
TURKU UNIVERSITY OF APPLIED SCIENCES THESIS |

Bachelor’s thesis

Degree Programme in Information Technology

2019

Bui Trung Tan

WEB COMPONENTS

– Concept and Implementation

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS |

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Degree programme in Information Technology

2019 | 46

Bui Trung Tan

WEB COMPONENT

­ Concept and Implementation

This thesis was conducted as research on Web Component by analyzing its specification and

usage. The purpose of this investigation was to introduce and implement web components in a

web application.

This thesis discusses Web Component concepts and their related specifications, such as Shadow

DOM, HTML Template and HTML Custom Element. This study also examines lit-element library

and shows how to utilize this library for web development.

The implementation of web components was demonstrated in a Phonebook App prototype. This

project creates new web components and uses them together with third-party web components

to build a complete web application. The result of this project is a Progressive Web App running

on client-side with basic features for managing personal contacts. To put this prototype into

production, this thesis explains a deployment process using Heroku service, a popular platform

for publishing web application without complicated configurations.

KEYWORDS:

Web Component, DOM, Shadow DOM, HTML Template, Custom Element, LitElement, Heroku

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS |

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 6

2 WEB TECHNOLOGIES 7

2.1 HTML and CSS 7

2.2 Javascript 7

2.3 Browser 8

3 WEB COMPONENT CONCEPTS 9

3.1 DOM 9

3.2 Shadow DOM 11

3.3 HTML Template 15

3.4 HTML Custom Element 18

3.5 Web Component 21

4 LIT-ELEMENT LIBRARY 24

4.1 Polymer CLI 24

4.2 LitElement component 25

4.3 Templates 26

4.4 Styles 27

4.5 Attributes and Properties 29

5 IMPLEMENTATION 30

5.1 Phonebook App project 30

5.2 Use case diagrams 30

5.3 Development 35

5.4 Deployment 39

6 CONCLUSION 43

REFERENCES 44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS |

FIGURES

Figure 1. Browser popularity in March 2019 [11]. 8
Figure 2. The role of DOM between original source code and web page. 9
Figure 3. Original source code of a simple web page. 10
Figure 4. DOM structure of a simple web page. 10
Figure 5. The simple web page in user's device. 11
Figure 6. Shadow DOM inside regular DOM [17]. 12
Figure 7. Attaching a Shadow DOM. 13
Figure 8. DOM structure of a web page with Shadow DOM. 14
Figure 9. Result of Shadow DOM. 14
Figure 10. Compatibility of Shadow DOM with different browsers. 15
Figure 11. Example of using HTML Template element. 16
Figure 12. Before and after processing HTML Template content. 16
Figure 13. Document fragment of a HTML Template element. 17
Figure 14. Compatibility of HTML template with different browsers. 18
Figure 15. Example of a custom element. 19
Figure 16. Compatibility of Custom Element with different browsers. 20
Figure 17. An example web application using web components. 21
Figure 18. Javascript declaration of the CardTicket web component. 22
Figure 19. Example web application using the CardTicket web component. 23
Figure 20. Loading Polyfills library. 23
Figure 21. Declaration of the CardTicket web component using LitElement. 26
Figure 22. Loop and Conditional syntax. 27
Figure 23. LitElement static style property definition. 28
Figure 24. LitElement external style definition. 29
Figure 25. Use-case diagram of Phonebook App. 31
Figure 26. Phonebook App project structure. 36
Figure 27. Phonebook App user interface in wide-screen devices. 38
Figure 28. Phonebook App user interface in small-screen devices. 38
Figure 29. Start the local server using Polymer CLI. 39
Figure 30. Run web component unit tests in a local computer. 40
Figure 31. Bundling the application for deployment. 40
Figure 32. Create a new Heroku app. 41

TABLES

Table 1. Use case "View contact list". 31
Table 2. Use case "Add a new contact". 32
Table 3. Use case "Remove a contact". 32
Table 4. Use case "View contact details". 33
Table 5. Use case "Update contact details". 33
Table 6. Use case "Bookmark a contact". 34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS |

LIST OF ABBREVIATIONS (OR) SYMBOLS

API Application Program Interface

CSS Cascading Style Sheets

DOM Document Object Model

ES ECMA Script, a scripting-language specification

standardized by ECMA International organization

ES6 ECMA Script version 6, or ECMAScript 2015

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

LESS Leaner Style Sheets

NPM Node Package Management

SASS Syntactically awesome style sheets

URL Uniform Resource Locator

WHATWG Web Hypertext Application Technology Working Group, the

organization which maintains and evolves HTML since 2004

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

1 INTRODUCTION

Web development has been growing rapidly in recent years. According to the

Stackoverflow 2018 survey, JavaScript is the most popular programming language since

2012. [1] This programming language allows web applications to be functional like a

native application in different platforms. For example, a Progressive Web App can run

on mobile devices without a network connection, supporting features such as Push

Notification, Geolocation and Camera Access.

With the evolution of Javascript, web development is moving from server to client.

Traditionally, a website is developed by a server-side programming language such as

PHP, ASP, or Java. The server returns HTML, CSS and Javascript content to the client

device. This methodology has some drawbacks, such as server overloading or poor

network connection. The new approach is to let the server produce and send only the

necessary data to the client while Javascript running in the client-side processes the data

and displays it to the users. [2]

This new trend requires front-end development – or client-side development – to be more

mature. In software development, DRY (Don’t Repeat Yourself) is the most fundamental

principle. It states that “every piece of knowledge or logic must have a single,

unambiguous representation within a system.” [3]. Web Component is a modern

approach of this principle by moving duplicated parts of web applications into

components.

Web Component is becoming a popular standard and being supported by many web

browsers. By following this standard, developers can create web components which are

reusable across web applications or organizations.

This thesis was carried out as a research project on the topic “Web Component –

Concept and Implementation”. By examining Web Component specification, the thesis

aims to clarify the principles of Web Component and their related technologies. Thus the

Phonebook App prototype was developed which illustrates how to implement web

components and use them in a web application.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

2 WEB TECHNOLOGIES

This chapter explains technologies related to web development, especially front-end web

development such as HTML, CSS, Javascript, and browsers. These are also understood

as client-side technologies, since they affect a user’s interaction directly.

2.1 HTML and CSS

HTML (Hypertext Markup Language) is the markup language to create structure and

content for a web page. HTML encloses different parts with elements. An HTML element

appears in the HTML source code as a tag, such as the <body> tag which represents

the main content of the web page. Some HTML tags give meaning and style to elements.

For example, a text inside a tag is usually rendered as a bold text and

considered as important content. [4]

CSS (Cascading Style Sheets) is the language to redefine styles of HTML elements,

such as layout, colors and font styles. In modern web design, CSS has an important role

in adjusting the web page appearance to different devices and screen sizes. [5] CSS can

be embedded inside an HTML element via the style attribute, or separated

into<style> elements or external files. The style definition can be applied to every

element in a web page. [6]

2.2 Javascript

Javascript is the programming language which adds interactivity to a web page by

dynamically changing the HTML content or CSS styles. Traditionally, Javascript is

understood as client-side script, which is executed by a web browser to interact with the

opening web page. [7] This limitation is extended nowadays, as Javascript can run on a

background process to support features like push notification or background sync. [8]

Using Node.js as a Javascript runtime environment, Javascript source code can be

executed as a standalone application and interact with the operating system, allowing

Javascript to be a server-side programming language like PHP, Java or Python. Node.js

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

uses event-driven architecture with non-blocking operations that makes it becomes a

high-performance server-side language. [9]

There are hundreds of thousand Node.js libraries written by the developer community.

NPM is the dependency manager tool for Node.js applications. It arranges the libraries

in place and manages version conflicts so that libraries can be integrated into Node.js

applications. [10]

2.3 Browser

A browser is an application which runs on a user’s device to render a web page from

HTML, CSS, and Javascript content. Figure 1 shows a report from W3Counter website

about the most common browsers in March 2019. Chrome is an open-source browser,

developed by Google Inc., which is leading the browser market with 63.6%, followed by

the Safari browser from Apple Inc with 13.2%. Other browsers such as Mozilla Firefox,

Microsoft Internet Explorer and Edge, Opera are becoming less popular.

Figure 1. Browser popularity in March 2019 [11].

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

3 WEB COMPONENT CONCEPTS

When programming software applications, developers try to reuse source code in

different ways. In Functional Programming, common pieces of code are put into functions

in order to be recalled quickly by the function’s name. In Object-oriented Programming,

common variables and functions are wrapped into an object as properties and methods.

In web development, developers also try to do the same. However, the web environment

includes many other factors. For example, it includes different types of source code such

as HTML, CSS and Javascript. Also, when these codes are put together into a web page,

they can affect each other. Therefore, encapsulating an implementation in web

development is more complicated. It requires a same set of source code must always

render the same elements in browsers whenever it is reused and does not affect other

elements unexpectedly.

Web Component is introduced as a suite of technologies to encapsulate web source

codes into a single component, making it easier to be reused in any web application. [12]

This chapter explains fundamental technologies related to Web Component, including

DOM, Shadow DOM, HTML Template, HTML Custom Element, and how they are

combined to create web components.

3.1 DOM

The DOM (Document Object Model) is a tree data structure that represents a web page

– or web document - in the way that a browser can understand. From the developer’s

aspect, DOM is an application programming interface (API) for Javascript can interact

with a web document such as accessing its elements and modifying element’s

properties. [13]

Figure 2. The role of DOM between original source code and web page.

Original
source code

DOM
structure

Web page

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

As described in Figure 2, elements in a web page appear as original source code when

they were developed by a developer. After being sent to a browser via network

connection, the browser translates the source code into a DOM structure then render the

web page on the user’s device. Javascript running in the web browser can modify the

web page by changing elements in the DOM structure.

The original source code can be similar to DOM structure, but can also be very different.

For example, Figure 3 shows the original source code of a simple HTML web page.

Figure 3. Original source code of a simple web page.

However, the DOM structure is different. As in Figure 4, there is a <head></head>

section added by the browser. The browser also executed the Javascript code and

modified the <p> element by adding the text “This is a dynamic content.”

Figure 4. DOM structure of a simple web page.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

After that, the web page was rendered with contents based on this DOM structure as

shown in Figure 5.

Figure 5. The simple web page in user's device.

Each element in the DOM structure is called as a node. To program with a node, a

Javascript developer need to work with the DOM interface which represents that node.

For example, in Figure 4, document.querySelector('p') returns a HTML

Paragraph Element interface.

3.2 Shadow DOM

There are many problems related to scoping when building web applications using

traditional HTML, CSS and Javascript [14], such as:

• Style override: the document styles may override each other when they are

shared across the whole web page.

• Script alteration: the document Javascript may alter some parts of unexpected

elements.

• ID overlap: the id attribute of elements in a document can be duplicated, which

can lead to selection issues.

“Shadow DOM fixes CSS and DOM. It introduces scoped styles to the web platform.”

[15] The benefits from Shadow DOM includes:

• Scoped CSS: styles defined inside Shadow DOM can only be applied for

elements of it.

• Isolated DOM: elements inside a Shadow DOM is invisible to the global web

page.

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

• Simplified CSS: ID and class names of HTML elements can be more generic as

they are not conflicted with other elements outside of its Shadow DOM.

Creating Shadow DOM

Shadow DOM can be attached into elements of the regular DOM. Those elements are:

article, aside, blockquote, body, div, footer, h1, h2, h3, h4, h5, h6, header, main, nav, p,

section, span and valid custom elements. [16]

Figure 6 illustrates the relationship between Shadow DOM and the regular DOM.

Figure 6. Shadow DOM inside regular DOM [17].

The Document Tree represents a regular DOM structure as a tree with different nodes.

For example, the top-level node is document, which represents the web page. Shadow

DOM introduces some new terminologies, including:

• Shadow host: the root node of the Shadow DOM which can be access from the

regular DOM

• Shadow tree: the detail DOM structure of the shadow host

• Shadow root: the most top-level node inside a Shadow DOM

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

A shadow host can be created and attached into a regular DOM element using the

attachShadow() Javascript method. This method returns the shadow root, which can

be modifed as a regular HTML element.

Figure 7 demonstrates how a new shadow host is attached to a <div> element. There

are style definitions for h1 elements with the same CSS selectors. The first one h1 {

color: green; font-size: 1.5rem } is defined in the web document and will be

applied for elements in the regular DOM tree. The second one h1 { color: blue;

font-size: 1rem } is defined inside the Shadow DOM and only affects elements inside

the shadow tree.

Figure 7. Attaching a Shadow DOM.

The original source code above is translated to the DOM structure as Figure 8. There is

a #shadow-root (open) element as the root node of the shadow tree.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 8. DOM structure of a web page with Shadow DOM.

As a result, in Figure 9, the two h1 elements were rendered differently on the browser.

Even CSS selectors are the same, they do not overlap each other.

Figure 9. Result of Shadow DOM.

Compatibility

Shadow DOM is not fully supported by all browsers. Its compatibility can be checked by

an online validation tool as in Figure 10. [18] Firefox, Chrome and Opera browsers show

a full support for Shadow DOM feature. Safari, Microsoft IE and Edge have a limited

support or no support at all.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 10. Compatibility of Shadow DOM with different browsers.

3.3 HTML Template

HTML Template is a special HTML element which encloses a client-side content

including CSS and Javascript, making it completely be disabled from the web application

but may subsequently be instantiated during runtime using JavaScript. [19]

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 11. Example of using HTML Template element.

Figure 11 gives an example of using Template element. Its content is defined as a normal

HTML element but is not rendered. When a user clicks on “Load content” button, a

Javascript function is executed to insert the template content into a Shadow DOM, as

shown in Figure 12.

Figure 12. Before and after processing HTML Template content.

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

In the DOM structure, a HTML Template element wraps a fragment of HTML markup

inside a #document-fragment node, as shown in Figure 13. This helps to prevent any

side-effect of the template content on the web page.

Figure 13. Document fragment of a HTML Template element.

Compatibility

As shown in Figure 14, HTML Template feature is widely supported by most of the

browsers except Microsoft IE.

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 14. Compatibility of HTML template with different browsers.

3.4 HTML Custom Element

There are many standard HTML elements which are supported by most of the browsers.

With the power of Javascript, HTMLElement interface allows web developers to define

new types of HTML elements, or custom elements. [20]

By extending the HTMLElement interface, a custom element has all the functionalities

of a standard HTML element plus its own functionalities. With a sematic name, a custom

element improves the readability of a web document. A valid custom element name must

match the requirements from WHATWC community [21] including:

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

• The name must have at least two paths starting with an alphabet lower case

character, dividing by a dash “-”.

• The name must not be any of the preserved names.

Figure 15 shows an example of a simple custom element named <my-element>. In the

body of the web page, this element is used like a standard HTML element, with a

customized attribute named color. The element is defined as a Javascript class

MyElement. In line 38, the customElements property of window interface helps to

register a new custom element, making it usable in the web document.

Figure 15. Example of a custom element.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

In the example above, the my-element element has a color attribute with its initial

value is blue. This setting will trigger the attributeChangedCallback method

because color attribute is under observation of the browser, as defined in

observedAttributes method. This attribute can be adjusted in the same way as a

standard HTML element using the Javascript function such as switchColor function

in this example.

Compatibility

In Figure 16, Custom Element shows a similar compatibility to Shadow DOM. It is

supported in open-source browsers such as Firefox and Chrome, but can not be fully

functional in Safari, IE and Edge.

Figure 16. Compatibility of Custom Element with different browsers.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

3.5 Web Component

Web component is a meta-specification made possible by four other specifications [22]:

• The Custom Elements specification

• The Shadow DOM specification

• The HTML Template specification

• The ES Module specification

ES Module is a new feature of Javascript 2015, or ES6, which allows developers to

separate the Javascript logic into different parts – or modules – by using Module Exports

and recall the exported modules at different places by using Module Imports [23].

The combination of the four specifications above allows developers to define their own

custom elements with encapsulated and isolated styles in Shadow DOM, that can be

reused many times as templates by ES Module. A custom element which matches these

specifications is considered a web component.

Figure 17 demonstrates HTML source code of a simple web application which has

several card-ticket elements with different attributes. Each card-ticket element

is an instance of the web component. This web component is defined in the

CardTicket.js file and is imported using ES6 Module syntax.

Figure 17. An example web application using web components.

The CardTicket.js file is shown in Figure 18. It is similar to a HTML custom element,

but the element’s content is encapsulated by Shadow DOM. Therefore, CSS declarations

are not leaked into other elements in the application.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

In modern web component development, the web component’s content is managed by

Javascript and would not be rendered to the web document by default. This approach

reduces the used of HTML Template and gives Javascript the full power to control the

content.

Figure 18. Javascript declaration of the CardTicket web component.

As a result, in Figure 19, the application renders three similar tickets with different styles.

Clicking on a ticket will update styles for and only for the target ticket.

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 19. Example web application using the CardTicket web component.

Compatibility

As the combination Shadow DOM, HTML Template, Custom Element and ES Module,

Web Component requires each specification to be supported by the browsers. Some

browsers are still in the updating process to support the standards for Web Component.

In the meantime, Polyfills library simulates the missing browser capabilities as closely as

possible. [24]

In a web project, Polyfills library @webcomponents/webcomponentsjs can be

installed via npm. After that, the web application can load this library as a normal

Javascript file as shown in Figure 20, enabling a better support for Web Component in

different browsers.

Figure 20. Loading Polyfills library.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

4 LIT-ELEMENT LIBRARY

“LitElement is a simple base class for creating fast, lightweight web components that

work in any web page with any framework.” [25] A developer can create a new web

component by extending this class instead of the HTMLElement interface. This class is

packed in lit-element library.

The lit-element library is developed by Polymer Project team, funded by Google Inc. This

team is also the author of Polymer library for web component development, but this

library was deprecated and lit-element is recommended instead.

LitElement base class gives developers some advantages, such as:

• Fast and light: the library has lit-html template engine, which helps to render

HTML content inside a Shadow DOM and update only the dynamic parts of the

web page.

• Friendly declarative: the element is defined in Javascript with all the powerful

features of this programming language. LitElement also supports a clearer syntax

for defining properties, data binding, templates, styles and events.

• Highly compatible: LitElement follows Web Component specification, enabling

its compatibility with other front-end web frameworks.

This chapter investigates lit-element library including project configuration and the main

features of LitElement base class.

4.1 Polymer CLI

Polymer CLI is the official tool for lit-element projects and Web Component. After being

installed, it runs as a command line with a set of options for a developer can initialize

projects with pre-defined structures, start a development server for a project, run Web

Component unit tests and more.

The common command lines include:

• polymer build: bundles the project for production. The process includes

simplifying source code and fulfilling configurations for a complete application.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

• polymer serve: runs a local web server for the project. This server helps

developers to test the web application in a browser without the deployment

process.

• polymer test: runs the unit tests in the test directory of the project.

The installation instruction of Polymer CLI can be found in the official website

https://polymer-library.polymer-project.org of The Polymer Project Authors.

4.2 LitElement component

Figure 21 shows an implementation of CardTicket component using LitElement base

class. This web component has the same functionalities and styles as the

implementation without LitElement in Figure 18.

In general, the basic steps to create a web component with LitElement includes:

• Use ES6 Module Import to load the LitElement base class and the html helper

function from lit-element library.

• Define a new class which is a descendant of LitElement base class.

• Implement the render method to define the content of the component.

• Register the component’s HTML tag with the browser.

Comparing the two implementations of CardTicket component, there are two obvious

advantages from using LitElement:

• Shadow DOM is used implicitly without any manual step.

• Attributes of the element are understood as the component’s properties.

Therefore, developers do not need to update those properties manually by using

attributeChangedCallback method.

The two implementations share the same way of usage. Each requires the web

application to import the Javascript file first, then it can be used as a normal HTML tag,

as shown in Figure 17.

However, to start a lit-element project, a developer needs to run a local server using

polymer serve as mentioned in Section 4.1. This server resolves the dependencies

from ES6 Module Import statements for the browser can load them properly.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 21. Declaration of the CardTicket web component using LitElement.

4.3 Templates

The template for a LitElement component is defined in render method of the element

class. This method returns a TemplateResult object by using html helper function

from lit-html template engine.

As can be seen in Figure 21, properties of the element class can be inserted into the

template using string substitution ${ } syntax. Since then, content of the template will

be updated asynchronously with property’s changes, and only the affected DOM parts

will be re-rendered.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

A recommended implementation for an element’s template is to make it as a pure

function of the element’s properties:

• The render method should not change element’s property values.

• Only the element’s properties can affect the template.

• The render method should always return the same result with the same

property values.

After being rendered, the DOM structure of a web component should not be changed

by any other factor except its properties.

Lit-html template engine supports flexible syntaxes to render a template based from

property values, such as looping and conditionals, as shown in Figure 22.

Figure 22. Loop and Conditional syntax.

Data binding is another powerful feature of lit-html engine. Text content, attributes,

boolean attributes, properties and events of a child element can be binded to a value

from its parent element and automatically updated whenever that value is changed. [26]

Data binding is one-direction from parent to child element. To share data in the opposite

direction, a child element can fire an event for a parent element to capture it.

4.4 Styles

By default, style is rendered inside Shadow DOM. It can be defined in a separate method

of the element class, in the <style> tag of the element’s template, or in an external

stylesheet.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Define styles as a static property

LitElement supports defining CSS in the styles static property of the element class.

This property should contain the styles which can be applied for all instances of a web

component across the whole web application. This approach helps improving

performance when rendering components.

The styles property can be defined with a css helper function, as shown in Figure 23.

Figure 23. LitElement static style property definition.

Define styles in the element’s template

This approach is useful when styles can be changed depend on the component

property’s values. Figure 21 shows an example that styles of a <card-ticket>

element are varied from its attributes color, content and its state isSelected.

Therefore, styles of CardTicket component need to be defined in render method.

Define styles in an external stylesheet

External stylesheet is designed for loading CSS generated from a CSS preprocessor

such as SASS or LESS. It is defined by a <link> tag in the component template, as

shown in Figure 24.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 24. LitElement external style definition.

However, it comes with some side-effects:

• External styles require additional HTTP requests. The component could be

rendered without styles when the requests are in process.

• The external URL in href attribute depends on the application but not the

component itself. Thus, this URL may not be found in different web applications.

4.5 Attributes and Properties

A web component manages their data via its attributes and properties. When the

component is used in a web application by a HTML tag, this tag creates an instance of

the web component and may contain some attributes. In other words, attributes belong

to a specific instance of the web component.

By default, an attribute is reflected as a property in the element class definition. Inside

the class, other logics could be implemented depending on the properties. Properties

can be declared in static get properties() method. Figure 21 shows an example

that color, content and isSelected are three properties of CardTicket component,

which color and content were used as attributes of CardTicket instances in the web

application as in Figure 17.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

5 IMPLEMENTATION

This chapter describes the implementation of the Phonebook App prototype and

demonstrates how lit-element library can help to develop and integrate web components

into a complete web application. The implementation includes modeling, development,

testing and deployment. The prototype focused on working with web components instead

of advanced functionalities.

5.1 Phonebook App project

The Phonebook App helps users to manage their contacts by adding, removing or

updating a contact information. A user can also bookmark a contact to put it into the

bookmark list.

As a prototype, there are some limitations related to business features such as lacking

advanced functionalities for searching for a contact, sorting the contact list, etc. Besides,

data from users is stored in the device’s memory and will be removed when reloading

the app.

This is a Progressive Web App with responsive design and offline access features. It can

be installed on mobile devices like a native mobile application. [27]

5.2 Use case diagrams

Use case diagrams visualize the functional requirements of a software application. In

Figure 25, the actor for Phonebook App is a user who accesses the application. This

user can act on different features of the app, such as viewing contact list or adding a new

contact, etc. Each feature is represented as a use case in an oval.

The <<extend>> relationship between use cases indicates a behavior which can be

done under a certain use case. For example, in Figure 25, a user can remove a contact

while viewing the contact list.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 25. Use-case diagram of Phonebook App.

Tables 1 to 6 explain each use case using the Rational Unified Process format [28]

including brief description, the basic and the alternative flow of behaviors, special

requirements, the system status before and after the use case and the extension points.

Table 1. Use case "View contact list".

Use case 1: View contact list

Brief discussion This use case allows the user to view the list of all contacts

storing in the app.

Basic flow The use case starts when the user opens the app via a web

browser.

Alternative flow - There is no contact in the app:

 + The app shows “There is no contact” message.

Special
requirements

The app must have one or more contacts in its memory.

Before the use case The app has not opened.

After the use case - Success: the app shows list of contacts in the Contacts section

- Failure: the error message is shown.

Extension points While viewing contact list, the user can remove a contact (use

case 3) or view contact detail (use case 4).

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

 Table 2. Use case "Add a new contact".

Use case 2: Add a new contact

Brief discussion This use case allows the user to input a new contact to the app.

Basic flow - The use case starts when the user clicks on “Add Contact”

button on the left sidebar.

- The app displays the “Add Contact” form.

- The user enters the contact information.

- The user clicks “Add” button.

Alternative flow - The user clicks “Cancel” button in the “Add Contact” form.

 + The app closes the form.

Special
requirements

(none)

Before the use case The app is opened.

After the use case - Success: the app closes the form and shows the new contact

in the contact list.

- Failure: the app shows no changes.

Extension points While creating a new contact, the user can bookmark the new

contact (use case 6).

Table 3. Use case "Remove a contact".

Use case 3: Remove a contact

Brief discussion This use case allows the user to remove a contact from the app.

Basic flow The use case starts when the user clicks on the ⓧ icon on top-

right corner of a contact in the contact list.

Alternative flow - There is no contact in the app:

 + The app shows “There is no contact” message.

Special
requirements

There is at least one contact in the app.

Before the use case The app shows list of contacts.

After the use case - Success: the target contact is removed.

- Failure: the target contact remains unchanged.

Extension points (none)

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Table 4. Use case "View contact details".

Use case 4: View contact details

Brief discussion This use case allows the user to view detail information of a

contact.

Basic flow - The use case starts when the user clicks on a contact in the

contact list.

- The app shows the “Update contact” form with detail

information of the selected contact.

- The user clicks “Cancel” button.

- The app closes the form.

Alternative flow - The user clicks “Update” button in the “Update Contact” form.

 + The app closes the form with the updated information.

Special
requirements

There is at least one contact in the app.

Before the use case The app shows the contact list.

After the use case The app backs to its previous state without any change.

Extension points While viewing contact details, the user can update the contact

information (use case 5).

Table 5. Use case "Update contact details".

Use case 5: Update contact details

Brief discussion This use case allows the user to update detail information of a

contact.

Basic flow - The use case starts when the user clicks on a contact in the

contact list.

- The app shows the “Update contact” form with detail

information of the selected contact.

- The user updates the contact information.

- The user clicks on “Update” button.

Alternative flow - The user clicks “Cancel” button in the “Update Contact” form.

 + The app closes the form.

Special
requirements

There is at least one contact in the app.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Before the use case The app shows the contact list.

After the use case - Success: the form is closed, and the app shows the updated

information of the edited contact.

- Failure: the edited contact remains unchanged.

Extension points While updating contact detail, the user can bookmark the

contact (use case 6).

Table 6. Use case "Bookmark a contact".

Use case 6: Bookmark a contact

Brief discussion This use case allows the user to add a contact into the

bookmark list.

Basic flow - The use case starts when the user creates a new contact or

updates a contact information.

- The app shows the “Add contact” form or “Update contact”

form with a checkbox “Add to bookmark”.

- The user ticks the “Add to bookmark” checkbox.

- The user clicks on “Add” or “Update” button.

Alternative flow - The user clicks “Cancel” button in the forms.

 + The app closes the form.

Special
requirements

There is at least one contact in the app.

Before the use case The app shows the “Add contact” form or “Update contact” form.

After the use case - Success: the app shows the edited contact in Bookmark list.

- Failure: the edited contact remains unchanged.

Extension points In the “Update contact” form, if the user removes the tick in “Add

to bookmark” checkbox and click “Update” button, the contact is

removed from the Bookmark list.

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

5.3 Development

Development Environment

The Phonebook App prototype was developed in multiple operating systems including

Windows 10 and MacOS Mojave 10.14. The source code is published in Github.com at

https://github.com/tanbt/PolymerPractice/tree/master/phonebook-app.

The editor had been used during development was Visual Studio Code. This is a free

and lightweight application of Microsoft Corporation with built-in support for HTML, CSS,

Javascript and Typescript languages. A developer can install external extensions to

upgrade this editor with more features.

System requirements

For the development environment, the project requires Node.js 10 and Npm to be

installed already in the system. The instruction of Node.js and Npm installation can be

found in its official website https://nodejs.org. Also, dependencies of the project need to

be installed by running npm install command at the project directory.

Visual Studio Code should be installed as the suggested editor, but other text editors are

also acceptable. The project does not depend on a specific operating system and does

not have any special hardware requirements.

Git is the Source Code Management tool for managing changes of the source code

during development process. This tool can be installed via its official website

https://git-scm.com.

https://github.com/tanbt/PolymerPractice/tree/master/phonebook-app

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Project structure

Figure 26. Phonebook App project structure.

Figure 26 depicts the structure of Phonebook App project. This structure contains source

code of the application and configuration for development and deployment processes:

• assets directory contains static resources such as app icon, logo and pictures.

• build directory is generated automatically after running polymer build

command, it contains the output of this command line.

• node_modules directory contains the npm dependencies, such as lit-element

library, Polymer CLI tool, open-source web components from the community and

other libraries. This directory is generated automatically after running npm

install command.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

• src directory contains the source code of the app, written in Javascript. The

components sub-directory contains web components for different parts of the

application. phonebook-app.js file wraps other components inside a single

<phonebook-app> component. shared-styles.js file defines some CSS

styles to be shared across components.

• test directory contains unit test cases for web components developed by lit-

element library.

• .gitignore file indicates files or directories that Git should skip. Usually, they

are generated files and directories.

• .npmrc and package.json defines configurations for npm such as list of

dependencies, scripts to be run under npm, name and description of the project.

• index.html is the entry point of the app. It initializes the app with manifest

configurations and service worker, loading polyfills and the <phonebook-app>

element.

• index.js and Procfile define configurations for deploying the app to Heroku

service.

• manifest.json, service-worker.js and sw-precache-config.js

contains configurations for Polymer CLI can generate manifest information and

offline caching feature.

• README.md provides a brief description of the project.

Application User Interface

Figure 27 shows the Phonebook App user interface in a wide-screen device. The sidebar

appears on the left with the app logo and “Add contact” button. A user can resize this bar

by moving its right edge.

In small-screen devices such as smartphones or tablets, the left sidebar is hidden and

the logo appears in the top-right corner, as shown in Figure 28. In this user interface, a

user can click on the logo to open the “Add contact” form.

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 27. Phonebook App user interface in wide-screen devices.

Figure 28. Phonebook App user interface in small-screen devices.

39

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

5.4 Deployment

Run the app in a local computer

After the successful completion of the development, the app can be started locally in the

development computer using npm start command. This command runs polymer

serve command implicitly. Polymer CLI tool starts the local server on a random port.

For example, Figure 29 shows a local server running on port 8081. The app can be

accessed by a web browser in the local computer at the address http://127.0.0.1:8081.

Figure 29. Start the local server using Polymer CLI.

Run web component unit tests in a local computer

The web component unit test cases can be run in the development computer using

npm run test command, which contains polymer test command to execute the

test. As shown in Figure 30, there are two test cases had passed successfully.

This project is not intended to cover all the testing scenarios but introduces web

component unit test implementation via two simple test cases.

40

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Figure 30. Run web component unit tests in a local computer.

Build the app for deployment

By executing npm run build command, Polymer CLI reads configurations in

polymer.json file and generates different versions of the app in different bundles.

Each bundle targets a specific browser support. For example, esm-bundled contains

the generated app that can run on modern browsers which support ES Module, while

es5-bundled supports Javascript 2009 for old browsers.

Figure 31 shows an examples that Phonebook App were packaged in to es5-bundled,

es6-bundled and esm-bundled.

Figure 31. Bundling the application for deployment.

Each of these bundles can be uploaded to a web server and run independently as a final

production of the application.

41

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

Deploy the app using Heroku service

Heroku is a cloud service for deploying web applications from different platforms, such

as Node.js, Python, Java, Php, Ruby, etc. It is fast and scalable without complex

configurations.

After registering a free account on Heroku.com website, a user can create a new app,

as shown in Figure 32.

Figure 32. Create a new Heroku app.

To push an app from a local computer to Heroku service, a developer can use Heroku

CLI tool, [29] which runs in the Command Prompt of Windows operating system or the

in the Terminal of Linux and MacOS operating systems.

After installing Heroku CLI and logging in with a Heroku account using heroku login

command, a developer can add the Heroku app repository to the project by running the

42

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

command heroku git:remote -a the-app-name, with the-app-name is the

name defined in Figure 32.

Hence, each time the developer pushes a change into Heroku app repository by the

command git push heroku master, the Heroku service automatically runs npm

run build to update the app bundles then starts the app with configurations in

Procfile file in the project.

For this project, the Phonebook App were deployed and can be accessed by any device

with an internet connection at https://phonebook-web-component.herokuapp.com/.

https://phonebook-web-component.herokuapp.com/

43

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Bui Trung Tan

6 CONCLUSION

The main goals of the thesis were to study and implement web components. A significant

amount of time was invested in Web Component specification and its related

technologies. The thesis did not only focus on theoretical concepts but also

demonstrated them with simple examples.

The Phonebook App prototype did not include advanced features but aimed to implement

several web components and integrate them into a complete web application, plus

deploying the application to a production environment. To sum up, the project was

managed successfully and the goals of the thesis were achieved.

Even though Web Component has not been popular in most of the web applications

nowadays, its theory is important and had been implemented in different methodologies

such as React Component.

The Microsoft Corporation also announced the plan of supporting Custom Element and

Shadow DOM for Microsoft Edge. There are large companies that also started using web

components for their products, such as Vaadin, Youtube, Tesla.

Web Component is not a silver bullet for web development. It introduces a modern

approach to develop web applications which is more concise, fast, and reusable. Web

Component is being supported and standardized and it is not an overstatement to

conclude that Web Component might be the future of web application development.

44

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Trung Tan Bui

REFERENCES

[1] Stack Overflow. (2018). Stack Overflow Developer Survey 2018. [online] Available

at: https://insights.stackoverflow.com/survey/2018 [Accessed 14 Apr. 2019].

[2] Wahlin, D. (2012). Moving from Server-Side to Client-Side Web Development.

[online] IT Pro. Available at: https://www.itprotoday.com/web-application-

management/moving-server-side-client-side-web-development [Accessed 4 May 2019].

[3] Hunt, A., Thomas, D. and Cunningham, W. (2015). The pragmatic programmer :

from journeyman to master. Boston: Addison-Wesley, p.27.

[4] MDN Web Docs. (2019b). HTML basics. [online] Available at:

https://developer.mozilla.org/en-

US/docs/Learn/Getting_started_with_the_web/HTML_basics [Accessed 3 May 2019].

[5] https://www.facebook.com/lifewire (2018). A Look at What CSS Is (Cascading Style

Sheets). [online] Lifewire. Available at: https://www.lifewire.com/what-is-css-3466390

[Accessed 3 May 2019].

[6] Codecademy. (2019). Inline Styles in HTML | Codecademy. [online] Available at:

https://www.codecademy.com/articles/html-inline-styles [Accessed 3 May 2019].

[7] Hiring | Upwork. (2018). What is JavaScript? Bring Interactivity & Animation to the

Web. [online] Available at: https://www.upwork.com/hiring/development/what-is-

javascript/ [Accessed 3 May 2019].

[8] Google Developers. (2019a). Introducing Background Sync | Web | Google

Developers. [online] Available at:

https://developers.google.com/web/updates/2015/12/background-sync [Accessed 3

May 2019].

[9] Patel, P. (2018). What exactly is Node.js? [online] freeCodeCamp.org. Available at:

https://medium.freecodecamp.org/what-exactly-is-node-js-ae36e97449f5 [Accessed 14

Apr. 2019].

[10] Npmjs.com. (2019). npm | npm Documentation. [online] Available at:

https://docs.npmjs.com/cli/npm [Accessed 14 Apr. 2019].

45

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Trung Tan Bui

[11] W3counter.com. (2019). W3Counter: Global Web Stats - March 2019. [online]

Available at: https://www.w3counter.com/globalstats.php?year=2019&month=3

[Accessed 14 Apr. 2019].

[12] MDN Web Docs. (2019). Web Components. [online] Available at:

https://developer.mozilla.org/en-US/docs/Web/Web_Components [Accessed 14 Apr.

2019].

[13] W3.org. (2019). What is the Document Object Model? [online] Available at:

https://www.w3.org/TR/WD-DOM/introduction.html [Accessed 14 Apr. 2019].

[14] Patel, Sandeep Kumar (2015). Learning Web Component

Development. Birmingham: Packt Publishing, p.18.

[15] Google Developers. (2019). Shadow DOM v1: Self-Contained Web Components.

[online] Available at: https://developers.google.com/web/fundamentals/web-

components/shadowdom [Accessed 14 Apr. 2019].

[16] MDN Web Docs. (2019a). Element.attachShadow(). [online] Available at:

https://developer.mozilla.org/en-US/docs/Web/API/Element/attachShadow [Accessed

14 Apr. 2019].

[17] MDN Web Docs. (2019d). Using shadow DOM. [online] Available at:

https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_shadow_DOM

[Accessed 3 May 2019].

[18] Caniuse.com. (2019). Can I use... Support tables for HTML5, CSS3, etc. [online]

Available at: https://caniuse.com [Accessed 14 Apr. 2019].

[19] MDN Web Docs. (2019b). The Content Template element. [online] Available at:

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/template [Accessed 14

Apr. 2019].

[20] HTML5 Rocks - A resource for open web HTML5 developers. (2013). Custom

Elements: defining new elements in HTML - HTML5 Rocks. [online] Available at:

https://www.html5rocks.com/en/tutorials/webcomponents/customelements/ [Accessed

14 Apr. 2019].

46

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Trung Tan Bui

[21] Whatwg.org. (2019b). HTML Standard. [online] Available at:

https://html.spec.whatwg.org/multipage/custom-elements.html#valid-custom-element-

name [Accessed 14 Apr. 2019].

[22] Webcomponents.org. (2019). webcomponents.org - Discuss & share web

components. [online] Available at: https://www.webcomponents.org/specs [Accessed

14 Apr. 2019].

[23] Ecma-international.org. (2015). ECMAScript 2015 Language Specification –

ECMA-262 6th Edition. [online] Available at: https://www.ecma-international.org/ecma-

262/6.0/ [Accessed 14 Apr. 2019].

[24] Webcomponents.org. (2019b). webcomponents.org - Discuss & share web

components. [online] Available at: https://www.webcomponents.org/polyfills/ [Accessed

14 Apr. 2019].

[25] Polymer-project.org. (2018). Introduction – LitElement. [online] Available at:

https://lit-element.polymer-project.org/guide [Accessed 16 Apr. 2019].

[26] Polymer-project.org. (2018b). Templates – LitElement. [online] Available at:

https://lit-element.polymer-project.org/guide/templates#bind-properties-to-child-

elements [Accessed 19 Apr. 2019].

[27] Google Developers. (2019a). Progressive Web Apps | Web | Google Developers.

[online] Available at: https://developers.google.com/web/progressive-web-apps/.

[28] Cockburn, A. (2016). Writing Effective Use Cases. Addison-Wesley, pp.124–125.

[29] Heroku.com. (2019). The Heroku CLI | Heroku Dev Center. [online] Available at:

https://devcenter.heroku.com/articles/heroku-cli [Accessed 20 Apr. 2019].

