

Roman Kucherenko

WEBVR API DESCRIPTION AND A-FRAME APPLICATION

IMPLEMENTATION

WEBVR API DESCRIPTION AND A-FRAME APPLICATION

IMPLEMENTATION

 Roman Kucherenko
 Bachelor’s Thesis
 Spring 2019
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Information Technology

Author: Roman Kucherenko
Title of Bachelor´s thesis: WebVR API Description and A-Frame Application
Implementation
Supervisor: Veikko Tapaninen
Term and year of completion: Spring 2019 Number of pages: 35+1

The aim of the thesis was to study and analyse the VR based technology in web
browsers and define its potential in web development and Virtual Reality
market. WebVR is an experimental application programming interface, which
started to gain a momentum from year 2014, and it looks promising from many
perspectives, such as education, design, medicine and entertainment, regarding
to its simplicity from the point of applications development.

To accomplish a desired objective, WebVR API was used and tested in
Chrome, Firefox and Edge browsers with VR related extensions. Other
browsers such as Opera, Internet Explorer and Safari were also used in order to
prove that the API is not or partly supported. The demo application was built on
the 0.8.2 version of A-Frame framework based on Three.js, the Cannon.js
physics library and additional A-Frame library extensions. Testing platforms
were personal computers on Windows and MacOS and smartphones on
Android and iOS operational systems.

As a result, the demo application demonstrates the great functionality,
optimisation and relatively good performance of the WebVR API. Summarizing
the gathered experience and the result, web-based VR API is dependent on a
global VR market and defined by markets status.

Keywords: VR, WebVR, API, JavaScript, 3D graphics, Three.js, A-Frame

4

PREFACE

This thesis was based on the author’s own idea and it was done with the help of

instructing teacher Veikko Tapaninen. The Web-based VR subject was picked

because of its interesting concept and great experience that it can give. WebVR

applications are taking the part of browser games development sphere – one of

the most interesting spheres of web development. 3D visuals and graphics are

playing an important role in e-commerce, they create interest and leave pleasant

sensations in case of proper implementation. VR is exciting technology which

increases consumer demand at a very high speed and WebVR brings it into

browsers allowing easy access and experience, opening more possible values

into the marketing fields. I do not believe that WebVR will become a widely useful

and highly valuable technology, but it has its own potential, especially in hands

of creative and skillful people.

Oulu, 8.5.2019

Roman Kucherenko

5

CONTENTS

ABSTRACT ... 3

PREFACE ... 4

CONTENTS .. 5

VOCABULARY ... 6

1 INTRODUCTION ... 7

2 VIRTUAL REALITY ... 8

2.1 History of VR ... 8

2.2 VR technology description and its appliance ... 10

3 WEBVR API DESCRIPTION ... 13

3.1 Browsers support .. 14

3.2 API interfaces and methods .. 16

4 APPLICATION IMPLEMENTATION .. 19

4.1 A-Frame basics and creating of a scene ... 20

4.2 Adding physics .. 24

4.3 Configuring events, actions and controls ... 26

5.4 Light and shadows .. 29

5 CONCLUSION .. 30

REFERENCES ... 32

APPENDIX .. 36

6

VOCABULARY

API – application programming interface

AR – augmented reality

CSS – cascading style sheets

CPU – central processing unit

DOM – document object model

ECS – entity-component-system

FPS – frames per second

GPU – graphics processing unit

HMD – head mounted display

HTML – hypertext markup language

IT – information technology

JS – JavaScript

PC – personal computer

OS – operational system

UI – user interface

VR – virtual reality

WebGL – web-based graphics library

7

1 INTRODUCTION

The WebVR concept was invented with an intention to simplify development and

experiencing of virtual reality (VR) applications by creating a JavaScript (JS)

library for supporting virtual reality devices in web browsers. The ideology of the

technology implies that the implementation process of web-based VR

applications should become easier and require less coding experience, time and

finances. The WebVR application programming interface (API) has been in

existence since 2014 and till the past time it remained controversial, being almost

an imperceptible deviation from the main VR industry development (1). It had not

gained much popularity, mainly because WebVR applications are free in access

like usual web pages and cannot bring much of a profit. However, it is relatively

optimized and gets support by most of used browsers. WebVR is continuously

developing, the concept is interesting and may bring many new opportunities in

the near future (2). The main objective of this thesis work is to explain how the

technology works, describe the implementation process of an application and in

conclusion define WebVR’s current opportunities and potential, provide valuable

feedback and predict a possible development based on data from analytical

resources.

The application for the thesis research is built on the A-Frame framework and it

represents a basketball game with the concept of throwing a basketball through

the hoop and scoring points. It is playable on desktop and mobile devices in both

VR and non-VR modes. This game intend to show not only the capabilities of

WebVR API, but also a combination of technologies, which can be used for

building a browser-based VR application.

8

2 VIRTUAL REALITY

2.1 History of VR

Virtual Reality (VR) does not have a defined date of birth as a concept of using

stereoscopic pictures in order to simulate three-dimensional images. Back in

1838, an English physicist Charles Wheatstone made a research demonstrating

the ability of brains to convert two two-dimensional pictures into one three-

dimensional object using a stereoscope. This research served new discoveries

in binocular vision studies (3). Later in period from 1930 to our days, the

scientists, inventors and enthusiasts were creating different prototypes, devices

and computers using 3D visual effects and stereoscopic displays (4).

The “Sensorama” was one of the first VR prototypes, patented in 1962 by Morton

Heilig and allowing watching short movies providing a stereoscopic 3D image,

sound effects, smell, a feelings a wind blow and a vibration coming from the chair

in response to some actions. The Telesphere Mask was the first head-mounted

display, which was a small box with straps and with two displays showing the

television in a stereoscopic view and producing sound. It was also invented in

1960 by Morton Heilig (5). His next prototype combined both previous inventions

into one, which was supposed to become a 3D motion picture theatre, where

people could see a stereoscopic picture on a distance wearing polarized glasses,

smell aromas, feel wind, temperature, variations and body tilting of the seat (6).

Nowadays, Morton Heilig is sometimes called the "Father of Virtual Reality" in

some books and articles because of his revolutionary inventions, although they

were not met well by critics and public. (5)

The 'virtual reality' term was popularized by a video game developer Jaron Lanier

in 1987. He founded an VPL Research company, which was focusing on

commercializing virtual reality technologies, it was the first company that sold

commercial VR systems, such as VR head mountain displays named EyePhone,

which had a form of today’s VR headsets, were wire-connected to computer and

could track head movements (7). Additionally, VPL developed the DataGlove and

the DataSuit, which represented gloves and a suit as advanced controllers for

9

virtual reality. Gloves had 6,502 microcontrollers and was used for computer

control and gaming, it also had the potential for a remote surgery. The suit was

provided with sensors for measuring the movement of arms, legs, and trunk. VPL

developed a working prototype but it had no time to caught on because the

company was filed for bankruptcy in 1990. (8)

Besides VPL Research, on the wave of popularity of a new technology other

companies started to produce their own variants of VR headsets and games from

them. Great examples are VR glasses from Sega and Virtual Boy from Nintendo.

The Sega VR glasses were supposed to have head tracking, stereo sound and

two LCD screens for both eyes, but it never came into the market because of

technical development difficulties. Nintendo’s Virtual Boy was not just glasses, it

was a portable console that displayed 3D graphics, but it did not confirm to the

standards of ergonomics, which caused usage problems and motion sickness for

users while playing. Because of high development costs and lack of technical

capabilities and computing power in 1990’s, the implementation of well-designed

and qualitative VR was unattainable. (8)

Besides gaming industry, VR systems were applied in education and training to

medicine and military fields. From the end of 1970’s and until 1989, an American

professor and inventor Thomas Furness was developing virtual interfaces for a

flight control of the U.S. Air Force. He was able to produce flight helmets with

displays, which showed the most important information related to a flight, such

as computer-generated 3D maps, forward-looking infrared and radar imagery,

and avionics data that the pilots could view and hear in real time. The helmet had

tracking systems to determine position, orientation, and gaze direction, voice

control and sensors, with which a pilot could control the aircraft with gestures,

utterances, and eye movements. (9)

At the same period of time, the medical field the started development of

technology providing telepresence in surgeries by manipulating robotic devices

controlled remotely. The first achievement was the transmission of images

through micro cameras attached to endoscopic devices and to monitors for a

group of surgeons during the surgery. This provided the impetus towards the

10

development of a remote surgery. During 1990s, a DARPA initiative funded a

research to produce telepresence workstations for microsurgeries and other less

invasive forms of surgical procedures. The first robotic surgery was performed at

the Broussais Hospital in Paris in 1998 (9). Nowadays, modern technologies

allow training of future specialists in VR simulators with a similar concept of

remote surgery. Using an VR head mounted display (HMD) and a set of surgical

instruments, people can practice and learn how to perform real surgeries that are

reproduced in a virtual environment (10).

2.2 VR technology description and its appliance

Virtual reality represents a computer simulation of a certain environment or world

transmitted to a person through the main senses - sight and hearing. The user

conducts entering in virtual reality by VR-devices, such as stereoscopic HMD,

various motion sensors and controllers, which are tracking users head and body

movements and controller inputs, and other specialized equipment. VR is one of

the main technological trends of recent times and became one of demanded

directions of Information Technology (IT) development industry. The reason

behind that is a big potential that opens new edges for digital marketing and retail

strategy (11). The concept brings fundamentally new ways of experiencing usual

things, creates opportunities for developers and implies revolutionary ideas. The

technology is already applied in many industrial and marketing areas, such as

computer and mobile game development, architecture and town planning, vehicle

manufacturing, extraction of minerals, training and education, promotion of

tourism, marketing and advertising, military and others. The automotive industry

provides an ability to explore, customize and test-drive a car, which does not even

have a prototype (12). Online shops, like Alibaba and Ikea, let customers select

products like clothes or furniture by VR applications. People are able to view the

product from all sides for example by rotating it, changing colors, shape or size

(13).

The Virtual Reality gaming industry is one of the fastest growing and exciting

sphere of VR industry in the development of mobile and computer game

applications. By the year 2025, the global VR gaming market revenue is going to

11

be up to 45 billion dollars according to the forecast from Grand View Research

Inc. The current revenue with a yearly forecast can be seen in Figure 1. The main

reason for that is improvements in the VR HMD picture quality, ergonomics and

technical capabilities. Other reasons affecting the VR market growth are

promotion of technology and advertising from large companies like Google,

Samsung, Sony and Oculus VR. In addition, a price reduction based on the

growing competition on the market will increase consumers interest. Mobile

gaming impacts the VR market growth as well since it is a related market and it

is becoming more common. The choice of mobile applications is expanding and

new applications are released more often. (14)

FIGURE 1. VR gaming market revenue forecast in $ billions. (14)

Nowadays, a wide range of the VR-devices is available on the market. They can

be divided into two groups. Those that are intended for personal computers (PC)

and gaming consoles, and others that are simpler and designed for mobile

devices. Devices for PC and game consoles are more complex and cost

significantly more, but they provide a better immersion effect. Advanced VR

headsets represent a box with two built-in displays for each eye to output an

image and a rotational and positional tracking feature. In order to provide a

satisfying experience, each display should have a high resolution to make a

picture smoother and pixels almost invisible for an eye while using a headset.

That requires a high computing power of a processor and involves large

12

expenses that make this option less accessible. In fact, to provide a smooth VR

PC gaming experience, the computing power should provide stable 90 frames

per second (FPS) and a minimum resolution of 960x1080 to both separate

displays, which is in total 1920x1080 pixels. (15)

Mobile VR gaming occupies a low-cost market segment and is accessible to a

wider consumer audience. A mobile VR headset is technically simpler due to the

fact that it is just a plastic or even cardboard box with two lenses. The lenses, as

in more advanced headsets, are used to focus a user’s eyes on a display. Any

average performance smartphone placed inside of such box is playing the roles

of a display, head movements tracker and small computer. This makes the VR

user experience lower comparing to an experience with advanced headsets, and

additionally the set of applications is very different depending on the platform.

WebVR solves that issue as well by defining a single platform, which is a browser,

and it does no longer matter which headset type is used, WebVR applications are

accessible from every device with a browser supporting the API. (16)

Designing and development of native applications for mobile and PC VR groups

differ depending on targeting operational systems (OS), device type and technical

specifications. Developers have to consider the different trackers, the screens

and types of stereoscopy, computing the correct perspective and other

differences between hardware and software. This state of affairs creates

difficulties in optimization and realization of the idea of the product, which is a

usual problem in the software development sphere. A number of technical

nuances often arises during the development process, bringing complications

and higher costs. This problem is highly relevant in the field of PC VR software

and applications development, and the number of various displays and controlling

devices with a set of different technical specifications aggravates it (17).

Removing such difficulties reduce costs and simplifies the development process,

optimization and usability will improve and as a result, the product becomes more

attractive and user-friendly. The possibility to achieve that simplicity for the VR

market was found in the idea of providing the VR content in the web via browsers

by developing a new API called WebVR.

13

3 WEBVR API DESCRIPTION

WebVR is an experimental technology, which was conceived by The Mozilla

Corporation in 2014 and released in the beginning of 2016 with a stable version

1.0. The API provides support for using virtual reality devices in web applications,

allowing developers to transform location and motion information from the device

into movements and actions inside the virtual 3D environment. Its main goal is to

facilitate a qualitative experience of virtual reality for each user, regardless of a

device type and its operational system. (18)

WebVR represents the JavaScript API, which accesses the Web-based Graphics

Library (WebGL) API built into modern browsers for rendering interactive 2D and

3D graphics inside a hypertext markup language (HTML) <canvas> element (19).

WebGL allows browsers low-level access to machine’s graphics processing unit

(GPU) for more advanced graphics rendering. Essentially, WebGL uses the

graphics processor to perform two tasks. The first task is to handle the positions

and the vertices of the clipping space - part of the scene that is in the user's field

of vision. The second task is to draw pixels based on the results of the first task.

The WebVR API is a software interface for working with devices and it is

responsible for other tasks: VR device presence recognition, its capabilities and

technical specifications, retrieving parameters of device position, orientation,

velocity and acceleration, and rendering stereoscopic images to both displays or

their simulation using a split screen view. Thus, WebVR gets needed data for the

image while the actual image is created using mostly HTML, WebGL, Canvas

and CSS. (20)

WebVR applications are accessible in browsers in a similar way as usual web

sites and other web applications. They are built to be viewed and played by any

type of VR headset and they work in browsers where the WebVR API is

supported. Such applications are possible to experience without a stereoscopic

HMD as well, WebVR provides functionality of screen splitting, thereby a mobile

or a computer screen can be divided into two independently rendering pictures

with a little different view angle. (21)

14

3.1 Browsers support

Since the VR application works in a browser, it does not require any separate

software and does not depend on any operating system. It only depends on

WebVR API support of the browser, where the application is used. Support lies

in the presence of a built-in WebVR API and its optimization for a browser

environment with specific engines and libraries. Currently, WebVR has better

support in Mozilla Firefox, Google Chrome for Android and Microsoft Edge for

Windows and Android, and it is partly supported by Chrome for Windows and

macOS, Safari mobile version and Samsung Internet browsers, which is visible

below in Figure 2. Additionally, the API is supported in less popular browsers,

such as Brave Browser for mobile platforms, UC Browser and Servo for desktops.

As for other browsers, which are not made specially for VR, the API is not

supported there at all (22). Besides the API support issues, a specific browser

may not support various headsets, for instance Firefox supports Oculus Rift, while

Chrome does not. (23)

The API is enabled by default in Firefox, Chrome for Android and Edge for

Windows/Android. In the Chrome desktop version browser it can be enabled by

setting a proper flag named WebVR in browser configurations. Regarding other

browsers, in case if WebVR is not available natively, the problem can be resolved

using an API polyfill. A polyfill is an imitation of a new, not yet implemented in

some browsers API, giving them the reverse functionality (24). The WebVR

polyfill usage opens an VR experience in more browsers, the most popular of

which are Safari and Chrome for iOS. (21)

FIGURE 2. List of browser versions supporting WebVR API. (22)

15

Developers from Google and Mozilla are not the only ones who place bets on the

WebVR concept and are sure that browsing in the future will be VR-based. Few

browsers been released specially for VR browsing, with a completely different

logic of page rendering tailored for surfing in the Internet with the VR headset.

The list of such browsers includes e.g. Supermedium, Oculus Carmel, JanusVR,

LensVR. The design of such browsers is more or less common and can be seen

in Figure 3. Most browsers, currently, are in beta or developing stages, making

them unstable to use. (25)

A Bulgaria-based Coherent Labs company was developing their own browser for

VR browsing that is called LensVR. The browser architecture designed for high

performance and support of virtual and augmented reality as well. “A virtual reality

experience is more similar to a video game than to a 2D web – there is a 3D

world, 3D object, light, sound, multiple users, etc. It requires a different underlying

technology that works in the same way game engines do.” – says the product

manager Bilyana Vacheva. Therefore, WebVR cannot give users a full potential

of virtual experience in a web, since it is only an extension to usual browsers,

made for plane web pages. It is hard not to agree with this, because the current

look of existing WebVR applications are very primitive and unlikely to become

more advanced on current bases. (25)

FIGURE 3. Example of VR-based browser user interface. (26)

16

The complexity and advancement of WebVR applications strongly impacts on the

performance. Processing and rendering visible objects in a tick of frame and

maintaining their physical properties in relation to each other requires graphics

and central processing units resources. For now, the infrastructure of the

browsers shifts the 3D graphics processing load basically onto a central

processing unit (CPU) and does not allow to use the full potential and possibilities

of the GPU (27). In addition, performance slightly depends on the Internet speed

and hosting specifications of a used resource. Thus, the main issue here is that

applications should be enough simple and light to be played and behave correctly

and provide best user experience. (28)

3.2 API interfaces and methods

The WebVR API provides several basic interfaces for working, such as Navigator,

VRDisplay, VRLayerInit, VRPose, VREyeParameters, VRFrameData. The

Navigator interface represents the state and features of the user agent. This

allows scripts to recognize them and register themselves to perform certain

actions. Other interfaces implemented by Navigator hold information about

headset display and frames data, position and direction of movements,

information on how to render a picture to each eye and information about the

scene frame for a projection on a single eye. (29)

To detect the available devices, the API provides an navigator.getVRDisplays()

method, which returns a promise fulfilled with an array of all connected VR

displays and resolves to a number of VRDisplay objects. Depending on the

display presence, VR applications can or cannot be viewed in VR mode. WebVR

applications usually have a button titled “Enter VR” or “VR not found”, where

buttons text and functionality directly depend on availability status of the displays.

It is possible to test the getVRDisplays() method manually by running it in the

console of browser inspect panel, but if no HMD emulation is used, no devices

will be found because computers are not treated as VR displays. Not every device

with a display and accelerometers can be considered as an HMD and in case

with the emulation they can only provide a pseudo-VR experience. A specialized

Chrome extension named “WebVR API Emulation” enables an emulator of VR

https://developer.mozilla.org/en-US/docs/Web/API/VRDisplay

17

HMD object, more specifically HTC Vive, to allow VR mode use for developers.

Mobile browsers provide such emulation by default. Other VR devices, such as

Oculus Rift or HTC Vive, are the actual HMDs and does not require emulations.

An example of getVRDisplays() is presented in Figure 4 below. (30)

FIGURE 4. Example usage of navigator.getVRDisplays() method.

The VR display has a number of capabilities, which are used in a

VRDisplayCapabilities interface to determine if a display is applicable.

Capabilities are defined by five attributes returning the Boolean value, being

hasPosition, hasOrientation, hasExternalDisplay, canPresent and maxLayer.

The hasPosition and hasOrientation attributes obviously define if a display is

capable of tracking its position and orientation. The hasExternalDisplay

determines a presence of external display and in case if it exists, the application

should mirror the VR content and update a non-VR UI because that content is

visible on primary display of a device. The canPresent obtains a value depending

on ability of a head mounted display or other device to present VR content. The

maxLayer return a maximum number of layers that the VR display can present at

once, but is null in case canPresent is also null. (30)

After VR devices get detected the VRDisplay.requestPresent() usually used to

start displaying a scene on a VR device. The VRLayerInit interface, in its turn,

represents a content layer, being an HTMLCanvasElement or OffscreenCanvas

element that is intended for a VR output load. The VRLayerInit objects can be

retrieved using a VRDisplay.getLayers() method, which present these objects

using the VRDisplay.requestPresent() method. (30)

18

A VRPose interface contains position, orientation, velocity, and acceleration

information of a VRDisplay and it is acceptable with VRDisplay.getPose(). It

represents a state of VR sensor at a given timestamp and populates

VRFrameData object with provided position information. That object is the one

that calls the VRPose by getFrameData() method, which also gets view and a

projection matrices for the current frame. Both matrices are calculated for each

eye. They are responsible for proper rendering of a clipping space from two

angles. Each eye data is provided with a VREyeParameters object. It returns a

field of a view and width and height of an eye viewport. If eyes are rendered in a

single render target, for example on a smartphone display, then the render target

is calculated to be wide enough to fit both viewports because rendering pictures

cannot overlap each other. (30)

The WebVR API additionally provides a VRStageParameters interface, holding

information of a stage area for devices that support room-scale experiences. The

VRDisplayEvent interface is responsible for detecting a display connection,

pausing manually or when an application is not used for some time after a user

took HMD off. The Gamepad interface allows using VR controllers or gamepads,

which can be connected by a wire or Bluetooth. Starting from a middle of year

2018, the WebVR API became a part of a new WebXR API, where virtual reality

is complemented with augmented reality (AR). Considering a novelty of that

library, it is still under development and not stable, for now it is only used in

Firefox, Chrome for Android and Edge. (30)

19

4 APPLICATION IMPLEMENTATION

There are several options to implement a web VR application, but JavaScript is

the main programming language for implementation nevertheless. JS libraries

such Three.js or Babylon.js, are made for building animated 3D computer

graphics and also optimized for a VR environment creation. Auxiliary frameworks,

for instance A-Frame and React 360, specialize on the browser-based VR and

simplify implementation. Both of them are based on the Three.js library, but they

are different in design and coding approaches. React 360 is developed by the

Facebook team and has the same concepts, features, and benefits of React JS,

so a developer have to be familiar with React. A-Frame is made by the Mozilla

team and it became available in one year earlier. It is designed for people with

less experience in JS since a 3D scene with objects can be defined in HTML as

Document Object Model (DOM) elements. In the Figure 5 below it is shown that

Reach VR gained more GitHub project starts in one month and then their number

grew slower, while A-Frame projects start growth is more stable and steady. (31)

FIGURE 5. A-Frame and React VR GitHub starts comparison.

20

The A-Frame framework has a number of advantages over React 360 and regular

Three.js. The open source framework uses an Entity-Component-System (ECS)

architecture, which provides an accessible plug-and-play ecosystem. The ECS

design pattern brings flexibility in designing a common software architecture by

separating logic from data and providing easiness in modifying systems and

components. In addition, it has a bigger community and number of components.

In this way, A-Frame is an optimal option to develop the VR application, which is

going to imitate a basketball field for the demo application of current research.

(32)

For this thesis work, the demo application is built on the A-Frame 0.8.2 version.

The application implementation process itself is possible to divide into few stages,

a number of which depends on its complexity. In case of this thesis work, the

application implementation consists of four main stages: creating a scene and

entity objects; adding physics; adding an ability to move a camera (player) using

a keyboard and a mouse and a Bluetooth or wire connectable controller device;

implementing interaction with objects and their collision detection.

4.1 A-Frame basics and creating of a scene

In order to use A-Frame, an external script of a framework library must be added

to an HTML head section. The framework defines a scene by an <a-scene> tag

that must be placed under the body element to represent a global object, inside

of which the 3D objects and all related actions are handled. The A-Frame scene

set up canvas, renderer and render loop by default. Canvas is a scene output

element, and the renderer is what draws canvas output. The render loop causes

the renderer to draw the scene every time when screen is refreshed, which is

called frames per second (FPS) rendering. In addition, the a-scene provides a

default camera and light entities, which could be overridden by custom entities.

(33)

A-Frame provides a number of primitives out of the box. Primitives are entity-

component wrappers initiated by semantic tags like <a-box>, <a-light>, <a-

camera> and others that have a preset bundle of components with default values.

21

The components are attributes, which configurations affect the appearance of an

entity, its color, texture, animations and physical properties. Editing component

properties change related primitive. That allows a quick and flexible scene

customizing. The example of scene initializing in an HTML template can be seen

below in Figure 6. (34)

FIGURE 6. Example of initialising a-scene element and primitives with

components.

Developers can create custom primitives by registering them through JavaScript.

To do that, it is necessary to define default components and mappings for a new

primitive. Default components describe set of components of a primitive, which

are always applied unless they are overridden in the DOM. Mappings define

custom components used as HTML attributes that relate to original property of a

component. The code snippet presented below in Figure 7 demonstrates an

example of mapping the custom components, which are going to be treated as

properties of eponymous geometry component. (34)

FIGURE 7. Example of registration for the <a-box> primitive.

22

In order to use an existing primitive in JS, it should have a custom component,

which has to be registered with a dedicated AFRAME.registerComponent()

method that provides a set of handlers allowing to use a primitive in different

periods of its lifecycle. Totally, there are eight handlers available for a component:

init(), update(), remove(), pause(), play(), tick(), tock() and updateSchema(). At

least one defined handler is necessary for a component registration, others can

be used if needed. Accessing an entity of a component is possible via “this”

property. Another important component concept in A-Frame is the schema that

describes properties of the component. The component registration example is

provided in Figure 8. (35)

The init() function runs only once to initiate a custom component when a content

is set to an entity in the HTML and a page is loaded, or when the component is

added to a scene entity via setAttribute(), or when the entity is appended to a

scene via appendChild(). The initiating handler is mostly used to set up an initial

state and variables, bind methods and attach event listeners. The update()

function is called right after init() and whenever component properties get

updated. When a component gets removed from an entity, or an entity gets

detached from a scene, A-Frame calls the remove() function. If an entity or a

scene were paused, then a pause() function is called. It is also called before the

related entity is removed. Each time when the entity or the scene is resumed, a

play() function runs. The tick() and tock() handlers call a respond on an each tick

or frame of the scene’s render loop, with a difference that the tick() called before

scene is loaded and the tock() is called after. Finally, updateSchema() is called

when entities schema gets modified. (35)

Besides handlers, the component could have definition properties. The

“dependencies” property controls the order in which entities should be initialized.

The “multiple” property allows the component to have multiple instances of itself

in an entity. It is set to false by default. The instances are defined by the name of

a component with a unique suffix of a double underscore and an instance

identifier. That is needed for an easy switching between a set of predefined

properties. The “events” object property is intended for a component related event

handlers like “click”. (35)

23

FIGURE 8. Registering of a ball component example.

Systems are also possible to be registered. They are mostly needed to assemble

and manage entities with the appropriate components. The system helps to

separate the logic and behavior from the data and must hold the logic that

belongs to the collection of entities. They are registered in the same way as

components and scheme and callbacks, except that their set consists of init(),

play(), pause(), tick() and tock(). Registered system prototypes can be accessed

through AFRAME.systems. (36)

The A-Frame framework also provides a number of developer tools, such as 3D

inspector, motion capture and graphical user interface (GUI) tools based on the

framework. The 3D inspector visual tool allows editing a scene by moving around

it and change, add and remove entities. A result of performed actions is seen in

real time, and every entity can be copied as a code snippet. Motion capture, in its

turn, brings an opportunity to record movements and actions, which perform in a

WebVR application, and then replays the recording in order to develop the

application without a manual continuous repeating of the same actions. This

approach is handy for Quality Assurance (QA) testing as well because all console

logs and bug reproduction steps are available. (37)

Based on all mentioned methods, it is possible to create a 3D platform with

objects that represents a virtual basketball hall. Objects can be mapped with

textures to make them look more realistic. A-Frame has an asset management

24

system, which holds all assets at one place and improves performance by

preloading and caching assets. A scene will not be loaded until a browser fetches

all assets, and the loading will fail if some asset is not found during some defined

timeout. Assets can store textures and object models, sounds and videos.

Textures are images that are superimposed on a geometric surface. They are

configured by material component properties such as dimensions, opacity, color

and others. Ready 3D objects can be used with models. Each asset has own ID

attribute by which it can be used in the scene. A path to the files is defined with a

src attribute. (38)

4.2 Adding physics

A physics engine is not included in the default A-Frame JavaScript build. It is

separated and belongs to the additional extra features of the framework

developed by the A-Frame team or community, which intend to add more

functionality, primitives, components and tolls. The “aframe-physics-system”

library is one of such extra features made by the A-Frame team. It is based on

Cannon.js and adds physics to scene entities using body components like

dynamic-body and static-body, and extends scene customization with gravity,

friction, restitution, iterations and other additional properties. (39)

Cannon.js is an open source engine built originally on JavaScript and its main

advantages over the rest are its compactness with regard to its performance and

operability. It includes common physics features such as rigid-body dynamics,

collision detection and calculation of the acceleration vector, and additionally

such extra features as cloth simulation (40). A-frame combines own syntax with

the physics API providing new components and properties and allowing to use

the events of the library on the entities (39).

The entities, which have static-body or dynamic-body components, imply solidity

relative to other objects, so they acquire a hard surface. The difference between

them is that the static body has no effect from gravity and collisions. The dynamic

body, on the contrary, can have a mass and a velocity vector, making it

responsive in any applied force. In the demo application for this research, a

25

basketball should be in the dynamic state in order to have motion acceleration

and velocity, while remaining objects e.g. floor, walls and basket backboard are

static and serve as physical obstacles for a ball. (39)

The dynamic-body and static-body components have a set of properties that

consist of shape, mass, linearDamping, angularDamping, sphereRadius and

cylinderAxis, from which the static-body component has only shape and

cylinderAxis. Physics components HTML syntax can be seen in Figure 9. The

shape defines a collision geometry of an object, depending on which one specific

entity object behaves differently in collisions with dynamic entity objects. There

are such available shapes as box, cylinder, sphere, hull (convex), mesh (custom

geometry), auto and none. Sphere and cylinder shapes provide the best

performance regarding collisions. The shape configured with a none property

does not apply any collision geometry to the object. Other property, the mass,

simulates a mass of an object and defines an impact force of an object in

collisions. The linearDamping and angularDamping define a dynamic resistance

of the object to movement and rotation. The sphereRadius and cylinderAxis work

only in cases of sphere and cylinder shapes respectively, and define a restrictive

radius of a collision geometry of the sphere and axis pf the cylinder. (39)

FIGURE 9. Example of physics components and properties.

Another library called “aframe-extras” provides a kinematic-body component,

which is another state of the physical body of an entity. This kinematic state is

similar to static, though it can collide with other static and dynamic objects. It does

not take into account the reasons of object motion such as mass, impact force or

applied impulse. That component is mainly used for a camera entity, more

precisely as a “rig” of the camera, and it has one radius property defining the

26

radius of camera boundaries representing collision geometry. In this way, the

camera cannot go through the objects, limiting the movements of a player around

the scene and simulating a virtual room-scale. (41)

4.3 Configuring events, actions and controls

Scene events on entities and between them are handled in usual way through an

addEventListener() method with a common set of events such as click, fusing,

mouseenter, mouseleave, keydown, keyup, touchstart, touchend. The example

can be seen in Figure 10 below. Since some events relate to a cursor, there is an

obvious question about the availability of such in the WebVR application. To

define a cursor in A-Frame and enable an emitting mouse and hover events, the

camera entity has to contain an additional entity inside with a cursor component

attribute. The cursor can take different forms depending on geometry and

material properties of components entity. A position of the cursor can also be

overridden, for example to put it farther or closer from a viewpoint of a camera

and keep it in a visible area. In case if HMD is used in combination with VR hand

controllers, those are also using the addEventListener() method for interacting

with a 3D environment. (42)

The cursor is based on a raycaster component. The raycaster is a Three.js

method, which draws a line from a defined point to some direction and detects if

the line intersects entities. Thus, the cursor represents a ray that is tending from

the camera towards the user’s gaze, and the raycaster component application

emits a mouse event when the ray hits into an object (43). In A-Frame, every

raycaster event can contain event related details with a detail.intersection data

attribute of events property. The distance attribute stores the value of a distance

between the cursor and the used entity. The point attribute shows the coordinates

of a ray point intersection in a 3D world coordinate system. Intersection faces,

their index and indices of vertices comprising of intersected faces are available

with faces, faceIndex and indices attributes. A full data set of the intersected

objects is gathered in the object attribute. The correspondence between

coordinates on the surface of a three-dimensional object and coordinates on the

texture are stored in the uv attribute. (42)

27

FIGURE 10. Example of cursor click event usage. The “evt.target” attribute is

equal to “evt.detail.intersection.object”.

To apply forces to an object or listen to a physics specific event, it is possible to

use a related Cannon.js API library as can be seen in Figure 11. The body-loaded

and collide events are available to listen for a moment when a targeting

component is loaded and collided with other physical body components. The

collision even provides a motion vector, velocity in the moment of a collision and

collided entities data. The forces appliance performed by Cannon.js methods, for

instance applyImpulse(), which sets two 3-dimensional vectors to an entities body

physical object using a Vec3(x, y, z) constructor, where x, y and z represent the

dimensional coordinates of a scene. The first vector represents a direction and

acceleration force, and the second vector is responsible for rotation. (39)

FIGURE 11. Example of usage of “body-loaded” and “collide” event listeners,

and applying impulse on component with a “ball” unique identifier.

In this way, using the cursor component and physic engine API, implementation

of a ball related actions, such as picking it up or throwing can be handled with the

few events. To modify the properties of the ball, it is possible to use setAttribute()

or removeAttribute() methods. Such methods that relate to entity configurations

are used on the entities, while methods related to Three.js Object3D

28

representation are used on entity objects controlling position, velocity and

rotation.

Moving in a virtual environment ability is configured by components related to the

camera and its “rig” entities. A-Frame supports a number or additional

components, allowing developers to use all the necessary tools to control a player

in the game world. The look-controls component enable the camera moving with

a use of mouse or devise accelerometer sensors. The wasd-controls adds

support to use keyboard layout of common controlling keys to move the camera

entity (44). Extra framework libraries provide a wider range of controls options,

the movement-controls component for instance, which combines locomotion

controls of keyboard-controls, touch-controls, trackpad-controls, and most

important gamepad-controls that enables an appliance of a gamepad. With its

help, any gamepad, joystick and controller could be used in the A-Frame

application. (45)

The gamepad-controls component is using Gamepad API, which allows applying

a connected gamepad using JavaScript. The getGamepads() method is used to

get available gamepads. It is used in a user agent interface, which is same as in

case with WebVR API – the navigator. Each gamepad returned by

getGamepads() have objects, such as axes, buttons, connected, ID, index,

mapping and timestamp. Defining connectivity is done by the connected object,

which is the Boolean data type and stores true if a gamepad is connected. The

axes object stores an array of numbers that represent the state of each analogue

stick or button. Numbers are a floating point value in the range from -1.0 to 1.0.

The buttons object is an array representing the buttons that are present on a used

gamepad. Each button has a pressed and a value property, where the first one is

a Boolean and belongs to buttons, and the second one is a floating point value

and belongs to analog buttons, such as triggers. The mapping represents a layout

of the gamepad, which can be defined by a browser if it is empty. The timestamp

stores the last time when the data for the used gamepad was updated, for example

if axes or buttons data values change. The ID object contains some information

about the controller, such as a USB vendor ID, a product ID and a name. The

index holds a unique integer data type value for every connected gamepad. (46)

https://developer.mozilla.org/en-US/docs/Web/API/GamepadButton

29

5.4 Light and shadows

The light entities are similar to other A-Frame entities. They have components

and properties and can be extended and overridden in JS. However, without a

light, there is nothing to be seen in the scene, only a black screen. The light

makes the scene visible. There are few light options provided by the framework:

ambient, directional, point, spot and hemisphere. Each option produces different

kind of a light, derived from a related option type name. The light itself does not

greatly affect the performance of the application, but it could become very

resource demanding, if shadow casting is enabled. Three light types spot, point

and directional can produce shadows by configuring light component properties

castShadow, shadowMapHeight and shadowMapWidth. The last two properties

define a resolution of a shadow in pixels. The entities have own cast property of

a shadow component that is responsible for controlling shadow casting of a used

entity. The application has to calculate the geometry boundaries of an each entity

object with a cast property set to true, located in the coverage area of a light. The

more objects casting shadows, the more processing power is needed. The

directional light type provides the best performance compared to other types, but

the FPS value still drops significantly on around 15 frames in average, which

entails a lower user experience. Figure 12 below demonstrates results in

performance with and without shadows. (47)

FIGURE 12. Comparison of application performance statistics without (left table)

and with (right table) shadows casting from two directional light sources.

30

5 CONCLUSION

WebVR is an interesting concept, a powerful tool providing many opportunities to

developers. The technology definitely brings a desired simplicity, since any user

is able to experience WebVR applications in a moment by only opening them in

the browser on a computer or smartphone. The API library gets developing, its

functionality keeps extending and improving. It provides a wide set of tools that

allow developers to be flexible in creativity. Using Three.js and VR-oriented

frameworks, it is possible to create a WebVR application without having deep

knowledge in HTML and JavaScript. However, web-based VR is unpopular and

known mostly in the circles of people who work in the VR marketing and

developing fields.

The VR and AR market itself is growing each year with increasing sales of related

software and hardware. It attracts more individual consumers of different age,

because more device and application options become available on the market.

The enterprises are interested in these technologies as well as individuals. VR is

integrated in many areas such as movies, sports broadcasts and shows, social

networks, education, medicine, trade and real estate. According to data from the

Digi-Capital consulting and analytics company, investments in spheres of mixed

reality technology appliances amounted to $3 billion in 2017. The annual

worldwide revenue from the sale of games, applications and devices for 2018

year was over $20 billion as can be seen in charts in Appendix 1. Concerning the

future, the VR/AR marketing field growth has a good forecast for the upcoming

3-4 years.

Considering that WebVR is a part of the VR/AR market, its development is

inevitable. For now, it is an experimental technology and does not carry any

revolutionary value. As the idea involves a simplification of production and use of

content, it is going to take its place in the future of VR marketing field. Presently,

it is possible to assume that WebVR will be mainly used for special-purpose

applications such as virtual real estate or sale of tourist services. Building a VR

application in the web requires less time and financial resources than native

31

application development, thus it is also suitable for mocking up a VR application

for testing. WebVR cannot be considered necessary and useful at this point, but

it just needs a bit more time to unleash its potential.

The current thesis work can be considered as a successful evaluation of WebVR

API usage and application operability based on it. During the work, the topic was

studied gradually as the application was developed. The nuances of the

technologies were studied deeply and described in details. The gained

experience was very valuable from the programming skills and theoretical skills

developing perspectives. The developed demo application shows capabilities of

web-based VR and gives an idea of its current status in the field of entertainment

and other possible marketing spheres.

32

REFERENCES

(1) Wikipedia. WebVR. Date of retrieval: 23.8.2018
https://en.wikipedia.org/wiki/WebVR

(2) Kidwell Essa. Everything you need to know about WebVR. Date of retrieval:
23.8.2018
https://www.windowscentral.com/everything-you-need-know-about-webvr

(3) Wade Nicholas J. 2002. “Perception, volume 31”, pages 265-272. Date of
retrieval: 12.5.2019
journals.sagepub.com/doi/pdf/10.1068/p3103ed

(4) Barnard Dom. 2017. “History of VR - Timeline of Events and Tech
Development”. Date of retrieval: 5.9.2019
https://virtualspeech.com/blog/history-of-vr

(5) Ware Justin. 2018. “Virtual reality: a (very) brief history, part 1”. Date of
retrieval: 12.5.2019
finfeed.com/opinion/ctrl-alt-del/virtual-reality-very-brief-history-part-1/

(6) Heilig Morton L. 1969. “Experience theatre patent”. Date of retrieval:
11.5.2019
www.mortonheilig.com/Experience_Theater_Patent.pdf

(7) Parkin Simon. 2014. “Virtual Reality Startups. Look Back to the Future”.
Date of retrieval: 10.5.2019
www.technologyreview.com/s/525301/virtual-reality-startups-look-back-to-the-
future/

(8) Corning Anne. 2018. “Blast From the Past: Virtual Reality”. Date of retrieval:
10.5.2019
https://www.radiantvisionsystems.com/blog/blast-past-virtual-reality

(9) Lowood Henry E. 1998. ”Virtual reality”. Date of retrieval: 5.9.2019
www.britannica.com/technology/virtual-reality

(10) Vincent James. 2018. ”Haptic feedback is making VR surgery feel like the
real thing”. Date of retrieval: 7.9.2019
https://www.theverge.com/2018/8/14/17670304/virtual-reality-surgery-training-
haptic-feedback-fundamentalvr

(11) Shilova Margarita. 2017. “Virtual reality technology: main trends, statistics
& startups”. Date of retrieval: 25.8.2018
https://apiumhub.com/tech-blog-barcelona/virtual-reality-technology/

(12) Sheikh Knvul. 2016. ”10 Other Fascinating Uses for Virtual-Reality Tech”.
Date of retrieval: 25.8.2018
www.livescience.com/53392-virtual-reality-tech-uses-beyond-gaming.html

https://en.wikipedia.org/wiki/WebVR
https://www.windowscentral.com/author/Essa%20Kidwell
https://www.windowscentral.com/everything-you-need-know-about-webvr
https://journals.sagepub.com/doi/pdf/10.1068/p3103ed
https://virtualspeech.com/blog/history-of-vr
https://finfeed.com/author/justin-ware/
https://finfeed.com/opinion/ctrl-alt-del/virtual-reality-very-brief-history-part-1/
http://www.mortonheilig.com/Experience_Theater_Patent.pdf
http://www.technologyreview.com/s/525301/virtual-reality-startups-look-back-to-the-future/
http://www.technologyreview.com/s/525301/virtual-reality-startups-look-back-to-the-future/
https://www.radiantvisionsystems.com/blog/blast-past-virtual-reality
http://www.britannica.com/technology/virtual-reality
https://www.theverge.com/2018/8/14/17670304/virtual-reality-surgery-training-haptic-feedback-fundamentalvr
https://www.theverge.com/2018/8/14/17670304/virtual-reality-surgery-training-haptic-feedback-fundamentalvr
https://apiumhub.com/tech-blog-barcelona/author/margarita/
https://apiumhub.com/tech-blog-barcelona/virtual-reality-technology/
http://www.livescience.com/53392-virtual-reality-tech-uses-beyond-gaming.html

33

(13) Gardonio Scottie. 2017. “Retailers Beware: AR/VR is Coming to Change
Shopping”. Date of retrieval: 4.05.2019
https://medium.com/iotforall/retailers-beware-ar-vr-is-coming-to-change-
shopping-d207f9e5be63

(14) Mikhalchuk Dimitri. 2017. “VR Gaming: How Industry Will Propel the
Technology”. Date of retrieval: 4.5.2019
https://teslasuit.io/blog/virtual-reality/vr-gaming-how-industry-push-technology/

(15) Iwaniuk Phil. 2016. “VR is 7 times more demanding of your PC than 1080p
gaming, say NVIDIA”. Date of retrieval: 9.9.2018
https://www.pcgamesn.com/eve-valkyrie/vr-requires-a-pc-7-times-more-
powerful-than-1080p-gaming-say-nvidia

(16) Program-Ace. 2018. “How Mobile VR Is Going to Change Gaming Market”.
Date of retrieval: 9.9.2018
https://dev.to/program_ace_ltd/how-mobile-vr-is-going-to-change-gaming-
market-5c8o

(17) MiddleVR. “The challenges of creating a VR application”. Date of retrieval:
2.9.2018
https://www.middlevr.com/resources/the-challenges-of-creating-a-vr-application/

(18) Krishna Sai V. K. 2018. “WebVR is still not easy. What if we could change
that?”. Date of retrieval: 14.12.2018
https://medium.com/scapic/webvr-is-still-not-easy-what-if-we-could-change-that-
a1c1b5afd1ea

(19) Developers. “Introduction to the WebVR API”. Date of retrieval: 14.12.2018
https://developer.oculus.com/documentation/oculus-
browser/latest/concepts/browser-webvr-api/

(20) Tavares Gregg. “WebGL, how it works”. Date of retrieval: 15.12.2018
https://webglfundamentals.org/webgl/lessons/webgl-how-it-works.html

(21) Google developers. 2019. “Getting Started with WebVR”. Date of retrieval:
14.12.2018
https://developers.google.com/web/fundamentals/vr/getting-started-with-webvr/

(22) Can I Use. WebVR browsers support table. Date of retrieval: 17.11.2018
https://www.caniuse.com/#search=WebVR

(23) WebVR info for developers. “Bringing Virtual Reality to the Web”. Date of
retrieval: 17.11.2018
https://webvr.info/developers/

(24) Wikipedia. Polyfill. Date of retrieval: 17.11.2018
https://en.wikipedia.org/wiki/Polyfill_(programming)

https://medium.com/@scottiegardonio
https://medium.com/iotforall/retailers-beware-ar-vr-is-coming-to-change-shopping-d207f9e5be63
https://medium.com/iotforall/retailers-beware-ar-vr-is-coming-to-change-shopping-d207f9e5be63
https://teslasuit.io/blog/virtual-reality/vr-gaming-how-industry-push-technology/
https://www.pcgamesn.com/author/phil-iwaniuk
https://dev.to/program_ace_ltd/how-mobile-vr-is-going-to-change-gaming-market-5c8o
https://dev.to/program_ace_ltd/how-mobile-vr-is-going-to-change-gaming-market-5c8o
https://www.middlevr.com/resources/the-challenges-of-creating-a-vr-application/
https://medium.com/@saitec
https://developer.oculus.com/documentation/oculus-browser/latest/concepts/browser-webvr-api/
https://developer.oculus.com/documentation/oculus-browser/latest/concepts/browser-webvr-api/
https://webglfundamentals.org/webgl/lessons/webgl-how-it-works.html
https://developers.google.com/web/fundamentals/vr/getting-started-with-webvr/
https://en.wikipedia.org/wiki/Polyfill_(programming)

34

(25) Bozorgzadeh Amir. 2018. “VR browsers are key to a more immersive web”.
Date of retrieval: 16.11.2018
www.venturebeat.com/2018/02/13/vr-browsers-are-key-to-a-more-immersive-
web/

(26) Terdiman Daniel. 2015. “Oculus Super Bowl party could be the future of
social sports broadcasting”. Date of retrieval: 16.11.2018
https://venturebeat.com/2015/01/30/oculus-super-bowl-party-could-be-the-
future-of-social-sports-broadcasting/

(27) Siebert Charles, Berlin Branden, Song Yipeng. 2017. “Optimizing
Performance of A-Frame Scenes for Mobile Devices”. Date of retrieval: 30.3.2019
hacks.mozilla.org/2017/07/optimizing-performance-of-a-frame-scenes-for-
mobile-devices/

(28) Marinacci Josh. 2018. “Performance-Tuning a WebVR Game”. Date of
retrieval: 30.3.2019
https://hacks.mozilla.org/2018/09/performance-tuning-webvr-game/

(29) Github. 2017. WebVR Editor’s Draft. Date of retrieval: 8.2.2019
https://immersive-web.github.io/webvr/spec/1.1/

(30) MDN web docs. 2019. WebVR API. Date of retrieval: 20.10.2018
developer.mozilla.org/en-US/docs/Web/API/WebVR_API

(31) VR Software Wiki. 2018. “WebVR comparison: A-Frame vs. React-360”.
Date of retrieval: 24.10.2018
https://sites.google.com/view/brown-vr-sw-review-2018/vr-development-
software/comparisons/webvr-comparison-a-frame-vs-react-360

(32) A-Frame. Entity-Component-System. Date of retrieval: 8.9.2018
www.aframe.io/docs/0.8.0/introduction/entity-component-system.html

(33) A-Frame. Building a Basic Scene. Date of retrieval: 26.8.2018
www.aframe.io/docs/0.8.0/core/scene.html

(34) A-Frame. HTML & Primitives. Date of retrieval: 8.9.2018
www.aframe.io/docs/0.8.0/introduction/html-and-primitives.html

(35) A-Frame. Component. Date of retrieval: 2.11.2019
www.aframe.io/docs/0.8.0/core/component.html

(36) A-Frame. System. Date of retrieval: 2.2.2019
www.aframe.io/docs/0.8.0/core/systems.html

(37) A-Frame. Visual Inspector & Dev Tools. Date of retrieval: 26.8.2018
www.aframe.io/docs/0.8.0/introduction/visual-inspector-and-dev-tools.html

(38) A-Frame. Asset Management System. Date of retrieval: 2.2.2019
www.aframe.io/docs/0.8.0/core/asset-management-system.html\

http://www.venturebeat.com/2018/02/13/vr-browsers-are-key-to-a-more-immersive-web/
http://www.venturebeat.com/2018/02/13/vr-browsers-are-key-to-a-more-immersive-web/
https://hacks.mozilla.org/2017/07/optimizing-performance-of-a-frame-scenes-for-mobile-devices/
https://hacks.mozilla.org/2017/07/optimizing-performance-of-a-frame-scenes-for-mobile-devices/
https://hacks.mozilla.org/2018/09/performance-tuning-webvr-game/
https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API
https://sites.google.com/view/brown-vr-sw-review-2018/vr-development-software/comparisons/webvr-comparison-a-frame-vs-react-360
https://sites.google.com/view/brown-vr-sw-review-2018/vr-development-software/comparisons/webvr-comparison-a-frame-vs-react-360
http://www.aframe.io/docs/0.8.0/introduction/entity-component-system.html
http://www.aframe.io/docs/0.8.0/core/scene.html
http://www.aframe.io/docs/0.8.0/introduction/html-and-primitives.html
http://www.aframe.io/docs/0.8.0/core/component.html
http://www.aframe.io/docs/0.8.0/core/component.html
http://www.aframe.io/docs/0.8.0/core/systems.html
http://www.aframe.io/
http://www.aframe.io/docs/0.8.0/core/asset-management-system.html/
http://www.aframe.io/docs/0.8.0/core/asset-management-system.html/

35

(39) Github. Physics for A-Frame VR. Date of retrieval: 18.11.2018
https://github.com/donmccurdy/aframe-physics-system

(40) Wikipedia. Cannon.js. Date of retrieval: 24.10.2018
https://en.wikipedia.org/wiki/Cannon.js

(41) Github. A-Frame Extras. Date of retrieval: 12.01.2019
https://github.com/donmccurdy/aframe-extras

(42) A-Frame. Interactions & Controllers. Date of retrieval: 25.1.2019
www.aframe.io/docs/0.8.0/introduction/interactions-and-controllers.html

(43) A-Frame. Raycaster. Date of retrieval: 25.1.2019
www.aframe.io/docs/0.8.0/components/raycaster.html

(44) A-Frame. Camera. Date of retrieval: 14.10.2018

www.aframe.io/docs/0.8.0/components/camera.html

(45) Github. A-Frame Extras, controls. Date of retrieval: 12.01.2019
https://github.com/donmccurdy/aframe-extras/tree/master/src/controls

(46) Walter Charlie. 2015. “Using The Gamepad API In Web Games”. Date of
retrieval: 2.3.2019
www.smashingmagazine.com/2015/11/gamepad-api-in-web-games/

(47) A-Frame. Light. Date of retrieval: 25.1.2019
https://aframe.io/docs/0.8.0/components/light.html

(48) Digi-Capital. VR/AR analytics. Date of retrieval: 13.4.2019
https://www.digi-capital.com/news/2018/01/record-over-3b-ar-vr-investment-in-
2017-1-5b-in-q4/

(49) Merel Tim. 2017. “The reality of VR/AR growth”. Date of retrieval:
14.5.2019
https://techcrunch.com/2017/01/11/the-reality-of-vrar-growth/

https://github.com/donmccurdy/aframe-physics-system
https://en.wikipedia.org/wiki/Cannon.js
https://github.com/donmccurdy/aframe-extras
https://github.com/donmccurdy/aframe-extras
http://www.aframe.io/docs/0.8.0/introduction/interactions-and-controllers.html
http://www.aframe.io/docs/0.8.0/introduction/interactions-and-controllers.html
http://www.aframe.io/docs/0.8.0/components/raycaster.html
http://www.aframe.io/docs/0.8.0/components/raycaster.html
http://www.aframe.io/docs/0.8.0/components/camera.html
http://www.aframe.io/docs/0.8.0/components/camera.html
https://github.com/donmccurdy/aframe-extras/tree/master/src/controls
http://www.smashingmagazine.com/2015/11/gamepad-api-in-web-games/
https://www.digi-capital.com/news/2018/01/record-over-3b-ar-vr-investment-in-2017-1-5b-in-q4/
https://www.digi-capital.com/news/2018/01/record-over-3b-ar-vr-investment-in-2017-1-5b-in-q4/
https://techcrunch.com/author/tim-merel/

VR/AR MARKET RELATED CHARTS APPENDIX 1

36

APPENDIX

Chart 1. VR/AR investments in 2011-2018 period. (48)

Chart 2. VR/AR revenue ($B). (49)

