Bachelor’s thesis
Information and Communications Technology

2019

Markus Sukoinen

AUDIO IMPLEMENTATION
METHODS IN UNITY

TURKU AMK

TURKU UNIVERSITY OF
APPLIED SCIENCES

BACHELOR'’S THESIS | ABSTRACT
TURKU UNIVERSITY OF APPLIED SCIENCES
Information and Communications Technology

2019 | 27 pages

Markus Sukoinen

AUDIO IMPLEMENTATION METHODS IN UNITY

This thesis introduces the reader to video game audio implementation. Its goal was to bridge the gap
between sound designers and programmers since even cross-functional teams often lack sound
designers with programming skills, leaving programmers to make decisions concerning game audio
during the implementation process. The thesis compared two different implementation methods used
in two individual game development projects. The first game had all implementation work completed in
the game engine, while the second game incorporated the use of middleware.

The benefits of using middleware became very apparent during development. The sound designer was
able to create events that contained completed functionality and these events could then be imported
into the Unity game engine. Thus, the audio implementation process required significantly less
programming and allowed the sound designer to be more involved.

Middleware will add additional costs to development and should be considered on a case-by-case basis.

Because the licensing scheme of the investigated middleware does not line up with the commisioner’s
business model, competing middleware solutions should be explored for future projects.

KEYWORDS:

Game, Audio, Implementation, Unity, FMOD, Sound Design

OPINNAYTETYO (AMK) | THVISTELMA
TURUN AMMATTIKORKEAKOULU
Tieto- ja viestintatekniikan koulutus

2019 | 27 sivua

Markus Sukoinen

AANEN IMPLEMENTOINTITAVAT UNITY-
PELIMOOTTORISSA

Opinndytetydn aiheena on pelien ddnien implementointi, ja sen tavoitteena on rakentaa siltaa
danisuunnittelijoiden ja ohjelmoijien valiseen kuiluun. Jopa moniosaajatiimeiltd puuttuu usein
ohjelmointitaitoiset danisuunnittelijat, jolloin ohjelmoijien on tehtava paatoksia pelien danista
implementointiprosessin aikana. Opinnaytetyo vertaili kahdessa erillisessa pelinkehitysprojektissa
kadytettyja implementointitapoja. Ensimmaisessd pelissa kaikki implementointityd tehtiin
pelimoottorissa, kun taas toisessa apuna kaytettiin valiohjelmistoa.

Viliohjelmiston tuomat hyédyt tulivat esiin opinndytetydn aikana. Adnisuunnittelija sai véliohjelmiston
avulla luotua valmiita toiminnallisuuksia sisaltavid tapahtumia, jotka voitiin tuoda suoraan Unity-
pelimoottoriin. Ndin danien implementointityd vaati huomattavasti vdhemman ohjelmointia, ja
danisuunnittelija pystyi ottamaan aktiivisemman aseman tiimissa.

Lisaantyneiden kustannuksien takia tulee valiohjelmiston kayttda harkita tapauskohtaisesti. Koska
tutkitun valiohjelmiston lisensointimalli ei sovi yhteen opinndytetyon asiakkaan liikkemallin kanssa, on
syyta arvioida kilpailevia ratkaisuja tulevia hankkeita varten

ASIASANAT:

Peli, 4ani, implementointi, Unity, FMOD, danisuunnittelu

CONTENTS

LIST OF ABBREVIATIONS
1 INTRODUCTION

2 AUDIO IMPLEMENTATION
2.1 Introduction to audio implementation
2.2 Audio asset flow in a standard setting

2.3 Audio asset flow in using a middleware solution

3 FMOD

3.1 Overview of FMOD
3.2 Licensing

3.3 FMOD concepts

4 USING UNITY TOOLS
4.1 Rapid Magic
4.2 Importing audio
4.2.1 Import settings
4.3 Implementing audio
4.3.1 Music looping
4.3.2 SFX

5 USING FMOD

5.1 Minigolf Universe

5.2 Setting up FMOD

5.3 Implementing audio
5.3.1 Music looping
5.3.2 SFX

6 CONCLUSION

REFERENCES

10

11
11
12
12

15
15
15
16
17
17
21

22
22
22
23
23
24

26

27

FIGURES

Figure 1. Audio asset flow in standard setting.
Figure 2. Audio asset flow using FMOD as a middleware solution.
Figure 3. The FMOD Studio GUI.

Figure 5. The Events list containing all FMOD events used in Minigolf Universe.

Figure 6. Audio tracks displayed in the editor windows of FMOD Studio.
Figure 7. Import settings used for audio assets in Rapid Magic.

Figure 8. If-else statements handling music transitions for in-game levels.
Figure 9. The collapsed view of the serialized private field Music Tracks.
Figure 10. Project settings for audio.

Figure 11. The main menu audio event in FMOD Studio.

Figure 12. The first level of Minigolf Universe.

Figure 13. A Multi Instrument in FMOD Studio.

10
11
13
14
16
18
20
23
23
24
25

LIST OF ABBREVIATIONS

.mp3
.wav
2D
3D
API

Audio middleware

Beat
BPM
CPU
DAW

dB

EULA

GUI

i0S

Isometric projection
Key

Mix Bus

Mixer

Semitone

SFX

Wet/Dry levels

Audio file format using lossy compression
Uncompressed audio file format
Two-dimensional

Three-dimensional

Application Programming Interface. Sofware intermediary
allowing applications to talk to each other (Mulesoft, n.d.)

A third party tool set sitting between the game engine and
audio hardware providing common functionality (Brown,
n.d.)

Unit of time used in music theory
Beats per minute. Indicates tempo of a musical track.
Computer Processing Unit

Digital Audio Workstation. An application used to record,
edit, arrange and export audio.

Decibel. Unit used to measure sound level, but is also used
in electronics, sighals and communication (Wolfe, n.d.)

End-user license agreement

Graphical User Interface

A mobile operating system created by Apple Inc.

A method of presenting drawings in three dimensions

A group of tones forming the foundation for a musical piece.

A channel on a mixer that collects and outputs any channels
sent to it.

A mixer collects audio channels and combines them. It is
usually able to control output levels on the channels.

The smallest interval between notes used in Western music
theory

Sound effects

The proportion between original (dry) and "effected” (wet)
signals (Indiana University, n.d.)

1 INTRODUCTION

Audio implementation in the context of a typical game development cycle is an often
overlooked phase that is arguably much less straight-forward than the implementation of
graphical assets. Audio implementation refers to the process of transferring audio assets into
the game project in a way that results in a cohesive experience for the end user. Such assets
include music, dialogue, and SFX. Audio implementation in its most basic form requires a
combination of technical and artistic ability; traits that are not always both found in the same
team member.

This thesis is commissioned by Plush Pop Soft Ltd, a small-sized video game studio based in
Turku, Finland. Audio implementation created a gap in the development of previous projects,
which prompted the company to want to expand their knowledge in the topic. As literature on
audio implementation is scarce, and in regards to Unity, almost non-existant, a thesis on the
subject could not only prove valuable to the commissioner but also function as a resource for
students and aspiring developers. The best-known third-party resource for audio
implementation is Game Audio Implementation: A Practical Guide using the Unreal Engine
(2016), but as the name implies, it focuses exclusively on the Unreal Engine taking advantage
of its Blueprints system. This alone makes it unhelpful for games developed in the Unity
Engine.

Addressing the above mentioned need, this thesis aims to answer the following questions:

1. What happens to audio assets after they are made so that they end up in the final
product?

2. Who in the team is responsible for this phase and what does it even entail?

3. Could the process be made any easier?

4. Would a middleware solution provide eventual savings for the company?

By answering these questions the thesis provides the reader with a basic understanding of how
audio is implemented, specifically when working with the Unity game engine. The
implementation methods are separated into two categories: implementation using stock tools
in Unity and a middleware solution. The thesis will introduce the tools used in these methods
and present the reader issues and potential solutions found during the development process.
The thesis assumes some level of knowledge of the Unity Editor and CH.

All sound production and the following implementation was carried out specifically for this
thesis.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

2 AUDIO IMPLEMENTATION

2.1 Introduction to audio implementation

In order to understand the challenge audio implementation might prove to a game
development team, one must first understand what audio implementation is and where it fits
in the development cycle. Traditionally, audio implementation has been an additional duty of
the sound designers (Berklee College of Music, n.d.) but this is not necessarily the case any
longer. Audio programming is a term also often used interchangeably with audio
implementation.

The unpredictable nature of an interactive medium, such as video games, poses a unique
problem. In a movie, the sounds will always play in the same exact spot at the same time every
time. In a video game, sounds often need to be triggered by something in the game
environment, background music swells in and out and dialogue might change because of
actions that the player chooses to take. This is why audio implementation is a necessary
process in game development. When a developer is taking audio assets and making them fit in
the game, he is implementing audio.

2.2 Audio asset flow in a standard setting

Audio assets go through many phases before they end up in the final product. Figure 1 is a
process chart showing the main phases relevant from the sound design perspective.

Editing and
arrangement in
the DAW

Audio
implementation

Acquisition of

raw audio Final product

Figure 1. Audio asset flow in standard setting.

First, the sound designer has to acquire raw audio. The method of acquiring raw audio
depends on the budget, size or type of game in development, for example, recording ambient
sounds in a forest with a field recorder, recording dialogue with voice actors in a studio
environment or simply purchasing audio files from a sound bank.

The next step is the actual production stage, where a sound designer or music producer works
in the DAW editing and arranging sounds to usable audio assets. While Unity supports many
audio formats and is able to compress to a suitable format and size, it is advisable to export to

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

10

an uncompressed audio format and follow a sample rate of 44.1 kHz (16bit). A higher sample
rate, such as 48 kHz (24bit), will be resampled into 44.1 kHz (16bit) during compression
resulting in an output that is two semitones lower than intended, possibly giving the listener
an impression of out-of-tune audio. Making sure to use the correct format from the start will
save developers from headaches later on (Stevens and Raybould, 2016)

In the end, the chosen format depends on the priorities of the developer. MP3 is an exception
since it makes it impossible to create seamless loops and should not, therefore, be used as a
format for background music or other looping audio (Strauss, n.d.). Once the audio files have
been exported, they are ready to be implemented in the game.

2.3 Audio asset flow in using a middleware solution

A middleware solution provides a slightly different flow as is shown in Figure 2. While on the
surface it might look like an extra step, the point is to greatly speed up the following audio
implementation work in the Unity game engine and offload some of the programming work to
the sound designer as well as to give the sound designer more control over how, when and
where the sounds are triggered.

Audio
implementation

Editing and
arrangement in Final product
the DAW

Acquisition of
raw audio

Figure 2. Audio asset flow using FMOD as a middleware solution.

Middleware is a bridge between the sound designers and the programmers. It is a codebase
most often structured as two separate sections: the GUI and the API. The GUI is where a sound
designer can import audio, design events and often even test the audio in real-time, thus
allowing a sound designer to at least partly take on the role of an audio implementer. The API
then allows a programmer to access the codebase without the need of delving into the main
code. (Horowitz and Looney, 2017).

The audio middleware chosen for this thesis is FMOD. Other notable audio middleware
solutions are Wwise by Audiokinetic and Fabric by Tazman-Audio.

Unlike Fabric and Wwise, which provide a custom interface and audio features and integrate
into the Unity engine seamlessly, FMOD uses a desktop application completely separating the
GUI from the game engine. In this application the sound designer creates audio events that
can be later imported into Unity. As a result, the great bulk of the work is already carried out
when the audio implementation phase reaches the Unity Editor.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

11

3 FMOD

3.1 Overview of FMOD

FMOD is an industry standard solution for implementing audio. It offers a complete toolset for
designing, organizing and optimizing adaptive audio. Often used features are, for example,
volume automation, pitch shifting, audio panning and looping. While the FMOD product family
includes FMOD Core and FMOD.io, the most relevant product to this thesis is FMOD Studio
(Figure 3).

File Edit Create View Window Scripts FMOD.io Help

Events Banks Assets LavaDungeon_Levels

Q-
00:00.000 Overview

Ball_Collision
Desert_Levels Timeline
Diamond ¥ Logic Tracks

Dungeon_Levels

Fanfare

Grass_Levels

Laser

[B] LavaDungeon_Levels

Main_Menu

Putting

Sand Splash

Snow_Levels

Water_Splash

Audio 1

Live Update Off] [Platform | Desktop

Figure 3. The FMOD Studio GUI.

FMOD Studio can be separated into the following technologies:

e FMOD Studio, a desktop application that uses a DAW-like GUI (Horowitz, S. and
Looney, S. 2017), making it an approachable program for sound designers and music
producers. Figure 3 shows the layout of the program when editing an event. Figure 4
presents the GUI of a typical mainstream DAW, Logic Pro X, for comparison.

e FMOD Studio APl is the programmer interface used to load FMOD Studio banks and
trigger events made by the sound designer in FMOD Studio.

e FMOD Studio Low Level API, which is a toolless programmer interface used to trigger
simple sounds only. (Firelight Technologies a, n.d.)

FMOD has been used in many award-winning games such as Celeste (2018), Subnautica (2018)
and Dark Souls 3 (2016). (Firelight Technologies d, n.d.)

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

12

@ o 8 Untitied - Tracks
; 9

vent

vvvvv

Stereo Out

M S

Figure 4. The GUI of Logic Pro X.
3.2 Licensing

An obvious disadvantage compared to using a custom solution or stock tools provided by the
engine is the licensing costs. This is no different for FMOD. Licensing schemes are divided into
three tiers:

e Indie is the most affordable scheme but it does not offer technical support. Indie is
meant for studios with a development budget under $500k. This license can be used
for free once every 12 months, but any additional uses within this time period will
incur a fee of $2000 per game.

e Basicis the mid-tier licensing scheme. This is meant for development budgets between
$500k and $1.5M. The fee is a fixed $5,000 per game. This includes support for a year.

e Premium is the most expensive licensing scheme and meant for games with a
development budget over $1.5M. The fee is set to $15,000 per game and it includes
support for two years.

All licenses include lifetime distribution rights and the full set of FMOD features. A license is
only needed when a game or application is meant for commercial distribution and it is not
necessary to purchase a license when the game or application is still in development. Personal
and educational use is permitted under the terms of the EULA. (Firelight Technologies e, n.d.).

3.3 FMOD concepts

FMOD Studio uses proprietary concepts and a basic understanding of some of its core ideas is
needed to follow along this thesis. The most relevant concepts will be explained in the
following paragraphs .

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

13

The events are the most important concept in FMOD Studio. They are instances of sound that
can be triggered and controlled by code (Firelight Technologies b, n.d.). They contain tracks,
instruments, and parameters. Events are listed in the left side of the GUI, shown in Figure 5.

Events

Desert_Levels
Diamond
Dungeon_Levels
Fanfare
Grass_Lewvels

Laser
LavaDungeon_Levels

Main_Menu

Putting

Sand_Splash
Snow_Levels

Water_Splash

New Event New Folder Flatten

Figure 5. The Events list containing all FMOD events used in Minigolf Universe.

Tracks allow event instances to function as a kind of mixer. By selecting an event in the list, its
tracks will be displayed in the editor window (Firelight Technologies b, n.d.). The tracks of an
example event are displayed in Figure 6.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

14

LavaDungeon_Levels

oon

¥ Logic Tracks

Timeline

lavadungeons

lavadungeons

Figure 6. Audio tracks displayed in the editor windows of FMOD Studio.

Parameters can change what an event is doing after it has been triggered. Paramaters can be
used to alter event properties during its run time by automating its values. (Firelight
Technologies b, n.d.). Figure 6 shows an automation curve on tracks Audio 1 and Audio 2.
These curves control the volumes for each track allowing a smooth transition. This kind of
transition is called a cross-fade (Merrian-Webster n.d.).

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

15

4 USING UNITY TOOLS

4.1 Rapid Magic

The first audio implementation solution that will be explained in this thesis is for the game
Rapid Magic, which only uses stock tools provided by the Unity game engine. Rapid Magic is a
2D side-scrolling adventure game with a pixelated art style made for mobile platforms. As
such, positional audio will not be covered and most audio will come from a mono source.
Rapid Magic was in development for a year and includes a full soundtrack as well as a
multitude of SFX. Rapid Magic was published in 2018 for iOS devices and it was developed in
Unity version 2017.1.4.

4.2 Importing audio

Importing audio into the Unity asset folder is simple. The first step is to create a folder under
Assets in the Project view. This is done by right-clicking, choosing Create and then Folder.
Alternatively folders can be created from the upper left corner by clicking on Assets and then
following the same steps. The folder should be named Audio, and subsequent folders for SFX,
level music and dialogue should be created for an organized folder structure. Naming assets
and folders clearly from the start makes it easier to scale up game projects later.

Unity supports .aif, .wav, .mp3, and .ogg file formats (Unity Technologies. n.d), but all created
audio assets for Rapid Magic are in .wav. for highest quality and consistency.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

16

4.2.1 Import settings

Vorbis, 44100 Hz, Stereo

Figure 7. Import settings used for audio assets in Rapid Magic.

The Inspector shows the import settings as well as a waveform preview when selecting one or
more audio assets in the project window. This view is shown in Figure 7. For Rapid Magic the
decision was made to compress audio into Vorbis in Unity. Vorbis can significantly cut file sizes
but this is done at the expense of audio quality (Unity Technologies, n.d.). CPU usage is
relatively high (Mostovy, 2016), but it did not affect performance in this case. The Quality

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

17

setting was kept at 100 since audible fidelity loss started to occur as soon as this slider was
lowered.

Preload Audio Data is checked by default. This means that the selected audio file will be loaded
when the scene is loaded.

The Sample Rate Settings was also left in its default position. Generally a good practice would
be to override the sample rate to 44.1 kHz, since this is the default sample rate for CDs and is
supported by most soundcards (Mostovy, 2016). All audio assets were exported from the DAW
in this sample rate so this omission did not end up causing any problems.

Once all audio assets have been imported correctly it is time to start implementing.

4.3 Implementing audio

All audio-related code in Rapid Magic is handled by an Audio Manager object containing an
Audio Manager script component. The Audio Manager object is created when a scene is
loaded.

4.3.1 Music looping

It is reasonable to expect a piece of music to have reverb. This will leave a tail of decaying
audio at the end of a song or musical loop. Simply cutting the tail of the audio clip in order to
loop it is not enough, since once the audio clip starts from the beginning it will be lacking
reverb. This is because the audio clip starts from absolute silence. The result is a jarring
transition and will clearly be heard by the end user.

To circumvent this problem, the sound designer can prepare two versions of the audio clip:
one that plays only once when the section that is meant to loop starts and one that loops as
long as is needed. The first clip needs no other attention except making sure to cut the clip at
the exact beat it ends in. The next clip, which is meant to be able loop indefinitely, needs to
have the cut off reverb tail from the first clip applied to the very beginning of the clip. By doing
this the looping clip will transition seamlessly, since every time it starts from the beginning it
will now include the correct amout of reverb that the end user expects to hear.

This is the way background and level music looping was implemented in Rapid Magic. Level
music is a good example of such an implementation.

Each level has its own theme music. The music tracks wary in length, but they are made in a
similar manner using similar instruments. Exporting the music tracks dry and without reverb
from the DAW and applying reverb on the tracks in the Unity Editor instead would be a
mistake in this situation. In the fantasy genre it is typical to have wide and spacious mixes.
Mixing is done by the music producer in the DAW in way that leaves enough room for
important instruments to be heard, and applying reverb indiscriminantly on the whole track
will make it lose definition and appear muddy. This was observed during development and was

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

18

particularly offending when playing back audio on mobile devices. Therefore, music tracks
should be left dry in the Unity Editor.

During a level the player might encounter various events. These events include for example a
goblin bookkeeper who offers the player a wager, a rival wizard that challenges the player to a
duel and a merchant character selling equipment that enhances the players stats. Each event
either has its own musical theme or is categorized into “good”, “neutral” and “evil” events.
The music transition is handled by if-else statements, shown in Figure 8.

III

PlayLevelMusic()

(muteMusic)

3

(loopTrack)
StopCoroutine(loopTrackCoroutine);

(mainPlayer.volume < 1)
StartCoroutine(FadeInMusic(1f));

mainPlayer.loop = 3
sceneName = SceneManager.GetActiveScene().name.TolLower();
(sceneName.Contains("menu”))
loopTrackCoroutine = LoopTrack(musicTracks[@], musicTracks[27]);
(sceneName.Contains("academy"))
loopTrackCoroutine = LoopTrack(musicTracks[3], musicTracks[4]);
(sceneName.Contains("cliff"))
loopTrackCoroutine = LoopTrack(musicTracks[5], musicTracks[6]);
(sceneName.Contains("cloud"))
loopTrackCoroutine = LoopTrack(musicTracks[7], musicTracks[8]);
(sceneName.Contains("forest™))
loopTrackCoroutine = LoopTrack(musicTracks[9], musicTracks[1@]);
(sceneName.Contains("village"))
loopTrackCoroutine = LoopTrack(musicTracks[11], musicTracks[12]);
(sceneName.Contains("lakeside"))
loopTrackCoroutine = LoopTrack(musicTracks[13], musicTracks[14]);
(sceneName.Contains("lighthouse™))
loopTrackCoroutine = LoopTrack(musicTracks[15], musicTracks[16]);
(sceneName.Contains("sea"))
loopTrackCoroutine = LoopTrack(musicTracks[17], musicTracks[18]);
(sceneName.Contains("desert™))
loopTrackCoroutine = LoopTrack(musicTracks[19], musicTracks[20]);
(sceneName.Contains("final"))
loopTrackCoroutine = LoopTrack(musicTracks[21], musicTracks[22]);

loopTrackCoroutine = LoopTrack(musicTracks[3], musicTracks[4]);

StartCoroutine(loopTrackCoroutine);

Figure 8. If-else statements handling music transitions for in-game levels.

The first level in the game, referred to as “academy” in the script, uses two elements, 3 and 4,
in the Music Tracks serialized field. A collapsed view of the serialized field and its contents is
displayed in Figure 9.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

19

Element 3 corresponds to Magic_Academy_4by4 100bpm_partl, which is the clip that plays
initially. Magic_Academy_4by4_100bpm_part2, which is assigned to Element 4, is the the clip
that is meant to be played on loop. This technique is used on almost all music tracks in the

game.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

Figure 9. The collapsed view of the serialized private field Music Tracks.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

20

21

4.3.2 SFX

Sound effects in Rapid Magic are used as they are and no mixing is done in the Unity Editor. All
sound design, including effects, volume control and layering, was done in the sound
production stage. This keeps audio assets consistent throughout the game. Also, some filters
are CPU intensive (Unity Technologies, n.d.), which could become a problem on more dated
mobile devices.

The SFX assets are mostly organized in serialized fields, just like the music tracks. Since almost
every sound effect is played only once whenever they are triggered, no tricks to achieve
seamless looping is required.

The sounds are played with the PlayOneShot method. In comparison to the Play method,
PlayOneShot allows multiple sounds to be triggered at once, but they will always play all the
way through. Rapid Magic can become very intensive and crowded with enemy characters,
and consequently sound effects will be triggered at the same time or in succession. While the
game does not rely on audio cues solely for player feedback, a missing sound effect where the
player expects to hear one can throw them off.

Some actions, such as water splashes and enemies throwing items at the player, require more
than one audio clip. They are often heard many times in a row, and hearing the same clip over
and over again, even with varying pitches, would sound repetitive. This is remedied by using
Random.Range(a, b), where “a” is the element number for the sound included in the
randomisation range, and “b” is the first number excluded. This means that Random.Range(5,
8), would include elements 5, 6, and 7 from the serialized field.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

22

5 USING FMOD

5.1 Minigolf Universe

The second audio implementation solution covered by this thesis is for the game Minigolf
Universe. Minigolf Universe is a very different product gameplay-wise compared to Rapid
Magic, but it is developed for the same mobile platforms by the same team. The game uses an
ortographic fixed camera which gives the impression of an isometric view again placing very
little importance on positional audio. The game includes six courses with nine holes. Each
course, or “world” as they are called in-game, have their own musical theme and sound
effects. As of writing Minigolf Universe is not yet released to the public. The FMOD Studio
version used in this project is 1.10. and the Unity version is 5.6.4.

5.2 Setting up FMOD

The latest version of FMOD Studio can be found at https://www.fmod.com/download. This is
the desktop application and can be installed wherever the user chooses following the provided
instructions.

The same download page also hosts downloads for the Unity Integration package. The Unity
Integration package should be of the same version as the installed FMOD Studio version. After
the download has finished, import the package into the project in the Unity Editor either by
going to the Project window or Assets menu, clicking Import Package, then Custom Package
and finally choosing the integration package from the file explorer. (Firelight Technologies c,
n.d.)

Once the package has been installed into the Unity project a new FMOD tab is available on the
top row of the editor GUI. Clicking on Edit Settings will bring the settings up on the inspector
window, from where the FMOD Studio project path can be specified.

It is also a good idea to disable Unity’s audio engine from the project settings for optimal
performance. The settings are show in Figure 10.

After removing the Audio Listener component and replacing it with the FMOD Studio Listener
script, FMOD events can be played and heard in the engine.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

https://www.fmod.com/download

23

© Inspector | Services 3 .=
\; AudioManager @ %
%
Volume 1
Rolloff Scale 1
Doppler Factor 1
Default Speaker Modi Stereo $]
Sample Rate 0
DSP Buffer Size | Best performance N

Virtual Voice Count 512
Real Voice Count 32
Spatializer Plugin

Disable Audio
Virtualize Effects

Figure 10. Project settings for audio.

5.3 Implementing audio

The sounds are handled by Music and Sound Effect manager scripts that control when FMOD
events are played.

5.3.1 Music looping

Seamless looping is achieved by using an FMOD Studio event. In FMOD Studio one audio clip
can be inserted twice and positioned so that the clips overlap, demonstrated in Figure 11.

It is important to be aware of the BPM and time signature of the tracks in order to line them
up on beat.

Figure 11. The main menu audio event in FMOD Studio.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

24

Next, automation curves controlling volume levels can be added to the tracks to achieve a
cross-fade. In this particular case there are no percussion instruments and only a long evolving
stretched-out chord during the transition. This means that matching the beat precisely is less
important and the sound designer can choose a good spot for the cross-fade based on what
sounds the best.

After the event has played over the transition part once it enters a loop region. The loop
region, displayed on the timeline in Figure 11, forces the marker to return to the region’s
beginning as it reaches the regions end. The end point is at the same spot on the second clip as
the beginning point is on the first. This allows the loop to play continuously without audible
seams.

In practice, this means that once the event is triggered in code, it will play the first part and
then the loop region until the event is stopped. In other words, when a scene is loaded, the
event is triggered, and then stopped in code before loading the next scene.

5.3.2 SFX

The ball makes a sound when it is launched and when it connects with obstacles or walls in a
level. An example level is displayed in Figure 12. The sound effect is made by playing a kalimba,
which is a tonal instrument originating from Africa. Normally, the way to achieve variation in a
sound effect is to vary the pitch slightly by using a script. This did not work in Minigolf
Universe, since all music is made in the same key, and using tonal SFX in a random pitch
against background music results in dissonance. Dissonance creates tension (Timms, n.d.) and
since Minigolf Universe aims for a calm atmosphere, this had to be avoided.

Figure 12. The first level of Minigolf Universe.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

25

This meant that the sound effects for the ball needed to be chosen so that they produce a
harmony together with the background music. The key used was A, and 5 notes from that key
were chosen for the ball.

The sounds were then assigned to a Multi Instrument in FMOD. A Multi Instrument is a
container for sounds, created when multiple audio assets are imported into one audio track.
The parameters and settings for this instrument are shown in the bottom of the GUI, as
displayed in Figure 13.

Ball_Collision

n u m 00:01.600 E

Timeline

¥ Logic Tracks

Master Playlist Sound Random

Figure 13. A Multi Instrument in FMOD Studio.

The mode is set to Shuffle, which plays the assets in a random order with a no-repeat
behaviour.

When the Ball_Collision event is triggered by code in the Unity game engine the
aforementioned functionality is already present without any additional programming.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

26

6 CONCLUSION

Audio implementation is an important process that affects the end user experience greatly.
Ideally a larger development team with a more flexible budget would employ full-time audio
implementers, but in medium and small-sized companies, this is not possible. The thesis set
out to research and compare two different ways to implement audio in the Unity game engine,
and from a sound designer’s perspective, one is clearly superior to the other.

In the case of the two game projects and their audio implementation processes, the one using
audio middleware, Minigolf Universe, went significantly smoothly. FMOD Studio allows the
sound designer to take a more active part in the development process, instead of a passive
audio asset provider. This ensures that fewer creative decisions concerning audio
implementation are made by a programmer who might not be familiar with audio work at all.
FMOD also allows the creation of fairly complex audio events without the help of a
programmer, which frees up time for other development tasks. Both games ended up with
polished audio and a well-made implementation, but in Minigolf Universe, audio transitions
and sound effects seemed more seamless and professional. While a learning curve is no doubt
present, FMOD Studio is still very intuitive for someone who has prior experience with any
mainstream DAW.

However, licensing fees for a company such as the commissioner of this thesis will make it
impractical to use a solution such as FMOD Studio commercially. Mobile game development
cycles are ideally fast and short. Even with the most affordable license scheme, every game
would incur a fee of $2,000 after the first free game of the year. With a target development
rotation of two months per game, this would result in $10,000 of licensing fees alone every
year. This is right between the fees for the Basic license, which is $5000, and the $15000
Premium license. The price of convenience is high and this system does not favor smaller
games.

It would seem that the best way to proceed is to attempt to balance the cost of FMOD and the
longer programming hours needed to implement audio traditionally on a case-by-case basis.
FMOD is at its best in larger game projects that are developed during a longer period of time.
The licensing fees will have less of an impact on larger games and the benefits that FMOD
provides will certainly outweigh the costs in these cases as well.

As a logical next step, it would be wise to look into other audio middleware solutions. The
commissioner could find a more economical solution from competing middleware providers
that would make more sense for their business model. Fabric by Tazman-Audio and Wwise by
Audiokinetic are the two largest competitors and the obvious first picks for continued
research.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

27

REFERENCES

Berklee College of Music, (n.d.) What does an audio programmer (Video Games) do? Accessed on
24.04.2019 https://www.berklee.edu/careers/roles/audio-programmer

Brown, Y. (n.d.) About Audio Middleware Accessed on 25.04.2019 http://www.yannisbrown.com/about-
audio-middleware/

Firelight Technologies a. (n.d.) Firelight Technologies FMOD Studio API Accessed on 27.04.2019
https://www.fmod.com/resources/documentation-api?version=1.10&page=welcome.html

Firelight Technologies b. (n.d.) FMOD Studio User Manual 1.10 Accessed 22.02.2019
https://www.fmod.com/resources/documentation-studio?version=1.10&page=welcome-to-fmod-
studio.html

Firelight Technologies c. (n.d.) Unity Integration 2.0 Accessed on 28.02.2019
https://www.fmod.com/resources/documentation-unity?version=2.0&page=user-guide.html

Firelight Techologies d. (n.d.) Featured Games Accessed on 27.04.2019 https://fmod.com/games

Firelight Techologies e. (n.d.) Licensing Accessed on 27.04.2019
https://www.fmod.com/licensing#premium

Hass, J. (n.d.) Introduction to Computer Music: Volume One Accessed on 24.04.2019
http://www.indiana.edu/~emusic/etext/studio/chapter2 effects.shtml

Horowitz, S. and Looney, S. (2017) Masterclass: Using Game Audio Middleware Accessed on 23.04.2019
https://www.emusician.com/how-to/masterclass-using-game-audio-middleware

Merriam-Webster, (n.d) Dictionary Accessed on 28.04.2019 https://www.merriam-
webster.com/dictionary/cross-fade

Mostovy, A. (2016) Making Your Unity Game Scream and Shout and Not Killing It in the Process Accessed
on 23.04.2019 https://medium.com/@a.mstv/making-your-unity-game-scream-and-shout-and-not-
killing-it-in-the-process-673a7384693c

Mulesoft. (n.d.) What is an API? (Application Programming Interface) Accessed on 23.04.2019
https://www.mulesoft.com/resources/api/what-is-an-api

Ryan, V. (2010) ISOMETRIC DRAWING AND DESIGNERS Accessed on 22.04.2019
http://www.technologystudent.com/prddes1/drawtec2.html

Stevens, R. and Raybould, D. (2016) Game Audio Implementation: A Practical Guide using the Unreal
Engine . 1°t edn. Focal Press

Strauss, R. (n.d.) What audio format should | use for my game? Accessed on 24.04.2019
https://indiegamemusic.com/formatguide.php

Unity Technologies. (n.d.) Unity User Manual (2017.4) Accessed on 24.04.2019
https://docs.unity3d.com/2017.4/Documentation/Manual/

Wolfe, J. (n.d.) dB: What is a decibel? Accessed on 24.04.2019
http://www.animations.physics.unsw.edu.au/jw/dB.htm

Timms, M. (n.d.) How sound design is used to create a sense of tension and horror in video games
Accessed on 29.04.2019

https://www.academia.edu/24424213/How_sound design is used to create a sense of tension an
d_horror_in_video_games

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Markus Sukoinen

https://www.berklee.edu/careers/roles/audio-programmer
http://www.yannisbrown.com/about-audio-middleware/
http://www.yannisbrown.com/about-audio-middleware/
https://www.fmod.com/resources/documentation-api?version=1.10&page=welcome.html
https://www.fmod.com/resources/documentation-studio?version=1.10&page=welcome-to-fmod-studio.html
https://www.fmod.com/resources/documentation-studio?version=1.10&page=welcome-to-fmod-studio.html
https://www.fmod.com/resources/documentation-unity?version=2.0&page=user-guide.html
https://fmod.com/games
https://www.fmod.com/licensing#premium
http://www.indiana.edu/~emusic/etext/studio/chapter2_effects.shtml
https://www.emusician.com/how-to/masterclass-using-game-audio-middleware
https://www.merriam-webster.com/dictionary/cross-fade
https://www.merriam-webster.com/dictionary/cross-fade
https://medium.com/@a.mstv/making-your-unity-game-scream-and-shout-and-not-killing-it-in-the-process-673a7384693c
https://medium.com/@a.mstv/making-your-unity-game-scream-and-shout-and-not-killing-it-in-the-process-673a7384693c
https://www.mulesoft.com/resources/api/what-is-an-api
http://www.technologystudent.com/prddes1/drawtec2.html
https://indiegamemusic.com/formatguide.php
https://docs.unity3d.com/2017.4/Documentation/Manual/
http://www.animations.physics.unsw.edu.au/jw/dB.htm
https://www.academia.edu/24424213/How_sound_design_is_used_to_create_a_sense_of_tension_and_horror_in_video_games
https://www.academia.edu/24424213/How_sound_design_is_used_to_create_a_sense_of_tension_and_horror_in_video_games

