profile (left) and the corresponding acceleration profile (right)
(Weber 2017, 75, modified)

This in turn could cause harmful vibrations and stresses of the robotic system.
In order obtain a smooth motion, a sinusoidal acceleration profile was chosen.

The motion is basically described by (general formulation):
§(t) = @ - sin? (tz t) (4.29)
S

(Whereby a describes the peak value of the acceleration and t; describes the
length of the considered time span) and, along with the corresponding velocity

profile and the corresponding position graph, depicted in FIGURE 4.8 below.
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FIGURE 4.8: Sinusoidal acceleration profile and corresponding velocity and position graphs
(Weber 2017, 79, modified)

For a further mathematical description, firstly the new time variables t,.., tgec
and t.,q are introduced accordingly to the definition shown in FIGURE 4.8
above.

As the aim of the determination of the sinusoidal acceleration profile is to obtain
an appropriate description of the path parameter sy(f), equation (4.29) needs to

be integrated two times for each of the three distinctive motion phases:

The motion phase of acceleration (0 < t < f,cc) is described by:

sp(0) = ap - {G : tz) + l;ic; : (Cos (::C : t) — 1)]} (4.30)

The motion phase of continuous velocity (facc < t < tqec) is described by:

Sp(t) = vy - [t — (% tacc)] (4.31)
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The motion phase of deceleration (fyec < t < tonq) is described by:

m 2 gn 2 thee
Sp(t) = a? ' {[tend (t+ tacc) l(t " Lona ¥ t )l

[ e )

Whereby the value a,, describes the maximum applied (desired) path accelera-

(4.32)

tion value and v, describes the maximum applied (desired) path velocity value.
Both are necessarily predetermined by user inputs or obtained from any other

source in advance.

In the case of short trajectory and/ or high acceleration values, the maximum
desired path velocity value v, can possibly not be reached and needs to be
adapted to the maximum reachable path velocity. For obvious practical matters,
the value of the maximum applied path acceleration a,, is kept constant. Start-

ing from this, the maximum reachable path velocity can be calculated from:

Am * Sabs
Um,max = / 2 (4.33)

Then be compared to the maximum desired path velocity value v,, and adapted
if necessary. The procedure is depicted in the flow chart shown in FIGURE 4.9:

below.

Ums Qms Sabs

T Sabs false
U > 57

true

4_

<_

Qm " Sabs

VUm =

il W

tacca tend, tdec

FIGURE 4.9: Flow chart: adaption of the applicable path velocity (Weber 2017, 77, modified)
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Finally, the time variables t,.., tqec and tepq are calculated from (same length of

the acceleration and deceleration phases (= symmetric velocity profile)):

2 vy
ace = 4.34
acc an ( )
Sabs
lend = ” + tacc (4.35)
m
tdec = tend — tacc (4.36)

4.2.2 Joint Trajectory Planning

In contrast to the linear trajectory planning which requires subsequent solving of
the inverse kinematics in order to obtain the joint-space trajectory from the
workspace trajectory, joint trajectory planning is directly accomplished in the
joint-space.

The general procedure of joint trajectory planning is similar to the procedure of
linear trajectory planning and also uses a sinusoidal acceleration profile, but the

path parameter is now:

qp(t): [ql,p(t) QZ,p(t) q3,p(t) q4,p(t) qS,p(t) q6,p(t)]T (4.37)

Instead of sy(f). Hence, the joint trajectory planning needs to be applied for each
of the joint position variables (= robot manipulator’s axes) individually, six times

in this particular case.

q(t) =[q:(®) @) qz(t) qu(t) qs(t) qe(®)]" (4.38)

In theory, the individual joint trajectory planning procedures could be executed
independently from each other’s, which is called asynchronous motion and typi-
cally causes non-obvious trajectory courses and a higher overall mechanical

stress level of the robotic manipulator.
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Therefore, the decision was made to fully synchronize all individual axis trajec-
tories. The fully synchronized trajectory motion is characterized by the same
lengths of each of the three distinctive motion phases for each axis as exempla-

rily shown for a trapezoidal velocity profile in FIGURE 4.10 below.

V1 m (£), Vam (£), V3 m (t)
A

: >t
tiacc = t1,dec = tiend =
t2acc = t2,dec = t2end =
t3'acc t3,dec t3,end

FIGURE 4.10: Exemplary depiction of a fully synchronized axis motion (velocity)

Whereby the slowest axis is necessarily the so called leading axis and deter-
mines the length of the motion phase of acceleration, of continuous velocity and
of deceleration for all other non-leading axes.

For the identification of the leading axis, firstly the overall traveling times of all
individual axes need to be calculated, using the theory described for the linear

trajectory planning but substituting:

Ptgt = Gitgt (4.39)

Pstt = Gistt (4.40)

Thus:

Qi,abs = |4itgt — Gistt (4.41)



And:
rad]
Vi = Uj e
m im |77
[rad
A = Qim |
m im |"o2
tace = liacc
tdec = tidec
tend = tiend
Hence:

_|%,m " Yiabs
Vimmax = 2

2 'ULm
tiacc =
ai,m
CIi,abs
tiend = + tiacc
vi,m

tidec = tiend — tiacc

Then the maximum traveling time is calculated from:

tend,max = max(ti,end)
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(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

This also identifies the leading axis. If once determined, the maximum traveling

time is now valid for all axes, thus:
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tiend = lend,max (4.52)

Accordingly, the values of t,.. and t4.. of the leading axis are applied for all

other axes:

tiacc = ltacemax (4.53)

ti,dec = tend,max (4.54)

Subsequently, the individual maximum desired path velocity and acceleration

values of the non-leading axes need to be adapted to the new time variable val-

ues with:
di,abs
Vim = (4.55)
tLdec
And:
2y
Aim = — (4.56)
tLacc
Finally, the individual joint-space trajectories can be calculated from:
(CI',t t — 4, tt)
qi(t) = Gisre + |G p(8) - ——— (4.57)

di,abs
Using:

The motion phase of acceleration (0 < < {; 5cc) is described by:

1 t? 2
qi,p(t) =0aim" {(Z ' t2) + [é’;czc : <cos <ti ;C : t) - 1)]} (4.58)
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The motion phase of continuous velocity (fiacc < t < i gec) IS described by:

1
qi,p(t) =Vim" [t - (E ) ti,acc)] (4.59)
The motion phase of deceleration (fgec < t < fieng) iS described by:

% (£ + tPna + 2+ thace)
qi,p(t) = le . {[ti,end . (t + ti,acc)] _ l ien . i acc

tlnce 2
+ [4772 |1 —cos . *(t — tidec)

4.3 Control Systems

As the topic of robotic manipulator control is highly sophisticated and compre-
hensive, only coarse and narrowed outlines of the topic are discussed in this
section. Furthermore, the scope of the thesis work did not covered any control
system design, but common control system theory was considered in order to
create an environment that meets the requirements for state of the art control

systems design.

In a first distinction, the field of robot control can be divided into the area of
force control and the areas of position/ motion control, whereby hybrid forms
also exist. The force control is typically meant for the purpose of the control of
forces and torques applied from the robot to its environment or vice versa (We-
ber 2017, 23).

In the case at hand, only free robotic motion was considered and therefore, the
topic of force control was not discussed any further.

Continuing from that, position control is related to the task of controlling the ro-
bot manipulator to reach a specific set-point (Kelly, Santibafiez & Loria 2005,
135). Motion control in contrast is related to the task of controlling desired ma-
nipulator’'s motions, or more precise, following a desired trajectory (Kelly, San-
tibafiez & Loria 2005, 224).
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Both position and motion control are independent from external forces and tor-

ques.
Furthermore, a distinction can be made between internal (joint) robot control

and external robot control as shown in the subsequent FIGURE 4.11.

Target
Values

Sensor Information

External
Control <'

Workspace
Set Values
Controlled
Values
Inverse :D Internal (Joint) :[>
Kinematics | Control
Joint-Space
Set Values

Measured Values

FIGURE 4.11: Schematic depiction of internal and external robot control (Weber 2017, 25, mod-
ified)

From FIGURE 4.11 above can be obtained that external robot control requires:

e Additional external measuring devices
e Inverse kinematics solving

e Subsequent internal control system structures

Because external measuring devices were not covered by the thesis scope, the
theory of external robot control was neglected but without excluding possible
future implementations of external control to the simulation model, because in-

ternal robot control is subordinated to external robot control.
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As joint actuations (e.g. by servomotors) as well as joint variable measurements
(e.g. by the servomotor’s resolver) are typically joint-space related, internal ro-
bot control can be considered as the fundamental control system type of a
common industrial robot.

Following this, it must be considered that changes of one specific joint variable
in most of the cases also causes impacts on all other joint variables of the ro-
botic manipulator’s system, therefore multi-variable control is required for ap-
propriate control of the typically non-linear coupled robotic structure. (Weber
2017, 25)

In this context, another distinction is made between the so called centralized
and decentralized control. Decentralized control bases on the assumption of a
robotic manipulator consisting of a number of n independent systems to be con-
trolled (n joint variables), whereby coupling effects are treated as disturbances
(Siciliano, Sciavicco, Villani & Oriolo 2009, 309).

Centralized control in contrast includes the decentralized control structures but
also considerers the inter-system connections and dependencies (influences
based on the typically non-linear couplings within the simulation model) (Sicili-
ano, Sciavicco, Villani & Oriolo 2009, 327).

Based on that, the superordinate structure, centralized control, was again not
further considered but without excluding possible future implementations of a
centralized control to the simulation model.

A typical and common scheme of a closed-loop single-input single-output (SI-
SO) decentralized control system structure, including up-streamed inverse kin-
ematics, is shown below (FIGURE 4.12).

Joint/

Trajector X, Inverse U, T X
l‘J in’y —> v Control » Actuator » Robot ——»
planning L Mechanism
4

Sensor -«

FIGURE 4.12: Decentralized SISO control system structure (Bajd, Mihelj, Lenarci¢, Stanovnik &
Munih 2010, 78, modified)
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Theoretically, decentralized control system structures can be of the types:

e Single-input single-output (single variable control without feedforward
control (e.g. individual joint position q;))

e Multiple-input single-output (MISO) (single variable control with feedfor-
ward control (e.g. individual joint position g;))

e Single-input multiple-output (SIMO) (cascaded control system without
feedforward control)

e Multiple-input multiple-output (MIMO) (cascaded control system with

feedforward control)

Whereby the cascaded (SIMO) control system structures, as shown in FIGURE
4.13, are proven and common in the context of all kinds of (electric motor driv-

en) positioning tasks.

Zj
|qr:lQ$ Position =?::: Velocity Current ! : Motor :ql
A Controller A Controller Controller Gearbox
- = & Joint

I

Gi
qi

FIGURE 4.13: Schematic depiction of a decentralized cascaded SIMO control system structure
(Grote, Bender & Gohlich 2018, T112, modified)

This cascaded decentralized structure can be extended to a more performant
MIMO structure with moderate efforts by the implementation of a superior cen-
tralized feedforward control system (also called Computed Torque Feedforward
Control), as shown in the subsequent FIGURE 4.14.
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FIGURE 4.14: Schematic depiction of a decentralized cascaded MIMO control system structure
with centralized feedforward control (Grote, Bender & Gohlich 2018, T112, modified)

4.4 MATLAB Simulink

The software MATLAB is a numerical computing environment based on vector-
and matrix operations, suitable for the operating systems (OS) Microsoft® Win-
dows®®, Apple® macOS® and Linux®. MATLAB provides numerical calcula-
tions and visualisations using its own high-level programming language. Nowa-
days, MATLAB is widespread in the research, development and industry and
mainly used in the context of mathematical and engineering sciences. (Pie-
truszka 2014, 1)

MATLAB also contains the graphical development environment Simulink. Sim-
ulink provides modelling and simulation of dynamic systems (linear and non-
linear) mainly based on block diagrams. In- and outputs of the simulation can be
provided and evaluated directly in the Simulink environment but also indirectly
from the MATLAB Workspace or M-files. This also allows further processing of
the Simulink simulation results within the MATALB environment. (Pietruszka
2014, 167)

® Microsoft® Windows® is a registered trademark of Microsoft Corporation
! Apple® and macOS® are registered trademarks of Apple Inc.
¢ Linux®is a registered trademark of The Linux Foundation®



42

Simulink itself provides several integrated tools such as Stateflow®™ or Sim-
scape. Simscape is a tool for modelling and simulating multi-domain physical
systems typically occurring within the area of mechatronic systems. Simscape is
also mainly based on block diagrams, covering electrical, mechanical, and hy-
draulic components. (Pietruszka 2014, 353)

Focusing on mechanical issues, Simscape Multibody provides a multibody sim-
ulation environment for three-dimensional (3D) mechanical systems which also
covers the import of CAD model assemblies. As it is a part of the Simulink envi-
ronment, in general, Simulink functionalities can be applied in the Simscape
environment and models can be parameterised using MATLAB variables and
expressions. (The MathWorks Inc. 2019a)

4.5 Programming

A wide variety of programming languages, types, methods and supporting tools
exist, typically related to the specific problem to be solved. The problems solved
in the context of the thesis work at hand were mainly related to the technical
domain and the working environments were predetermined. Hence, program-
ming was accomplished using the MATLAB programming language (text-based)
within the MATLAB environment and block diagrams (graphical) within the Sim-
ulink/ Simulink Simscape environment exclusively.

Program planning was managed following the typical basic programming pro-

cedure:

1. Identification of the demanded/ required program outputs
2. ldentification of the available/ required program inputs

3. Determination of the required processing program code

In this context, the outlines, the main program flow, the main characteristics and
functionalities were sufficiently described and documented visually using appro-
priate tools for the creation of program flow charts like PapDesigner10 Version
2.2.0.8.04.

® Stateflow® is a registered trademark of The MathWorks, Inc.
10 Copyright© friedrich-folkmann.de 2017
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Additionally, the basic code creation rules were applied:

e Sufficient code comments
e Consistent naming of data, variables, functions, etc.
e Modular code structures

¢ A descriptive header for each individual code, exemplarily shown below:

ST

o°

o°

Project

File Name

Author

Date Created
Purpose

Revision History

o® o° o° o° o o

o°

Date Author Revision Changes

o°

ST
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5 CONCEPTUAL DESIGN

Related to the general purpose and requirements of the thesis work, the simula-
tion model is mainly centred around a Simulink Simscape Multibody representa-
tion (block diagram) of the real robotic system, based on and derived from its
CAD model.

Firstly, the level of completeness (compared to the real robotic system) of an
automatically generated Simulink Simscape Multibody simulation model was
examined with the help of a prepared CAD model of the ABB IRB 2600-12/1.85
industrial robot (provided by the TAMK) and the MATLAB smimport () func-
tion. (The procedure of the preparation of the CAD model is precisely described
in section 6.1). FIGURE 5.1 shows the Simulink Simscape Multibody block dia-
gram automatically derived from the CAD model assembly of the industrial ro-
bot.

file fdit View Display Diagram Simulation Analysis Code Tools Help

wo-B-e ¢op % R Normal - @

HEUEOB|e 3!

F1
» p p ]
e *H“*“‘-”“-“\-
| l I | IRB2600

Transform IRBZEUO Revalute1 \RBZGDU Revolule  IRB2600  Revolute2  IRB2600 Revalute3 IRB2600 Revoluted  IRB2600  RevoluteS 12 185
z as 2 185_ _12_185_ _12_185_ Tlinke_1_
ink3_1 link4_1 link_1 RIGID

RIGID RIGID R\G\D R\G\D RIGID RIGID

Ready 1503

FIGURE 5.1: Automatically generated Simscape Multibody model block diagram

The block diagram fully represents the manipulator’s kinematic structure, con-
sisting of the two basic elements, (revolute) joints and rigid bodies (links)
blocks. Rigid Transform blocks are used to describe the geometrical relation-
ships between the individual links and joints.

It can be clearly seen that the joint actuation systems are completely missing.
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Thus, no control, signal or measurement system structures exist. Furthermore,
no parameterization was applied, except the kinematic parameters (DH-
parameters, joint types) and mass/ inertia/ graphical appearance (CoM, Mol,
Pol, etc.) parameters derived from the CAD model during the automatic genera-
tion.

Therefore, the conceptual design of the Simulink/ Simulink Simscape model
was mainly related to the identified and summarized tasks to be accomplished

listed below:

e Design of the robot manipulator’s joint actuation (bearings, transmis-
sions, motors, motor drivers (inverters))

e Design of appropriate simulation model signal processing (acquisition,
routing, provision)

e Design of appropriate preparations for control system structures

e Design of measurement systems

Furthermore, the task of identifying and outlining appropriate solutions for gath-
ering, determining, processing and providing all the required information to the
simulation model was pending.

The decision was made to accomplish these tasks within the MATLAB environ-

ment, whereby the main tasks can be expressed as:

e Parameterization of the simulation model (acquisition, preparation and
provision of the parameters)
e Set values (reference values, reference trajectories) calculation and pro-

vision

5.1 General Simulation Program Structure

The draft of the general simulation program structure, depicted as simplified

function diagram, is shown in the subsequent FIGURE 5.2.
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FIGURE 5.2: General simulation program structure diagram

The image shown above should be self-explanatory and was used as guidance
for clearly structured progresses of the processed work.

As the required CAD data of the robotic manipulator only needed to be built and
assembled once and are already provided to the simulation program, the pro-
cess of the CAD model handling was not specified any further in the diagram

but is discussed sufficiently in section 6.1.

5.2 Simulink/ Simulink Simscape

5.2.1 Simscape Multibody Model

Due to the similarities of the automatically generated Simulink Simscape Multi-
body block diagram structure (FIGURE 5.1) to the general kinematic structure
(open, serial kinematic chain) of the real robotic system, the decision was made
to retain the already existent general block diagram structure unchanged.

FIGURE 5.3 shows a sketch of the concept of the simulation model’s Simscape

block diagram.
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FIGURE 5.3: Freehand sketch of the concept of the simulation model’s Simscape block diagram

In accordance with the (kinematic) theory (section 4.1), the number of degrees
of freedom is equal to the number of joints (with f= 1), thus the robotic structure
consists of n = F = f = 6 (revolute) joints and seven rigid bodies (considering link
6 and the end effector as one body due to the rigid connection). Therefore, a
number of seven subsystems shall represent the kinematic structure of the ma-
nipulator. The subsystems shall be in series, rigidly linked and connected to a
signal bus. Each subsystem shall mainly contain one rigid body (link /), the (i+1
revolute) joint and the corresponding joint actuation (except the end effector
subsystem). The general subsystem structure shall be same for all other sub-
systems, except the end effector subsystem which only shall contain the end
effector rigidly connected to link 6. Exemplarily, a sketch of the concept of a

subsystem is shown in FIGURE 5.4 below.
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FIGURE 5.4: Freehand sketch of the concept of a subsystem of the Simscape block diagram
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The main task of the conceptual design was related to the determination of
general concepts and structures - the specific contents of the further (sub) sub-
system were unknown at this point. Therefore, the “black-box-method” was
used for the depiction of required elements/ blocks of the subsystems block di-
agram.

The rigid body (sub) subsystem and (revolute) joint block already existed (see
FIGURE 5.1) and no further specifications were needed.

The measurement (sub) subsystem was not drafted any further as its structure
and contents were highly dependent on the specific obtainable signals of the
finally implemented individual elements/ blocks of the block diagram. Neverthe-
less, the discussion of the control system theory (section 4.3) revealed that
each Subsystem i Measurement Subsystem at minimum needs to capture at

minimum the corresponding:

e Joint position, velocity and acceleration variables g;, g;, G;

e Joint torque variable t;

A sufficient description of the finally implemented measurement subsystem can

be found from the later section 6.2.4.

A sketch of the concept of a joint actuation (sub) subsystem is shown in FIG-
URE 5.5 below.
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FIGURE 5.5: Freehand sketch of the concept of a joint actuation subsystem
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The motor block of the Joint i+71 Actuation Subsystem (FIGURE 5.5) shall be
chosen from the range of predefined motor model blocks of the Simulink Sim-
scape Library.

The motor type of the real robotic system was identified as alternating current
(AC) asynchronous motor (see section 6.4.1). Therefore, the decision was
made that an Asynchronous Machine Squirrel Cage (ASM) model block from
the Simulink Simscape Electrical Library shall be implemented as it meets the
characteristics of the real motor best (from the range of available library ele-

ments).
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Asynchronous Machine
Squirrel Cage
(fundamental, Sl)

FIGURE 5.6: Screen capture of a Simulink Simscape Asynchronous Machine block

Similar to the motor block, the gearbox block of the Joint i+7 Actuation Subsys-
tem shall be chosen from the range of predefined gearbox model blocks of the
Simulink Simscape Library.

The gearbox type of the real robotic system was identified as cycloidal reduction
gear (see section 6.4.1). Therefore, the decision was made that a Cycloidal
Drive model block from the Simulink Simscape Driveline Library shall be imple-

mented as it is the only available and reasonable applicable library element.

Cycloidal Drive

FIGURE 5.7: Screen capture of a Simulink Simscape Cycloidal Drive block
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According to the requirements, predefined MATLAB/ MATLAB Simulink (Sim-
scape) contents should always be preferred if reasonable and applicable. In the
case of the motor driver subsystem, the decision was made that the required
function principles and blocks of the MATLAB Simulink Simscape “Asynchro-
nous Machine Scalar Control” (pe asm scalar control) example block
diagram shall be utilized as it is applicable to the chosen motor model block and

meets the requirements best.

.| S -E-w G % LT Normal W) @

Machine Scalar Control

ows how lo control t

FIGURE 5.8: Screen capture of the MATLAB Simulink Simscape “Asynchronous Machine Sca-
lar Control” example block diagram

From FIGURE 5.5 can be obtained that the motor driver subsystem input needs
to be aligned to the controlled value from the joint controller subsystem. In this
context, it needs to be mentioned again that control system structure design
was not part of the thesis scope and therefore, later and from external parties
applied control system structures and the corresponding controlled values were
unknown at this point. Therefore, and in order to increase the comprehensibility
of the simulation model, the decision was made that the motor driver shall be
created in a way to expect scalar values (similar to the mentioned example)
within the range from -1 to +1 as the controlled value. Thus: “+1” = “100% pow-
er in the positive direction” and “-1” = “100% power in the negative direction”.

In the case of more sophisticated control system structure design to be applied
by an external party (SIMO, MIMO), the motor driver subsystem can be adapted

accordingly if required.
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The signal processing block of the Joint j+7 Actuation Subsystem shall only be
implemented if required, e.g. for signal bundling, depending on the final struc-
ture and contents of the joint actuation subsystem unknown at this point.

Additional elements/ blocks shall also be implemented if the finally applied pre-
defined motor and/ or gearbox blocks not include all required simulation model

parameters (e.g. viscous rotor damping).

5.2.2 Simulink

The simulation model is meant for the purpose of control structure system de-
sign in an educational context. Therefore, the decision was made that the ap-
pearance of the Simulink block diagram shall be similar to the appearance of a
common basic closed-loop control system block diagram, as shown in FIGURE
5.9 below.

Z(t)

nt) e(t) u(t) y(t)

» Controller |————» System

FIGURE 5.9: Block diagram of a common basic closed-loop control system structure

As Simulink Simscape (Multibody) is a sub environment of Simulink, the
Simspace Multibody model of the robotic system (as described in the previous
section 5.2.1) shall be implemented as a subsystem of the overlaying Simulink
block diagram. In the context of FIGURE 5.9, the Multibody block diagram
would be then embedded in the “System” block.

From FIGURE 5.9 can also be obtained that a controller subsystem and signal-
ling were needed to complete the demanded Simulink block diagram structure.
Therefore, summarizing the theory formerly discussed in section 4.3 and the
additionally studied theory from the literature Weber (2017), Kelly, Santibafnez &
Loria (2005) and Bajd, Mihelj, Lenarci¢, Stanovnik & Munih (2010):
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A number of n decentralized MIMO structures is necessarily the fundamental
control system structure to be provided within the simulation model in order to
enable the design and implementation of any other control system structure.
Hence, the control system structure to be designed and implemented in the

context of the thesis work shall cover at minimum:

e A superior control system structure carrying the individual decentralized
control system structures in order to provide an environment for central-
ized control if required

e Six independent (decentralized) control system structures, one for each
of the simulation model’s (revolute) joints (joint variables (q1-qs))

e Multiple inputs covering joint-space position set values as well as meas-
ured actual values of the joint actuation systems (e.g. joint position, ve-
locity, acceleration and torque)

e Multiple outputs covering the joint space controlled values as well as the
controlled values of the joint actuation systems (e.g. motor driver set val-

ue)

For signalling between the individual Simulink and Simulink/ Simscape subsys-
tems and any other (sub) subsystems, all signalling options available from the
Simulink Signal Routing Library were investigated and rated. Based on that, the
decision was made that a signal bus shall be used, as it provides a minimum
amount of signal lines (= clear overview) but maximum comprehensibility,
adaptability and extensibility (compared to e.g. direct wiring or “From” & “Goto”
blocks).

Because the signal bus only allows transferring Simulink domain signals, con-
verting shall be applied for interfacing from/ to other signal domains when add-
ing or branching off bus signals (e.g. “PS-Simulink Converter” or “Simulink-PS
Converter blocks). Furthermore, the decision was made to only transfer SlI unit
and derived Sl unit signal values within the bus (except signals originally without
unit) in order to prevent errors, as the bus signals are values without any unit.
Therefore, unit conversion shall also be applied when adding or branching off

bus signals if required.
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5.2.3 Parameter Provision

In order to enable an efficient and convenient provision of the parameters of the
individual elements/ blocks of the Simulink and Simulink Simscape block dia-
grams, parameterization shall be implemented indirectly via the simulation
model variables obtainable from the MATLAB Workspace (see later section
5.3.1).

Block Parameters: ASM 1 (Squirrel Cage) i&

Asynchronous Machine Squirrel Cage (fundamental, SI)

Asynchronous machine with a squirrel cage rotor parameterized using fundamental SI parameters.

Right-click on the block and select Simscape block choices to access variant implementations of this

block.
Settings
Main | Impedances | Saturation | Variables |
Rated apparent power: 4000 VFA - ‘ p'e
Rated voltage: robotPara.motorPara.ratVolt.joint(1) v -
Rated electrical frequency: robotPara.motorPara.ratElFreq.joint(1) Hz - \/
Number of pole pairs: robotPara.motorPara.numOfPp.joint(1)
Squirrel cage: [5ing|e squirrel cage 'I
Zero sequence: [[nc\ude '|
[ oK ] ’ Cancel | [ Help ] Apply

FIGURE 5.10: Screen capture of an exemplary block parameterization

This method provides a structured and centralized compilation of all simulation
model parameters in one or more variables which in turn allow a quick and ex-

tensive access for viewing and/ or modifications of individual parameters.

5.3 MATLAB

As described in the introductory paragraphs of this section (5), the simulation
program can be divided into a Simulink/ Simulink Simscape part and a MATLAB
part. The previous sections 5.1 and 5.2 describe the simulation model’s general
overall structure, its individual elements and their functional dependencies.

In order to also determine sequential dependencies between the individual ele-
ments and functionalities, a general flow chart, shown in FIGURE 5.11 below

was created.
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START

Initialization Manual Restart

|

Program Data Import
Part 1:
MATLAB Main (GUI)

/

Linear Movement
Planning (GUI)

Joint Movement
Planning (GUI)

Open Simulink/Simulink Simscape Simulation Model

Program

Part 2: Control Systems Structure Creation (Manually)
Simulink/
Simulink Simulation Execution (Manually)
Simscape

Result Evaluation (Manually)
END

FIGURE 5.11: General Simulation Program Flow Chart

Based on the previously determined main tasks of the MATLAB program part:

¢ Simulation model parameterization

e Set values calculation and provision

And the main contents and functionalities obtainable form FIGURE 5.2 and
FIGURE 5.11, appropriate conceptual designs were elaborated and are pre-

sented and discussed within the subsequent sections 5.3.1, 5.3.2 and 5.3.3.

5.3.1 Simulation Model Variables

In the context of the previously mentioned automatically generated Simulink
Simscape Multibody simulation model from the CAD model, using the MATLAB
smimport () function, the “ABB_IRB_2600_12_ 185 Simscape_Data.m” file
was automatically created. The corresponding and predetermined MATLAB var-
iable of this file is smiData.

Furthermore, the predetermined variables robotModel and importInfo are
automatically created from the MATLAB importrobot () function, required for

inverse kinematics solving (see section 5.3.3) .
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As it is highly recommended not to change these predetermined, required and

automatically generated variables:

e smiData
e robotModel

e importInfo

The decision was made to create new own variables for the MATLAB program

part. Therefore, the variable:

e robotPara

Shall be used to store the simulation model parameters in S| and/ or derived SI
units, imported from the externally provided robot parameters compilation. The
creation/ initialization of the variable and the subsequent storing of the parame-

ters shall be accomplished within a separate MATLAB function.

The variable:

e simVar

Shall be created in order to act as the main working variable of the MATLAB
program part. In detail, the variable shall be passed into and returned from each
individual MATLAB function for data transfer. Hence, the variable shall store all
required information captured and calculated during the MATLAB program exe-
cution, which finally also covers the trajectory set values to be provided to the
Simulink/ Simulink Simscape environment. The variable shall also be created by
a separate MATLAB function to ensure the comprehensibility of its structure and

contents.

Both variables shall be stored at the MATLAB “base” Workspace in order to en-
able visibility for the user and easy access for the Simulink/ Simulink Simscape

environment.
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5.3.2 Graphical User Interfaces

Referring to the requirements of the simulation model, user inputs/ interactions
are at minimum to be performed via the MATLAB Command Window. Due the
number and extent of all required individual elements of the MATLAB program
part (see subsequent section 5.3.3), controlling the simulation program/ model
via the MATLAB Command Windows was considered as inconvenient, ineffi-
cient, complex and may require additional syntax/ command knowledge. Based
on that, the decision was made that the optional task of the implementation of
graphical user interfaces (GUI) shall be accomplished.

Therefore, the graphical interfaces shall be created with the MATLAB graphical
user interface development environment (GUIDE) tool, whereby, according to
FIGURE 5.11, three GUI shall be created:

e Main GUI
¢ Joint Movement Planning GUI

e Linear Movement Planning GUI

Each GUI in turn is represented by a . fig file which represents the contents
and appearance of the corresponding GUI window itself and a corresponding
.m file. The .m file contains the required code for the implementation of the GUI
functionalities (which covers the initial GUI parametrization (e.g. labelling of text
boxes), callback functions (reactions on user interactions, e.g. user presses a
button) and additional sub functions if required). Thus, six .m/ .fig files are
required for the implementation of the GUI of the MATLAB program part.

Moreover, each GUI shall contain sufficient input filtering such as:

e Input value type check (number, text, etc.)

e Input value limitations/ range check (e.g. axes angular limitations)

For each individual input value of a GUI and an:

¢ Input completeness check (entirety of required input values)

In the context of all input values of the corresponding GUI.
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Additionally, each GUI shall contain required descriptions and/ or descriptive
images to provide guidance and comprehensibility.

A sketch of the conceptualized appearance of the Main (G)UI window is shown
in FIGURE 5.12 below.

|
!Ul"i{,\\’ HE)":Q\"QLMJF } ‘

— A
]

Erginl |

| B S

FIGURE 5.12: Freehand sketch of the concept of the Main (G)Ul window

A sketch of the conceptualized appearance of the Motion (G)Ul windows is
shown in FIGURE 5.13 below, whereby the concept shall be valid for both (line-
ar and joint movement) and therefore need to be adapted to the specific re-
quirements (e.g. corresponding description/ descriptive image, number and

format of input values, etc.).
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FIGURE 5.13: Freehand sketch of the concept of the Motion (G)UIl window

Further preconfigured (graphical elements), e.g. MATLAB dialog boxes, shall be
used to display further guidance, information, warnings and errors (e.g. in case

of the application of non-appropriate input values).

5.3.3 Programs & Program Flow Charts

For the purposes of modularity and comprehensibility, the decision was made
that each main task/ procedure of the MATLAB program shall be represented
by an individual MATLAB .m function file.

Example: simvar init.m shall only contain the simvar init () function.
Some .m function files may contain further sub functions which shall only be

called locally (within the corresponding function).

Summarizing the contents described in the previous sections 5.2.3, 5.3.1 and
5.3.2, the conceptual design determined the need of four functions for the crea-
tion of variables, six functions for the GUI representations and one function for

the import of robot parameters.
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For the purpose of the installation of a required MATLAB Simulink Simscape
Library (see FIGURE 5.2) another separate function shall be created.
Furthermore, the conceptual design of the robotic manipulator’s motion refer-
ence trajectory design was pending. Therefore, the conceptualization of a linear
robotic movement planning was depicted in a flow chart diagram (see FIGURE
5.14) and described below.

The conceptualization of a linear robotic movement planning is presented ex-
emplarily and also valid for the joint movement planning but without the need of

solving the inverse kinematics.

Robot’s Kinematic Structure Derivation from the Simulink Simscape Multibody
Model (importrobot (), robotModel)

’“L/ (robotModel)

-

GUI; User Inputs: Pstart, Ptarget, VTcp, atce, K

(robotModel, Pstart,
Ptarget, VTCP, atcp, k)

Creation of the k x 7-dimensional Time Vector ¢
Calculation of the Workspace Reference k x 3-dimensional Trajectory Vector
p(t)
i (t, p(t)
Calculation of the Joint-Space Reference k x 6-dimensional Trajectory Vector
q(t)
(Inverse Kinematics; GeneralizedInverseKinematics, gik())
| @ a0
Creation of the k x 7-dimensional Reference Trajectory Set Value Vector gsy

% (qsv)

MATLAB Workspace (base)

FIGURE 5.14: Flow chart diagram of the linear movement planning
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Firstly, the robot’s kinematic structure, represented by a MATLAB Rigid-
BodyTree object robotModel, needs to be derived from the existing Simulink
Simscape Multibody model with the MATLAB importrobot () function. Fol-
lowing this, the desired starting (A) workspace position pgiart = [Xa Va Za], WOrk-
space target (B) position piarger = [x5 ¥5 zg] and the corresponding motion pa-
rameters (velocity vrcp, acceleration arcp and interpolation resolution k) shall be
obtained from the user via the GUI (see FIGURE 5.13)

Subsequently, the workspace trajectory p(t) vector shall be calculated from the
user inputs within a separate function and accordingly to the elaborated theory
(section 4.2.1). It must be considered that the theory of the calculation of the
time dependent workspace trajectory vector p(t) is formulated analytically (=
continuous time). As the simulation model bases on computational calculations,
firstly a discrete time series (= k x 7-dimesional time vector t) shall be deter-
mined and then used to calculate discrete values of the k x 3-dimensional work-
space trajectory vector p(t).

Following this, a separate function shall be created for inverse kinematics solv-
ing in order to calculate the required k x 6-dimensional reference joint-space
trajectory q(t) vector from the workspace trajectory vector p(t). Therefore the
MATALAB GeneralizedInverseKinematics solver shall be used. Its cor-
responding MATLAB function gik () shall be called with the robotModel ob-
ject and appropriate ConstraintInputs objects, to be determined in advance
and accordingly to the requirements (e.g. tool orientation).

Then, the reference joint-space trajectory q(t) vector shall be united with the
time vector tin order to create a k x 7-dimensional reference trajectory set value
vector qsy. This vector shall be stored at the MATLAB Workspace “base” to be
accessible for the Simulink/ Simulink Simscape program part and act as control

system set values.

Exemplarily, the program flow chart (PFC) of the inverse kinematics function

inverse kinematics () is shown in FIGURE 5.15 below.
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inverse_kinematics(simVar,robotModel,robotPara)

Start )

Creation of a
GeneralizedInverseKinematics object

.

Creation of
GeneralizedInverseKinematics solver
constraints

v

Solving inverse kinematics object
with constraints for inital pose (Pose
A)

v

Save solution (to simVar)

;

for(number of waypoints of the
linear path) ‘

Set/update solver constraints for the
current waypaint

v

Solving inverse kinematics object
with current constraints for current
waypoint

v

Save solution (to simVar)

.
v

Return simVar, sollnfo

v

End )

FIGURE 5.15: Program flow chart of the inverse_kinematics() function

The procedure for the joint trajectory planning shall be same but without the
inverse kinematics as the reference joint-space trajectory can be calculated di-

rectly form the user inputs.

Finally, a main function shall be created to represent the general program flow,
depictured in and obtainable from page 1(18) of Appendix 4. Program Flow
Charts.
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In order to provide a convenient start of the simulation program (without typing
calling parameters) by the user from the MATALB Command Window, the main

function shall in turn be called by another superordinate but concise function.

Summarized, the programs to be created, listed and described in TABLE 5.1
below, shall be designed during the accomplishment considering the elaborated

definitions and regulations, theory and conceptual design.

TABLE 5.1: Listing and description of the conceptualized MATLAB function(s) (files)

Corresp. PFC
(Appendix 4.
Program Flow
Charts) Page:

MATLAB .m/ fig
(Function) Description:
File(s):

Entry point of the simulation; shall call
the main () function and shall be called
runSim.m 16(18)
with runsim; from the MATALB Com-

mand Window.

Shall call all required initialization func-
tions ((e.g. simvar init()) and/ or
init.m - 4(18)
initialize/ install all required variables/

libraries/ data.

simVar init.
- Shall initialize the simvar variable. 17(18)
m

Shall load the smiData variable from
"ABB IRB 2600 12 185 Simscape_Da 10(18)

taFile.m".

load smiData

.M

mul-
Shall install the required Simscape
ti physics 1 13(18)
Multibody Multiphysics Library.

ib.m

Shall import and/ or update the robotic

ro- system/ structure (RigidBodyTree) 14(18)
bot_import.m |from the Simulink Simscape model

(.slx).
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TABLE 5.1: Listing and description of the conceptualized MATLAB function(s) (files)

MATLAB .m/ .fig

Corresp. PFC
(Appendix 4.

(Function) Description:
_ Program Flow
File(s):
Charts) Page:
ro- Shall create the robotPara variable
bot_para_xls |and import simulation model parameters 15(18)
_import.m from the parameter spreadsheet.
main.m Main function (and corresponding GUI); 11(18)
main ui.m shall represent the general program
flow. Shall call all other necessary func-
tions in order to gather user inputs and 12(18)
main ui.fig
- to calculate and provide the required
data for the Simulink simulation.
joint move u | Shall obtain and filter required user in-
i.m puts for the trajectory planning of a joint
: . 6(18)
joint move u | movement of the robotic manipulator
i.fig (includes the corresponding GUI).
Shall calculate the joint space trajectory
joint traj p L . . 2
. of a joint movement with a sin“ accelera- 7(18)
lanning.m
tion profile in full synchronous mode
lin_path_ui. | Shall obtain and filter required user in-
m puts for the trajectory planning of a line- 8(18)
lin_path_ui. | ar movement of the robotic manipulator
fig (includes the corresponding GUI).
Shall calculate the workspace trajectory
lin traj pla . ) .
. of a linear movement with a sin“ accel- 9(18)
nning.m
eration profile.
Shall solve the inverse kinematics of the
. robotic manipulator for each waypoint of
in-
a linear movement (p(t) -> q(t)) based
verse kinema 6(18)

tics.m

on Cartesian start and target user inputs
using the MATLAB gik () solver func-

tion.
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6 ACCOMPLISHMENT

The accomplishment generally based on the basic ideas, structures, methods
and solutions elaborated in the conceptual design (section 5). Under continuous
consideration of the definitions and regulations (section 3) and, if required, the
methods and knowledge gained from the theory (section 4), the accomplish-
ment was conducted. Adaptions were made whenever necessary in order to
meet the requirements (Appendix 3. List of Requirements) satisfyingly and to
increase the simulation model’s quality. Adaptions as well as substantial devia-
tions from the individual corresponding conceptual design are mentioned ac-
cordingly.

Additional required unspecific/ general information, knowledge and help/ guid-
ance were obtained from The MathWorks Inc. (2019b), The MathWorks Inc.
(2019c), The MathWorks Inc. (2019d) and Glockler (2018) during the MATLAB
and Simulink/ Simulink Simscape programming.

Due to the repetitive character of the most of the tasks processed during the
accomplishment procedure (mainly caused by the repetitive structure of the ro-
botic manipulator’s simulation model), accomplishments are primarily presented

and documented in an exemplary manner within this section.

6.1 CAD Model

Used CAD software: Dassault Systemes® SolidWorks™'! Premium 2014, x64-
Edition, SP 2.0

Additional Software: MathWorks Simscape Multibody Link Version 6, Release:
R2018b, Win64, plug-in for SolidWorks 2001Plus and higher

The first step of the creation of the simulation model was related to the prepara-
tion of the manipulator's CAD model. Therefore, the CAD data of the robot links
and the end effector were separated from the .x_t parasolid file of the robot
welding cell provided by the client (TAMK).

" SOLIDWORKS™ is a trademark of Dassault Systémes®
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Following this, the separated data (see TABLE 6.1) were edited individually in
order to define the material, density, weight and colouration of each part.
Subsequently, the parts were assembled using appropriate constraints (see
TABLE 6.1) to create a fully functional representation of the real robotic system
(see FIGURE 6.2). The last step covered the generation of Simscape Multibody
environment import files using the MathWorks Simscape Multibody Link plug-in
for SolidWorks (see TABLE 6.2). The obtained import files were needed to cre-
ate the manipulator’'s Simscape Multibody simulation model automatically, using
the MATLAB smimport () function. The previously described procedure is also
depicted in FIGURE 6.1 below.

Additional Information:
Additional geometries, assembly constraints,
materials, densities, weights, frames, colours, etc.
1

Y
_ Output:
Information: Compatible QAD Software Simscape Multibody
Model geometries (e.g. SolidWorks) environment import
from CAD sources Simscape fileslzf_I
(.igs, .prt, .step, Model | . i xmitile
stl, .x_t, etc.) Assembly > MUIE,?Ody Link stl data
________________ > ug-In e
FIGURE 6.1: Procedure of the generation of the Simscape Multibody model import files
TABLE 6.1: List of SolidWorks parts and assemblies of the manipulator
SolidWorks Parts
Assembly Constraint Type
No.: Name: Type: . ,
Link j+¢ to Link ;:
0 IRB2600_12_ 185 base Revolute
1 IRB2600_12_185_link1 (Coincidence of the sur-
2 IRB2600_12 185 link2 SolidWorks faces and axes of the
3 IRB2600_12_ 185 link3 Part CAD model representing
4 IRB2600_12_185_link4 Document | the revolute joints) (see
5 IRB2600_12_185_link5 (-sldprt) FIGURE 6.2)
6 IRB2600_12_185_link6 Rigid
7 Welding_End_Effector -
SolidWorks Assembly
Name: Type:
ABB_IRB_2600_12_185_Simscape |SolidWorks Assembly Document(.sldasm)




TABLE 6.2: List of Simscape Multibody simulation model input files of the manipulator
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Simscape Multibody Simulation Model Files: .stl

pd
o

Name:

Type:

IRB2600 12 185 base_ Standard_sldprt
IRB2600_12_185_link1_Standard_sldprt
IRB2600_12_185_link2_Standard_sldprt
IRB2600_12_185_link3_Standard_sldprt
IRB2600_12_185_link4_Standard_sldprt
IRB2600_12_185_link5_Standard_sldprt
IRB2600_12_185_link6_Standard_sldprt
Welding_End_Effector_Standard_sldprt

N O O M W N = O

st

Simscape Multibody Simulation Model Files: .xml

- ABB_IRB_2600_12_185_Simscape

Xml

FIGURE 6.2: Screen capture of the SolidWorks assembly of the robot manipulator
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6.2 Simulink Simulation Model

In contrary to the chronology of the process of the accomplishment of the thesis
work, the final general structure of the simulation model is already shown at the
beginning of this section. The idea behind is, to firstly give an overview over the
final simulation model’s Simulink block diagrams individual elements (see FIG-
URE 6.3), which are then presented and described in detail within the following
subsections 6.2.1 - 6.2.4.

The final Simulink/  Simulink  Simscape  simulation model file
“ABB_IRB_2600_12_185_ Simscape.sIx” can be found from the “Simulink Sim-
scape Data” folder of the complete data set (see section 6.5), along with all oth-

er required corresponding data (e.g. .stl files).

Control Systems

"~ Measurements

Simscape Robot Model

Signal Bus

FIGURE 6.3: Screen capture of the final simulation model’s Simulink block diagram

6.2.1 Simulink Simscape Multibody Robot Model

As conceptualized, the basic Simscape Multibody model of the robotic system
was generated automatically from the pre-processed CAD data, more precise
the “ABB_IRB_2600_12_185_Simscape.xml” file (section 6.1, TABLE 6.2), us-
ing the MATLAB smimport () function.
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The basic Simscape Multibody model (see section 5, FIGURE 5.1) was then
elaborated as conceptualized (adding further subsystems, joint actuation, sig-
nalling etc.), see FIGURE 6.4 below, and implemented as a subsystem of the
overlaying Simulink block diagram (see mark 6.2.1 in FIGURE 6.3).

All corresponding data (block parameters) of the automatically generated Sim-
scape Multibody model are stored in the also automatically generated
“‘“ABB_IRB_2600_12_185_ Simscape_DataFile.m” file.

The Simscape Multibody robot model itself (FIGURE 6.4) consists of the first
(sub) subsystem (Robot Base Subsystem) rigidly linked to the World Frame and
all other (sub) subsystems which are sequentially rigidly linked to their prede-
cessors. All (sub) subsystems do have the same general structure and are con-
nected to the signal bus (except the Robot End Effector Subsystem).

The World Frame, Mechanism Configuration and Solver Configuration blocks
contain the basic parametrization and references of the Simscape simulation
environment (e.g. value and direction of the gravitational acceleration) and are a

basic requirement for every Simulink Simscape model.

file Edit View Display Diagram Simulation Analysis Code Tools Help

+tHEO-B-eqdqOP » [~ ol gl @~

HE® e

B E

Ready 100% autolode23t

FIGURE 6.4: Screen capture of the final simulation model’s Simulink Simscape robot model

Exemplarily for the other sub (subsystems), FIGURE 6.5 shows the Robot Base
(sub) Subsystem of the Simscape robot model (see mark a) FIGURE 6.4).
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The Base Body (sub) subsystem of the Robot Base Subsystem contains a Solid
block representing the rigid body of the base (link 0) and Rigid Transform blocks
for the required appropriate fixed frame transformations (kinematic structure) as
automatically generated. The Base Body (sub) subsystem is rigidly connected
to its predecessor (World Frame in this case (LinkageWorld)) and to the corre-
sponding joint (Joint 1).

The Joint 1 block (Revolute Joint) represents the real revolute joint of the ro-
bot’s system and is rigidly connected to the Base Body (sub) subsystem on the
input side and to the corresponding kinematic successor (Link 1) on the output
side (LinkageBaseLink1). Deviating from the conceptual design, no additional
sensor elements/ blocks were applied to measure the joint variables q,, ¢;, ¢,
and 1, from the corresponding joint as the block provides these values via inter-
nal sensing.

Also deviating from the conceptual design, the Joint 1 Drive System (sub) sub-
system does not only apply the motor torque to the Joint 1 block (port “t”) but
also receives joint velocity feedback (q,) (port “w”) for interfacing purposes (see
description of FIGURE 6.6). Both, the Joint 1 Drive System (sub) subsystem
(mark b) FIGURE 6.5) and the Joint 1 block are connected to the signal bus.
Signals from different signal domains (e.g. Simscape Multibody and Simulink
domain) are converted with PS-Simulink Converter or Simulink-PS Converter

blocks before added to or branched off the signal bus.

Display Diagram Simulation Analysis Code Tools Help

L e-B-re@40Pb

7 L] ool
1 5] oo s sussystom b

’
< —

LinkageWorld
Base Body

—<D
B o »-@ Joint1 OutBus.Angle LinkageBaseLink1
“) «—+ @ Joint1OutBus.Velo

I v te-@Joint10utBus.Acc

@ Joint1OutBus.Torque

Joint 1

Joint1InBus.ControllerJoint10utBus @——» @ Joint1OutBus.Drive

B =i

b)o—»

.
Joint 1 Drive System

Ready 125% VariableStepAuto

FIGURE 6.5: Screen capture of the Simscape simulation model’s Robot Base Subsystem
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The block diagram of the (sub) subsystem of the Joint 1 Drive System (mark b)
FIGURE 6.5) is shown in FIGURE 6.6 below.

As conceptualized, the ASM 1 Driver (sub) subsystem (mark c) FIGURE 6.6)
receives the corresponding controlled value from the Controller Joint 1 subsys-
tem (via the signal bus) and drives the joint actuating ASM 1 block using the
three-phase voltage supply (blue coloured electrical domain).

The ASM 1 block represents the real AC asynchronous joint motor and is driven
in delta configuration using a Phase Permute (Delta) block in order to gain max-
imum motor torque. The joint actuation (ASM 1) block provides its (mechanical)
torque via the rotational conserving ports “R” (Rod) and “C” (Case) to the Rota-
tional Simscape Interface 1, using the Simscape mechanical rotational domain
network (green coloured domain). The joint actuation (ASM 1) torque cannot
directly be applied to the corresponding joint as the joint actuation is performed
within the Simscape Multibody domain (red coloured signalling domain) and
therefore interfacing with joint velocity feedback (g, ) is required.

The Machine 1 Inertia block and Machine 1 Viscous Damping block were added
to the mechanical rotational network to simulate the mechanical characteristics
of the joint actuation motor not covered by the corresponding block (ASM 1).
The real gearbox of the robotic system is represented by the Cycloidal
Transm.1 block also implemented in the mechanical rotational network. As the
Cycloidal Transm.1 block does not provide the inertia parameter of the gearbox
to be simulated, the Transm. 1 Inertia block was applied.

The Joint 1 Bearing Friction block represents the (linear) friction model of the
real bearing of the corresponding joint (Joint 1) and covers breakaway friction
as well as Coulomb and viscous friction. Block parameterization is described in
the later sections 6.4.2 and 6.4.3.
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FIGURE 6.6: Screen capture of the Simscape simulation model’s Joint 1 Drive Subsystem (1/2)

The block diagram of the ASM 1 Driver (sub) subsystem (mark c) FIGURE 6.6)
is shown in FIGURE 6.7 below.

According to the conceptual design (section 5.2.1), the ASM 1 Driver (sub) sub-
system was created utilizing the basic function principles and blocks of the
MATLAB Simulink Simscape “Asynchronous Machine Scalar Control”
(pe _asm scalar control) example block diagram. During the creation,
several adaptions were applied whereby the signal limitation and the rotational
direction reversing are the most considerable. The signal limitation was imple-
mented to narrow the expected scalar input value range to -1 to +1, using the
Signal Limiter block (Saturation) (mark d) FIGURE 6.7) (Thus: “+1” = “100%
power in the positive direction” and “-1” = “100% power in the negative direc-
tion”). The Rotational Direction Reverser (sub) subsystem (mark e) FIGURE
6.7) determines the rotational direction of the corresponding joint actuation mo-
tor (ASM 1) by permuting two of the three voltage supply phases, depending on

the sign of the controlled value (Control Signal).
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FIGURE 6.7: Screen capture of the Simscape simulation model’s ASM1 Driver Subsystem

As the Robot End Effector Subsystem (mark f) FIGURE 6.4) differs from the
other (sub) subsystems, its block diagram is shown in FIGURE 6.8 below. Ac-
cordant to the conceptual design, it only contains the rigidly connected rigid
body (sub) subsystems of link 6 (Link 6 Body) and the end effector/ tool (End
Effector Body) in order to represent the robot manipulator’s last kinematic ele-

ment.

[Mormal 5 @ -

(4]
=
(=]
-
End Effector Body
(D
LinkageLink5LinkEE
®
- Link 6 Body

Reacly 125% VarisbleStepAuto

FIGURE 6.8: Screen capture of the Simscape simulation model’s Robot End Effector Subsys-
tem
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6.2.2 Signal Bus

Within the Simulink/ Simulink Simscape simulation model, all signals are routed
with the help of a signal bus structure (see mark 6.2.2 in FIGURE 6.3) (excep-
tion: values/ parameters directly or indirectly obtained from the MATLAB Work-
space (base) using From Workspace blocks). Each (sub) subsystem connected
to the signal bus contains InBus blocks (mark g)) to branch off individual signals
form the signal bus and OutBus blocks (mark h)) to add signals to the signal
bus as exemplarily shown for the Joint 1 Drive System (sub) subsystem in FIG-
URE 6.9 below.

® |[*a]ann_tre_3600_12_185_Simscapa b [Pa] Simscape Rabot Madal I Bg] Robot Base Subsystem b (Ba] oint 1 Drive System B
@
h)
[} I
g ) &l pu B @ Joint1DriveOutBus AsmMeasure
ASM 1 Measurements &>
Machine 1 Transm. 1 v
: Inertia Inertia Slw  t <D
o ‘ |
a * ;o = - B\)E R O
Joint1DrivelnBus.ControlledValue @——# Control Signal b + b #ST R « Machine 1 ¥ Joint 1
| - e[ A LI \gscoqs Cycloidal Bearing Rotational
| 3 ; c lamping Transm. 1 ) Simscape
. 82|, . v ©  Friction s
ASM 1 Driver 1)k o— Intferface 1
: L=
Phase ASM 1 Mechanical

Permute (Squirrel Cage) Rotational
(Delta) Reference

Ready

FIGURE 6.9: Screen capture of the Simscape simulation model’s Joint 1 Drive Subsystem (2/2)

Sub busses were created within the signal bus in order to bundle individual but
related signals meaningfully within a number of subordinated sub busses.

FIGURE 6.10 exemplarily shows the structure of the InBus (ControllerSystem-
InBus) of the Control System subsystem (mark 6.2.3 in FIGURE 6.3). The in-
coming individual (joint and motor) signals of each Simscape model’s (sub)
subsystem (e.g. Robot Base Subsystem) Angle, Velo, Acc, Torque, Drive are

bundled within the corresponding sub busses Joint1OutBus — Joint6OutBus.
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FIGURE 6.10: Screen capture of the signal bus structure of the Control System subsystem In-
Bus

The naming of the individual bus signals and sub busses was applied in a con-
sistent and explanatory manner; therefore, no overall listing of the bus systems
individual signals is given here.

Alternatively, all signal types measured and available from the signal bus of the

final Simulink/ Simscape simulation model are listed in TABLE 6.3 below.

TABLE 6.3: Listing of the available signal bus signal types

Signal Description: Related Symbol(s):

Joint Position Variables/ Values q1 96

Joint Velocity Variables/ Values q1--9e

Joint Acceleration Variables/ Values G1 - Ge

Joint Torque Variables/ Values Ty .. Tg
Controlled Variables/ Values Up ... Ug

Motor (ASM) Electrical Torque Variables/ Values Tie - Toe
Motor (ASM) Rotor Velocity Variables/ Values W1m - Wem

Motor (ASM) Slip Variables/ Values S1 - Sg
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As already mentioned in section 6.2.1, PS-Simulink Converter or Simulink-PS
Converter blocks were implemented for interfacing when adding or branching
off bus signals if required, as the signal bus only transfers Simulink domain sig-
nals. For error prevention purposes, only Sl unit and derived Sl unit signal val-
ues are transferred within the bus (except signals originally without any unit).
Therefore, unit conversion blocks were added wherever required (e.g. within the

Measurement System).

6.2.3 Control System Structures

Accordant to the conceptual design (section 5.2.2), a superior control system
structure, the Control Systems subsystem, was implemented as a subsystem of
the overlaying Simulink block diagram (see mark 6.2.3 in FIGURE 6.3).

The Control System’s subsystem carries six (individual) decentralized control
system structures (sub) subsystems (Controller Joint 1 (Axis 1) — Controller
Joint 6 (Axis 6)), one for each of the simulation model’s (revolute) joints, which
are connected to the signal bus and shown in the subsequent FIGURE 6.11.
The subsystem can be used as an environment for centralized control if re-

quired.
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FIGURE 6.11: Screen capture of the Control System subsystem of the Simulink block diagram
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Apart from the deviating input and output signals of the individual Controller
Joint (sub) subsystems, all (sub) subsystems do have the same structure, ex-
emplarily shown for the Controller Joint 1 (Axis 1) (sub) subsystem (mark i)
FIGURE 6.11) in FIGURE 6.12 below.

Each Controller Joint (sub) subsystem is divided into three areas (blue shaded
areas, FIGURE 6.12), left: input area (mark j)), middle: controller area (mark k))
and right: output area (mark 1)), whereby applied block diagrams must not be
necessarily kept inside the areas, since the separation is only meant as a sug-
gestion for the purpose of a clear structure. Explanatory notes are given below
each area.

The input area provides the corresponding joint-space position set values (ref-
erence trajectory) using a From Workspace block in order to obtain the refer-
ence values (q1sV) from the simvar variable from the MATLAB "base” Work-
space. Furthermore, the measured actual values of the corresponding Joint
block, joint position g; and joint velocity ¢; are branched of the signal bus.

The controller area is initially equipped with a simple closed-loop controller
structure and a Scope block. The predefined PID Controller block as well as the
Scope block were implemented for testing purposes only and do not provide an
appropriate control system structure of the simulation model.

The output area contains the signal of the controlled value of the corresponding

joint actuation (sub) subsystem (ASM 1 Driver) added to the signal bus.

As each Controller Joint (sub) subsystem is connected to the signal bus, all sig-
nals of the bus structure listed in the previous TABLE 6.3 are available within
each (sub) subsystem. Following this and deviating from the conceptual design,
the implemented Controller Joint (sub) subsystems are MISO instead of MIMO
structures, as only one corresponding output (controlled value; u...us) is avail-
able for each (sub) subsystem at the contemporary state. This decision was
made based on the lack of information of the types and amount of the specific
controlled values to be implemented by the individual user and application.

Due to the usage of a signal bus, further signals can be branched off and/ or
added to the signal bus and therefore lead out from and/ or added to the Con-
troller Joint (sub) subsystems by the user whenever required.
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FIGURE 6.12: Screen capture of the Controller Joint 1 (Axis 1) (sub) subsystem

6.2.4 Measurements

In contrary to the conceptual design (section 5.2.2), the measurements subsys-
tems were outsourced from the individual subsystems of the Simulink Simscape
Multibody model and implemented bundled as a subsystem of the overlaying
Simulink block diagram (see mark 6.2.4 in FIGURE 6.3). As all measured sig-
nals are available from the signal bus anyways, no additional structures were
applied in the context of the implementation of the Measurements subsystem.

The Measurements subsystem consists of the four (sub) subsystems:

e Joint Angles (g4 ... q¢)
e Joint Velocities (g ... 4g)

e Joint Accelerations (g, ... Ge)

e Joint Torques (t; ... Tg)

Whereby the (sub) subsystems are organized by the type of the measured val-
ues (angle, velocity, etc.) instead of the origin of the values (corresponding Joint
1-6 blocks) as shown in the subsequent FIGURE 6.13. Necessarily, each (sub)

subsystem is connected to the signal bus.
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FIGURE 6.13: Screen capture of the Measurements subsystem of the Simulink block diagram

Exemplarily, the structure of the Joint Angles (sub) subsystem (mark m) FIG-
URE 6.13) is shown in FIGURE 6.14 below.

Measurements are taken with Scope blocks within every (sub) subsystem as
they provide displaying (plotting), live viewing, logging, formatting, examining
and exporting the captured individual input signals.

In the case of the Joint Angles (sub) subsystem, six Scope blocks were imple-
mented, one for each of the six joint position variables/ joint angles (q; ... q¢) to
be observed, as shown in the subsequent FIGURE 6.14. Each Scope block re-
ceives the corresponding joint-space position set values (g1sv...g6sV, refer-
ence trajectories), gained from the simvar variable using From Workspace
blocks. Furthermore, each Scope block receives the corresponding measured
actual values of the joint positions/ joint angles (q; ... q¢). This allows the direct
comparison of each of the corresponding actual and reference values of each
axis as exemplarily shown in the signal plot (FIGURE 6.15) of the Joint Angle
Axis 1 Scope block (mark n) FIGURE 6.14).
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In contrary to the Joint Angle (sub) subsystem, the Joint Velocities, Joint Accel-
erations and Joint Torques (sub) subsystems only contain two Scope blocks
each, whereby the individual six signals are bundled related to the principal ax-
es (indices 1-3) and the minor axes (indices 4-6) (see FIGURE 6.16).
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FIGURE 6.16: Screen capture of the Joint Velocities (sub) subsystem of the Measurements
subsystem

To in increase the comprehensibility of the measured values, the signals of the
Joint Angles, Joint Velocities and Joint Accelerations (sub) subsystems are
converted from the units [rad], [rad/s] and [rad/s"2] to the units [°], [°/s] and
[°/s"2], whereas the Joint Torques (sub) subsystem uses the unit [Nm]. The
predefined unit conversions can be adapted by changing the gain values of the
preceding Gain blocks (see exemplary mark o) in FIGURE 6.16) of each Scope

input signal.

The 3D animation/ simulation of the Simulink Simscape Multibody simulation
model, represented by the .stl geometry files gained from the CAD model and
the calculated kinematics and dynamics, can be viewed from the MATLAB Me-

chanics Explorers window as exemplarily shown in FIGURE 6.17 below.



Mechanics Explorers - anics 0
° | Mechanics Explorer-ABB_IRB_2600_
I,- ABB_IRB_2600_12_185_Simscape

= uno Simscape_Robot_Model
__nun Robot_Base_Subsystem
w Robot_End_Fffector_Subsystem
__oun Robot_Link_1_Subsystem

% Robot_Link_2_Subsystem

=% Robot_Link_3_Subsystem
% Robot_Link_4_Subsystem
&% Robot_Link_5_Subsystem
a Mechanism_Configuration
,;',S World_Frame

E+Connection Frames

av

T=[014]

FIGURE 6.17: Screen capture of the robot’s Simscape Multibody model simulation animation
(Mechanics Explorer)

6.3 MATLAB Program(s)

Equally to the structure of section 6.2, the final structure/ flow of the MATLAB
Program (part) is presented at the beginning of this section and therefore depic-
tured in FIGURE 6.18 below. The MATLAB General Program Flow chart does
only cover the main elements of the program, since a complete semantic de-
scription of the MATLAB program requires all 18 individual program flow charts,

available from Appendix 4. Program Flow Charts.
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FIGURE 6.18: Flow chart of the MATLAB General Program Flow

6.3.1 Program & Program Structure(s)

The MATLAB programming was accomplished by following the basic theoretical
programming procedure (section 4.5) and applying the elaborated requirements
and specifications of the corresponding conceptual design (section 5.3). The
structure, dependencies and interactions of the MATLAB .m/ .fig files and all

external data (within the data set) are depicted in the subsequent FIGURE 6.19.
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The directions of connections refer to the real data flow (from the left to the
right: calls, from the right to the left: returns). Further information concerning the

shown folders are given in section 6.5.

FIGURE 6.19: MATLAB program(s) structure and function/ file dependencies
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Comparing the contents of FIGURE 6.19 and TABLE 5.1 reveals that the:

e update all.m
¢ get joint move.m

e get lin move.m

Functions/ files were finally created and implemented but not specified in the
conceptual design. Justification: The need of the mentioned functions/ files was
not foreseeable at the state of the conceptual design. Hence, no concepts were
prepared at that point.

The conceptual designs, including the corresponding program flow charts, were
therefore elaborated during the phase of accomplishment. The descriptions of
the functions/ files are listed in TABLE 6.4 below.

TABLE 6.4: Listing and description of additionally implemented MATLAB function(s) (files)
Corresp. PFC

MATLAB .m/ o (Appendix 4.
o Description:
fig File(s): Program Flow

Charts) Page:

Update of required variables/ libraries/ data

up- (simvVar, robotPara, smiData, robot-
date all.m | Model, importInfo variables and Sim- 18(18)
scape Multibody Multiphysics Library).
Calls joint move ui (), then calls
o joint traj planning() to calculate
get joint m
N ~ | the joint movement trajectory. Finally writes 2(18)
e the calculation results into the simulation
variable simvar in the required format.
Calls 1in path ui (), then calls
get lin mov | lin traj planning() to calculate the
e.m linear movement trajectory. Finally writes 3(18)

the calculation results into the simulation

variable simvar in the required format.
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All other functions/ files were implemented as conceptualized and described in
section 5.3.3, TABLE 5.1.

The limited extent of the document at hand does not allow detailed discussions
of the explicit contents and functionalities of each individual function (.m/ .fig
file) and the interactions/ dependencies between them. As the corresponding
theory, conceptual design and program flow charts are available from the doc-
ument at hand and function codes are also described by file headers and com-
ments sufficiently, no further explanations are given here.

Excerpts of the final MATLAB code are presented and described more detailed

in the later section 6.3.3.

6.3.2 Simulation Model Variables

As conceptualized in section 5.3.1, the simulation program requires the entirety

of five variables:

e smiData

e robotModel
e importInfo
e robotPara

e simVar

Which are generated and filled with all required data within the MATLAB pro-

gram part.

The smiData variable is loaded from the
ABB_IRB 2600 12 185 Simscape DataFile.m file using the
load smiData () function. The

ABB_IRB_2600_12_185_Simscape_DataFile.m in turn is the automatically
generated model data file derived from the Simulink Simscape Multibody Import
xml file (ABB_IRB_2600 12 185 Simscape.xml) using the MATLAB smim-

port () function.
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The predetermined variables robotModel and importInfo are automatically
created in the context of the usage of the MATLAB importrobot () function.
The robotPara variable is created by the robot para xls import () func-
tion. The robot parameter values are read from the ABB_IRB 2600-12-
1.85_Parameters.xlsx spreadsheet file and stored in the robotPara variable
(the variable’s first level structure is shown in FIGURE 6.20). Hence, the pur-
pose of the robotPara variable is the parameterization of the Simulink/ Sim-
ulink Simscape simulation model as conceptualized and also described more
detailed in the later sections 6.4.2 and 6.4.3.

iz] robotPara SHIEl X
B - "o
Ll_l__' E Cpen »
Newfiom (= Print = SELECTION  EDT
Selection

b 4 -

»l

WVARIABLE

[E] 1x1 struct with 7 fields

Field Value

£l generalRobotlnfo  Ix1 struct
—E| axisLimits Ix1 struct
£l tepLimits fruct
£| jointPara

£ motorPara
£ transmPara !
£l motDrivPara 1x1 struct

FIGURE 6.20: Screen capture of the first level of the structure of the robotPara variable

The simvar variable is initialized by the simvar init () function and re-
ceived and returned from all functions of the MATLAB program part in order to
allow all functions to read/ write information from/ to one centralized variable.
The simvar variable (the variable’s first level structure is shown in FIGURE
6.21) also contains and provides the set values (of the reference trajectories) of
the control systems structures of the Simulink/ Simulink Simscape simulation

model.
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FIGURE 6.21: Screen capture of the first level of the structure of the simVar variable

Summarized, the variables smiData, robotModel and importInfo are only
used within the MATLAB program part exclusively, whereby the robotPara
and simVar variables are used in both the MATLAB and the Simulink/ Simulink
Simscape program parts.

All variables are made visible/ accessible in the MATLAB “base” Workspace
with the transition from the MATLAB to the Simulink/ Simulink Simscape pro-
gram part, along with the minimum recommended simulation time (in the
MATLAB Command Window) as shown in FIGURE 6.22 below.

Command Window R Workspace ®
>> runSim; Name Value
Simscape Multibody Multiphysics Library v2.7 |&@| importinfo 1x1 RigidBodyTreelmportinfo

Copyright 2013-2018 The MathWorks, Inc. &) robotModel 1 RigidBodyTree
C:\Users\My Work Folder\BT ABB IRB 2600 Robot Sim||ElrobotPara ruct
‘Minimu.m recommended simulation time: 1.363415 s ‘ £ simVar 1x1 struct
fx > i £/ smiData 1x1 struct
< | T 3 4 | 1 2

FIGURE 6.22: Screen capture of the MATLAB Command Window and Workspace after the
successful MATLAB program execution

All five variables are also described in the TABLE 6.5 below, whereby the
robotPara variable is described more detailed in the subsequent TABLE 6.6

and the simvar variable in the subsequent TABLE 6.7.
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Name:

Type:

Description/ Purpose:

Initialized/ Created/
Changed by:

simVar

1x1 struct
(9 fields)

Contains all required data for
the execution of the MATLAB
program part. Provides the
results of the MATLAB pro-
gram part to the Simulink/
Simulink Simscape program
part.

Initialized by
simVar init (),

changed by all oth-
er functions of the
MATLAB program

part.

smiData

1x1 struct
(3 fields)

Contains the block parameter
values of the imported Sim-
scape Multibody simulation
model automatically created
during the procedure of the
execution of the smimport ()
function.

Created by smim-
port (),
initialized by

load smiData ()

robotPara

1x1 struct
(7 fields)

Contains values for the pa-
rameterization of the block(s)
(diagram(s)) of the Simulink/
Simulink Simscape simulation
model.

ro-
bot para xls i

mport ()

robotModel

1x1 Rigid-
BodyTree

Contains the robotic manipu-
lator’s simulation model’s kin-
ematic structure (represented
by rigid bodies connected by
joints) and corresponding pa-
rameters.

importInfo

1x1 Rigid-
BodyTree-
Importinfo

Contains information concern-
ing the import procedure of
the

tion.

importrobot () func-

importrobot ()
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TABLE 6.6: Detailed description of the robotPara variable

) Fields (First o
Variable: Description/ Purpose:
Level):
generalRo | Contains further subfields (e.g. capacity);
eralRo- | contains general information of the real robotic
botInfo | manipulator.
Contains further subfields (e.g. range); contains
axis/ joint limitations of the Simulink/ Simulink
axisLim- | Simscape simulation model equal to the axis/
its joint limitations of the real manipulator (e.g. for
input filtering in  joint move ui() and
lin path ui()).

Contains values (e.g. velocity); contains TCP
limitations of the Simulink/ Simulink Simscape
tcpLimits | simulation model equal to the TCP limitations of
the real manipulator (e.g. for input filtering in

joint move ui() and 1in path ui()).
Contains further subfields and sub subfields (e.g.
stateTar); contains values for the parameteri-

robotPara

jointPara

zation of the revolute joint block(s) (diagram(s))
of the Simulink/ Simulink Simscape simulation
model.

motorPara

Contains further subfields and sub subfields (e.g.
ratPow); contains values for the parameteriza-
tion of the joint motor/ driver block(s) (dia-
gram(s)) of the Simulink/ Simulink Simscape
simulation model.

transmPa-

ra

Contains further subfields and sub subfields (e.g.
nCdt); contains values for the parameterization
of the joint transmission block(s) (diagram(s)) of
the Simulink/ Simulink Simscape simulation
model.

motDrivPa

ra

Contains further subfields and sub subfields (e.g.
vdc); contains values for the parameterization of
the joint motor driver block(s) (diagram(s)) of the
Simulink/ Simulink Simscape simulation model.
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TABLE 6.7: Detailed description of the simVar variable

Variable:

Fields (First
Level):

Description/ Purpose:

simVar

uilInput

Contains further subfields and sub subfields;
contains inputs of the graphical user interfaces

joint move ui() and lin path ui().

uiControl

Contains further subfields (e.g. exeUpdate); for
control functionalities of the main graphical user

interface main ui.

statusFlags

Contains (flag-) values (either “1” = “true” or “0”
= "false”); for the interaction/ control functionali-
ties between the different graphical user inter-
faces.

updateTime

Contains the update times of updated/ loaded/
created/ executed data/ libraries/ programs (e.g.
Simscape Multibody Multiphysics Library) for the
“Last updated:” labels in the main ui GUI win-

dow.

linPathPlan

Contains further subfields (e.g. pRes); contains
the results of the linear trajectory planning
(for

lin traj planning()

get lin move () internal use).

initval

Contains further subfields (e.g. gStarta); con-
tains the initial pose (and velocities) of the Sim-
ulink/ Simulink Simscape simulation model.

targetVal

Contains further subfields (e.g. gTargetB); con-
tains the target pose (and velocities) of the Sim-
ulink/ Simulink Simscape simulation model.

Contains a further subfield (qRes); stores the
(unformatted) results of the inverse kinematics

(inverse kinematics ()).

gSetValues

Contains further subfields (qglsv..g6SV); con-
tains the (formatted) set values of the joint an-
gles for the Simulink/ Simulink Simscape simula-

tion model.
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6.3.3 Motion Planning

Motion planning was implemented within the MATLAB program part, closely
following the created flow chart diagram (FIGURE 5.14) and program flow
charts described in the conceptual design (section 5.3.3) and using the methods
and equations of the corresponding theory comprehensively elaborated and
described in the sections 4.2.1 and 4.2.2.

For exemplarily purposes, an excerpt of the code of the in-
verse kinematics () function (part of the linear movement planning) is
shown and described below. The excerpt is related to the core of the in-
verse kinematics () function, solving the robot manipulator’s inverse kine-

matics with the MATLAB GeneralizedInverseKinematics solver.

28] gik = robotics.GeneralizedInverseKinematics (
29| 'RigidBodyTree', robotModel, 'ConstraintInputs’',..
29| {'position', 'aiming', 'joint'});

70| for k=2:length(simVar.linPathPlan.pRes)

o

73] positionConst.TargetPosition = simVar.linPathPlan.pRes(k, :);

74| aimConst.TargetPoint = simVar.linPathPlan.pRes (k, :);

o

77] jointConst.Bounds = [

78 | (simVar.gik.gRes (:,k-1)- maxJointChange)..
(

78| simVar.gik.gRes (:,k-1)+ maxJointChange) ];
.

81| [simVar.gik.gRes(:,k),solInfo] = gik(

81| simVar.gik.gRes (:,k-1),..

82 | positionConst, aimConst, ..

82| jointConst) ;

83| end

In line 28 and 29, the GeneralizedInverseKinematics System object™
gik is created. The gik object bases on the robotic manipulator’s model’s kin-
ematic structure, mapped by a RigidBodyTree object, in turn represented by
the robotModel variable. During the gik object creation, a set of the kinemat-
ic constraints objects (ConstraintInputs), to be applied for the later inverse
kinematics solving, need to be predetermined. In the cased at hand, the posi-
tion, aiming and joint constraint objects were predetermined and are

created from the corresponding classes accordingly.
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The position constraint position causes the end effector/ tool (tip of the weld-
ing torch) to match the contemporary waypoint of the linear trajectory, whereby
the aiming constraint aiming causes the tool's z-axis (Zi0) to aim at the con-

temporary waypoint at the same time. An explanatory depiction is shown in the
subsequent FIGURE 6.23 .

FIGURE 6.23: Depiction of the linear movement’s end effector position and pose

As there were no additional constraints defined related to the restriction of the
tools pose, the rotation of the tool around its z-axis is not restricted and there-
fore determined by the inverse kinematics solver. Typically, the z-axis rotation
remains unchanged by the inverse kinematics solver (gRes;,x = 0 °), unless a
rotation is absolutely required to reach the contemporary waypoint within the
workspace. If required, the tool’s z-axis rotation can be constrained/ restricted
by the user utilizing predefined constraint creation code available from the in-
verse kinematics.mfile.

Due to the non-uniqueness of the inverse kinematics, the joint constraint joint
was predefined in order to limit the maximum changes of the angular joint val-
ues (g1 - gs) between each robot’s pose related to the waypoint of the linear

(workspace) trajectory.
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Solving the inverse kinematics is accomplished individually for each waypoint of
the linear (workspace) trajectory (stored in the simvar.linPathPlan.pRes
variable, see FIGURE 6.24) within the for-loop from code line 70 to line 83. As
the inverse kinematics solver is a numerical solver, solving always requires an
initial guess of the robot manipulator’s resulting pose (g1« - gsx). Therefore, the
start pose of the robot manipulator (gStartA (1) - gStartA(6) variables)
(k = 1) is solved once before the solver loop (line 70 to line 83), using the
home pose of the manipulator (q1.1- gs1 = 0 °) as initial guess. This also justifies
the for-loop’s index k starting from the value 2.

In line 73 and 74, the position and aiming constraint objects are updated to the
related contemporary waypoint (k) of the linear trajectory.

In line 77 and 78, the joint constraint object is updated to the contemporary
maximum allowed angular joint changes, based on the robot’s pose related to
the previous waypoint (k-1) and gained form the simvar.gik.gRes variable.
In line 81 and 82, the gik object is solved for the related robot manipulator’s
pose of the contemporary waypoint (k), using the GeneralizedInverseKin-
ematics solver. The solving is accomplished using the robot’s previous pose
(k-1) as initial guess. The results (qRes (1,k) - gRes (6, k)) are stored in

the simvVar.gik.gRes variable.

[ simVar.linPathPlan @% [ simVar linPathPlan.pRes |5@‘¢J
O e ol i G ETESTe

Ld [z Open » “I_l-_‘ ] Cpen »

SELECTION EDIT

Mew from (- Print + Newfrom (=4 Print w SELECTION | EDIT

Selection Selection »

b4 w w -

4]
»l

VARIABLE VARIABLE

simVar.linPathPlan simVar.linPathPlan.pRes
2 3

1
01000 13000

1

2 1.0000 0.1000 1.2999
3 1.0001 0.0999 1.2994
4
5

Field Value
I pRes 1233x3 double
bt 1x1233 double

ml »

1.0002 0.0998 1.2985

1.0004 0.09% 1.2975 X
4 11} | 3 < 1l 3

FIGURE 6.24: Screen capture of the simVar.linPathPlan and simVar.linPathPlan.pRes variables
(example)

Within the inverse kinematics () function, the inverse kinematics results

are stored in the 6 x k-dimensional variable simvar.gik.gRes.
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Deviating from the conceptual design, the inverse kinematics results are not
provided to the MATLAB Workspace using the initially conceptualized k x 7-
dimensional reference trajectory set value variable gsv.

As the joint-space position set values (inverse kinematics results) of the Joint
Controller (sub) subsystem are individually obtained from the MATLAB “"base”
Workspace using From Workspace blocks, the set values are stored in the six
individual k x 2-dimensional variables (simVar.gSetValues.qlSV -
simVar.gSetValues.qg6SV). These variables are created by the
get 1lin move.m function, whereby the first column of each of variable con-
tains the explicit time series values and the second column contains the corre-
sponding joint position/ angle values as exemplarily shown in FIGURE 6.25 be-

low.

[ simVar.gSetValues @EI&Z_&J [7] simVar.qSetValues.q1SV @@I&J
- o EEEE -l B SERAEN) -

LLI: ﬁ Open v

Mew from (-4 Print w SELECTION EDIT VARIABLE SELECTION EDIT

Selection

- b 4 h 4 - o8

bl
]

VARIABLE

simVar.gSetValues simVar.gSetValues.qlSV
Field Value 1 2 3
(] qisv 1233+2 double i d o0 =
HH q2sv 1233x2 double 2 0.0100 -0.1018 e
- g3sv 1233x2 double 3 0.0201 -0.1018
1 q4sv 1233x2 double 4 0.0301 -0.1016
. 1233x2 doub!
£ q55v ol dounls 5 00401  -01014
- q6sv 1233x2 double
6 0.0502 -0.1012
7 nN&n? _n1n11 2l

e il » « [ »

FIGURE 6.25: Screen capture of the simVar.qSetValues and simVar.qSetValues.q1SV varia-
bles (example)

6.3.4 Graphical User Interfaces

The graphical user interfaces were implemented closely following the deter-
mined conceptual design (section 5.3.2) and the corresponding program flow
charts, using the MATLAB GUIDE tool. The three GUI are represented by their
corresponding MATLAB .m and . £ig files each:



95

e Main GUl: main ui.m&main ui.fig
e Joint Movement GUI: joint move ui.m& joint move ui.fig

e Linear Movement GUI: 1in path ui.m& lin path ui.fig

From the user’s perspective, the three GUI and a number of further MATLAB
message boxes/ dialog boxes implemented map the complete MATLAB pro-

gram part.

The main graphical user interface main_ui is the central GUI of the MATLAB
program part and shown in FIGURE 6.26 below. All other program functionali-
ties and GUI are accessed from the main ui window, can be repeated as of-
ten as required and also automatically return there, except the case of opening
the Simulink simulation model or the exiting of the MATLAB program part.
Status labels (see mark p) FIGURE 6.26) indicate whether the corresponding
entry (e.g. simVar) is ready (“Ready!” text and a green shaded label) or not
ready (“Not Ready!” text and a red shaded label). Deviating from the conceptual
design sketch (FIGURE 5.12), Last updated timestamp labels (see mark q)
FIGURE 6.26) were added for each corresponding entry in order to allow the
user to check when the corresponding entry was updated and/ or a specific pro-
cedure was executed.

By pressing the Update button of the main ui window (see mark r) FIGURE
6.26), the update procedure is activated and the update all () function is
called. The update procedure is guided by further information provided via
MATLAB message boxes/ dialog boxes and leads to the update of all five simu-
lation variables (also the not listed importInfo variable) and the Simscape
Multibody Multiphysics Library.

After the successful execution, the corresponding Last updated timestamp la-
bels are refreshed accordingly and the program returns to the main ui win-
dow.

The joint movement planning GUI joint move ui is accessed by pressing
the Joint Movement button (see mark s) FIGURE 6.26) and shown in FIGURE
6.27.
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The linear movement planning GUI 1in path ui is accessed by pressing the
Linear Movement button (see mark t) FIGURE 6.26) and shown in FIGURE
6.28.

® ®
4. main_ui =] X
Simulation Control Panel
1. Basic Data/Requirements A/ A\ J
Status Last updated
e Simulation Variable (simVar) Ready! 09:03:02
® Robot Parameters (robotPara) Ready! 09:03:08
* Simscape Import Data (smiData) Ready! 09:05:10
* Robot Model (RigidBodyTree: robotiModel) Ready! 09:06:46
® Simscape Multibody Multiphysics Library Ready! 09:05:10
Update le d I")
2. Mation Planning
Status Last updated
S) @ > Joint Movement _ 0
t) o »  Linear Movement _ g
3. Simulation
e
u) [ > Open Simulink
Exit - ) V)

FIGURE 6.26: Screen capture of the MATLAB main GUI main_ui

Both movement GUI, joint move ui and 1lin path ui provide specific
corresponding descriptions/ instructions and a descriptive image based on the
CAD model assembly of the robot manipulator’s model. The input areas for the
start and target poses/ positions were adapted accordingly to the corresponding
movement type. For the increase of the comprehensibility, robot axis angles
inputs (Pose, A1-A6) were implemented using the unit [°] and workspace coor-
dinates (Position, [x y z]) using the unit [mm]. Non-SI unit inputs ([%], [°], [mm/s]
and [mm]) were also implemented within the Movement Parameters definition

area in order to provide common input value formats.
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s

z joint_move_ui ==

[ General Information
This interface is part of trajectory planning for a joint movement of the robot.
Define the start-, target pose and movement parameters entirely. The start
pose (A) is not necessarily equal to the home position (Home Pos @ A1-A6 = M
0° (see fig.)). Consider joint angle limitations. Collision detection is not -
implemented yetl IMPORTANT: All axes are driven in synchronous mode.
The value of “Joint Velocity™ is the % of max_ joint velocity. The value of “Joint
Acceleration” is the % of the time of the entire movement process (e.g. Joint
Acceleration =10%: 10% ofthe time acceleration, 80% cont. velocity, 10%
deceleration).

-Define Start and Target Pose of the Joint Movement

Start Pose Target Pose
acl [ I
S v B A
AR .-
R - N
L v - v
S o B N

Define the M Parameters Ready!

Joint Velocity: Joint Acceleration: Interpolation Resolution:

B R E—

FIGURE 6.27: Screen capture of the MATLAB joint movement GUI joint_move_ui

- -
E lin_path_ui E=n1=IN

- General Information

This interface is a part of trajectory planning for a linear movement of
the robotic manipulators end effector (TCP). Define the start-, target
coordinates and movement parameters entirely. The start coordinates
do not necessarily represent the home position (Home Position (see
figure)). Consider workspace limitations. Collision detection is not
implemented yet! IMPORTANT: The tool (welding end effector)
orientation is predefined as: The tip of the welding tool follows the linear
path while the tools z-axis aims at the contemporary waypoint of the
linear path. The rotation of the tool around its z-axis is determined by
the inverse kinematics solver and cannot be influenced from this
interface. The value of “TCP Acceleration” is the % of the max_ allowed
TCP acceleration ([m/s"2]).

~Define Start and Target Position of the Linear Movement

Start (A) Target (B)

X [mm] x: l:| [mm]
y: [mm] vy: [mm]
2 mmoz o

Define the M, it Parameters Ready!

TCP Velocity: TCP Acceleration: Interpolation Resolution:

o ems | m)

FIGURE 6.28: Screen capture of the MATLAB linear movement GUI lin_path_ui

Furthermore, all inputs of the movement GUI are filtered for being a number and
being within the allowed boundaries, whereby the corresponding boundaries are
gained from the robotPara variable (and therefore from the parameter
spreadsheet). All input procedures are looped and show error or warning mes-
sages as long as inputs are faulty and/ or incomplete, exemplarily depicted in
FIGURE 6.29 below.
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4 Invalid Input l =" J—J%

o Input is beyond the allowed boundaries!

FIGURE 6.29: Screen capture of an invalid input MATLAB error message box

In the case of correct and complete inputs, pressing the Continue button of the
movement GUI will cause closing the related GUI window and the execution of
the related trajectory calculation. After the successful trajectory calculation, the
program returns automatically to the main ui window and the corresponding
Last updated timestamp labels are refreshed accordingly.

Motion Planning can only be prepared for either the Joint Movement or the Lin-
ear Movement at a time. Hence, only the latest executed motion planning result
is available, whereas former results are deleted and the corresponding Status

Label is set to the “Not Ready!” state.

The Simulink/ Simulink Simscape program part is accessed by pressing the
Open Simulink button of the main ui window (see mark u) FIGURE 6.26).
With the initiation of this procedure, the MATLAB program part is terminated, all
variables are made visible/ accessible in the MATLAB “base” Workspace and
the minimum recommended simulation time is printed to the MATLAB as shown
in the earlier FIGURE 6.22.

The MATALB Program part can only be exited without errors from the main ui
window using the Exit button (see mark v) FIGURE 6.26). In the case of the
cancelation of the MATLAB program using the Exit button, all variables are de-
leted, thus, no variables are made visible/ accessible in the MATLAB Work-

space.

6.4 Simulation Model Parameters

The task of the simulation model parameterization covered firstly the acquisition

of all required and obtainable parameters of the model.
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Secondly, the preparation and compilation of the entirety of parameters of the
Simulink Simscape simulation model was accomplished. Thirdly, the conceptu-
alized method of the provision of the parameters to the simulation model was

applied.

6.4.1 Parameter Acquisition

The subsection of the parameter acquisition is divided into another two sub
subsections, the approximation of the industrial robot’s CAD model part/ body
masses and the acquisition of all other applied parameters. This separation was

made due to the distinctive characters of the methods of acquisition.

The first attempt made in the context of the acquisition of main parameters of
the simulation model based on a request sent to the Finnish branch ABB (Fin-
land) Oy, of the industrial robot’s manufacturer ABB Asea Brown Boveri Ltd. in

order to obtain:

e Links masses and links CoM coordinates
e (Joint actuation) motor types and their main electrical and mechanical
parameters (e.g. rotor inertia, viscous damping coefficients)

e Gearbox types, ratios, efficiencies and inertias

The manufacturer replied that none of the requested data can be shared.

As identification measurements were not covered by the scope of the thesis
work, disassembling of the industrial robot was not a realistic option and due to
the general lack of freely accessible information, the subsequently explained

methods were conducted:

From non-public manufacturer’s maintenance and spare parts lists documents
of the industrial robot, owned and provided by the client (TAMK), the subse-
quently listed information were obtained exemplarily for the robot’s third axis

gearbox:
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TABLE 6.8: ABB IRB 2600 gearbox spare part information (axis 3)

Position: Axis: Spare Part Number: Type: Variants:
IRB 2600
3 Axis-3 3HAC028705-004 RV-42N, i=126
IRB 26001D

And exemplarily for the robot’s axis 4, 5 & 6 (joint actuation) motors:

TABLE 6.9: ABB IRB 2600 motor spare part information (axis 4, 5 & 6)

Position: Spare Part Number: AC Motor with Pinion:
4 3HAC030216-003 Axis-4, -5 & -6

In the case of the gearboxes, common internet search engines were used in
order to obtain more detailed information. The finding was made that “RV-42N”
is a specific model of a 2-stage high-precision cycloidal reduction gear of the

RV®'2 N series of the Nabtesco Corporation.

FIGURE 6.30: Cycloidal reduction gear of the RV-N series of the Nabtesco Corporation (Nab-
tesco Corporation 2019a)

With the help of the ratio value “i” and the type description “RV-42N” (see TA-
BLE 6.8), the gearbox model and its parameters were searched and found from

the official technical datasheet of the Nabtesco Corporation (Nabtesco Corpora-
tion 2015) as shown below (FIGURE 6.31, FIGURE 6.32 and FIGURE 6.33).

2RV®is a registered trademark of the Nabtesco Corporation
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Output speed (pm) 5 | 1w [ 15 ] 20 [ 2 [ 3 [ 4 [ so [ s
R
S ratio Output torque (Nm)
Model Ratio code P /
Shat rotation | Case rotation input capacity (KW)
41 41 40
81 81 80
- 107.66 32373 32073 341 277 2?5 255 210 199 183 171 162
.25 = /
126 126 125 0.25 0.41 055 0.67 0.79 0.89 1.09 1.28 1.45
137 137 136
164.07 2133/13 212013
41 41 40
81 81 80
. 105 105 104 573 465 4}2 378 353 335 307 287 272
= = / / /
126 126 125 0.43 0.70 092 1.13 1.32 1.50 1.84 2.15 2.44
141 141 140
164.07 2133/13 2120/13

FIGURE 6.31: Manufacturer’s rating table of the RV-N series cycloidal reduction gear (Nabtesco
Corporation 2015, 8, modified)

= T N, N, M, I
To N, K Alm?ab Moﬂ;ta'y vawzble Alo:abte Lost Angular Sy Almgbb Momentary MﬂWr Reduced vale of X
Rated torque|Rated output |Rated servicel acceleration/| masimum  |Output SpesdjOutput Speed] Backlash e (iypical | ‘moment | 2owable md‘a""ab‘em fhe netamomend  Weight
MNote?7) | Speed e |decsleraton| alowable | Mote?) | MNote1) OUON [ error Max) | '\ hice) Mo | moment | TEESE [ termtsat
torque torque Duty rabio: 100%{Duty ratio: 40% Max.) {Note 5)

(Nm) (rpm) h) (Nm) (Nm) (rpm) rem) | farc.min) | (arc.min.) | (arc.sec.) | (%) (Nm) (Nm) N (kgm’) (g
1.71x10°
6.79x10

o |4.91x10

245 15 6,000 612 1,225 57 110 1.0 1.0 70 80 784 1,568 6,975 |- 032107 3.8
4.03x
3.62x10°
3.26x10”
4.43x10
1.87x10°

- 1.42x10
412 15 6,000 1,029 2,058 52 100 1.0 1.0 60 80 1,660 3,320 12,662 10710 6.3
x
1.01x10
7.66x10°

FIGURE 6.32: Manufacturer’s rating table of the RV-N series cycloidal reduction gear (continua-
tion) (Nabtesco Corporation 2015, 9, modified)

Efficiency (%)

Output
100 speed
15 (rpm)
e 30 (o)
80 L
/ .——-——-. 50 (rpm)
8 'VA/
20
0
0 125 250 375 500
Output torque (Nm)

FIGURE 6.33: Manufacturer’s efficiency table of the RV42-N cycloidal reduction gear (Nabtesco
Corporation 2015, 36)

In the case of the motors, the information of an AC asynchronous motor type

was also found from the robot manufacturer’'s maintenance documents.
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Furthermore, the information of the country of origin and the motors net weight
(amongst others) were obtained from the industrial robot’'s manufacturer’s web-
site (ABB Asea Brown Boveri Ltd. 2019d):

Country of Origin:  Japan (JP)
Product Net Weight: 1.7 kg

FIGURE 6.34: ABB IRB 2600 Axis 4, 5 & 6 AC motor (ABB Asea Brown Boveri Ltd. 2019d)

With the help of the above mentioned information and the information printed to
the label of the motor, the motor manufacturer was identified as: TAMAGAWA
SEIKI Co., Ltd. As the TAMAGAWA SEIKI Co., Ltd. only offers one applicable
AC asynchronous servomotor product series, TBL-I IV Series, the assumption
was made that motors with similar characteristics and parameters can be found
form the manufacturer’s product catalogue (TAMAGAWA SEIKI Co., Ltd. 2019)
as shown in the subsequent FIGURE 6.35 and FIGURE 6.36.

S (9% B [ElEnEL
BE 77/{ HA Torque Current Speed O—414+—3% =g
Voltage M{O:[:E,[g st Qutput TEIE =k EAE ok EIg A Rotor inertia Mass
Model Rated Max Rated Max Rated Max
[10”*kgm’] [kel
(vl | [mm] [w] | INm] | [Nm] |[Arms] |[Ams] | [min'] [ [min'] | Bk | BK%E® = JL—%ft
Standard | With brake [ Standard | With brake
TSM3101 30 | 0.095 | 0.33 it 3.4 0.023 | 0.028 0.3 0.5
[J40 | TSM3102 50 | 0.159 | 0.56 1. 3.4 [ 3,000 | 6000 | 0033 | 0.038 04 0.6
TSM3104 | 100 0.318 | 1.1 1.4 4.7 0.062 0.067 0.5 0.7
TSM3201 | 100 | 0.318 | 1.11 1.5 46 0.12 017 0.4 0.9
lican0 [160 [TSM3202| 200 | 064 | 2.24 2.2 7.3 | 3,000 | 6000 | 024 0.28 0.6 1.3
TSM3204 | 400 1.27 4.46 35 T2 0.46 0.50 1.1 3 57
TSM3301 | 200 064 | 224 28] 6.9 0.45 0.60 1.1 1.8
TSM3302 | 400 1.27 | 4.46 36 12.6 0.83 1.00 1.6 23
[J80 3,000 | 6,000
TSM3303 | 600 L 6.69 4.8 15,5 1,21 1.38 24 2.8
TSM3304 | 750 | 2.39 | 8.36 6.5 221 HE50 1.66 24 32

FIGURE 6.35: TBL-I IV series compact size AC servomotor basic specifications (TAMAGAWA
SEIKI Co., Ltd. 2019, 2, modified)
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FIGURE 6.36: TSM3204 400W AC200V torque characteristic diagram (TAMAGAWA SEIKI Co.,
Ltd. 2019, 8)

The described procedures were repeated for all other gearboxes and motors.
All obtained parameters were collected, evaluated if necessary and stored at
the corresponding entries of the worksheets (“(8) Transmission Parameters”
and “(7) Motor Parameters”) of the “ABB_IRB_2600-12-1.85_Parameters.xlsx”

spreadsheet (see also section 6.4.2).

CAD Model Rigid Body (Link) Masses:

Due to the lack of available information and resources, the decision was made
to approximate the individual link masses based on the geometrical information
available from the CAD model. The approximation based on the approach of an

average equally distributed overall density p*.
Firstly, the overall volume Vi, of the CAD model of the industrial robot was de-

termined by the summation of the individual link volumes, excluding the tool/

end effector.

6
Vit = Z V= 102.85- 1073 m3 6.1)
i=0
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Secondly, the overall mass of the real robotic system without any further appli-
cations my,t was obtained from the manufacturer’s product specifications docu-
ment (ABB Asea Brown Boveri Ltd. 2019b, 12):

Subsequently, the average equally distributed overall density p* was calculated:

Mot 284 kg kg
= = = 2761.26 — 6.3
Vtot 10285 " 10_3 m3 m3 ( )

p

The average equally distributed overall density p* was then applied to each in-
dividual CAD part within the CAD environment. Furthermore, the weight of the
welding torch end effector was gained from a real measurement using a com-

mon scale and also applied to the virtual CAD representation.

Based on the available geometrical information and the density p*, the CAD
software automatically calculated the rigid body (link) parameters such as:
e CoM, Mol, Pol

e Frames; (main) axes of inertia

Exemplarily, link 2 of the robot manipulator’'s CAD model is shown in the subse-
quent FIGURE 6.37, showing the calculated and displayed frame of the main

axes (lx, ly, I; CoM related).
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FIGURE 6.37: Screen capture of link 2 of the robot manipulator's CAD model

The approximated mass of the link 2 part of the simulation model was calculat-

ed exemplarily by hand:

k
my =V, p* = 15.67-1073 m3 - 2761.26 m—% — 43.28 kg (6.4)

TABLE 6.10 below contains a listing of the individual solid body volumes and
approximated link masses of the virtual representations of the manipulator’s

links.
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TABLE 6.10: Robot manipulator’s link mass and volume information

. Link ; Solid Body Volume Overall Density Approx. Link
Vi [m°]: o* [kg/m?]: Mass m; [kg]:

0 Base 31.82E-03 87.87

1 Link 1 25.31E-03 69.88

2 Link 2 15.67E-03 43.28

3 Link 3 23.58E-03 2761.26 65.11

4 Link 4 6.02E-03 16.62

5 Link 5 0.36E-03 0.99

6 Link 6 0.0087E-03 0.24

z 102.85E-03 - 284
End Effector - - 5.25

The acquisition of all other parameters not covered by this section of the docu-
ment is continued in section 6.7.2 in the context of the optional task of virtual

identification measurements.

6.4.2 Parameter Spreadsheet

Based on the general requirements of the modularity, extensibility and conven-
ient usage of the simulation program, the decision was made to provide the pa-
rameters of the Simulink Simscape simulation model block diagram blocks indi-
rectly but automatically via variables (FIGURE 6.39) from the MATLAB Work-
space as described in the conceptual design (section 5.2.3 and 5.3.1). As the
contents of the parameter variables of the simulation model need to be obtained
from any source as well, the decision was made to compile and save all re-
quired parameters in an external but centralized file. This centralized file in turn
is then read during the initialization of the simulation program in order to write
the model parameters to the corresponding (MATLAB Workspace) variable

|®13

robotPara. Therefore, a Microsoft® Excel®'® spreadsheet:

“‘“ABB_IRB_2600-12-1.85_Parameters.xlsx”

3 Microsoft® Excel® is a registered trademark of Microsoft Corporation
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Containing the clearly arranged parameter compilation was created. Deviating
from the unit definitions and regulations (section 3.1), the units [°], [°/s] and
[°/s"2] were used for some parameter ranges of the spreadsheet to enable the
input of values from the manipulator’'s manufacturer’'s documents directly with-
out any unit conversions.

Exemplarily, the sixth worksheet (Joint Parameters) of the spreadsheet is
shown in the FIGURE 6.38 below.

A B c D E E G H 1 3 K T M N
1 ABB IRB 2600-12/1.85
2 (Revolute) Joint Parameters State Targets Internal Mechanics Bearing
" Breakaway Viscous
; Comesponding|  Base | Follower Fosttion Wetooiy Bquilibrivm | o g Siifiasey | DS | Brevlaway | o Comlonih Friction
Description: 5] Target Value Target Value Position : Coefficient Friction L Friction %
Lo ®) ®): [rad]: [rad]: [rad] Ntwiradl: | e radve)): | Torque pNtml:| YOS | porque pemy; | Coeffient
. [rads] [N*m/(rad/s)]
a1 Joint 1 Asis 1 Base | Linkl 0,0000 0,0000 0,0000 0,0000 0,0000 0,000001 0,000001 0,000001 0,000001
B : Toint 2 Axis 2 Link 1 Link 2 0,0000 0,0000 0,0000 0,0000 0,0000 0,000001 0,000001 0,000001 0,000001
6| 3 Joim3 | Axis3 | Lik2 | Link3 0,0000 0,0000 0,0000 0,0000 0,0000 0000001 _| 0000001 | 0000001 | 0000001
1| Joint 4 Axis 4 Link 3 Link 4 0,0000 0,0000 0,0000 0,0000 0,0000 0.000001 0.000001 0,000001 0,000001
8| s Joint 5 Axis 5 Link 4 Link 5 0,0000 0,0000 0,0000 0,0000 0,0000 0,000001 0,000001 0,000001 0,000001
N s Joint 6 Axis 6 asiss |1 'c“{;:ig’;“ 0,0000 0,0000 0,0000 0,0000 0,0000 0,000001 0,000001 0,000001 0,000001
10
11
12
13
14
15
16
T
18
19
20
21
‘ Axs R 3) A d L (4) Axs Acceleration Limts ' (5) TCP Limts_| (6) Joint Parameters -~ (7) Motor Parameters [] € »

FIGURE 6.38: Screen capture of the (8) Joint Parameters worksheet of the parameters spread-
sheet

The general structure and contents of the spreadsheet are listed in the subse-
quent TABLE 6.11.
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TABLE 6.11: Structure and contents of the parameters spreadsheet

Sheet
. Sheet Name: Content(s)/ Purpose(s):
0.:
(1) General Ro- _ _ _
1 . Handling capacity, reach, weight
bot Information
(2) Axis Range o
2 o General (angular) axis limitations (A1-A6)
Limits
(3) Axis Speed . S
3 o General axis angular velocity limitations (A1-A6)
Limits
4 (4) Axis Accel- |General axis angular acceleration limitations (A1-
eration Limits |A6)
5 (5) TCP Limits |General TCP velocity and acceleration limitations
(Revolute) joint(s) parameters: State targets (posi-
5 (6) Joint Pa- |tion, velocity), internal mechanics (equilibrium pos.,
rameters spring stiffn., damping coeff.), bearings (friction tor-
ques, damping coeff.)
Electrical motor(s) (asynchronous machine (ASM)
with squirrel cage rotor (three-phase)) parameters:
(7) Motor Pa- _
7 El. ratings (power, voltage etc.), el. parameters (sta-
rameters
tor resistance, reactance, etc.) and mechanical pa-
rameters (rotor inertia, etc.)
(8) Transmis- . o
_ Cycloidal transmission (gear box) parameters: teeth
8 sion Parame- _ o o
numbers (gear ratio), efficiency, inertia, etc.
ters
9 (9) Motor Driv- |Six-pulse three phase converter parameters: DC

ers Parameters

link voltage, switching freq., sample time, etc.

The applied method allows convenient and centralized changes of any parame-

ters without the application of changes to the simulation model block diagram.

Furthermore, the spreadsheet can be easily modified or extended by adding

further worksheets if required.
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6.4.3 Simulation Model Parameterization

The parameterization of the Simulink/ Simulink Simscape model was imple-
mented exclusively using the robotPara variable available from the MATLAB
“base” Workspace. This is in accordance with the drafted conceptual design
(section 5.2.3) and exemplarily shown for the ASM1 block of the base subsys-
tem in FIGURE 6.39 below.

Block Parameters: ASM 1 (Squirrel Cage) &J

s

Asynchronous Machine Squirrel Cage (fundamental, SI)
Asynchronous machine with a squirrel cage rotor parameterized using fundamental SI parameters.

Right-click on the block and select Simscape block choices to access variant implementations of this

block.
Settings

Main | Impedances | Saturation | Variables |
Rated apparent power: robotPara.motorPara.ratPow.joint(1) V*A - |E
Rated voltage: robotPara.motorPara.ratVolt.joint(1) v -
Rated electrical frequency: robotPara.motorPara.ratElFreq.joint(1) Hz -
Number of pole pairs: robotPara.motorPara.numOfPp.joint(1)
Squirrel cage: |Single squirrel cage "
Zero sequence: [Include -

Pl T b =

[ oK H Cancel H Help ] Apply

FIGURE 6.39: Screen capture of the ASM1 block parameterization

6.5 Data Set File Structure

The final general file structure of the simulation programs data set folder
“BT_ABB_IRB_2600 Robot Sim. v_A” is shown in the subsequent FIGURE
6.40.

The amount and types of the individual files of the corresponding subfolders are

written in brackets behind/ below the individual related subfolder.
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=B T_ABB_IRB_ 2600 _Fobot _Sim. v_A

[ runSim. m
=7 pata
Ellll'l-.‘!j&ﬁ (12% jpg, 2% .png images)
L CIMATLAB Code M ATLAR: 16% .w files, 3x . £ig files)

L [CIRobot Parameters Clx xsx file)

 — IilSimscape_multihml_'u'_lvlultiplwﬁice._ﬁ'I$I:. (4% folders,
1x txtfile,
CIsimulink Simscape Data 1% .m0 file)

(Simulinkl Simulink Simscape:
Tx . 3lx file, 1% .=l filg,

T¥ . file & 8% .stlfiles)

FIGURE 6.40: General file structure of the data set of the simulation model

6.6 Operating Manual

In contrary to the task planning of the project plan (Appendix 2. Project Plan),
the creation of the operating manual was shifted to an earlier project state in
order to provide guidance for the external testing of the preliminary version of
the simulation program accomplished by the thesis supervisors and client(s).
The operating manual consist of the sections Prerequisites, Introduction, Instal-
lation, Operation, Change of Parameters, CAD Model Update, Extensions/ Mod-
ifications and Troubleshooting and was designed as an independent document.

Despite the fact that the operating manual mainly bases on and particularly re-
fers to the thesis document at hand, it is highly recommended to also consider
the contents of the operating manual due to some helpful contents of the manu-
al are not covered by the thesis work document. Furthermore, it is highly rec-
ommended to refer to the operating manual before/ during the first use of the
simulation model and also whenever errors occur (e.g. during compiling and/ or
simulation (solving)).

The operating manual can be found from Appendix 5. Operating Manual.
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6.7 Optional Tasks

The Optional Tasks section contains the documentation of the elaboration of
two optional tasks performed in context of the accomplishment of the thesis
work at hand. The accomplishments of the optional tasks are described suffi-

ciently but narrowed to their main contents due to their optional character.

6.7.1 Simplified Joint Actuation Motor Model(s)

During testing and debugging of the simulation model (see section 7) equipped
with AC asynchronous motor (ASM) models and drivers (version “A”,
“BT_ABB_IRB_2600 Robot Sim. v_A”), large computation times and high
computational efforts for solving the model were revealed. With the help of sev-
eral further tests, the high impact of the complexity of the AC ASM models and
drivers on the solving time and required resources was investigated.

Based on that, a non-binding agreement of an optional task covering the crea-
tion of a second version of the simulation model ((version “B”,
“BT_ABB_IRB_2600_ Robot_Sim._v_B”) was made with the TAMK’s client in

order to achieve:

e Decrease of the simulation model’s motor models and drivers complexi-
ties

o Decrease of the number of values required for the appropriate parame-
terization of the motor models and drivers

e Decrease of the computation time and computational efforts in the con-
text of simulation model solving

¢ Increase of the comprehensibility of the simulation model by the reduc-

tion of the overall complexity

Due to the low overall complexity, the small number of required parameters, the
high availability of required parameters from freely accessible datasheets, a
decreased motor driver complexity and the typical usage for positioning tasks/
applications, a (universal and ideal) DC motor type (block) was chosen for the

accomplishment of the optional task.
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Exemplarily, the “Robot Link 3 Subsystem” of the Simulink/ Simulink Simscape

simulation model with the applied DC motor model and driver is shown below

(FIGURE 6.41).

file Edit View Display Diagram Simulation Analysis Code Tools Help

1l e 0 ES-E-e GO b - 2 Normal 0 @

cape b [P Simscape Robot Model b (8] Robot Link 3 Subsystem b (Bg] Joint 4 Drive System b

Joint4DrivelnBus ContralledValue @@———————# Control Signal . ‘

OC Molor 4 Driver | Rolational

»
n

Ready ariableStepAuto

FIGURE 6.41: Simulink screen capture of the Robot Link 3 Subsystem with a DC motor model

In contrast to the AC ASM models, the DC motor models and drivers were di-
rectly parameterized with explicit values in the corresponding block parameter
windows. The motor model parameters were gathered, compiled and if re-
quired, extrapolated from several datasheets (e.g. from ABB Motors and Me-
chanical Inc.™, mainly based on the power rating values of the substituted AC
ASM models. The “DC Motor 4 Driver’ sub subsystem of the “Robot Link 3
Subsystem” (FIGURE 6.41 above) is shown in the FIGURE 6.42 below.

“ ABB Motors and Mechanical Inc., formerly "Baldor Electric  Company”
http://www.motionusa.com.s3-website-us-east-1.amazonaws.com/baldor/BR1202-F.pdf (Read

on 02.04.2019)



http://www.motionusa.com.s3-website-us-east-1.amazonaws.com/baldor/BR1202-F.pdf
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file Edit View Display Diagram Simulation Analysis Code Tools Help

e-B-e@ 4@k 7 L] pram— 2 @~

B5_Simscape » (B3] Simscape Robot Model b [Ba] Robot Link 3 Subsystem ¥ [Ba] foint 4 Drive System b [Ba] 0 Motce 4 Driver v

asureOutBus. MotorCurrent

ureOutBus. MotorElectricalPower

M Moto

asureOutBus. MotorVoltage
|W1 e

( I
Divide vu ;; [\f] Abs 1
Controlied ensor
-{ o | Votags| ()
Source

l i ‘
FH :l e Lo
/ Simulink-PS | Electrical
s Gonvarter [Vs) Reforance

cw\s jnal

]
n

Ready 125% VariableStepAuto

FIGURE 6.42: Simulink screen capture of the DC Motor 4 Driver subsystem

Despite the first impression of the appearance of the subsystem may not nec-
essarily suggests a low complexity, the subsystem consists mainly of simple
blocks (e.g. “Divide” or “Abs”). The function principle bases on the limitation of
the applicable electric power (calculated from the set value and the maximum
motor power). A controlled ideal voltage source draws any required but also
measured current. If the maximum applicable electric power is exceeded, the
voltage of the ideal voltage source is lowered to decrease the power the appro-
priate level. Equal to the driver of the AC ASM model, the DC motor driver was
designed in a way to expect scalar input values within the range from +1 to -1.

The application of DC motor models led to considerable decreases of the com-

putational time and computational efforts for simulation model solving.

6.7.2 Virtual Identification Measurements

As the industrial robot manufacturer ABB and developer of the simulation soft-
ware ABB RobotStudio claims that the simulated virtual robots behave very re-
alistic and similar to their real counterparts (ABB Asea Brown Boveri Ltd.
2019f), the idea emerged to obtain missing Simulink Simscape simulation mod-
el parameters from virtual identification measurements conducted in the ABB

RobotStudio simulation environment.
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Therefore, introductory as well as more sophisticated ABB RobotStudio pro-
gramming methods were investigated from ABB Asea Brown Boveri Ltd. (2019f)
and ABB Asea Brown Boveri Ltd. (2019g) firstly.

In order to obtain missing frictional parameters of the simulation model, the
subsequently presented procedure was developed and tested within the ABB

RobotStudio 6.08 (license provided from TAMK) virtual environment:

Starting from the mathematical dynamic description of the robotic system (equa-
tion (4.14)):

M@g+ClqPq+gl@+fl@=rt (6.5)

In order to extract frictional torques only related to the individual joint/ axis in-
vestigated, disturbing influences from all other axes and non-frictional torque

sources need to be eliminated/ minimized. Therefore:

Reaching a state of constant velocity to eliminate/ minimize all moments of iner-

tia:

M(q) g =0 (6.6)
=0

Elimination/ minimization of centrifugal and Coriolis torques, e.g. by the align-

ment of the centers of masses of all moving masses with the investigated axis:

Clq.9)q=0 (6.7)

Elimination/ minimization of the influence of the gravitational acceleration, e.g.
by the alignment of the investigated axis with the direction of the gravitational

acceleration:

g(q) =0 (6.8)
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Equation (6.5) is now reduced to:

=1 (6.9)

Substituting the friction f vector by a common static friction model considering
viscous (Fm1) and Coulomb frictions (Fm2) (6 x 6-dimensional diagonal matrices,

containing the individual constant friction coefficients/ torques) (equation (4.20)):
f(@ = Fn1q+ Fpysign(@) =7t (6.10)

Exemplarily for the first robotic manipulator’s axis (scalar expression):
Fin11 G1mot + Fimz,1 STgNn(G1,mot) = T1mot (6.11)
Conducting motor torque measurements at the time ¢ for two different joint mo-
tion velocities, e.g. v50 and v100, using the RAPID'™ GetMotorTorque ()

function in the RobotStudio environment (motor side joint velocities can be read

with the help of the TestSignRead () function):

Q1,mot(t)
A

q1,mot,v100 -4-----------------

Q1,mot,v50 -—F-----7

FIGURE 6.43: Exemplary plot of a trapezoidal joint velocity profile of the robot’s first axis

" RAPID is a high-level programming language of ABB Asea Brown Boveri Ltd. for industrial
robot programming
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Applying the measurement results (explicit values):

d1,mot,v50, d1,mot,v100» T1,mot,v50/ T1,mot,v100 (6.12)

To the general common mathematical equation of linear functions:

y(x) =mx+b (6.13)

Leads to the determination of the individual Coulomb friction torque:

Fm2,1 =
(Tl,mot,VSO ' C.Il,mot,vloo) - (Tl,mot,vloo ' C.Il,mot,VSO) | 0 [Nm] (6.14)
[(C.h,mot,leO ' Sign(c.h,mot,vso)) - (éI1,mot,V50 ' Sign(Ql,mot,leO))] =
And the individual viscous friction coefficient:
T — (F, -sign(g
Fi1 = 1,motyv100 — (Fm2,1 * SI91(d1,motv100)) ;0 [Nms] (6.15)

d1,mot,v100 =

The described procedure needs to be applied for each other axis individually.
Furthermore, the described procedure does not cover any non-linear frictional
effects and may suffer from inaccuracies due to superposition with other non-
considered effects and changes of frictional values due to the individual robot’s
poses applied for the identification measurements.

The described procedure of virtual measurements for the identification of fric-
tional coefficients and torques was tested only. Due to a lack of processing time
at the end of the accomplishment of the thesis work, the identification was not
finished satisfyingly. Therefore, parameter values not determined during the
procedures described in section 6.4.1 were set zero or to very small values (e.g.
1E-12) in order to prevent “division-by-zero“ errors in the context of numerical
solving of the simulation model (e.g. Coulomb friction torques of the joint bear-
ings).

Additional information concerning the topic of missing parameters/ incomplete

parameterization are discussed in section 10.
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7 TESTING AND DEBUGGING

The procedure of testing and debugging was accomplished constantly and par-
allel to every stage of the creation of the simulation model but more distinct dur-
ing the stage of code programming. Generally, testing and debugging was
mainly characterized by the trial-and-error method aiming at the validation of the
investigated individual objects and all possible variations of objects interactions.
Testing and debugging was mainly conducted in the MATLAB and/ or Simulink/
Simulink Simscape environment, partly with the help of the included debugging
tools.

Parallel-to-creation testing revealed common typical programming bugs evoked
by faulty copy-and-paste actions, typing mistakes, faulty indexing, etc.

In addition to the constant testing during the process of the creation of the simu-
lation program, a separate short testing phase was accomplished after the fina-
lization of a first preliminary version of the simulation program. Therefore, the
preliminary simulation program version, along with a first version of the operat-
ing manual, was provided to the thesis supervisors and client(s) (external test-

ing). Furthermore, testing was also executed by the author (internal testing).

In the case of internal testing, testing and debugging was divided into the sub-
tasks of testing and debugging the MATLAB program part on one hand, and the
Simulink/ Simulink Simscape program part on the other hand. As internal testing
revealed a number of faults, only the most significant are listed exemplarily be-

low:

MATLAB program part:

e Testing revealed a simple but grave unit conversion error within the
MATLAB inverse kinematics.m file. In the case of a linear tool
movement, the initial robot manipulator’s pose (ga) needs to be derived
from the starting point “A” workspace coordinates [xa ya za], defined by a
user input in the unit [mm], using the MATLAB inverse kinematics solver.
The MATLAB kinematics solver expects coordinate inputs in the unit [m],

but inputs were passed into the solver in the unit [mm].
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This led to a conspicuously high level of computation time consumption
and computational resources usage for the inverse kinematics solving.
The rectification of the unit error caused a drastic decrease of the overall

computation time and the usage of computational resources.

Simulink/ Simulink Simscape program part:

Due to the non-existent appropriate control systems structures, the inter-
nal Simulink/ Simscape program testing part was narrowed to the valida-
tion of a small number of basic functions. In this context, rotational direc-
tion errors of the axes 1, 2, 5, and 6 were identified during observations
of the simulation model’s animation in the MATLAB Mechanics Explorer
(deviations from the definition; section 3.3).

The errors were rectified within MATLAB get joint move.m file by the

alignment of algebraic signs at the corresponding code lines.

At the time of the creation of this document, the results/ feedback concerning

the external testing accomplished by the external parties were not provided to

the author and thus neither recorded nor rectified.
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8 OPERATION OF THE SIMULATION MODEL

The document at hand is primarily meant for the documentation of the accom-
plished work during the progress of the execution of the bachelor’s thesis. Fur-
thermore, the allowed extent of the document is limited.

Therefore, no instructions and/ or further explanations concerning the operation
of the simulation model were included in the thesis document itself but can be
obtained from the earlier mentioned and comprehensive operating manual to be

found from Appendix 5. Operating Manual.



120

9 CONCLUSION

The thesis work, recorded at the document at hand, aimed at the development
and implementation of a MATLAB Simulink simulation model of an ABB IRB
2600-12/1.85 six axis articulated arm industrial robot for the purpose of educa-
tional use in control system design.

The created simulation model, in its recent state, is considered as a compre-
hensive and fully functional application that meets the requirements, covers op-
tional accomplished tasks and can be used for the educational purposes it was

initially meant for, as it:

e Bases on a Simulink Simscape Multibody simulation model derived from
the specific industrial robot’s CAD model

¢ Is in accordance with the main technical specifications of the real indus-
trial robot (axes definitions and limitations, frame definitions, etc.)

e Is in accordance with the common and generally accepted robotic ma-
nipulators theory (e.g. DH-formalism)

e Covers a fully kinematic robot model

e Covers a common dynamic robot model considering gravitational accel-
eration and a linear friction model (viscous and Coulomb frictions)

e Contains detailed and realistic joint actuation models (joint actuation mo-
tor types, motor drivers, gearbox types, driveline characteristics, etc.)

e Shows a simplified and assumption based but realistic first parametriza-
tion, covering the manipulator’s links mass and inertia properties (mass-
es, CoM, Mol, Pol), motor models (electrical and mechanical characteris-
tics) and gearboxes (ratios, inertias, efficiencies)

e Bases on well-documented, sufficiently commented and modular
MATLAB codes

e Contains convenient, descriptive and input filtering GUI
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Allows changing, modifying and extending the simulation model’s:

o CAD model

o Simulink Simscape Multibody model (block diagram)

o Simulink model (block diagram)

o MATLAB programs

o Parameterization
Covers an additional second simulation model version (Version “v_B”)
with simplified DC joint actuation models/ subsystems
Comes with a comprehensive operating manual covering instructions for
the operation, update and change/ modification of the simulation pro-
gram/ model
Provides information for future project continuations like a method for vir-
tual identification measurements to obtain frictional parameters from the
ABB RobotStudio software

Provides a ready-to-use control system structures design environment
also covering simple predetermined PID controllers for testing purposes
Allows appropriate observation, recording, storage and export of the
simulation results

Allows comparisons of the Simulink/ Simulink Simscape simulation re-

sults to other simulation/ measuring results gained from other sources
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Nevertheless, the simulation model suffers major incompleteness and weak-

nesses such as:

e Incomplete and/ or simplified and/ or estimated and/ or assumption
based parametrization
¢ Not performed simulation model validation due to the lack of appropriate

control system structures

Furthermore, the capabilities of the simulation model are limited due to the ap-

plied general simplifications and restrictions (section 3.7):

¢ |deal rigid bodies such as links, joints, shafts, transmission gears, belts
etc.

e Alinear friction model

e Missing consideration of backlashes and uncertainties (bearings and
transmissions)

e Generally neglected time delays

e Missing consideration of external (secondary) payloads like the end ef-
fector supply wiring

e Generally idealised simulation model’s elements representations, limited
to the level of detail provided by the corresponding Simulink/ Simulink
Simscape blocks

e Generally neglected thermal effects (e.g. temperature dependent trans-

mission lubricant viscosity)
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10 OUTLOOK

Based on the statements related to the incompleteness, weaknesses and lim-
ited capabilities of the simulation model made in the conclusion (section 9), con-
tinuations of this thesis work are required in order to obtain a completely com-
prehensive and more accurate simulation model.

Following this, pending future tasks, accomplished in the context of further the-
sis works, semester projects, in-lecture projects, homework, laboratory works

etc., can be coarsely divided into three categories and named as:

Completion (of the parameterization) of the simulation model:

e Acquisition and implementation of more precise information concerning
link masses and inertias, motor-, gear/ transmission- and revolute joint
parameters such as inertias, electrical parameters, damping/ friction val-
ues, gear ratios, etc. from existing data sources and/ or virtual or real

(identification-) measurements.

Furthermore, the validation of the simulation model. This could also cov-
er measurements for comparisons between the MATLAB Simulink simu-
lation model, other simulation models and the real robotic system.

In the case of future accomplishment of identification measurements on
the virtual or real robotic system, the consideration of Al-Dois, Jha &
Mishra (2013) and Verdonck, Swevers & De Schutter (2007) is recom-

mended.
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Modification of the simulation model:

Adaption or change of the contemporary applied motor types and their
drives in order to reduce the complexity of the simulation model and/ or
lessen the computational efforts (e.g. by the modification of the simplified

joint actuation motor models presented in section 6.7.1).

Modifications/ changes of the manipulator's CAD model, e.g. CAD as-

sembly constraints, link geometries or the end effector/ tool.

Extension of the simulation model:

Implementation of further simulation model block diagrams and corre-
sponding parameters in order to reduce the number of general simplifica-

tions and restrictions.

Implementation of additional motion types such us point-to-point or circu-
lar movements. This could also cover the extension of available/ applied
velocity and/ or velocity/ acceleration profiles (e.g. S-Curve velocity pro-

file) in the context of motion planning.

Extensions of the solver constraints of the MATLAB inverse kinematics
solver gik () function are already prepared in the comments of the cor-

responding MATLAB file and can be applied.

Extensions of the end effectors/ tools capabilities within the coverage of

applicable Simulink Simscape domains like pneumatics and hydraulics.

Application of secondary payloads connected to the manipulator’s links,
e.g. added to CAD model.

The creation of a manipulator’s environment within the Simulink simula-

tion model with the help of additional geometries (e.g. a workbench).
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Appendix 1. Thesis Contract
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"} Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences
THESIS CONTRACT: Simulation Model for a Six Axis Articulated
Arm Industrial Robot
The thesis contract has to be done in triplicate. One original is given to the company/community, one
to the student/students, and one to Tampere University of Applied Sciences.
Thesis Author(s)

Name Address

Olivier Preuss

Email Telephone Student number
Degree Programme Study path

KV-vaihdon koulutusohjelma/Tekniikan ja

lilkenteen ala

Tampere University of Applied Sciences /| TAMK

Address Telephone
Kuntokatu 3, 33520 Tampere

Thesis Supervisor

Name Email Telephone

Sami Hamalainen

Head of Degree Programme, Supervising Teacher or other TAMK Representative (when needed, see thesis
terms)

Name I Email

Telephone
Markus Aho

Bachelor's or Master's Thesis

Thesis topic/titie Planned completion year of
Simulation Model for a Six Axis Articulated Arm Industrial | Thesis

Robot 2019
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Other:

Robot Type:
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Thesis objectives
Software Usage:

5 2 (5)
Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences

Operating System: Microsoft Windows 7 and higher (Requirement)

CAD Software: SolidWorks 2001Plus and higher

Wildfire, Creo (formerly Pro/ENGINEER) WildFire 2.0 and higher, Creo 1.0 and higher

Autodesk Inventor 2009 and higher (Requirement)

MATLAB R2018b (Requirement)

ABB RobotStudio 6.08 (Optional)

ABB IRB 2600-12/1.85 industrial rebot (Requirement)

If not defined divergent, the simulation model is based on the S| base units and derived units.
(Requirement)

If not defined divergent, the simulation model is based on the MATLAB programming language (text
based) which also covers the Simulink and Simscape programming languages (graphical). Programme
code always needs to commented in a short and concise way. Predefined MATLAB contents like
toolboxes, classes, functions, blocks, etc. have to be preferred and used whenever available to
accomplish a task. (Requirement)

As minimum requirement, the interaction between the user and the simulation model is realised via the
MATLAB command window in the MATLAB programming language. The creation of a (graphical) user
interface for controlling the simulation model is optional. If implemented, the design of the (graphical)
user interface is to be determined by the processor but kept simple and intuitive. (Requirement)

The simulation model includes a physical and graphical representation of the robot based on a CAD
model with a sufficient precision implemented via Simulink Simscape. (Requirement)

The simulation model represents the real robotic system with all its properties such as geometry and
dimensions, weights, inertias, frictions, drives behaviours etc. as sufficient as an appropriate effort of the
acquisition of the properties allows, In this context, appropriate effort does not cover any measurements
taken from the real robotic system in order to obtain simulation system parameters. Required data are
acquired from product specifications, datasheets, manuals, technical drawings, software sources,
literature, third parties, etc.. In case of not obtainable data, simplifications and assumptions are allowed
but are clearly revealed and founded in a sufficient way. (Requirement)

The simulation model uses the BASE coordinate system as its main coordinate system. In accordance
with the common definition, the BASE coordinate system is a right-handed Cartesian coordinate system,
whereby the z-axis coincidences with the first robots axis and the x-y-plane coincidences with the set-up
area of the base of the robot. The BASE coordinate system and the WORLD coordinate system
coincidence and represent a reference coordinate system which acts as reference for target definitions
and end effector orientations. The home configuration of the simulation model is in accordance with the
home configuration of the real robotic system defined in the technical specifications available from the
robot manufacturer. This accordance is also valid for axis designatians, initial angular positions, angular
limitations and directions of rotation (signs). (Requirement)

The simulation model includes a linear path planning which enables a defined movement of the robot
model from coordinate “A” to coordinate “B” specified by the user in the reference coordinate system.
Coordinates are inserted in the format [x y z], (e.g. [100 300 50]) in millimetres [mm]. Furthermore, the
values of the angles of every single rotational joint of the robot model can be directly given into the
simulation model by the user in order to act as set point values for the control system structures. Input
angle values are inserted in the format [q1 g2 g3 q4 g5 g6], (e.g. [0 0 90 60 0 30]), angular degree [°],

and counted absolute from the initial position. The insert format of the orientation of the end effector is

TAMPEREEN AMMATTIKORKEAKOULU OY
Kuntokatu 3, 33520 Tampere | www.tamk.fi | p. 03 245 2111 | Y 1015428-1
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"'} Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences

[a B vl, (e.g. [0 0 45]), angular degree [°], in accordance with the common definition of the ZYX Euler
angle format. (Requirement)

The structure of the simulation model is created in a modular way. Maintaining, editing, updating and
extending the model is possible with moderate effort. Moderate effort is considered as effort that can be
managed by a professional and the information provided in the thesis document, short instruction
document and program comments. The program flow and the operation of the model are designed
clearly structured. (Requirement)

The implementation of the simulation model is created in way that allows a comparison between
simulation results gained from the MATLAB Simulink simulation and measurements taken from the real
robot system and/or the ABB RobotStudio software, especially the values of the single joint angles,
(Optional)

Creation of a short concise instruction document for the operation and service of the simulation model.
(Requirement)

Thesis purpose

The purpose of the thesis is the development of a MATLAB Simulink simulation model of an ABB IRB 2600 six
axis articulated arm industrial robot for educational use in control system design. The simulation model shall be
used as ready-to-use environment for control system structures designed and implemented by pupils/students,
Thus, the simulation model includes all components to execute, monitor and record kinematic and dynamic
simulations of the robot, except the controller structures themselves.

Short description of thesis implementation and timetable
The thesis will be accomplished by:

1. The determination of all involved parties, the determination of the detailed tasks, requirements and
scope and the formation of a contract and registration of the thesis.

2. The processor is responsible for the independent and carrect preparation, accomplishment, monitoring
and completion of the thesis. Furthermore the processor acts accordingly to processes described in the
attached project plan/schedule as close as possible. Additionally, the processor will correspond with and/
or report to the determined supervisors whenever major changes andfor necessities occur. The
accomplished work is recorded by the processor and the basis for the Bachelor's Thesis document which
is created independently and according to the TAMK'’s Thesis Guidelines.

3. A submission of preliminary contents such as documents and programs to the responsible supervisors/
parties forreview purposes is desirable. The final thesis document will be submitted via E-Mail in WORD
format on schedule by the processor. The implementation will be completed by a maturity test
accomplished by the processor and an evaluation of the thesis by the responsible parties.

Timetable: See thesis contract appendices.

Thesis expenses, Company's or Organisation's supervision and Copyright

Specification of thesis expenses and agreement on expenses (see thesis terms)
None.

Company or organisation representative’s role in thesis process (e.g. supervision and tools, see thesis terms)
Name: Ville Jouppila

Copyright (see thesis terms)
No execptions from the TAMK thesis terms.

Agreement on Thesis reporting

Thesis reporting and publishing (see thesis terms)
In accordance with the TAMK thesis terms.

Thesis presentation

In accordance with the TAMK thesis terms.

Company’s/forganisation’s feedback on thesis (see thesis terms)
In accordance with the TAMK thesis terms,

TAMPEREEN AMMATTIKORKEAKOULU QY
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") Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences

The contract parties confirm the above-mentioned thesis details and approve the enclosed thesis
terms with their signatures.

Student's signature(s)

Date

Student's signature Print name
Olivier Preuss

Supervising Teacher's dr other TAMK Representative's signature(s)

Date . - s

ot F O L @
Supervising Teacher'sisignature Print name
Sami Hamalainen
Supervising Teacher's or other TAMK Representative's signature Print name
Markus Aho

Your information is saved in Oiva. More information: Privacy and Terms of Use hitps://civa.tamk.fi/

terms/list
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"] Tampereen ammattikorkeakoulu
Tampere University of Applied Sciences

APPENDIX 1
TAMPERE UNIVERSITY OF APPLIED SCIENCES’ GENERAL THESIS TERMS

(Terms updated on 1 November 2018)

Tampere University of Applied Sciences (TAMK) appoints a supervisor to the student for the thesis process and strives to support the
student at the various stages of the thesis process by providing supervision within the degree programme and studies which support
the thesis process. TAMK or the thesis supervisor cannot however be held responsible for the quality, content, completion or possible
delays of the thesis. The university of applied sciences or its teachers do not have consulting responsibility regarding the thesis
contents or implementation to the cooperation party.

Students may discontinue the thesis project and terminate this contract by notifying of it in written to both the university of applied
sciences and the cooperation party. If the student terminates this contract, the university of applied sciences and cooperation party
agree on together if it is still possible to implement the thesis project for example by changing the project timetable and contents and
having a new student to implement the project or if the thesis project has to be discontinued. All changes in this contract and
termination of the contract have to be made in written between the university of applied sciences and cooperation partner. If the
student terminates the contract, it does not cause the student or university of applied sciences any liability for damages.

The thesis supervisor and other TAMK staff members are bound by professional secrecy and prohibition of use regarding the student's
thesis idea papers, thesis plans, research data and all classified information during and after the thesis process (621/1999: 23§ and
248).

The working-life representative appoints a contact person for the thesis process and aims at contributing to the advancement of the
work by offering the student supervision and information needed to achieve the objectives. Furthermore, the waorking-life
representative will be responsible for agreed thesis expenses, such as postage, fares or other comparable costs. Thesis projects made
in working life cooperation may not cause any extra costs for the university of applied sciences. The cooperation party has the
obligation to pay the university of applied sciences costs caused by customising the project to the cooperation party’s needs or
otherwise caused by the cooperation party.

The head of degree programme or another TAMK representative is given on the thesis contract if necessary. The head of degree
programme’s approval is needed if the thesis project for example uses TAMK's educational supplies, teaching facilities or other
resources to a significant degree (the matter is first discussed with the thesis supervisor). There is no need for filling in data if TAMK
facilities or computers are used for the thesis process or report writing.

If the cooperation partner requires application of a research permit (for example theses in the field of health care and social services),
students follow its guidelines, Students do not need to construct both the thesis contract and research permit,

A thesis report is a public record (Constitution of Finland 731/1999, Act of Openness of Government Activities 621/1999) and it should
not contain any classified information. Thesis reports made at Tampere University of Applied Sciences are public. The publicity
guarantees objective and fair thesis assessment.

TAMK students are not allowed to write an entirely classified thesis (AOA 2457/4/13, 14.4.2014). In case there is a need to include
classified information in the thesis process, it must be carefully considered. Classified information may not be included in the thesis
report to be assessed. The thesis report alternatives available are negotiated between the supervisor, student, and working-life
representative already at the beginning of the thesis process.

Students commit themselves to keep all confidential information confidential and not to use it for any other purpose than the thesis in
accordance with this contract. Students take care of not including any confidential or classified information in the thesis to be
published. Students may not disclose confidential information to the university of applied sciences, its supervisors or third parties
without the cooperation partner's specific permission.

The thesis author has the right to determine the means of publication for his/her thesis (Copyright Act 404/1961, 2§). The thesis report
is either published as a paper version in TAMK library or electronically via Theseus (https://www.theseus. fi/). Students take care of not
including any confidential or classified information in the thesis to be published. Students may not disclose confidential information to
the university of applied sciences, its supervisors or third parties without the cooperation partner’s specific permission. If the thesis
includes confidential information, the working-life partner has to provide written feedback to support the thesis assessment.

The copyright of the thesis principally belongs to the student. This does not restrict the working-life representative's right to benefit
from the knowledge and potential development suggestions included in the thesis. In case the thesis or its appendices include e.g, a
separate manual, educational material, software or programming work, visual material, drawings, audio or video data or other
equivalent material that the working-life representative needs to utilise in hisfher work in a copyright-wise relevant manner, transfer of
restricted rights (use, editing and distribution) should also be agreed on separately between the working-life representative and
student.

The cocperation party is aware of that the thesis forms a part of the student’s studies, The cooperation party understands that as a
rule the student is not a professional of the field and that the thesis is not necessarily applicable for the cooperation party’s use. The
cooperation party assigns background material for the project, such as software, at its own risk. The student and university of applied
sciences are not in charge of decrease or destruction of the cooperation party’s background material during the thesis project. The
contract parties are not liable to one another for potential damages caused by terminating the contract.

Thesis reports are permanently archived records based on Arkistolaitos’ decision (AL/2897/07.01.01.03.01.2014, 18.9.2014).
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Appendix 3. List of Requirements

40 | :23ed 610T°£0'6C -21ed dO :pasoiddy
(-212 ‘suoneirmny

‘SUOTIAIIP [RUOIIR)OI ‘Fur[[aqe|) L9D A

do SUONIULJOP SIAINIIBINUBUI DY) YIIM IOUBPIOIIE U] STONPUSISIP PUE SUORIUYAP SV
uonisod dwoH 999 d

(ZAD) W2)sAS JRUIPIO0D dseg
: d
do :20ua19ja1 ‘[A ¢ 0] so[Sue YA 1NA-X AZ -ndur 1esn HONCLIOSIP UOHEIULIO 101933J9 PUS/TOOL d
do SUONIULJOP SIAINIBINUEBL ) YILM IOUBPIOIIE U] W)SAS 2JRUIPIOOI 101I3]J2 PUI/[00L sdn N
W)SAS AIBUIPIOOD OUIJY ) N
do Td0 oy ueridwio) (W)SAS 9)BUIPIOOI PLIOAN £dn N
do SUONIULJOP SIAINIBINUEBL ) [ILM JOUBPIOIIE U] (W2)SAS 9)eUIPIO0D dseq [0 N
do AJUO UeIS2)IR)) papuey-1ysry (Sowey) SUIAISAS 2)RUIPIOO)) 190 N
(parePy J1oyendiuey) suonuya( [L1IUID)
(zOQ@) uoneUAWMOOP
do ay) uryim paynsnl pue paquosap Apuadiyng IN(} tnoy suonsiasd NI 4
dO SIIUN PAALISP pUE S}IUN aseq [S a)91dwos ayy uryym pardde aq o1 syun [ INN A
sy
dO €8'1/71-0097 €I 99V _ Jore[ndiuen 10qol [eLISpu] Rl A
Jonpo.ld paredy
(reuondp = 0
:Apiqisuodsay BIR(]/AN[BA suawarnbay jo uonduosaq oN | Juowanmbay =)
:adA ]
(e[rddnor S[ItA
‘I :9AneIusaido 0qoy [eLnsnpu
I :9AneIudsaIdaY) j0qoy [ersNpuf (tonps 15314 AgD)

(INVL) (d0) ssnaid 11ANO WY PAJEMInIY SIXY XIS & 10) Q1022091

saouaog parddy
Jo AusIaatun
araduwre [, ((s)huan)

:(s)1oupyg

[PPOJA UODE[NUILS SISAY L, S, 10[ddey
:paloag

:panssy 1811

syudwd.bay jo 3sIy




730 C 058d 610T°€0°6T ed dO :paroddy
(99D) uonisod
do JWOY :95ua19ja1 “doeds yutof ur pauyyap ([9°b---41b]) JUSUIDAOW JUIOf ZONW o
.d., 9sod1a8rer 03 ([Vob:*-VIb]) v, 9sod 1reis worg
(D) WeIsAS 2JBUIPIOO IIUIIDJOY
do :90u210j01 ‘ooeds3rom ur paulgap ‘[9z 94 8x] JUAWAOW DT Jedur] 10N |
W, 108181 0) [VZ VA ¥X] v, uonisod jrels wiorg
duluue]d UonoAl
dO SUOT)IULJAP IDYUNJ OU “H()S 299G :2IBM]JOS SJUDILIDINSBIW UOIRIIJIJUIPL [N A vd [9)
WIA)SAS 0110q0. 821 2} WOIJ SIUIUAINSEIW
do uoneaynuap] :uondaoxa {(-010 ‘sjenuewr 5201n0s uonisiboe 1M2weIRJ Ivd A
‘suoneoyyroads jonpoid ‘soayserep ‘§-2) ajqefieae ||y
uonisimboy eje( /uonezLIPWEIE]
SUOISU) X
do Sax pue suonedyIpow ‘sajepdn ‘doueuduiew | /IS A
103 uonperedaxd [apowr uoneNUIS
40 S2INJONIS WIA)SAS [01IUOI JOOI LIe T — oIS N
o Jo Meys Jo udIsap ay) 10 paanbar speuis [[e ‘sd k. :
40 AJUO UOISIAOL :S2INJONNS WI)SAS saImonns worsks [o1U0N - N
[01u0d jo uoneudwadur 9y 10§ JuswuoLIAUg
dO paseq [apow QD "SIA uopewiue /apou [edrydeln) FIS k!
d0 (uoneraadoe [RuUOnNRIARIS ‘[dul ‘dalsuayaidiuod) sa g [opoul dIWRUAQ €IS o
dO (wsifeuLioj-HA) S9A [3poL SlBWIULY IS o
(Apoquni)
do adeoswig yuinuis gV ILVIA AUNUS gV ILVIN HOREIIAUIB|ULY [SpO DOYEAIILS 1S d
[9POJA] UONE[NUILS
(jeuondo =0
Kqiqisuodsay ‘RIR/AN[RA uswarinbay jo uonduoseq ON | Juswasnbay = )

:adA g,

(uonenunuo)) syudwINbay jo sy




1 JO € :95ed 610T°€0°6C -21ed dO pasoiddy
dO IaU3IY 10 §()'Q 0IpMSI0qoy 9V JIBM]JOS UOIR[NLIS I3Y)() +0S [9)
12YBIY 10 GOOT JOWSAU HSIPOINY YO ‘0’1 £1,031D
do O 0°T (PHAPTIM MO SNIA100T |, SHOMPIIOS HEAOs AV €08 d
do I2y31y 10 q8 107 @m,{i_r_ld\E @me\SENE JIBM]JOS UONR[NLIIS Z0S M
do I2US1Y 10 | YOBJ IJIAIS / GSMOPULM  1JOSOLIN wolsAs Sunerado 10S B
AIBMIJOS
- JUIUIDAOU JUIOf) JIun
do [o] rem “T°b #b*b b % b] yeuriog pue EEMQ a13ue E_o?uwpma pue 1§ vSi 4
yed 1eour
do (] srun <[z £ x] euiog Jjiun pue S::M.w :oEmom.WmE pue uelg £sn 4
dO suonuyap 1ayuny ou ‘[euondo (IND) 23eyr2U] 35 [eo1YdRIn SN 0
[EREIRETT))
do AOPIM, PURIIIIOD AVILVIN sindur Josn 10J JudwdIINbal winwiruA Isn d
SaJelaajuj J9s()
UoISUd)Xd pue suolesljipou ‘sajepdn
do oA ‘dourudjurew 10J paredard weidoig sdd d
dO Paseq Meyd MO[J WeIs0l] (s)oamonas apo)) wid A
dO SOA ALg[pour 9po) ld A
(010 *s300[q ‘suonduny ‘sasse[d
do S ‘SaX0q[007) SIUANUOD NUINWIS puB dd N
v 1LVIA pauyapaid jo oFesn parnjard
SWIRISRIP }00
do jurnuiig pue agengue| ‘wﬂwﬁhw_moa aVI1LVIA soBenEUe] SUIWEIE0I] rad 4
surmersolg
(revondp = 0
Anpiqisuodsay ‘RO A :auawannbay jo uonduoseg ON | Juowannboy = ¥)

:adA 1

(uonenunuo)) syudwINbay jo sy




4O b 58] 610Z°£0°67 dO :paro1ddy/|
dO 6107 00T 1B IO SISIU} O} JO UOISSTWqNS [BUL] | £DS d
do 6107+0°ST [UN ‘S2X IO SIS 708 |
: Jo uoisIaA Areurunfaid € Jo uoissiuqng
[opOw UOLR[NLIS A}
40 A Jo uoIsIaA Areurwnjaid e Jo uoissnuqng 198 0
UOPELSIUIWPY AINPIYIS
do SOA [enuew Supeiodo [apowt UonE[NLIS £0d Nt
(9L10Z ussIaLq) *(QL10OT URSIAL()
dO (BLIOT Uas321(Y) SAULPPING SIS HSH suonesy1oads Juawndop SISay [, 70d Nl
®(L10C
NAISUILIWE'] 29 OXLIA) S3UI[APING SISay) HAV L
dO (6107) d1ejdwd) sisay) VL a1e[dwa) JuauNd0p SIS3Y L 1oa A
uonemRWNO(
dO 30 [ 133png [[EIOAQ 104 A
Awouody
(feuondp =0
:Aypiqisuodsay BIR(J/AN[BA Juowalinbay jo uonduosa ON | Juowaanbay = )

adA T

(uonenunuo))) syuawaainbay jo sy




141

Appendix 4. Program Flow Charts

1(18)

General Program Flow

Start

" while(user does not command.
!‘“ﬁ__A]—

Initialization {variables etc.) ‘

L

Import (extemal) data and
parameters

Load Multiphysics Library ‘

Impert Robot System
(RigidBodyTree)

Joint OR linear

Motion planning for joint
movement

Continue with Simulink
lo simulation?

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: General Program Flow

Created: 13.03.19 Modified: 13.03.19
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2 (18)

get_joint_move(simVar,robotPara)

Start )

Definition & initialization of variables

v

joint_move_ui(robotPara)

'

Previous
= window (joint_move_ui) was
\\closed?

true

joint_traj_planning
(qStartRad,qTarget,...,robotPara)

!

Write formated results to simVar

;

Set status flag = 1

;

Get system time/timestamp

A

Return simVar

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: get_joint_move(simVar,robotPara)
Created: 13.03.19 Modified: 20.03.19
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3 (18)

get_lin_move(simVar,robotPara robotModel)

Start )

Definition & initialization of variables

v

lin_path_ui(robotPara)

_— Previous
window (lin_path_ui) was
closed?

lin_traj_planning
(pStart,pTarget,...,robotPara)

v

Write formated results to simVar

.

inverse_kinematics
(simVar,robotModel,robotPara)

v

Write formated results to simVar

v

Set status flag = 1

.

Get system time/timestamp

A

Return simVar

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: get_lin_move(simVar,robotPara,robotModel)
Created: 13.03.19 Modified: 20.03.19
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4 (18)

init()

Start )

simVar_init()

’

robot_para_xls_import(simVar)

v

multi_physics_lib(simVar)

v

load_smiData(simVar)

v

Set status flag = 1

v

Return simVar, smiData, robotPara

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: init()

Created: 01.03.19 Modified: 13.03.19
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5 (18)

inverse_kinematics(simVar,robotModel,robotPara)

Start )

Creation of a
GeneralizedInverseKinematics object

v

Creation of
GeneralizedInverseKinematics solver
constraints

v

Solving inverse kinematics object
with constraints for inital pose (Pose
A)

v

Save solution (to simVar)

( for(number of waypoints of the j
linear path)

Set/update solver constraints for the
current waypoint

v

Solving inverse kinematics object
with current constraints for current
waypoint

v

Save solution (o simVar)

v
\ /
v

Return simVar, sollnfo

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: inverse_kinematics(simVar,robotModel robotPara)
Created: 14.03.19 Modified: 14.03.19
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6 (18)

joint_move_ui(robotPara)

Start )

GU! initialization

v

Definition & initialization of variables &
structures

v

Set (G)UI objects settings

while(continue button was not pressed
AND window was.

Start pose A (q1A...g6A)
Target pose B (q1B...c

Motion parameters (velocity, acceleration,
resolution) .

All inputs are
numbers?

Start and
target pose within allowed
boundaries?

Error message
false 0

Motion
parameters within allowed
boundaries?

Continue button or close window

Continue
button was pressed?

Info message (closed window)
" .

Save user inputs to output variable Set status flag closed window ‘

v

v

Return output variable

v
End

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: joint_move_ui(robotPara)

Created: 20.03.19 Modified: 21.03.19
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7 (18)

joint_traj_planning(qStariRad,qTarget, ... robotPara)

cmww ange ol :Eum
vnndm

js"'_)
Get joint valocty limits (MexVelo)
Calcuiate desred

joint valaciy
k) e ok ]
irput it mave,_i)

Caloulale i angulr iflerence of
ach oint angle 1. 06} betwoa
) and farget

Get the nurmiber of axes of the robalic
manigulalor (axishum)

" ori Yo s (mumber of
Cafcuiata the overall duration of
eaion (Lisint) of jor()

[

Iceniiy he siowest axis = eating
‘avss) and s overall duration of
‘moion (iMax) from tainif)

Calculate e e of the end of
acoseration: AG fom 1) from
"i‘!‘,"i"!!‘,“li

Caiculsta the cverall ime peraid:
{End (o t=1s) from M (lacing

%

Calsulle e e of e beginring of
deceleraton: 1De iom M leacing
L]

" forii 0 avishum (numbercf

Calaute the max. velocly

{jomCakMaxVelci]) of joirt() with
raspect 1o tha leading axis
Calcutate the max, acceleration
{ointhce?)) of jeinti} with respedt o
ihe leacing axis
Caloulate nuber o interpalatians: k
(nerement;siep size]
‘Calculata fime vector twih k
elements.

10 anishu (numbée of
Tork(numbercd ]

1/—~
j/

Cakuat oint ange ) (Equation

F §
i

Save rasull 1o foap variable

]

Creale vecar ofjoint angles of the

!
i
i

Retuem fime (1) and ot angles o}
vectors

.

End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Rabot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: joint_traj_planning(gStartRad,qTarget.....robotPara)
Created: 20.03.19 Modified: 22.03.19
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8 (18)

lin_path_ui(robotPara)

Start )

GU! initialization

v

Definition & initialization of variables &
structures

v

Set (G)UI objects settings

while(continue button was not pressed
AND window was not

A\

v

Start position A (pStart)
Target positon B (pT:

Motion parameters (velacity, acceleration,
resolution)

All inputs are
numbers?

Error message (NaN)

Motion
parameters within allowed
boundaries?

Continue button or close window

Continue
button was pressed?

Save user inputs to output variable

Error message (out of bounds]
0

Info message (closed window
4]

Set status flag closed window

Y

v

Return output variable

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: lin_path_ui(robotPara)

Created: 20.03.19 Modified: 08.04.19
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9 (18)

lin_traj_planning(pStart,pTarget,...,robotPara)

Start )

Get TCP velocity and acceleration limits
(VTCPlim, aTCPlim)

— -

Get TCP velocity (vTCP) from user input ‘

(lin_path_i())

v

Calculate TCP acceleration (aTCP) from max
value (aTCPIim) and user input (lin_path_ui())

v

Calculate abs. length of the path vector ‘

(jpTarget - pStart])

Calculate max. possible TCP velocity
(vTCPmax) on path vector with abs. length of
path vector and aTCP

v

< ~ VG
VTCPmax? =
~e

false

VTCP = vTCPmax

v

Calculate the time of the end of acceleration:
thce (from t=0s)

.

Calculate the overall time peroid: tEnd (from

v

Calculate the time of the beginning of
deceleration: tDec.

v

Calculate number of interpolations: k
(increment; step size)

v

Calculate time vector t with k elements. ‘

v A

( 4 for{to k (number of interpolations)) ‘I

~_ tAcc? true
false
Calculate waypoint on path variable _
(Equation for phase of constant < m‘g“
velocity) e
felse

Calculate waypaint n path variable (Equation
for deceleration phase)

Y

Calculate waypaint on path variable
(Equation for acceleration phase)

v

Save result to path variable ‘

[
\—_#_J
Create vector of waypoints of the trajectory p

v

Return time (t) and waypoint (p) vectors ‘

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: lin_traj_planning(pStart,pTarget, ... robotPara)
Created: 20.03.19 Modified: 22.03.19
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10 (18)

load_smiData(simVar)

Start )

Definition & initialization of variables

;

Load smiData variable from ...
.DataFile

v

Set status flag = 1

v

Get system time/timestamp

v

Return smiData, simVar

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: load_smiData(simVar)
Created: 01.03.19 Modified: 13.03.19
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11 (18)

main(simVar,smiData,robotPara,robotModel,importinfo)

s

Definition & initialization of variables

" simVaruiControl variable
{m)?::

(Re-)set simVar.uiControl variable

(exit)= 0

— amVaruicorirlvarabi Bl [
ot Hints for updating data
(et =1 ” ; ’

update_allf)

Exit OR cancel

Set simVar.statusFlags flag (exit) = 1
(Re-)set simVar.uiControl variable
(update) = 0

simVar.uiControl variable
(joint mp:;-“m =

" simVar.iControl variable
~ (linear movement) == 1
?

.

" simVar.uiControl variable
(open simulation) == 1
?

get_joint_move (Re-Jset simVar.uiControl variable
(simVar robotPara) (joint movement) = 0
get_lin_move (Re-Jset simVar.uiControl variable ‘
(simVar,robotPara,robothodel) (linear movement) = 0 J
Set simVar.statusFlags flag (open (Re-)set simVar.uiControl variable
simulation) = 1 (open simulation) = 0

}—- Minimum simulminM—*
lo

Retumn simVar, smiData, robotPara,
robotModel, importinfo

End

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: main(simViar,smiData,robotPara, rabotModel importinfo)
Created: 01.03.19 Modified: 13.03.19
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12 (18)

main_ui(simVar)

Start

GU! initialization

.

Definition & initialization of variables
& structures

.

Set independent (G)UI objects
settings

'

Set (G)UI objects settings
(depending on simVar.statusFlags
flags)

Show GUI

-

[ while(no user action) A

Choose an action

/ Update OR joint movement OR
linear movement OR open
simulation OR exit

e Input ==
Linear movement?

S
true

Set simVar.uiControl variable
(update) = 1

Set simVar.uiControl variable (joint
movement) = 1

Set simVar.uiControl variable (linear
movement) = 1

Set simVar.uiControl variable (open
simulation) = 1

Set simVar uiControl variable {exit) =
1

A\

v

Return output variable

v

End

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: main_ui(simVar)

Created: 13.03.19 Modified: 21.03.19
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13 (18)

multi_physics_lib(simVar)

Start )

Definition & initialization of variables

MultiPhysics
Lib exists?

false

Install Lib anyways?

!

Yes OR No

Install MultiPhysics Lib

true

false
Set status flag = 1

v

Get system time/timestamp

;

Return simVar

.
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: multi_physics_lib(simVar)
Created: 01.03.19 Modified: 13.03.19
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14 (18)

robot_import(simVar)

Start )

Definition & initialization of variables

v

Import/update robotic
system/sructure?

v

Import/update OR cancel

Input ==

Import/update?

false

sl file exists?

Import/update rigid body tree model

v

Set status flag = 1

v

Get system time/timestamp

A

/

Error message |

Y

v

Set variables "not loaded"

Set status flag = 0

P
<

v

Return robotModel, importinfo,
simVar

v

End

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: robot_import(simVar)

Created: 13.03.19 Modified: 13.03.19
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15 (18)

robot_para_xls_import(simVar)

Start )

Definition & initialization of variables

v

Load & convert parameters from
excel file to robotPara variable

’

( while( xIsx file not exists) j

v

Error message

v

Wait for user action (acquire .xlsx
file)

v
\ »
’

Set status flag = 1

’

Get system time/timestamp

v

Return robotPara, simVar

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: robot_para_xls_import(simVar)

Created: 01.03.19 Modified: 13.03.19
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runSim

Start )

Definition & initialization of variables

v

init()

v

robot_import(simVar)

v

main
(simVar,smiData,robotPara,robot
Model,importinfo)

v

User

commaned to open the
\Simulink simulation model (main_ui; (open
. simulation flag == 1))?

—> Delete all variables
false

Write importinfo, robotModel,
robotPara, simVar, smiData to Close all windows
MATLAB Workspace (base)

v

Open Simulink simulation model

A

End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss

Diagram: runSim

Created: 21.03.19 Modified: 22.03.19
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simVar_init()

Start

Initialize simVar variable

v

Set status flag = 1

v

Get system time/timestamp

v

Return simVar

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss
Diagram; simVar_init()
Created: 01.03.19 Modified: 13.03.19
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update_all()

Start )

simVar_init()

’

robot_para_xls_import(simVar)

v

multi_physics_lib(simVar)

v

load_smiData(simVar)

v

robot_import(simVar)

v

Return simVar, smiData, robotPara,
robotModel, importinfo

v
End )

Project: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts
File: BT_ABB_IRB_2600_Robot_Sim._ProgramFlowCharts.pap
Author: Olivier Preuss
Diagram: update_all()
Created: 01.03.19 Modified: 13.03.19
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This page was intentionally left blank in order to make the subsequent operating
manual an independent document that can be extracted from the thesis docu-

ment separately.
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A Quick Start Guide for the MATLAB® Simulink®/

Simscape™ (Multibody™)'! Simulation Model of an

ABB? IRB 2600-12/1.85 Industrial Robot Manipulator
Author: Olivier Preuss
First Issued: 05.03.2019
Last Edited: 16.04.2019
Recent Version: v05
Revision: A
Corresponding Document: Preuss, O. 2019. Simulation Model for a Six

Axis Articulated Arm Industrial Robot. Mechani-
cal and Production Engineering. Tampere Uni-

versity of Applied Sciences. Bachelor's thesis

' MATLAB®, Simulink®, Simscape™ and Simscape™ Multibody™ are trademarks or registered
trademarks of The MathWorks, Inc.
2 ABB Asea Brown Boveri Ltd.



ABOUT THIS DOCUMENT

The purpose of the document at hand is

operation and updating and extending/

robot manipulator, initially equipped with

torch/ end effector. This document refers to the bachelor’s thesis: “Simulation
Model for a Six Axis Articulated Arm Industrial Robot”, by Olivier Preuss, pub-
lished in April 2019 at Tampere University of Applied Sciences (TAMK) in Tam-

pere, Finland.

a quick introduction to the start-up, the
modifying the MATLAB Simulink/ Sim-
ulink Simscape (Multibody) simulation of an ABB IRB 2600-12/1.85 industrial

a Fronius® Robacta Drive CMT welding

Symbol: Meaning:
@ Useful information/ hint.
! Important note, read carefully!

GENERAL INFORMATION

Do not delete or add any data from/ to the simulation data set. Also
do not rename, relocate or change the general structure(s) and
location(s) of any of folders or files of the data set. (Exceptions:
CAD MODEL UPDATE and EXTENSIONS/ MODIFICATIONS (re-
fer to the corresponding manual pages 179 and 182). Always use
“Save as” in order to retain an unchanged copy of the simulation.

@ For further information not covered by this manual, refer to the cor-
responding thesis document.

In order to keep this document as short as possible, hyperlinks are used
to redirect to external web sources (provided by manufacturers/ develop-
ers/ other third parties) whenever reasonable.

Any filenames.m or folder names are written in italicised, coloured font
and contain the file extension(s).

MATLAB related naming and commands are written in Courier new
font.

LT3 [T

Other “commands”, “window names®, “button names” etc. are in quota-

tions marks.

® Fronius International GmbH


https://www.google.com/search?q=hyperlink
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The usage of the simulation program requires basic general knowledge of

MATLAB and Simulink/ Simulink Simscape. Basic knowledge of programming,

mechatronics, robotics and control systems are also recommended.

Additionally required:

Required (R)/

Subject: Optional (O): Note:
Personal Minimums: Processor: Intel® or AMD®” x86-64,
Computer R RAM: 4GB, HDD: 4-6 GB free disk space,
(PC) Graphics: OpenGL®® 3.3 with 1GB GPU
Operating R Microsoft® Windows®’ 7 Service Pack 1, Apple®]
System (OS) macOS® 10.12, Linux®®: see'® or higher
Simulation R MathWorks MATLAB R2018b or higher
Software (In accordance with the used OS)
SolidWorks™" 2001Plus, OR WildFire® '°2.0,
CAD Software o) OR Creo®? 1.0, OR Autodesk Inventor®® 2009
or higher
MathWorks Simscape Multibody Link Version 6,
SIAD Software 0 R2018b (In accordance with the used CAD
ug-in .
software) or higher
Spreadsheet 0 Microsoft Excel® 2010 and higher
Software
Robot Manu-
facturers O ABB RobotStudio 6.08 and higher
Software

Simulation model data set(s)/folder(s):

Est. File Size [MB]:
Folder Name: ,St |eS|ze.[ ] Password:
Zipped: | Unzipped:
BT ABB IRB 2600 Robot Sim. v _A.zip
= = = — — im!
BT ABB IRB 2600 Robot Sim. v B.zip| '° 130 [#20RbT19Sim!

*Intel® is a registered trademark of Intel Corporation
> AMD® is a registered trademark of Advanced Micro Devices, Inc.
6 OpenGL® is a registered trademark of Hewlett Packard Enterprise
” Microsoft®, Windows® and Excel® are trademarks or registered trademarks of Microsoft

Corporatlon

Apple® and macOS® are registered trademarks of Apple Inc.
L|nux® is a registered trademark of The Linux Foundation®.
1% https://www.mathworks.com/support/requirements/matlab-system-requirements.html

" SOLIDWORKSTM is a trademark of Dassault Systéemes®
W|IdF|re® and Creo® are registered trademarks of PTC Inc.
® Autodesk Inventor® is a registered trademark of Autodesk Inc.


https://www.mathworks.com/support/requirements/matlab-system-requirements.html
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The simulation program and its flow can be divided into two consecutive main
program parts — an initial and looped MATLAB part and a following non-looped
Simulink/ Simulink Simscape part.

The MATLAB program part acquires and provides all required data for the Sim-
ulink/ Simulink Simscape simulation, represented by five main simulation varia-
bles (check section EXTENSIONS/ MODIFICATIONS (page 182) for more de-
tailed information), saved to the MATLAB “Workspace” (base) after execution.
The contents/ values of the main simulation variables are determined with the
help of the import of external data, user inputs and commands received from
three graphical user interfaces (GUI) and a number of evaluation algorithms.
Two different types of motion planning are also covered by the MATLAB pro-
gram part.

The Simulink/ Simulink Simscape program part virtually represents the real ro-
botic system as a block diagram structure and uses the values of the formerly
mentioned main simulation variables for the model parameterization. In contrast
to the flow of the MATLAB program part, it is mostly ran manually (creation of a
control system structure, execution of the simulation, evaluation of the results,
etc.)

The subsequently shown simplified overall program flow chart may supports

understanding the general flow of the simulation procedure.

START

Initialization Manual Restart

Program Data Import
Part 1:
MATLAB Y, Main GUI
Joint Movement Linear Movement
Planning (GUI) Planning (GUI) Change
Open Simulink/Simulink Simscape Simulation Model
Program
Part 2: Control Systems Structure Creation (Manually)
Simulink/
Simulink Simulation Execution (Manually)
Simscape

Result Evaluation (Manually)

END
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The instructions of step one and step two given in this section, INSTALLATION,

only need to be executed once after the initial acquisition of the simulation pro-

gram data set. Step three needs to be repeated whenever starting or restarting

the MATLAB software or for any other necessary reason (e.g. after changing

the work directory/ folder).

1. Extract the BT ABB IRB 2600 Robot Sim._ v _A folder
BT _ABB IRB 2600 Robot Sim. v _A.zip file. While/ before the extrac-

the

tion procedure you will be asked for a password — use the password
listed in the second table of the section PREREQUISITES (page 163).
2. Save the extracted BT ABB |IRB 2600 Robot Sim. v_A folder to a

proper work directory and folder.

3. Run MATLAB and browse to the work folder prepared in step two. The
MATLAB “Address Field” and “Current Folder” sub windows should now

look like this:
<E % g al ,._J » C P Users » My Work Folder » BT_ABB_IRB_2600_Robot Sim._.v.A » v B
Current Folder [GM Command Window (G Workspace @
Name « fJE >> Name Value
&2} Data
‘j runsim.m

Details

Select a file to view details

The installation is now completed. Continue with the section OPERATION

(page 166).
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The section OPERATION covers instructions for the operation of the unedited,
original simulation program. The subsequently shown instructions and/ or se-
quences may not be applicable for extended/ modified versions of the simula-
tion program.

As mentioned in the INTRODUCTION (page 164), the simulation program can
be divided in two parts, therefore, the instructions for the operation are also di-
vided into two consecutive parts: MATLAB and Simulink/ Simulink Simscape.
Refer to the section INSTALLATION (page 165) before continuing.

MATLAB:

1. Type runSim; to the MATLAB “Command Window” and press “Enter”.

2. If not already existent, MATLAB now automatically installs the required
Simscape Multibody Multiphysics Library R2018b Version 2.7.0.0. Press
“OK” to close the “Installation Successful” window and to continue.

3. The “Robot System Import/Update” window now appears. Press “Im-
port/Update Robot System now” (The import procedure may take several
seconds).

4. If executed successfully, the “main_ui” window containing the “Simulation

Control Panel” should open and appear similar to:

4. main_ui { = e? S|
Simulation Contral Panel
1. Basic Data/Requirements
Status Last updated
* Simulation Variable (simVar) Ready! 09:03:02
* Robot Parameters (robotPara) Ready! 09:03:08
* Simscape Import Data (smiData) Ready! 09:05:10
* Robot Model (RigidBodyTree: robotModel) Ready! 09:06:46
® Simscape Multibody Multiphysics Library Ready! 09:05:10
Update
2. Motion Plannin g
Status Last updated
Joint Movement _ 0
o ¢
3. Simulation
Open Simulink
Exit
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The “main_ui” window is always existent (loop) while running the
MATLAB program part and allows updating or changing the varia-
G) ble contents at any time (except during the ”joint_move_ui’ or
“lin_path_ui” windows are open). If brought to the background, re-
store the window(s) from the task bar of your operating system.

Always use the “Exit” button of the “main_ui” window to terminate
the simulation program properly without any errors.

5. To update any data listed in Panel 1, “Basic Data/Requirements”, press
the “Update” button. Make sure to replace/ update the files to be updated
from before pressing the “Update” button! A “Data Update” window will
appear - press the "Update now" button to continue, press the "Cancel"

button to terminate the update procedure.

4 Data Update l = %J

Replace the files to be updated from before pressing the "Update now"
*  button!

Update HDW‘ | Cancel

Following this, two other windows will appear in a sequence. Press the
"Install" button of the first "Library Installation" window if you wish to up-
date the Simscape Multibody Multiphysics Library. Press "Cancel" to skip
this step. Press the "Import/Update Robot System now" button of the
second "Robot System Import/Update" window if you wish to update the
robotModel and importInfo variables. Press "Cancel" to skip this
step. The simvar, smiData and robotPara variables are updated au-

tomatically.
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6. The simulation of the Simulink/ Simulink Simscape simulation model re-
quires a motion planning in order to provide the required set values for
the (revolute) joints of the robotic manipulator’'s model. Press the “Joint
Movement” or “Linear Movement” button of Panel 2 “Motion Planning” to
start the procedure of planning the desired motion (see the figure of the
“main_ui” window below step four). (In this manual, only the “Linear
Movement” procedure is presented. The “Joint Movement” procedure is
quite similar; therefore, the subsequent instructions are also valid.)
7. A separate GUI (“lin_path_ui” or “joint_move_ui” window(s)) will be
opened. Read the information given in the Panel “General Information” of

the “lin_path_ui” window carefully!

4] lin_path_ui SHUS X

General Information

This interface is a part of trajectory planning for a linear movement of
the robotic manipulators end effector (TCP). Define the start-, target
coordinates and movement parameters entirely. The start coordinates
do not necessarily represent the home position (Home Position (see
figure)). Consider workspace limitations. Collision detection is not
implemented yet! IMPORTANT: The tool (welding end effector)
orientation is predefined as: The tip of the welding tool follows the linear
path while the tools z-axis aims at the contemporary waypoint of the
linear path. The rotation of the tool around its z-axis is determined by
the inverse kinematics solver and cannot be influenced from this
interface. The value of “TCP Acceleration” is the % of the max. allowed
TCP acceleration ([m/s"2]).

Define Start and Target Position of the Linear Movement

Start (A) Target (B)
X: [mm] x: [mm]
y: [mm] y: [mm]
z [mm] =z [mm]
Define the Movement Parameters Ready!
TCP Velocity: TCP Acceleration: Interpolation Resolution: _
[mm/s] [%] [mm]

All input fields need to be defined by appropriate input values. Mo-
tion planning cannot be executed successfully without completely
and correctly filled input fields. Inputs are filtered and checked for
being a number and being within the allowed boundaries. You may
obtain the joint/ axis angle limitations, the movement parameters
limits and the workspace limitations from the corresponding thesis
document (section 3.3, TABLE 3.1) and/ or the ABB _IRB_2600-12-
1.85_Parameters.xlsx spreadsheet and/ or the robotic manipulator
manufacturer’s documents.
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8. Define all input fields by applying appropriate values. Press the “Contin-

ue” button of the Panel “Ready!” to calculate the trajectory and to return

to the “main_ui” window.

Motion planning of linear movements requires solving inverse
kinematics in order to calculate a trajectory in joint space
(from the workspace trajectory). Joint movements in contrast
are directly planned in joint space. Therefore, motion planning
of linear movements can take seconds up to several minutes,
depending on the length and orientation of the linear path and
the performance of the used computer!

9. Make sure that the status of the corresponding entry of Panel 2, “Motion

Planning” (see the figure of the “main_ui” window below step four) is
‘Ready” and the “Last updated” timestamp is within a comprehensible

range.

10.You may restart the procedure of motion planning to change or update

the desired movement type from the “main_ui” window as often as re-

quired.

Consider that only one movement type can be finally defined as
input for the Simulink/ Simulink Simscape simulation mode (either
“Joint Movement” OR “Linear Movement”). When repeating motion
planning for updating or changing the movement type, former re-
sults are overwritten or deleted!

11.To terminate the MATLAB program part and to start the Simulink/ Sim-

ulink Simscape program part, press the “Open Simulink” button of Panel
3 “Simulation” of the “main_ui” window. Pressing the “Open Simulink”
button will also cause printing the recommended minimum simulation
time to the MATLAB “Command Window”. Furthermore, the main simula-
tion variables are made visible in the MATLAB “Workspace”. The Sim-
ulink/ Simulink Simscape environment containing the simulation model
will be opened and all other windows will be closed. Before pressing the
“Open Simulink” button, make sure that the status of all entries of Panel
1, “Basic Data/Requirements” and one of the entries of Panel 2 “Motion
Planning” are “Ready” and the “Last updated” timestamps are within a

comprehensible range.
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If not, check the MATLAB “Current Folder”, the content of the folder (see
EXTENSIONS/ MODIFICATIONS (page 182)) and try to update the data

using the “Update” button and repeat the procedure of motion planning.

Command Window A28 Workspace ®
>» runSim; Name Value
Simscape Multibody Multiphysics Library v2.7 @] importinfo 1x1 RigidBodyTreelmportinfo
Copyright 2013-2018 The MathWorks, Inc. E,robo‘[Model 1x1 RigidBodyTree
C:\Users\My Work Folder\BT ABB IRB 2600 Robot S5im||=ElrobotPara Ll struct
Minimum recommended simulation time: 1.363415 s £l simVar 1xd struct

fi s> i £l smiData 1x1 struct
< I K 1 »

12.Continue with the instructions for SIMULINK/ SIMULINK SIMSCAPE
(page 171).
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1. Continuing from step eleven of the MATLAB sub section (page 166) of
this section, the Simulink/ Simulink Simscape environment (window)

should be visible and appear similar to:

Fe [t Vew Duplay Dagam
il a : 1‘*‘4* D'ﬁ*— =T
188 5200012, V8%, Secape
& (S e o0 12 153 Secaoe b c) -
&
=
- )

Reference

vansm

| ll’fl, %
]
Simscape Robol Model

3 Signal Bus
-
(]
»
Reach w00% de2y

2. Type at minimum the minimum recommended simulation time, printed to
the MATLAB “Command Window”, into the “Simulation stop time” field of
the Simulink/ Simulink Simscape environment (see mark a) in the figure
above) (you may also add a small margin).

3. Enter the “Control Systems” (here exemplarily “Controller Joint 1 (Axis

1)”) subsystem of the simulation model (see mark b) in the figure above).

file fdit View Display Diagram Simulation Anaysis Code Tools Help

Bro-@es ¢HOE S4OP - [0 Ew o @-
Contrl Systems
® (P ab_the_2600_12_185_smscape ¥ (8] Control Systems b -
a [
1] Bus ;:a«!rnllefJoinl10ulBus}'—»‘Cuﬂlml\arSysIemUulEus‘ConT.m\leernﬁDuIEus
- 1
Controller Joint 1 (Axis 1)
|
= l l
I CoftrollerJoint20: [ Cor ystemOutBus. ControllerJoint20utBus
Controller Joint 2 (Axis 2)
E ControllarJoint30 } 10utBus.ControllerJoint30utBus
ControlSysteminBus @ ! Controller Joint 3 (Axis 3)
% Bu CoptrollarJointdO) E ControllerSystemOutBus, ControllerJointdOutBus
Controller Joint 4 (Axis 4)
|’7 ControllarJoint501 -} ontrollerSystemOutBus. ControllerJoint5OutBus
Controller Joint 5 (Axis 5)
] [ Bu Controller, [ Cor Y 10utBus ControllerJoint6OutBus.
: i = |

Controller Joint 6 (Axis 6)

Ready 100% ode23t
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The “Control Systems” subsystem consists of six second level (sub sub-
system) control structure subsystems — one for each joint/ axis of the ro-
botic manipulator’s simulation model. Neglecting the individual input and
output signals of the single control systems, all individual systems do
have same structure. Therefore, the subsequent instructions are also val-

id for the joint controllers of the other axes.

TFle fdt View Displayy Diagam Simulation Analysis Code Tools Help
H-o-Be 4 He-E-wdop e i el 2 @~
Controller Joint. 1 (At 1)

© |[%a| aea _tre_2500_12 185 Senscape b [Pa] control Systems. b (B3] conmrlier Jint 1 (s 1)

| 4]
n
]| e gcmmtnoniounin coomtetian
PO Caater
St OuBus A @
ConroteSystaminus oot Cuthus Velo @—+-=3
o—
e
Anguie Emor 1)
Actsl ot Al 1)
I~
>
L
Raference Angl [ —
If needed. add more inputs here, e.g.
Addicreate your specific control system structure here W nesdad, add more oulputs hers, o.9
- Additional set values from the workspace. BT e v he bus i
~ Additional joint values from the bus (use (IMPORTANT NOTE: The predefined controlier plasadralobinye mﬂ::i;fu'e;’:rﬁ:w:m
“ControllerSysteminBus.Joint#OulBus. Velo" structure is an axample only. It is meant for testing else within the model (.. controlied
1o get the value joint velocity). purposes and does not represent an appropriate or maotor currents),
well parameterized coniroler for this application.)
]
B
»
Ready 100%

4. Add/ create the desired control system design/ structure block dia-
gram(s). Before the creation, read the information written below each of
the three blue shaded (background) areas. (The control system structure
must not be necessarily kept inside the areas (left: input, middle: control-
ler, right: output). The separation is only meant as suggestion for keeping
a clear structure of the block diagram(s).)

When creating control system structures, consider that the
drivers of the joint motors of the unedited Simulink/ Simulink
Simscape simulation model were designed in a way to expect
scalar values within the range from -1 to +1 as the controlled
value (input). Thus: “+1” = “100% power in the positive direc-
tion” and “-1” = “100% power in the negative direction”.
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If you wish to apply any other changes than changes of the control
system structures to the Simulink/ Simulink Simscape simulation
model, it is highly recommended to refer to the EXTENSIONS/
MODIFICATIONS section (page 182) in advance.

5. Repeat the procedures of step three and step four for each of the other

control structure sub subsystems.

. Navigate back to the main structure of the Simulink/ Simulink Simscape
simulation model (see figure below step 1). Adjust the “Configuration Pa-
rameters” of the simulation model if necessary (e.g. solver settings) (see
mark c) in the figure below step 1).

. Run the simulation (see mark d) in the figure below step 1) and wait until
the solving was completed. Alternatively, you are also able to view simu-
lation results live while model solving is executed as explained subse-
quently (step eight). You may abort the model solving before finishing,
e.g. when simulation results seem to be obviously faulty, in order to save

time.

Computation time may vary significantly, depending on the used
G) simulation settings (e.g. trajectory length, solver type, solver step
size, operating system and soft- and hardware).

Always take into consideration that simulation results can be faulty
and do not necessarily represent real systems behaviour.

8. Enter the “Measurements” subsystem (see mark e) in the figure below

step 1). In contrast to the “Control System” subsystem, the second level
subsystems of the “Measurements” subsystem are organized by the type
of the measured values (joint angles, velocities, accelerations and tor-
ques) and not by the origin of the value (revolute joint blocks 1-6 of the
Simulink/ Simulink Simscape simulation model). The structures of the
sub subsystems are quite similar. Therefore, the subsequent exemplary
instructions related to the “Joint Angles” sub subsystem are also valid for
the other sub subsystems.

. Enter the sub subsystem covering the measurements wished to be

viewed (as mentioned above, here exemplarily “Joint Angles”).
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flle fdit View Duplay Diagram Simulation Analsis Code Iooks Help

IR L N EEX 1O RO TR =

0_12_185_Swscape b by Messurements. b {85] 3ot Angles

L s oo
i iz
F

10.Measurements are taken and recorded with Simulink “Scope” blocks. As
shown in the figure above, signals to be measured (actual values) are
taken from the signal bus and routed to the according “Scope” block(s).
In the case of the joint angles measurement, the set values of the joint
angles, calculated in the MATLAB program part, are also fed to the cor-
responding “Scope” block(s) for comparison purposes. Both, actual and
set value signals are also led through “Gain” blocks for the purpose of

unit conversion.

Consider that all bus signal values have Sl units or derived Sl
units. For increasing the comprehensibility of the measured
values, signals of the “Joint Angles”, “Joint Velocities” and
“Joint Accelerations” sub subsystems are converted from the
unit radiant [rad] to the unit degree [°], whereas in the “Joint
Torques” sub subsystem the unit [Nm] is measured. You may
undo the predefined unit conversion by changing the gain
values of the preceding “Gain” blocks of each scope input
signal to one (1).

11.Double-click the “Scope” block to view the graphs of the measured input

signals (see figure above, here exemplarily “Joint Angle Axis 1).
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"4 Joint Angle Axis 1 = | [E] |l
File Tools View Simulation Help -

- COP® QK- FI-

0.6 0.8
Time (seconds)

Ready Sample based | T=1.400

12.Evaluate the measurement result(s). Print and/ or save the graph(s)/ re-

sult(s) if necessary. Also check all other measurements of interest.

Change the predefined appearance of the scope window to align it
@ with your own requirements. E.g. go to “View”, “Layout” and “2x1"to
create two separated signal graphs with the same time axis inside

the graph window.

13.To view the 3D animation/ simulation of the Simulink Simscape simula-
tion model, represented by the .stl geometry files gained from the CAD
model and the calculated kinematics and dynamics, change from the
Simulink/ Simulink Simscape environment window to the MATLAB envi-
ronment window. The opened window should appear like shown below, if
not, change the tab of the MATLAB window to “MECHANICS EXPLOR-
ERS” manually.
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BEd workspace @

Name = Value
€| importinfo 1x1 RigidBodyTreelmportinfo
€] robotModel 1x1 RigidBodyTree

2., ABB_IRB_2600_12_185
&% Simscape_Robot_Model

scape

¥ Robot_Base_Subsystem robotPara 1x1 struct
5 Robot_End_Effector_Subsystem £l simVar 1x1 struct
% Robot_Link_1_Subsystem smiData 1x1 stiuct

tout 195327x1 double

5 Robot Link 2_Subsystem
%" Robot_Link 3 Subsystem
% Robot_Link_4_Subsystem
& Robot_Link_5_Subsystem
&) Mechanism_Configuration
& World_Frame

Connection Frames

QO @ x —— [ |

You may enable the visibility of the frames and the centers of
@ masses of the links (rigid bodies) of the Simulink Simscape simula-

tion model (see figure below, use the marked buttons of the “ME-
CHANICS EXPLORERS” (mark f)).

Search Documentation P & Signin

MECHANICS EXPLORERS

[EEY workspace

Name « Value

€] importInfo 1x1 RigidBodyTreelmportinfo
@] robotModel 1x1 RigidBodyTree

.: ABB_IRB_2600_12_185_Simscape
% Simscape_Robot Model

%% Robot_Base_Subsystem robotPara 1x1 struct
¥ Robot_End_Effector_Subsystem simVar 1x1 struct
%2 Robot_Link_1_Subsystem L] smiData 11 struct

HH tout 195327x1 doubte

%% Robot_Link_2_Subsystem
¥ Robot_Link_3_Subsystem
¥ Robot_Link 4_Subsystem
¥ Robot_Link_5_Subsystem
& Mechanism_Configuration
& World_Frame

Connection Frames

e) v |

QO o

14.Evaluate the results and save them if needed. To restart the MATLAB
program part in order to change parameters or motion planning, repeat
the procedure of the MATLAB subsection of this section (page 166) start-
ing from step one. If you wish to terminate the simulation program, just
close MATLAB and MATLAB Simulink as usual.
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All parameters of the simulation model are stored in an external Microsoft Excel
spreadsheet in order to provide a centralized and clearly arranged parameter
compilation. All required parameters are imported from the spreadsheet during
the initialization of the simulation program and are provided to the Simulink/
Simulink Simscape simulation model via the MATLAB “Workspace” (base).
Therefore, do not change any variable entries within the Simulink/ Simulink

Simscape block(s) (diagrams) settings to change parameters.

The full name of the Microsoft Excel spreadsheet is:
ABB_IRB _2600-12-1.85_Parameters.xlsx

The spreadsheet can be found from the relative file path:
../BT_ABB IRB 2600 Robot Sim. v_A\Data\Robot Parameters\

ABB_IRB _2600-12-1.85_Parameters.xlsx

The general structure and contents of the spreadsheet are listed in the subse-

quent table:
Sl\r:s(?t Sheet Name: Content(s)/ Purpose(s):
(1) General Robot . : .
1 Information Handling capacity, reach, weight
2 |(2) Axis Range Limits | General (angular) axis limitations (A1-A6)
3 [(3) Axis Speed Limits | General axis angular velocity limitations (A1-A6)
4 (4) Axis Acceleration|General axis angular acceleration limitations (A1-
Limits AG)
5 |[(5) TCP Limits General TCP velocity and acceleration limitations

(Revolute) joint(s) parameters: State targets (po-
sition, velocity), internal mechanics (equilibrium

6 |(6) Joint Parameters pos., spring stiffn., damping coeff.), bearings
(friction torques, damping coeff.)
Electrical motor(s) (asynchronous machine
(ASM) with squirrel cage rotor (three-phase))
7 | (7) Motor Parameters | parameters: El. ratings (power, voltage etc.), el.
parameters (stator resistance, reactance, etc.)
and mechanical parameters (rotor inertia, etc.)
8 (8) Transmission Pa-|Cycloidal transmission (gear box) parameters:
rameters teeth numbers (gear ratio), efficiency, inertia, etc.
9 (9) Motor Drivers|Six-pulse three phase converter parameters: DC
Parameters link voltage, switching freq., sample time, etc.
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When simplifying parameters e.g. by adding several viscous damp-
ing and/ or friction coefficients to one overall value, always check
the corresponding application(s)/ block(s) from the Simulink/ Sim-
ulink Simscape simulation model in advance (e.g. different angular
velocities due to transmission gears)! This is also valid for inertias
where gear ratios typically cause squared impacts (e.g.

r =130, — r*2 = 16900!).

It is strongly recommended not to change the structure (this in-
cludes the exact names and sequences of the sheets, cell loca-
tions, etc.) of the spreadsheet. Own sheets can be added after the
last original sheet “(9) Motor Drivers Parameters”.

Navigate to the (relative) file path of the spreadsheet mentioned above.
Save a copy of the unedited spreadsheet to any proper location before
continuing.

Open the spreadsheet and navigate to the sheet(s) containing the pa-

rameter(s) to be changed (check the structure and contents table above).

A B & D E E G H 1 I K L M N B
1 ABB IRB 2600-12/1.85
(Revolute) Joint Parameters State Targets Internal Mechanics Bearing

Breakaw
AR | coulomb
Friction Friction

Position Velocity Equilibrium
Target Value Target Value Position

frad: [rad]; frad]:

Damping Breakaway
Coefficient Friction

T Follower
tion: | i
[N*m/(rad*s)]: |Terque [N*m]:

Axis: (B): )

Spring Stiffaess Bk
[N*mrad]: Velocity |t ey Coeffen
[radss]: [N*m/(rad/s)]:

4 1 Joint] | Axisl Base Link 1 10,0000 0,0000 0,0000 0,0000 0,0000 0,000001 0,000001 0,000001 0,000001

2 Joit2 | Axis2 Link 1 Link 2 0.0000 0,0000 0.0000 0.0000 0.0000 0.000001 0000001 0,000001 0.000001
6 3 Joint3 | Axis 3 Link 2 Link 3 10,0000 0,0000 0,0000 0,0000 0,0000 0,000001 0,000001 0,000001 0,000001
7] 4 Joint 4 Axis 4 Link 3 Link 4 0,0000 0,0000 0,0000 0,0000 0,0000 0,000001 0,000001 0,000001 0,000001
£ 3 Joint 5 Axis 5 Link 4 Link 5 10,0000 0,0000 0,0000 0,0000 0,0000 0,000001 0,000001 0,000001 0,000001
9

6 Joint 6 Axis 6 Axis 6 hc'?[j l[f‘]‘d 00000 0,0000 0,0000 00000 10,0000 0,000001 0,000001 0000001 0,000001
)

s _*;ce: J*:

Apply the desired changes - always consider the corresponding unit(s)
and cell format (number, text, etc.)!

Save all changes (overwrite; do not change the file path or file name) and
close the spreadsheet.

Run the simulation (see section OPERATION (page 166)) and check if
the values of the robotPara variable (see section EXTENSIONS/ MOD-
IFICATIONS (page 182)) are in accordance with the applied changes.

If any error(s) occur(s), firstly check the section TROUBLESHOOTING
(page 193). Then repeat the procedure of this section starting from step

one.
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This section covers instructions for updating the MATLAB and Simulink/ Sim-
ulink Simscape data of the simulation model based on the CAD model. The up-
date procedure needs to be applied after each change of the CAD model (as-

sembly) of the robotic manipulator.

Always check if desired changes could possibly be implemented
without changing and updating the CAD model in advance. E.g.
adding simple geometries or changing the mass of a robotic ma-
G) nipulator’s link and/ or the end effector/ tool can be accomplished
within the MATLAB and/ or Simulink/ Simulink Simscape environ-
ment. For further information refer to the section EXTENSIONS/
MODIFICATIONS (page 182).

When applying changes to the CAD model (assembly), always
consider that the Simulink Simscape block diagrams general struc-
ture is derived from the CAD model structure but cannot be
adapted automatically. Therefore, do not change the existing CAD
model constraints between in the links (revolute), or link 6 and the
end effector/ tool (rigid). Furthermore it is strongly recommended
not to change the overall number of individual parts (seven) of the
CAD model assembly (e.g. when adding a secondary payload to
one of the robotic manipulator’s links, use “unite” or similar func-
tions in order to obtain one rigid body). For a complete listing of the
structure (including constraints, naming and data types) of the CAD
model assembly refer to the corresponding thesis document (sec-
tion 6.1, TABLE 6.1 and TABLE 6.2).

1. Make sure that you are using one of the suitable CAD software listed in
the first table of PREREQUISITES (page 163, table of requirements).

2. If the Simscape Multibody Link Plug-In is not already installed to your
CAD software, go to

https://www.mathworks.com/help/physmod/smlink/ug/installing-and-

Iinkinq-simmechanics-link—software.html14 and follow the instructions

carefully.
3. Run the CAD software and apply the desired changes to the robotic ma-

nipulator’s individual parts and/ or assembly.

" The MathWorks Inc. 2019. Support. Documentation: Simscape Multibody Link Plug-In. Install
the Simscape Multibody Link Plug-In. Release: R2019a. Read on 23.03.2019


https://www.mathworks.com/help/physmod/smlink/ug/installing-and-linking-simmechanics-link-software.html
https://www.mathworks.com/help/physmod/smlink/ug/installing-and-linking-simmechanics-link-software.html
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4. Create an empty folder: Simulink Simscape Data (exact name) and save
it to any proper directory.

5. Create and export the Simscape Multibody model (.xm/ file) from your
CAD software to the Simulink Simscape Data folder created in step four,
using the Simscape Multibody Link Plug-In. (Use .st/l geometry file for-
mat). For assistance, explore

|15

https://www.mathworks.com/help/physmod/smlink/index.html™. The con-

tent of the Simulink Simscape Data folder should now look like shown

below:

'3

ABB_IRB_2600_12_185_Simscape.xml

IRB2600_12_185_base_Standard_sldprt.5TL
IRB2600_12_185_linkl_Standard_sldprt.5TL
IRB2600_12_185_linkZ_Standard_sldprt.5TL
IRB2600_12_185_link3_Standard_sldprt.STL
IRB2600_12_185_linkd_Standard_sldprt.5TL
IRB2600_12_185_link5_Standard_sldprt.5TL
IRB2600_12_185_linke_Standard_sldprt.5TL
Welding_End_Effector_Standard_sldprt.5TL

4 4 4 44445

6. In MATLAB, navigate to the (relative) file path
../BT_ABB IRB_2600_Robot _Sim._v_A\Data\Simulink Simscape Data

7. Save all files shown in the MATLAB “Current Folder” sub window to any
proper folder and directory in order to create backup data.

8. Rename the ABB IRB 2600 12 185 Simscape DataFile.m file to
oldDataFile.m.

9. Delete all files shown in the MATLAB “Current Folder” sub window ex-
cept oldDataFile.m and ABB_IRB_2600_12_185_Simscape.slx.

10. Copy all newly created files from the Simulink Simscape Data folder
(step five) to the MATLAB “Current Folder”.

" The MathWorks Inc. 2019. Support. Documentation: Simscape Multibody Link Plug-In.
Release: R2019a. Read on 23.03.2019


https://www.mathworks.com/help/physmod/smlink/index.html
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11. Type smimport ('ABB IRB 2600 12 185 Simscape.xml',..
'ImportMode’', 'dataFile', 'DataFileName', ..
'"ABB IRB 2600 12 185 Simscape DataFile', ..
'PriorDataFile', 'oldDataFile.m'); tothe MATLAB “Command

Window” and press “Enter”.

Never use 'modelAndDataFile' instead of 'dataFile' as
the value for the ' ImportMode' input argument to call smim-
port ()! This would cause an update of the complete Sim-
ulink/ Simulink Simscape block diagram and not only its data
set!

12.Wait until MATLAB finished the procedure. Read the procedure report
printed to the MATLAB “Command Window” carefully and follow the in-
structions if necessary.

13.Check if the new ABB IRB 2600 12 185 Simscape_ DataFile.m file ex-
ists in the MATLAB “Current Folder” sub window.

14.Delete the oldDataFile.m file via the MATLAB “Current Folder” sub win-
dow.

15.0pen the ABB IRB 2600 12 185 Simscape.slx Simulink/ Simulink
Simscape simulation model and check for any errors.

16.If any error(s) occur(s), firstly check the TROUBLESHOOTING section
(page 193). Then repeat the procedure of this section starting from step
one. You may restore the original Simulink Simscape Data folder from

the backup data created in step seven if the error(s) cannot be solved.
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The section EXTENSIONS/ MODIFICATIONS provides useful hints and general
information concerning the structure and flow of the complete simulation pro-
gram (covering the MATLAB and the Simulink/ Simulink Simscape parts). Be-
cause of the wide variety of applicable extensions/ modifications, this section
does not contain any specific instruction sequences. Several example exten-

sions/ modifications are shown at the end of this section.

Adding, removing or modifying any data of the original data set can
cause fatal errors. Always save a copy of the original data sepa-
rately before applying any changes. Save your work periodically.

Before applying any changes to the simulation program, it is recommend to first-
ly get familiarized with its overall structure in general and its single components
in particular. Therefore, read the sections INTRODUCTION (page 164) and
CHANGE OF PARAMETERS (page 177) in advance. You may also check the
program flow charts of the MATLAB .m files from the appendices of the corre-

sponding thesis document (Appendix 4. Program Flow Charts).

The general structure of the simulation programs data set folder is shown in the
subsequent figure. (In the context of TROUBLESHOOTING (page 193), you

may also ensure the completeness of the data set.)

~e T_AEBB_IRB_ 260 _Fobot_Sim. v_A

O runSim.m
=7 pata
Iillmm_le-a (2% Jjpg, 2% .png images)
———CIMATLAB Code (MATLAB: 16x .ufiles, 3x .£ig files)

[ IRobot Parameters (1% xlsx filed

[ Simscape_Multib ady _Multiphysics_R18h (4% folders,
1% txtfile,
Casimulink Simscape Data 1% .m file)

(Simulinkl Simulink Simscape:
Tx . 3lx file, 1% .=l filg,

T¥ . file & 3% .stlfiles)
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The structure, dependencies and interactions of the MATLAB .m files and ex-
ternal data (within the data set) are depicted in the figure below. The directions
of connections refer to the real data flow (from the left to the right: calls, from
the right to the left: returns). Check the contents of the MATLAB .m files or the
program flow charts from the appendices of the corresponding thesis document
(Appendix 4. Program Flow Charts) to learn more about the input and output

variables/ arguments of each function/ .m file.
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As mentioned in the INTRODUCTION (page 164), all required data of/ for the
simulation (program) are stored to five main variables which are made visible/
accessible in the MATLAB “Workspace” (base) with the transition from the
MATLAB to the Simulink/ Simulink Simscape program part. Consider the sub-

sequent tables and explanations in order to obtain more detailed information

concerning the main simulation variables.

Name:

Type:

Description/Purpose:

Initialized/
Changed by:

simVar

1x1 struct
(9 fields)

Contains all required data for
the execution of the MATLAB
program part. Provides the re-
sults of the MATLAB program
part to the Simulink/ Simulink
Simscape program part.

Initialized by
simVar init (),
changed by all
other functions of
the MATLAB pro-
gram part

smiData

1x1 struct
(3 fields)

Contains the block parameter
values of the imported Sim-
scape Multibody simulation
model automatically created
during the procedure of the ex-
ecution of the smimport ()
function.

Created

smimport (),
initialized by
load smiData (

)

by

robotPara

1x1 struct
(7 fields)

Contains mainly values for the
parameterization of the block(s)
(diagram(s)) of the Simulink/
Simulink Simscape simulation
model.

ro-
bot para xls
import ()

robotModel

1x1 Rigid-
BodyTree

Contains the robotic manipula-
tor's simulation model kinematic
structure (represented by rigid
bodies connected by joints) and
corresponding parameters.

importInfo

1x1 Rigid-
BodyTree-
Importinfo

Contains information concern-
ing the import procedure of the
importrobot () function

importrobot ()
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The variables robotModel and importInfo are the returning values/ vari-
ables/ objects of the MATLAB importrobot () function. If required, further
information concerning the importrobot () function can be obtained from

https://www.mathworks.com/help/robotics/ref/importrobot.html16. General infor-

mation concerning the robotModel and importInfo variables can also be
found there. To get more detailed information about the robotModel
(RigidBodyTree) variable, go to

https://www.mathworks.com/help/robotics/ref/robotics.rigidbodytree-

class.html'’. It is strongly recommended to not to apply any changes to these

variables manually.

Type show (robotModel) ; to the MATLAB “Command Window”
and press “Enter” to view a 3D plot of the robot’s general structure.
® Use showdetails (importInfo); in the same manner to print
the contents of the importInfo variable to the MATLAB “Com-
mand Window” in a readable format.

The smiData variable is loaded from the
ABB IRB 2600 12 185 Simscape DataFile.m file using the
load smiData () function. The

ABB IRB 2600 12 185 Simscape DataFile.m in turn is a model data file de-
rived from the Simulink Simscape Multibody Import .xml file
(ABB_IRB_2600_12_185_Simscape.xml) using the smimport () function (for
more information refer to section CAD MODEL UPDATE (page 179)).

The simvar and robotPara variables were designed from the author in the
context of the accomplishment of the corresponding thesis work/ document. The
robotPara variable is created by the robot para xls import () function
which in turn reads values from the ABB IRB_2600-12-1.85 Parameters.xlsx
spreadsheet file.

'® The MathWorks Inc. 2019. Support. Documentation: Robotics System Toolbox. Manipulator
Algorithms. Functions. Importrobot. Release: R2019a. Read on 24.03.2019

" The MathWorks Inc. 2019. Support. Documentation: Robotics System Toolbox. Manipulator
Algorithms. Classes. robotics.RigidBodyTree class. Release: R2019a. Read on 24.03.2019


https://www.mathworks.com/help/robotics/ref/importrobot.html
https://www.mathworks.com/help/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/robotics/ref/robotics.rigidbodytree-class.html
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The simvar variable is initialized by the simvar init () function and re-
ceived and returned from all functions of the MATLAB program part in order to
allow all functions to read/ write information from/ to one centralized variable.

See the tables below to learn more about the structures and contents of the

simVar and robotPara variables.

Variable:

Fields (First

Level):

Description/ Purpose:

simVar

uilnput

Contains further subfields and sub subfields;
contains inputs of the graphical user interfaces

“Joint move ui()”and “lin path ui()”.

uiControl

Contains further subfields (e.g. exeUpdate); for
control functionalities of the main graphical user
interface “main_ui’”.

statusFlags

Contains (flag-) values (either “1” = “true” or “0” =
"false”); for the interaction/ control functionalities
between the different graphical user interfaces.

updateTime

Contains the update times of updated/ loaded /
created/ executed data/ libraries/ programs (e.g.
Simscape Multibody Multiphysics Library) for the
“Last updated:” labels in the “main_ui” GUI win-
dow.

linPathPlan

Contains further subfields (e.g. pRes); contains
the results of the linear trajectory planning
lin traj planning() (for
get 1lin move () internal use).

initVval

Contains further subfields (e.g. gStarta); con-
tains the initial pose (and velocities) of the Sim-
ulink/ Simulink Simscape simulation model.

targetVal

Contains further subfields (e.g. gTargetB); con-
tains the target pose (and velocities) of the Sim-
ulink/ Simulink Simscape simulation model.

gik

Contains a further subfield (qRes); stores the
(unformatted) results of the inverse kinematics
(inverse kinematics()).

gSetValues

Contains further subfields (g1sv..g6SV); con-
tains the (formatted) set values of the joint an-
gles for the Simulink/ Simulink Simscape simula-
tion model.
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Fields (First
Variable: Description/ Purpose:
Level):
generalRo | Contains further subfields (e.g. capacity);
eralRo- contains general information of the real robotic
botInfo manipulator.
Contains further subfields (e.g. range); contains
axis/ joint limitations of the Simulink/ Simulink
axisLim- | Simscape simulation model equal to the axis/
its joint limitations of the real robotic manipulator
(e.g. for input filtering in “joint move ui()”
and “1in path ui()”).
Contains values (e.g. velocity); contains TCP
limitations of the Simulink/ Simulink Simscape
tcpLimits | simulation model equal to the TCP limitations of
the real robotic manipulator(e.g. for input filtering
“Joint move ui ()”and “lin path ui ()”).
Contains further subfields and sub subfields (e.g.
robotPara stateTar); contains values for the parameteri-

jointPara

zation of the revolute joint block(s) (diagram(s))
of the Simulink/ Simulink Simscape simulation
model.

motorPara

Contains further subfields and sub subfields (e.g.
ratPow); contains values for the parameteriza-
tion of the joint motor/ driver block(s) (dia-
gram(s)) of the Simulink/ Simulink Simscape
simulation model.

Contains further subfields and sub subfields (e.g.
nCdt); contains values for the parameterization

E;ansmPa of the joint transmission block(s) (diagram(s)) of
the Simulink/ Simulink Simscape simulation
model.

Contains further subfields and sub subfields (e.g.
motDrivPa | vdc); contains values for the parameterization of
ra the joint motor driver block(s) (diagram(s)) of the

Simulink/ Simulink Simscape simulation model.

It is recommended to only read the original variables structures and not to apply

any changes to them. If required, add your own structures/ entries to the varia-

bles without overwriting the existing contents.

®

Use the MATLAB “Workspace” sub window to view the variables
contents by double-clicking them.
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Example 1: Modification of Robot Model (Links (Bodies)/ Joints) Properties

As mentioned in section CAD MODEL UPDATE (page 179), some simple

changes of the properties (links (solids/ rigid bodies) masses, centers of mass-

es, inertia properties, joint properties, rigid transformations, etc.) of the robotic

manipulator’s simulation model can be applied without changing and updating

the CAD model. In this example, the change of the mass of the end effector/

tool of the simulation model is shown exemplarily.

Use the MATLAB “Current Folder” sub window or the “Address Field” to
navigate to the relative path:
../BT_ABB IRB 2600 Robot Sim._v_A\Data\Simulink Simscape Data.
Open the ABB IRB 2600 12 185 Simscape DataFile.m file from
the MATLAB “Current Folder” sub window by double-clicking.

Change to the MATALB “Editor” sub window to view the code of the
ABB IRB 2600 12 185 Simscape DataFile.m file. Search for the
code line: smiData.Solid (6) .ID = '"Weld-
ing End Effector*:*Standard'; (line 196 in this case, see mark
a) in the figure below). (Consider that the end effector body is represent-
ed by the solid body with the index six (6).)

ABB_IRB_2600_12_185_Simscape_DataFilem +

187 Lol
188 $Inertia Type — Custom 5
189 %Visual Properties — Simple

190 — smiData.Solid(6) .mass = 5; % kg b)

197 = smiData.Solid(6).CoM = [-6.598118590094697 89.202208174451954 112.75924894509187]1; % mm

192 — smiData.Solid (6) .MoI = [11039.93918588447 1894.5671108729034 11790.502464329467]1; % kg*mm~2

193 = smiData.Solid (6) .PoI = [414.19741541277642 89.323461907090248 -2574.71652467629471; % kg*mm~2

194 — smiData.Solid (6) .color = [0.75294117647056822 0.75294117647058822 0.75294117647058822]; -
195 — smiData.Solid(6) .opacity = 1; =
196 — smiData.Solid(6) .ID = 'Welding End_Effector*:*Standard'; ‘ a)

197 ¥

< »

Go to smiData.Solid(6) .mass (line 190) and apply the desired
changes (see mark b) in the figure above) (consider the corresponding
unit written as comment behind the value).

Save (overwrite) the applied changes.
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When changing e.g. the center of mass of a body (e.g. smiDa-
@ ta.Solid(6).CoM, line 191 in the figure above) always check the cor-

responding origin of this value from the Simulink Simscape simula-
tion model block diagram in advance.

Example 2: Adding/ branching off Signal Bus Signals

Within the Simulink/ Simulink Simscape simulation model, all sig-
@ nals are routed with the help of a signal bus system (exception:

values/ parameters directly or indirectly (“From Workspace” block)
obtained from the MATLAB “Workspace” (base)).

Simulink and Simulink Simscape use different signal domains. Al-
ways use “PS-Simulink Converter or “Simulink-PS Converter®
blocks for interfacing when adding or branching off bus signals
(bus signals are in the Simulink signal domain and use Sl units or
derived Sl units only).

The example adding/ branching off signal bus signals is exemplarily shown for
adding/ branching off signal bus signals within the “Controller Joint 1 (Axis 1)”

subsystem.

e Within the Simulink Simscape simulation model environment/ window,
navigate to the “Control Systems” subsystem. Then enter the sub sub-

system “Controller Joint 1 (Axis 1)”:

File fdit View Display Diagram Simulation Analysis Code Tools Help

A-t-H e 4 Ee-E-ed®p [+ 1 Voma D@~

‘Controller Joint 1 (4ds 1)

® |[Pa] AB_trB_2600_12_185_Simscape ¥ [¥a] Control Systems. b [P Controller Joint 1 {Ads 1) -

Goape

If needed, add more inputs here, e.g.

If needed, add more oulpuls here, e.g.

our specific control system structure here,

- Addilional set val the workspace.
- Additional joint valugs from the bus (use (IMPORTANT NOTE: The predefined controlier
“ControllerSysteminBus.Joint#OutBus.Velo" structure is an example anly. It is meant for lesting
to get the value joint velocity) purposes and does not represent an appropriate or
well controller for this )

- Add controlled values o the bus in
order to access these values anywhere
else within the model (e.g. controlled
motor currents)
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For branching off signals from the signal bus, double-click an existing
“‘Bus Element In” block (here “ControllerSystemin-

Bus.Joint10OutBus.Angle” exemplarily, see mark c) in the figure above).

Properties of input part: ControllerSystemInBus - S

Select an element from a bus (or the entire bus) that is connected to the input
port of the subsystem.

Port name: | ControllerSysteminBus Port number: | 1 Set color =
d) | =l

¥ ControllerSystemInBus
¥ Joint1QutBus

Angle
Velo

BN S . R

Help

Search for the desired signal in the bus structure depictured in the
opened window. Mark the signal(s) to be added (here “ElectricalTorque”
exemplarily) and press the “Add blocks for selected signals” button, see
mark d) in the figure above). The new “Bus Element In” block(s) will ap-
pear in the block diagram underneath the existing one(s). Alternatively,

you can add “Bus Element In” blocks from the Simulink “Library”.

For adding any signal(s) to the signal bus, double-click an existing “Bus
Element Out” block (here “ControllerJoint1OutBus.ControlledValue” ex-
emplarily, (see mark e) in the second last figure). A window will appear,
similar to the one shown in the figure above. Instead of the “Add blocks
for selected signals” button, now press the “Add a new signal” button
(same appearance). A new signal will be added to the bus structure de-
pictured in the opened window. Furthermore, a new “Bus Element Out’
block will be added in the block diagram underneath the existing one.
Apply appropriate naming to the added bus signal. Alternatively, you can
add “Bus Element Out” blocks from the Simulink “Library”.
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Example 3: Change of the Joint Motor and Motor Driver 33 (36)

Subsequently, the change of the motor and the motor driver of Joint 1 of the

Simulink Simscape simulation model is shown exemplarily.

Within the Simulink Simscape simulation model environment/ window,
firstly navigate to the “Simscape Robot Model” subsystem. Secondly, en-
ter the sub subsystem “Robot Base Subsystem”, following that, enter the

third level subsystem “Joint 1 Drive System”.

r+ pu -BJT Jaint1 DriveOulBus.
Measurements.

Damping Simscape
Al a2 3] Frict
ASM 1 Driver : 2\, : - PRk Intlerface 1

Delete the “ASM 1 Driver”, “Phase Permute (Delta)” and “ASM 1 (Squir-
rel Cage)” blocks (see the marked area in the figure above). If not re-
quired for own signal routing purposes, also delete the “ASM 1 Meas-
urements” and “Joint1DriveOutBus.AsmMeasure” blocks.

Create/ Insert the new motor model (and driver if required) and connect it
to the existing mechanical rotational conserving lines “R” (rod) and “C”

(case).

Only signal(s)/ block(s) from the same Simulink Simscape domain
can be connected directly (e.g. “Driveline”, “Electrical’, etc.) (con-
sider the different colours of the signals of the different domains).
For interfacing, use “Interface” blocks (e.g. “Rotational Simscape
Intft” block) to be found from the Simulink “Library” -> Simscape
Multibody Multiphysics Library.
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34 (36)
Use the existing “Machine 1 Inertia” and “Machine 1 Viscous Damping”
blocks for representing the mechanical behaviour/ properties of the mo-
tor. Therefore, change the corresponding parameters in the
ABB _IRB 2600-12-1.85 Parameters.xlsx spreadsheet (see section
CHANGE OF PARAMETERS (page 177)). To disable the mentioned
predefined blocks, e.g. when neglecting mechanical influences of the
motors on the simulation model, set the specific parameters to zero.
(Setting the specific parameters to zero can possibly cause various er-
rors — try to use small values near zero (e.g. 1E-12) to avoid these errors
whenever occurred.)
Alternatively, you can delete the variable entries of the blocks settings
and type in the desired values directly.
Consider adapting the control system structures, to be found from the
“Control Systems” subsystem, in order to align the type(s) of the con-
trolled value(s) with the expected input(s) of the new motor and its driver
(in this context, also refer to step ten of the sub section SIMULINK/ SIM-
ULINK SIMSCAPE of the section OPERATION (page 171)).
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7. TROUBLESHOOTING 35 (36)
The TROUBLESHOOTING section is meant for identifying and fixing errors oc-
curred in the context of using an unedited or an edited version of the simulation
program. Because of the high number of possible mistakes/ errors/ faults, only a
few typical, common and very specific, matters can be handled within this sec-

tion. Check the entries listed in the subsequent table whenever unknown errors

occurred and apply all applicable solutions/ corrections.

Also explore https://www.mathworks.com/help/ for further help.

®

(The MathWorks Inc. 2019. Support. Documentation. Release:
R2019a. Read on 23.03.2019)

Description(s)/ Error(s)/ Fault(s):

Explanation(s)/ Solution(s):

For an unknown reason, | cannot
use the GUI and/ or close any win-
dow(s) and/ or exit the simulation
program.

Go to the MATLAB “Command Win-
dow”, place the cursor at any position
inside and press “CTRL+D”. This should
terminate all active MATLAB tasks.

| changed the robot parameters in
the robot parameters spreadsheet.
The changes are not applied to the
MATLAB or/ and Simulink/ Sim-
ulink Simscape environment(s).

Consider that the MATLAB program
needs to be run again after applying
changes to the robot parameters. Use
the “Update” button in the “main_ui” or
restart the program from the MATLAB
“‘Command Window” using runSim;.

Make sure that you saved the applied
changes by overwriting the existing
spreadsheet. Do not use “Save as”.

| changed the robot parameters in
the robot parameters spreadsheet.
MATLAB or/ and Simulink/ Sim-
ulink Simscape now report various
errors.

Check the applied changes for typos,
incorrect separators, incorrect units and
incorrect cell formats.

| changed values in MATLAB or/
and Simulink/ Simulink Simscape
environment(s) manually. Now var-
ious errors are reported (e.g. ex-
ceeded variable boundaries).

Ensure that the correct separators were
used. Example: one point zero five:
Incorrect: 1,05

Correct: 1.05

Motion planning of linear move-
ments takes a lot more time and
computational efforts than the mo-
tion planning of joint movements.

Motion planning of linear movements
requires solving inverse kinematics in
order to calculate a trajectory in joint
space (from the workspace trajectory).
Joint movements in contrast are directly
planned in joint space. Therefore, mo-
tion planning of linear movements re-
quires more computational time and ef-
forts.



https://www.mathworks.com/help/
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36 (36)

Description(s)/ Error(s)/ Fault(s):

Explanation(s)/ Solution(s):

Compiling and solving the Sim-
ulink/ Simulink Simscape simula-
tion model is very slow and causes
high CPU, RAM and disk usage.

The simulation model at hand is com-
prehensive and detailed — a high de-
mand of computational performance is
considered as normal. You may close all
other running applications on your com-
puter in order to provide MATLAB the
maximum of available CPU, RAM and
disk capacities.

| opened the Simulink/ Simulink
Simscape simulation model manu-
ally from its folder. Several blocks
are marked in a red colour and |
cannot compile/ run the simulation
without errors.

Always run the GUI in advance in order
to provide the required data and varia-
bles via the MATLAB “Workspace”
(base) to the Simulink/ Simulink Sim-
scape simulation model.

| executed the simulation and tried
to run the GUI again using
runSim; in the MATLAB “Com-
mand Window”. MATLAB reports
‘...”is not found the current folder.

Check the MATLAB “Current Folder”,

must be:
../BT_ABB IRB 2600 Robot Sim. v A
or:

/BT _ABB_IRB_2600_Robot Sim._v B

| executed the Simulink/ Simulink
Simscape simulation. Result eval-
uation revealed that the set values
did not reached steady states until
the end of the simulation time.

Make sure that the value of the Sim-
ulink/  Simulink Simscape simulation
time is equal to or higher than the mini-
mum recommend simulation time print-
ed to the MATLAB “Command Window”
after pressing the “Open” button in the
‘main_ui’.

| tried to extend the Simulink Sim-
scape simulation model block dia-
gram. | was not able to connect a
Simulink block to a Simulink Sim-
scape block or signal (or vice ver-
sa) (e.g. “Scope” block).

Simulink and Simulink Simscape use
different signal domains. Always use
“PS-Simulink Converter or “Simulink-
PS Converter® blocks for interfacing.
Also ensure to apply appropriate set-
tings of the converter blocks (units, input
handling).

| disconnected a block from the
Simulink  Simscape simulation
model block diagram for testing
purposes. The Simulink “Diagnos-
tic viewer” now reports various er-
rors when trying to compile/ run the
simulation.

Simulink Simscape block diagrams do
always need exactly one “Solver Con-
figuration” block. All blocks of the block
diagram need to be directly or indirectly
(via other blocks) connected the “Solver
Configuration” block.

The screen of my computer does
not display anything. | cannot open
the manual and check the trouble-
shooting section.

Try to reduce your personal environ-
mental impact by avoiding printing use-
less manual documents next time.
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