

Amrit Gautam

Immutable Storage of EV Charge
Records Using Blockchain Technology

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

11 March 2019

 Abstract

Author
Title

Number of Pages
Date

Amrit Gautam
Immutable Storage of EV Charge Records Using Blockchain
Technology
37 pages
11 March 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Kimmo Sauren, Senior Lecturer

After the first successful implementation of the decentralized and distributed digital currency,
Bitcoin, its core disruptive technology called Blockchain has been the subject of interest for
many people and business organizations in order to harness its power. This thesis is an
attempt to understand blockchain technology and its use cases in the field of electric
mobility. The primary goal of this thesis was to develop a prototype based on blockchain
technology, to store immutable charge records of electric vehicles for Liikennevirta Oy,
aimed to strengthen trust and data integrity of customers.

The project started with preliminary research on different available platforms in order to find
a suitable platform to meet the requirement of the business. Design of the network
architecture and the smart contract were done consecutively after the selection of the
platform. Manual deployment of the prototype was done to Amazon Cloud Service using a
single instance of Elastic Cloud Compute for testing purpose.

As a result, a permissioned blockchain network, a smart contract (chaincode) and a
REpresentational State Transfer (REST) Application Programming Interface (API) server
were developed using Hyperledger Fabric platform and Hyperledger Composer tool. The
charge data record is stored in the nodes of the network when the electric vehicle charging
process is initiated or stopped. Another potential use case of blockchain technology to build
a decentralized roaming platform for electric mobility providers has been realized and
discussed in this thesis.

In conclusion, Blockchain technology itself leaves no doubt for maintaining the integrity of
stored data. However, it has no control over the truth of the data being asked to be stored
as it is influenced by outside factors such as human and sensors. The developed prototype
also relies on the authenticity of data supplied by charging stations to provide trust and
transparency.

Keywords distributed system, decentralization, ledger, blockchain
technology, smart contract, hyperledger fabric, hyperledger
composer, electric vehicle

Contents

List of Abbreviations

1 Introduction 1

2 Background 3

2.1 Basic Concepts 3

2.1.1 Distributed and Decentralized System 3

2.1.2 Peer-to-peer Network 4

2.1.3 Ledger 4

2.2 Cryptography 4

2.2.1 Symmetric Cryptography and Asymmetric Cryptography 5

2.2.2 Digital Signatures 6

2.2.3 Hash Functions 7

2.3 Introduction to Blockchain Technology 8

2.3.1 Permissionless (Public) Blockchain 10

2.3.2 Permissioned (Private) Blockchain 11

2.4 Consensus Mechanisms 13

2.4.1 Computation Power: Proof-Of-Work 13

2.4.2 System Stake: Proof-of-Stake, Delegated-Proof-of-Stake 14

2.4.3 Inter-Network Relationships: Practical Byzantine Fault Tolerance 14

2.5 Smart Contracts 14

2.6 Platform Selection 15

3 Hyperledger Fabric 17

3.1 Components 17

3.1.1 Membership Service 17

3.1.2 Ordering Service 18

3.1.3 Peer 18

3.1.4 Ledger 19

3.2 Architecture 19

3.3 Transaction Flow 22

4 Implementation 24

4.1 Network Architecture 24

4.2 Application Development with Hyperledger Composer 25

4.2.1 Chaincode (Smart Contract) Development 25

4.2.2 Hyperledger Composer Rest Server as API Server 29

4.2.3 Hyperledger Composer Playground 31

5 Results 32

6 Discussion 33

7 Conclusion and Future Works 34

References 36

List of Abbreviations

API Application Programming Interface

BFT Byzantine Fault Tolerant

BFT-SMaRT Byzantine Fault Tolerant State Machine Replication

BNA Business Network Archive

BND Business Network Definition

CA Certificate Authority

CDR Charge Data Record

CFT Crash Fault Tolerant

CRUD Create, Read, Update and Delete

DApp Distributed Application

DDoS Distributed Denial-of-Service

DPoS Delegated-Proof-of-Stake

EMP Electric Mobility Provider

EV Electric Vehicle

HLF Hyperledger Fabric

HTTP Hypertext Transform Protocol Secure

MD5 Message Digest Algorithm 5

MSP Membership Service Provider

OCPP Open Charge Point Protocol

OSN Ordering-Service Node

PBFT Practical Byzantine Fault Tolerance

PKI Public Key Infrastructure

PoS Proof-of-Stake

PoW Proof-of-Work

REST REpresentational State Transfer

RIPEMD RACE Integrity Primitives Evaluation Message Digest

SHA Secure Hashing Algorithm

TLS Transport Layer Security

UI User Interface

VPN Virtual Private Network

1

1 Introduction

“Trust” is the very fundamental property on which we rely on, by default, when using

services of any kind on a daily basis provided by different service providers. Such

services include an exchange of anything of value which varies from buying grocery to

trading of gold. In any case, consumers need to have blind faith in service providers that

they are not being deceived. Service providers are the only and responsible members

for maintaining a single source of truth as consumers are left out with just the receipts of

the transaction. Despite the presence of separate regulatory bodies responsible to

monitor and regulate these service providers on a regular interval, treachery, fraud, and

deception persist.

As business organizations are going paperless and moving towards digitalization, thanks

to the Internet, information security is becoming more critical. Data breaches add

complexities for organizations to maintain the integrity of stored information and build

trust in this expanding digitized world. The de facto standard to digitally store information

is to use the centralized database which performs well according to the need of the

businesses despite its demerits such as a single point of failure and truth, possibility to

alter information without the consensus or approval of the consumers, and lack of inbuilt

history log [1]. However, Blockchain, as a new and emerging technology promises to

increase data integrity, trust and transparency compared to a centralized database by

being distributed and decentralized at its core.

Liikennevirta (Virta) Oy is a startup company with the core goal to boost the rate of

adoption of Electric Vehicles (EVs) by operating the reliable charging network and give

the best charging experience for its users globally. In addition, it builds new technologies

to manage and maintain different renewable energy resources with a vision to end

climate change. [2.] In order to build trust and transparency with end consumers and

different business partners, it is critical for the company working in the field of Energy

sector to record consumption of electricity or Charge Data Record (CDR) by EVs, in any

of the charging stations in its network, securely in an immutable and distributed way. This

case is one potential use case of modern blockchain technology, which is studied in

detailed throughout this thesis.

The goal of this thesis was to build a proof of concept system which allows immutable

storage of charge records of EVs using blockchain technology. Data is transferred

2

through the use of REpresentational State Transfer (REST) Application Programming

Interface (API) between Virta’s system and blockchain system.

The remainder of this thesis is divided into 6 chapters. Chapter 2 provides a brief

overview of different components that compose the blockchain such as the distributed

system, cryptography, consensus mechanisms, smart contracts and platform selection.

Chapter 3 describes the architecture of selected blockchain platform, Hyperledger Fabric

(HLF) in detail. Chapter 4 presents the implementation details of the developed prototype

blockchain network and smart contract. Results and findings of the project are discussed

in Chapter 5 and Chapter 6 respectively. Finally, Chapter 7 concludes this thesis and

proposes a new use case of blockchain technology in the field of electric mobility for

future development.

3

2 Background

This chapter aims to provide the background information required to understand the rest

of this thesis. It starts with the basic concepts such as distributed system, ledger,

cryptography that blockchain technology is made of and concludes with the selection of

right platform for the development of the prototype.

2.1 Basic Concepts

2.1.1 Distributed and Decentralized System

Distributed system is the collection of independent nodes that collaborate to achieve the

same goal. Independent nodes can be hardware devices ranging from sensors to

supercomputers or software processes. Any distributed system is a single coherent

system from the perspective of end users. Synchronization and coordination among

distributed nodes are the fundamental challenges within a distributed system due to the

fact that each independent node has its own notion of time. Management of membership

of nodes in a closed group of a distributed system is much complex than an open group

where any nodes can join and leave freely. [3, 1-7.]

Figure 1. Different types of network architecture. [4]

4

A decentralized system lacks a single, central governing entity. Instead, governance is

distributed among independent entities. Consensus has to be reached among all entities

in the network for a change to be effective. Figure 1 shows three different types of

network architecture: centralized, decentralized, and distributed, commonly used in the

field of computer science.

2.1.2 Peer-to-peer Network

A node in a Peer-to-peer network is independent and possesses the capability to act as

a server as well as a client at the same time. A key requirement in this network

architecture is that the network should be fully functioning even if any arbitrary node is

removed from the network. [5.]

2.1.3 Ledger

A ledger refers to any tangible (e.g. books) or intangible (e.g. electronic files, databases)

entity on which information is recorded in an organized way. A distributed ledger is a

digital ledger which is spread across the network among all the peers of the network and

each peer is responsible to maintain the integrity and consistency of the ledger [6].

2.2 Cryptography

Cryptography is one of the core foundations on which blockchain technology builds upon

and plays a vital role to create a trustless environment in a decentralized network. It is

the study of method and techniques to establish secure communication so that the

intended recipient of the message can only read and process the information despite the

presence of adversaries. Use of modern cryptography ensures that the information is

secured with the main objectives of confidentiality, data integrity, authenticity, and non-

repudiation. Confidentiality refers to keeping the content of information from all but those

authorized to have it. Data Integrity confirms the accuracy and consistency of data.

Authenticity relates to corroboration of the identity of any parties involved. Non-

repudiation refers to the ability to ensure that any party which has originally sent the

message cannot deny their authenticity. [7, 1-5.]

5

Raw information which has to be securely transferred is encrypted using Ciphers, a

mathematical algorithm, with specials keys. This produces ciphertext, a piece of

information which is complete nonsense and junk until it is decrypted with correct keys

by its recipient on the other end.

A cryptographic protocol or system is composed of different basic blocks of low-level

algorithms which are called Cryptographic primitives. Figure 2 shows an overview of

different blocks that can be classified as Cryptographic primitives. [6.]

Figure 2. Taxonomy of Cryptographic primitives. [6]

Blockchain technology uses Cryptographic primitives for maintaining the identity of

participants, the integrity of world ledger, the authenticity of transactions, and the privacy

of transactions. Some of these cryptographic primitives are explained below. [6.]

2.2.1 Symmetric Cryptography and Asymmetric Cryptography

In symmetric key cryptography or primitives, both the sender and the receiver use the

same key for the encryption of information and decryption of ciphertext. This requires the

secret key to be shared prior separately over a secure channel between the parties

involved which can be quite hard to achieve. This is one of the main drawbacks of

symmetric key cryptography. [6.]

6

Asymmetric key cryptography, also known as public key cryptography, uses a pair of

keys for each user called a public/private pair during encryption and decryption process.

Such key pairs are generated with one-way functions where a private key is supplied as

an input to generate a public key as an output. It is computationally infeasible to perform

an inverse operation and determine the private key given a public key. Thus, public keys

can be distributed openly. The sender encrypts the message with the public key of the

receiver which can be decrypted only with the correct private key of the receiver on the

other end of the communication network. [6.]

2.2.2 Digital Signatures

One application of asymmetric key cryptography is digital signature. Digital signatures

are extensively used in the blockchain to digitally sign the messages and claim its

authorship using a private key by its associated party. This provides a strong basis to

confirm the authenticity, integrity, and non-repudiation of any messages which is sent

over the untrusted distributed network. Messages itself becomes the part of digital

signature due to which any attempt to tamper with it makes it obsolete. [8, 6.]

Figure 3. Illustration of the creation of a digital signature (red) and a subsequent verification of
the signed document’s authenticity (blue). [8, 6]

As illustrated in Figure 3, the authenticity of a signed document can be verified by the

receiver upon comparing the hash of the document with hash obtained by decryption of

the digital signature using signee’s public key. If the two-hash values match, it provides

7

proof that the document was signed by the owner of the public key who holds the match

matching the private key.

2.2.3 Hash Functions

A hash function is such a type of function that takes an input data of arbitrary length,

performs an operation on it and outputs data of fixed length which is commonly referred

to as hash values, digests or hashes. Hash functions work keyless meaning that no key

is involved while generating the digests compared to symmetric and asymmetric

cryptography. These functions are one-way functions to create other cryptographic

primitives. Following are the important properties that any cryptographic hash functions

must fulfill in order to be considered secure: [6.]

• Deterministic

A hash function should always produce the same hash for the same input each

time. [6.]

• Quick Computation

A hash function must be very quick to produce hash regardless of input size. [6.]

• One-way/Pre-image resistance

Given an input 𝑎, a computed hash 𝑏, and a hash function ℎ, such that 𝑏 = ℎ(𝑎),

it must be computationally infeasible for an attacker to calculate the correct input

a from the given hash value 𝑏. 𝑎 is considered to be the pre-image of 𝑏. [6.]

• Second pre-image resistance

Given an input 𝑝, a hash function ℎ, it must be computationally infeasible for an

attacker to calculate other input 𝑞 such that ℎ(𝑝) = ℎ(𝑞) where 𝑝 ! = 𝑞. [6.]

• Collision resistance

Hash of two different inputs 𝑥, 𝑦 should not be same i.e. ℎ(𝑥) ! = ℎ(𝑦). [6.]

Hash functions are used to generate the hash of each block in blockchain which gives it

a unique identity. A new block is linked to the previous block by a hash of the previous

block forming an immutable chain of blocks. Hash functions also play a key role in

consensus algorithms of blockchain which is discussed in section 2.4. Thus, the integrity

8

of the blockchain is assured. Message Digest Algorithm 5 (MD5), Secure Hashing

Algorithm (SHA-1, SHA-2, SHA-3), RACE Integrity Primitives Evaluation Message

Digest (RIPEMD) are some examples of the hash functions available to use. [6.]

2.3 Introduction to Blockchain Technology

A blockchain can be defined as an immutable, decentralized and distributed ledger on

which transactions are recorded in the chain of blocks. These blocks are linked together

with a cryptographic hash upon reaching the consensus by the participating peers of the

peer-to-peer blockchain network. Once a block is added to the ledger, it is practically

impossible to change it until all the subsequent blocks are also altered with the

consensus among all the peers for the change. The copy of ledger resides on each

participating peer of the network. As illustrated in figure 4, each organization controls a

peer node which participates in consensus and maintains the ledger in the blockchain

network. [6.]

9

Figure 4. Simple blockchain network

A typical block of the blockchain consists of a block header, multiple transactions: the

smallest units of data that can be stored in the blockchain and block metadata. Block

header contains a cryptographic hash of the previous block except for genesis block

which is the first block of a blockchain and it does not refer to a previous block as shown

in figure 5. Genesis block is used as a starting point to build the chain of blocks upon

and hardcoded into the system. These cryptographically linked blocks form the

unbreakable chain of blocks. [9.]

10

Figure 5. Chain of blocks linked together by a cryptographic hash. [6]

In order to fulfill the needs of different users, business, and industries, various blockchain

solutions have emerged over the past years with a varying set of protocols. Despite the

differences found in different blockchain solutions, the foundation still remains the same.

All these solutions can mainly be categorized into two types: permissionless and private

blockchain.

2.3.1 Permissionless (Public) Blockchain

Permissionless blockchain networks are open to everyone where any participants can

enter and leave the network at their will. No central authority is involved in the

management of the network and membership of the participants. It is truly decentralized.

All transactions are also visible to the public. Real identities of the participants are

concealed with private-public cryptographic keys. Currently, the process to reach

consensus among peers on new information, which has to be added to the ledger, is

resource intensive and time-consuming. As a result, Permissionless blockchain is often

slower than Permissioned blockchain. Some of the popular Permissionless blockchain

solutions are explained briefly below: [9.]

• Bitcoin

Bitcoin is the first decentralized digital currency that individuals can directly trade

with each other without the need for intermediaries. It is not issued and controlled

by any central authority such as banks or government. It is the first currency to

solve a difficult problem of double-spending without the need for centralized

authority. Validation and confirmation of each bitcoin transaction is done by the

entire bitcoin network which is then stored in the immutable ledger on each

running nodes. All transactions are visible to the public. The first node to

11

successfully create the new block is rewarded with bitcoins. Such incentives keep

Bitcoin’s network functioning. [10.] The byproduct of bitcoin is its revolutionary

underlying technology called ‘Blockchain’ which has attracted a large amount of

attention in recent days that could be applied in various other sectors to establish

trust and transparency digitally.

Bitcoin’s architecture is based on a white paper titled ‘Bitcoin: Peer-to-Peer

Electronic Cash system’ posted to a cryptography mailing list on 31st October

2008 by an anonymous person or a group of persons named Satoshi Nakamoto.

On 3rd January 2008, Nakamoto mined the first block of the bitcoin and was made

available to the public. The real identity of Nakamoto is still unknown. [11.]

• Ethereum

Ethereum provides a platform for users to build and deploy distributed

applications (DApps) on public distributed Ethereum network, leveraging the

power of blockchain technology. In contrast to Bitcoin where blockchain is

particularly used to decentralize money, Ethereum expands the horizon with the

possibility to decentralize anything that can be resembled by code. Ethereum

platform has thousands of nodes independently running all over the world which

executes deployed application, also known as Smart contract, and maintains the

immutable ledger. The developer must pay ‘Ether’, a type of cryptocurrency, to

deploy Smart contract to the Ethereum platform. Such payments help to keep the

Ethereum’s large network infrastructure running. Ethereum was first proposed in

late 2013 by Vitalik Buterin and made publicly available in 2014. [12.]

2.3.2 Permissioned (Private) Blockchain

Permissioned blockchain networks are centralized and regulated by an authority or a

consortium of authorities. Only with the right certificates and permission issued by

respective authorities, participants can join and interact with the network. Transactions

are validated by trusted peers whose identity is well known. Since the scope, users, and

participants of Permissioned blockchains are limited, transactions are processed

relatively faster than Permissionless blockchain. Multichain, BigchainDB, HLF,

Hyperledger Sawtooth are some of the examples of Permissioned blockchain solutions.

[9.]

12

• Multichain

Multichain is an open source platform for the creation and deployment of private,

permissioned blockchains. It is forked from Bitcoin core and hence uses Bitcoin’s

protocol, transaction, and blockchain architecture. It can run on Linux, Mac and

Windows servers. Like Bitcoin, it deals with only the transfer of assets such as

cryptocurrencies, so there is no possibility to embed complex business logic.

Smart contracts cannot be written for this platform to be executed by nodes of

the network. Public key cryptography is used to manage user permissions.

Multichain allows users with sufficient permissions to create and work with

multiple blockchains at the same time. This important feature also gives the

possibility to apply restriction for users on different blockchains. Hash of the

genesis block and configurable parameters uniquely identify each blockchain

running in this platform. [13.]

• BigchainDB

BigchainDB is known as ‘blockchain database’ software which combines the

benefits of blockchain and database. It aims to provide the features of blockchain

such as decentralization, immutability, owner-controlled assets as well as

databases such as high throughput, low latency and high capacity. The first

version (0.1) of the software was released in February 2016. However, it was not

Byzantine Fault Tolerant (BFT), which is discussed in section 2.4.3, and prone to

a single point of failure as a single master node does all the writes in the network.

To overcome these issues, the newer version (2.0) was released in 2018. It uses

Tindermint’s BFT consensus algorithm that keeps network functioning even if

one-third of the nodes gets compromised and synchronizes the data between all

the nodes. Data is structured as an asset in BigchainDB which can characterize

any physical or digital object. The system allows CREATE and TRANSFER

transactions only on the assets. MongoDB is used as a database of choice to

store transactions. Smart contracts cannot be executed on this platform but can

be stored. BigchainDB can be connected with other blockchain platforms which

run smart contracts like HLF via oracles or inter-chain communication protocols.

[14.]

13

2.4 Consensus Mechanisms

Blockchain network consists of multiple distributed nodes which plays a key role for

maintaining the same state of the ledger. Participating nodes may accept and add a new

validated block to their copy of ledger when broadcasted to the network or reject it. There

is always a probability of the existence of malicious or faulty nodes which tries to

compromise the integrity of the network. Consensus mechanism is a way to achieve

consensus on a proposed state, even in the presence of adversaries nodes, and keep

the ledger synchronized, following a set of rules by the participating nodes. It is

considered as the soul of any blockchain network. Achieving consensus to a single

version of the truth by majority of the peers is extremely critical and keeps network

functioning. Selection of consensus algorithms depends on the type of blockchain in use

such as permissioned or permissionless blockchain. [6.] Consensus mechanisms can

be categorized as [8.]:

2.4.1 Computation Power: Proof-Of-Work

In Proof-Of-Work (PoW) consensus mechanism, a validator node needs to submit the

proof of work to publish and broadcast a newly created block to the network [8]. Validator

node needs to work on a mathematical problem which is to calculate the hash value that

is less than a specific value set by the protocol along with the combination of hash values

of previous block data. The solution is costly and time-consuming as it involves brute

forcing the solution, but the validation of the solution is quick. As soon as the solution to

the given problem is solved by any validator nodes, it is published to the network as a

proposed block. Participating nodes validate the solution and other rules to reach the

consensus and if correct, add it to their ledger. At this point, the validator node gets

rewarded with some currency for the work done to find the solution and as an incentive

to keep the work going. This whole processing is also termed as ‘Mining’ and validator

node as ‘Miners’. Double-spending problem where same digital currency can be spent

more than once is solved through consensus mechanism by maintaining the single

source of truth. The system implementing this consensus mechanism is resistant to

Distributed Denial-of-Service (DDoS) attack because it cannot be known beforehand

which node in the network will be able to solve the puzzle first. PoW is still theoretically

vulnerable to 51% attack that can result in double spends. [15.] Bitcoin [10], Ethereum

[12] use this consensus mechanism.

14

2.4.2 System Stake: Proof-of-Stake, Delegated-Proof-of-Stake

Using the PoW consensus mechanism, mining of new blocks gets computationally

expensive with the growing difficulty target of the mathematical problem. Miners need to

compete with each other to be the writer of the next block on which a significant amount

of computational resources and electricity is being wasted. It is estimated that - in 2013

– energy (electricity) consumed by bitcoin mining (operational cost of CPUs and cooling

system) equaled that of the country Ireland. [8.]

Consensus mechanisms such as Proof-of-Stake (PoS) or Delegated-Proof-of-Stake

(DPoS) mitigate such high operating cost of mining by allowing nodes or users to stake

the token they own in the system in order to create new blocks, removing competition

between miners. The probability of creating a new block and getting a reward increases

with the increase in stake. Casper is Ethereum’s version of PoS which is currently under

active development. DPoS is different from PoS in that it is permissioned by

stakeholders. Stakeholders do not take part in creating new blocks in DPoS but votes for

delegates/witnesses who are responsible to create new blocks. Witnesses get paid upon

creation of a new block each time. It was first proposed and used by BitShares in 2014.

[8.]

2.4.3 Inter-Network Relationships: Practical Byzantine Fault Tolerance

BFT is the ability of a distributed computer network to correctly reach consensus on a

single truth despite the presence of malicious node or failure of nodes. BFT assumes

some of the nodes involved might be unreliable or corrupt. Practical Byzantine Fault

Tolerance (PBFT) is a consensus algorithm that is able to tolerate Byzantine faults using

state machine replication. It can function effectively if faulty nodes do not exceed one-

third of the total nodes available. It was presented by Miguel Castro and Barbara Liskov

in a paper released in 1999. [16.] It is used by HLF up to release v0.6-preview and later

replaced by Kafka orderer which is fault tolerant [8].

2.5 Smart Contracts

A smart contract is an agreement made between parties represented in a computer

program in the form of business logic which is executed automatically when all the

conditions are satisfied. The term ‘Smart contract’ was first coined by Nick Szabo, a

15

computer scientist, and cryptographer, in 1994. [6.] Smart contracts are self-enforcing,

which means code composing it should be treated as a law and does not need to be

legally enforceable. They should not rely on traditional methods of enforcement like

government or any corporate law. The need for the trusted third parties becomes

obsolete. [17.] The following are the four main objectives of the smart contract design:

• Observability

Principals (parties who signed the contract) are able to observe each other's

loyalty to the contract [17].

• Verifiability

Principals can prove to the arbitrators whether a contract has been accepted or

rejected [17].

• Privity

The knowledge and control over the contents and performance of a contract

should be distributed among parties as much as necessary [17].

• Enforceability

It refers to the ability to make the contract self-enforcing with improved

verifiability, self-enforcing protocols, built-in incentives [17].

2.6 Platform Selection

After careful analysis, HLF is chosen as a platform of choice for deploying and operating

the blockchain application. The main reasons for the selection are:

• HLF is a private, permissioned blockchain platform. Interaction with the network

is not possible without the valid identity of the participant issued by designated

Certificate Authority (CA) [18]. This is a very critical feature as we do not want the

charge records to be accessed by anyone using the internet.

• Cryptocurrencies are not used as a part of transactions in the HLF due to which

mining of cryptocurrencies is not required reducing the consumption of significant

computing resource and time compared to Ethereum, Multichain as discussed in

2.3.1 [18]. Because of this, HLF can handle high transactions rates that is

required when thousands of EV Charging stations interact with the network.

16

• HLF is designed with the unique component based extensible modular

architecture for consensus mechanisms, membership provider, data storage [18].

For example, Solo Ordering service can be used as a consensus algorithm which

is easy to maintain and work during development and can be replaced with Kafka

Ordering service for production use.

• Data is synchronized and stored in all the participating nodes of the network [18].

• General purpose programming languages can be used to write Smart contracts

like Go, Node, and Java. It does not require learning new platform-specific

programming languages for development like Solidity for Ethereum. [18.]

17

3 Hyperledger Fabric

Hyperledger Fabric is an open-source platform for developing private, permissioned

blockchains. It is one of the projects within Hyperledger projects, maintained by Linux

Foundation. In comparison to the public or permissionless blockchain solution where any

participants can join the network without specific identity and restriction, HLF platform

provides mechanisms to impose a restriction on participant’s rights and access to the

network. It requires the identity of participants to be known. This platform neither uses

any cryptocurrency nor provides economic incentives for the participants responsible for

running the network or validating transactions. [19.]

HLF supports modular and pluggable architecture pattern due to which it becomes

possible to combine different blocks as per the business requirement during the

development of blockchain solutions. Some of such pluggable components include the

membership service provider, consensus engine. Creation of digital assets and

management of its state to be stored in HLF blockchain can only be done by invoking

transactions defined in chaincode that can be also referred as a Smart Contract. All the

transactions history is recorded in an append-only replicated ledger securely. Chaincode

includes all the business logic which is installed onto the HLF peers but runs in a separate

isolated docker process from peers. Domain-specific languages are not required to write

chaincode as Solidity for Ethereum, but it can be written with general purpose languages

like Go, JavaScript or Java. [19.]

All in all, the HLF platform is tailored for business organizations who can leverage the

power of innovative blockchain technology into their services without compromising

confidentiality and security.

3.1 Components

HLF is composed of different modular components that can be customized according to

the need of the enterprise. These software components are discussed below [18]:

3.1.1 Membership Service

The Membership service is responsible for managing the identity, authentication, and

authorization of all the nodes and users interacting with the permissioned blockchain

18

network. Membership Service Provider (MSP) in HLF makes use of CA in order to

support identity management and authorization operations. By default, HLF has stand-

alone CA which is called as Fabric-CA, but it can be replaced with any other commercial

certification authorities. Fabric-CA handles standard Public Key Infrastructure (PKI)

methods for authentication based on digital certificates, X.509, issued to members of the

different organizations and clients. Each member organization receives one root

certificate. Fabric-CA can also issue temporary certificates to the clients which can be

used only for one-time transactions. It runs inside a Docker container and uses SQLite

as a default database to store the issued certificates. [19.]

3.1.2 Ordering Service

The Ordering service consists of nodes that are responsible for receiving the executed

transactions from the peers, order and combine them into blocks and broadcast them to

all the peers on the same channel. These nodes are also referred as Ordering-Service

Nodes (OSNs). Blocks received from the Ordering service is validated by each peer

before it is committed to the ledger. Information related to genesis block is provided to

the Ordering service during bootup process. Currently, it can be implemented in three

different ways: A Solo orderer runs on a single node that can be used only for

development and testing purpose. Apache Kafka orderer is production ready Ordering

service offering scalable, high-throughput, low-latency publish-subscribe messaging

platform for the connected peers. It provides strong data consistency in case of failure of

nodes. Thus, Kafka orderers are Crash Fault Tolerant (CFT) but not BFT. An

experimental orderer based on Byzantine Fault Tolerant State Machine Replication

(BFT-SMaRT) has also been made available for testing. [18.]

3.1.3 Peer

Peer is a network entity owned and maintained by the members of the blockchain

network. Peers maintain the state of the distributed ledger by each holding the copy of

ledger locally. They also deploy, instantiate and interact with chaincodes. Peers

communicate via gossip protocol to broadcast ledger and channel information.

Endorsing and Committing peers are two different types of peers currently implemented

in HLF, which is explained in more detailed in section 3.2 [20.]

19

3.1.4 Ledger

A ledger in HLF keeps the sequential, immutable records of state transitions done

through committed transactions. Each record is stored as key/value pair in the ledger.

The ledger is comprised of two parts: Chain and State database. Chain is an immutable

transaction log structured as blocks that are cryptographically linked together. A

sequence of transactions is stored in each block. LevelDB is used as a Chain database.

State database represents the current state of the data or assets stored in the ledger. It

is mutable and supports create, read, update and delete (CRUD) operations. LevelDB is

also used as a default state database embedded in the peer process but can be replaced

with CouchDB instead. Each peer in the network maintains the copy of the ledger for

each channel of which they are a member. [19.]

3.2 Architecture

The traditional blockchain platforms follow the order-execute architecture for

transactions such as Bitcoin, Multichain and Ethereum. During the process of creation of

the new block, transactions are ordered first and then executed sequentially by all the

peers of the blockchain network. Such sequential execution of transactions on all peers

limits the effective throughput of the blockchain network and may become a performance

bottleneck. In addition, this architecture does not support developing smart contracts

using general purpose languages like Go, Java because deterministic execution of code

is not ensured. For this reason, most of these blockchain platforms have their own

domain-specific language for writing smart contracts like Solidity for Ethereum, Ivy for

Chain. [18.]

To solve the problems posed by order-execute architecture, as illustrated in figure 6, HLF

introduces a new innovative execute-order-validation blockchain architecture [18].

20

Figure 6. Execute-Order-Validation architecture of Hyperledger Fabric. [18, 5]

Nodes of the HLF network are grouped into three roles, based on the functionality they

perform, for the implementation of the execute-order-validation architecture. They are

explained as follows:

• Clients

The client nodes are responsible to submit transaction proposal invoked by users

of the blockchain to endorsing peers. Then, they broadcast the received

endorsed transaction from endorsing peers to the Ordering service if the

endorsement policy is fulfilled. [18.]

• Peers

All the peers in the HLF network are responsible for maintaining the state and the

ledger. Peer nodes are further divided into two roles. [18.]

o Endorsing peers

The endorsing peers receive the transaction proposal request for an

endorsement from clients. They simulate the transaction and either

endorse or reject it based on the current state of the ledger. [18.]

o Committing peers

The committing peers receive new ordered blocks from the Ordering

service for committing to the ledger which they maintain. Transactions

contained in the block is validated by these peers. [18.]

• Orderers

21

Orderer nodes are responsible to order the received, signed or endorsed

transactions from the clients chronologically and create a new block. A newly created

block is then distributed to all peers of the network. Orderer nodes are not aware of

the state of the ledger so they do not engage themselves in the execution and the

validation of transactions. [18.] Figure 7 illustrates the coordination of multiple

orderers between all the peers in the blockchain network involving different

organizations.

Figure 7. Sample network layout of nodes in Hyperledger Fabric. [21, 9]

Not all the peers of the network are required to execute all transaction proposals as it is

only done by the peers who are titled as endorsing peers. Executing transaction before

the ordering phase solves the non-deterministic problem arisen by using general purpose

languages for developing smart contracts. Division of operations of execution, ordering

and validation among peers of the network boots the performance and independent

scalability of the system. [18.]

22

3.3 Transaction Flow

All transactions that interact with HLF blockchain system are processed based on the

execute-order-validate architecture. The transaction flow that occurs between nodes

which are assigned different roles in HLF is illustrated in figure 8.

Figure 8. Normal transaction flow in Hyperledger fabric. [21, 11]

Step 1

Transaction proposal is signed and sent to endorsing peers for execution by the client.

A signed proposal contains the identity provided by the MSP of the submitting client,

transaction payload, chaincode identity, a nonce (a counter or a random value) to be

used only once by each client, and transaction identifier derived from the client identifier

and the nonce.

23

Step 2

Endorsing peers execute the received transaction proposal on the specified chaincode

against the current state of the ledger. Execution or simulation of the transaction does

not update the ledger.

Step 3

The result of execution is sent back in a signed proposal response by endorsing peers.

The client collects all the endorsement to verify the endorsement policy invoked by the

transaction.

Step 4

The client creates the transaction and submits it to the orderers.

Step 5

Orderers group the submitted transactions and creates a new signed block. The newly

created block is then distributed across all the committing peers.

Step 6

The client is notified about the success of the transaction proposal request which is now

committed to the blockchain.

Step 7

All peers in the network perform validation of each transaction within a received block

from the Order and commit changes to the ledger.

24

4 Implementation

As a proof of concept and part of this thesis, a blockchain network, a chaincode and an

API server were developed to store immutable EV charge records for Liikennevirta Oy.

HLF version 1.1 is used as a blockchain framework and the Hyperledger Composer

version 0.19 is used as a tool to develop the prototype. This chapter describes the

implementation details of the developed network such as design, architecture and data

models, the chaincode and the API server that interacts with the network.

4.1 Network Architecture

The developed prototype of the network consists of one-member organization (Virta),

three peer nodes with their own copy of the ledger, one SOLO orderer and an API server.

The network runs in an isolation inside Virta’s private network. Thus, it is not accessible

from outside world. The architecture of the blockchain network is illustrated below in

Figure 9.

Figure 9. Network Architecture of the blockchain prototype

25

Among different responsibilities, the Open Charge Point Protocol (OCPP) server acts as

a bridge to forward start/stop charging event messages received from EV charging

stations to the blockchain API server as shown in the figure 9. Blockchain API server

submits transactions to the blockchain network for validation and storage. Transaction

records are distributed, stored and synced to all of the three different nodes by the

orderer. At the time of writing this thesis, direct communication between EV charging

stations and the blockchain network was not possible as EV charging stations cannot be

connected and controlled simultaneously by multiple backend platforms.

All network entities are configured to run on the single machine using the Docker

containers. docker-compose.yaml file contains configuration details to create the

required containers. X.509 Certificates and signing keys needed for authentication,

communication and transaction between various network components are generated,

using configurations defined on crypto-config.yaml file, by the Crypto Generator tool,

cryptogen [19]. The Configuration Transaction Generator, configtxgen, tool generates an

orderer genesis block, a channel configuration transaction and anchor peer transactions

using configurations defined on configtx.yaml file [19]. Network artifacts generated upon

running these tools should never be lost or changed. Currently, artifacts are generated

manually by running these tools using scripts before starting the network.

4.2 Application Development with Hyperledger Composer

Hyperledger Composer is an open development toolset, framework and modeling

language that provides a simplified and faster approach to develop chaincodes and

applications for blockchain platforms such as Hyperledger Iroha, Hyperledger Sawtooth,

HLF [22]. Its usage in the development of the chaincode and API server, for the

prototype, is described in the following sections.

4.2.1 Chaincode (Smart Contract) Development

Hyperledger Composer provides higher business-level abstractions allowing to quickly

model the business network using assets, participants, and transactions related to them,

reducing a need to use lower-level APIs provided by HLF while the development of

chaincode. It introduces the concept of Business Network Definition (BND) which

consists of model definition, business logic, queries, and permissions related to the

application being developed. All these different components, placed in separate files with

26

the specific file extension, are packaged in a Business Network Archive or a banana

(BNA) file that can be deployed to HLF runtime as shown in the figure 10. [22.]

Figure 10. Business Network Definition structure. [22]

The core components of BND are described as follows:

• Model

A Model file consists of the definition of resources present in the business

network such as assets, transactions, participants and events. It has a file

extension of .cto. A Composer Modeling language is used to define the structure

of the Model. Elements present in a Model file are explained below. [22.]

o Assets

Assets represent any object of value in the real world. State of an asset

may change over time. [22.]

asset Charge identified by chargeId {

 o String chargeId

 o String identifier

 o Integer connectorId optional

 o IdToken idToken optional

 o Integer meterStart optional

 o Integer reservationId optional

 o DateTime timeStamp

 o Integer meterStop optional

 o Integer transactId optional

 o Reason reason optional

}

27

Listing 1. Example of an Asset

Listing 1 indicates a ‘Charge’ asset used in the prototype to represent an

EV charge record.

o Participants

A participant might represent an individual or an organization of a

business network. They can create and exchange assets by submitting

transactions. An identity document is issued to each participant which is

used in order to interact with the network. [22.]

participant Person identified by phonenumber {

 o String phonenumber

}

Listing 2. Example of a Participant

Listing 2 shows the definition of Participant using Composer Modeling

Language.

o Transactions

Participants interact with assets using transactions. Transaction is

responsible to change the state of an asset. [22.]

transaction StartCharge {

 o String identifier

 o Integer connectorId

 o IdToken idTag

 o Integer meterStart

 o Integer reservationId optional

 o DateTime timeStamp

}

Listing 3. Example of a Transaction

Listing 3 indicates the definition of StartCharge transaction that is invoked

to create new assets in the prototype.

• Business Logic

Transaction processor function implements Business logic related to the

Transactions defined in Model file. In this function, both the APIs of Hyperledger

Composer and HLF can be used. Hyperledger Composer access control rules

28

are bypassed if HLF APIs are used. It is written in separate JavaScript file other

than Model file. [22.]

/**

 * Start Charge Transaction

 * @param {org.virta.global.StartCharge} chargeData

 * @transaction

 */

function startCharge(chargeData) {

 return getAssetRegistry('org.virta.global.Charge')

 .then(function(chargeRegistry) {

 var factory = getFactory();

 var NS = 'org.virta.global';

 var chargeId = generateChargeId(chargeData.identifier,

chargeData.timeStamp)

 var charge = factory.newResource(NS,'Charge', chargeId); // Hard

coded identified by placeholder

 charge.identifier = chargeData.identifier;

 charge.connectorId = chargeData.connectorId;

 var token = factory.newConcept(NS, 'IdToken');

 token.idToken = chargeData.idTag.idToken;

 charge.idToken = token;

 charge.meterStart = chargeData.meterStart;

 charge.reservationId = chargeData.reservationId;

 charge.timeStamp = chargeData.timeStamp;

 return chargeRegistry.add(charge);

 })

 .catch(function (error) {

 throw new Error('Error in startCharge transaction: ', error);

 });

}

Listing 4. Example of a Transaction processor function

Listing 4 indicates that the function is a transaction (@transaciton) that runs when

the transaction org.virta.global.StartCharge defined in the model file is invoked.

• Queries

Composer Query language allows to write queries using different criteria to filter

the results from the ledger. They are defined in a query file that must be called

queries.qry. API endpoints are also generated for the queries by Composer

REST Server which is shown in figure 11. [22.]

query AllChargingHistoryfromSpecificDate {

 description: "Get all charging history from specified date"

 statement:

 SELECT org.virta.global.Charge

 WHERE (_$fromDate <= timeStamp)

}

Listing 5. Example of a query

29

Listing 5 indicates a query AllChargingHistoryfromSpecificDate to get all the

charging history from the specific date.

• Access Control List

Hyperledger Composer’s Access Control List (ACL) allows to setup rules to

determine which users/roles are permitted to perform CRUD operations on

elements of a domain model. The access control file .acl contains the definition

of the rules for a business network. Rules are always evaluated from top to

bottom. Subsequent rules are not evaluated after the first match of the rule which

makes scanning of the decision table faster. If no ACL rule is fired, transaction

gets denied. [22.]

rule OwnerRule {

 description: "ALLOW CURD FOR ASSET OWNER"

 participant(p): "org.virta.global.User"

 operation: ALL

 resource(r): "org.virta.global.Charge"

 condition: (r.owner.getIdentifier() == p.getIdentifier())

 action: ALLOW

}

Listing 6. Example of an ACL rule

Listing 6 indicates a ACL rule that allows any instance of org.virta.global.User to

perform ALL CRUD operations on all the objects of org.virta.global.Charge only

if the participant owns the asset.

4.2.2 Hyperledger Composer Rest Server as API Server

Hyperledger Composer Rest Server tool reduces the work to develop REST APIs for

client application to interact with the blockchain network. It generates REST APIs from a

deployed blockchain business network, which serves as an API server in the prototype.

It run as a standalone Node.js process. [22.] Client (OCPP server) interacts with network

using those APIs.

The Hyperledger Composer LoopBack connector exposes a deployed business
network to LoopBack so it can generate a REST API for the assets, participants,
and transactions in that business network. [23]

It is possible to secure REST server using Hypertext Transfer Protocol Secure (HTTPS)

and Transport Layer Security (TLS) [22]. Since the API server will be running inside

30

private trusted network, such security has not been configured but must be turned on

before production use.

Figure 11. APIs generated using Hyperledger Composer REST server

Figure 11. shows the documentation of REST APIs generated using the Hyperledger

Composer REST server. All the assets, transactions, participants have their respective

CRUD endpoints defined except for queries as they only need GET endpoint defined.

31

4.2.3 Hyperledger Composer Playground

As the name suggests, Hyperledger Composer Playground provides a playground with

interactive web-based User Interface (UI) to model and test business networks using

Composer Modeling Language as shown in figure 12. With the help of this tool, business

logic can be tested without deploying applications to the running HLF blockchain

network. It allows to edit business network definition, run transactions, import and export

BNA files. [22.] It has been really easy and helpful to test the business network definition

during its development.

Figure 12. Web based UI of Hyperledger Composer Playground

Hyperledger Composer playground can be installed locally or accessed from the cloud

hosted by IBM at https://composer-playground.mybluemix.net. It uses browser’s local

storage to simulate the network when used solely on browser. [22.]

32

5 Results

The main goal of this thesis was to develop a blockchain based solution to store

immutable charge records. Different available blockchain solutions were studied and

analyzed in order to find a suitable candidate. The prototype of the solution that achieved

the goal of the thesis includes a permissioned blockchain network, a chaincode, and an

API server. These are developed using Hyperledger Fabric and Composer technologies.

The blockchain network comprises of a single organization, three peer nodes maintaining

their own sets of the ledger, a solo orderer and a Certificate Authority. All these

components are configured to run on a single host in a separate containerized

environment using Docker containerization technology. Chaincode (Smart Contract) is

developed and deployed to the network in the form of .bna files using Hyperledger

Composer. For the purpose of testing, the blockchain network and API server are hosted

in a single instance of on Amazon Web Services. They are accessible only inside of

Liikennevirta’s Virtual Private Network (VPN). Client, OCPP server, interacts with the

blockchain network using the REST API exposed by the API server to push the charge

records received from the Charging stations. However, other applications that are

running inside Virta’s VPN can also leverage the API endpoints as required.

As the developed prototype is ready only for testing purposes, it should not be used in

production. This is because of the current configuration of the blockchain network where

all the three peers along with their state databases are running in a single instance which

risks the loss of data in case of an instance failure. Similarly, Solo Ordering service is

used, which is fine for development and testing, but it should be replaced with Kafka

messaging service in production to avoid data loss and ensure fault tolerance [18].

Further work and improvements have to be carried out with the help of Operation team

to set up the distributed infrastructure on the Cloud for production use with all the peers,

Kafka messaging service, as well as other modular components of the blockchain

network, running in separate instances and communicating together. Due to this reason,

the performance of the overall system is left to be explored in the real production

environment.

33

6 Discussion

In this thesis, a permissioned blockchain technology, Hyperledger Fabric, was studied.

A prototype has been developed where it is being used to store immutable EVs charge

records for a single organization, Liikennevirta Oy. Despite successful implementation,

there are several concerns that have already been noticed before the prototype is put

into the production.

The first and critical concern is about extensive resources required to keep the network

running. Production ready HLF blockchain network requires about thirteen instances in

the minimal (three PEER nodes, one REST SERVER, two OSN, three Kafka

Zookeepers, four Kafka message brokers) running to ensure fault tolerance [19]. Thus,

it is not recommended to use blockchain by only a single organization with the sole

purpose of keeping records in the blockchain as the cost of development and

maintenance of such a system will be expensive. Alternatively, an append-only constraint

can be applied to traditional databases tables to store the records which prevent from

accidental or purposely deleting of rows of the table, resulting in immutable records as

almost when using blockchain technology.

Secondly, HLF technology has been just about two years old as first initial production-

ready version 1.0 was released in July 2017 [19]. Rapid changes and improvements in

the architecture have been going since then. The maturity of this technology is

considered to be low. The process to add a new organization to the network and

implementing automation is still complicated. It is recommended to wait for some years

until it gets mature enough for production use.

Thirdly, high expertise in Networking is required to set up a distributed production-ready

blockchain network but developing the application for the network is simplified due to the

possibility to use general purpose languages like GO, Node and Java.

34

7 Conclusion and Future Works

Blockchain acts as an infrastructure that allows storage of immutable data in a distributed

and trustless environment that involves different organization. An effort to use this

infrastructure by Liikennevirta, using the prototype developed in this Thesis, to store

charging records of EVs helps to gain trust and transparency of customer, regulators as

well as auditors. Permissioned blockchain technology is still in its early stage of

development and much research and development focusing on performance,

automation is required before it can be fully implemented at an enterprise level.

For future works, a new use case of blockchain technology in the field of electric mobility

has been noticed during the development of the prototype. With the growth in sales of

electric vehicles, the number of Electric Mobility Providers (EMPs) are also increasing

whose core responsibility includes management of customers and charging stations in

their network. Each EMPs operate on their own way. Customers of one EMP may not be

able to charge at charging stations of another charging network controlled by another

EMP since there is no possibility for EMPs to share the information of customers and

cost of charging. Due to this, trusted third parties like Hubject [24], Gireve [25] are used

to handle roaming of customers between charging network controlled by different EMPs

so that it will be possible to charge EVs at any of the charging stations. They gather and

store all the required information of customers, available charging stations and charge

pricing of their partner EMPs at regular intervals. Information of any unknown customers

is requested from the third parties when it is not found in the database of EMPs before

charging process is allowed.

Figure 13. EMPs using blockchain technology to share the information

35

Permissioned blockchain technology can be used to create decentralized roaming

platform by forming an alliance of EMPs. An EMP can be become the member of the

roaming blockchain network and run nodes to access the shared ledger with the approval

from the alliance as shown in figure 13. Masked information of customers, stations and

charging cost could be shared in the blockchain network by all the members of the

alliance in an immutable way. It is possible to use smart contracts to carryout financial

transactions and signing the roaming contracts between EMPs. Trusted third parties

used for the same purpose could now be replaced. There is a possibility to create a

‘single global network’ of chargers with the direct collaboration between EMPs using

blockchain technology without relying on third parties to do so.

36

References

1 Vince Tabora. Databases and Blockchain, The Difference Is In Their Purpose
And Design [online]. Hackernoon.com; 4 August 2018.
URL: https://hackernoon.com/databases-and-blockchains-the-difference-is-in-
their-purpose-and-design-56ba6335778b.
Accessed 10 January 2019.

2 Virta. Virta - The Electric Vehicle Charging Company [Online]. Virta.
URL: https://www.virta.global/company.
Accessed 10 January 2019.

3 Maarten van Steen and Andrew S Tanenbaum. Distributed Systems. 3rd edition.

distributed-systems.net; 2017.

4 Paul Baran. On Distributed Communication Networks [online]. Santa Monica,
California: THE RAND Corporation; September 1962.
URL: https://www.rand.org/content/dam/rand/pubs/papers/2005/P2626.pdf.
Accessed 11 January 2019.

5 Rüdiger Schollmeier. A Definition of Peer-to-Peer Networking for the
Classification of Peer-to-Peer Architectures and Applications [online]. Linkoping,
Sweden. IEEE Xplore; 2001.
URL: https://ieeexplore.ieee.org/document/990434.
Accessed 12 January 2019.

6 Imran Bashir. Mastering Blockchain [online]. 2nd edition. Packt Publishing; 2018.
URL: https://www.packtpub.com/big-data-and-business-intelligence/mastering-
blockchain-second-edition.
Accessed 12 January 2019.

7 Alfred et al. Handbook of Applied Cryptography, Chapter 1: Overview of
Cryptography [online]. 5th edition. CRC Press; 2001.
URL: http://cacr.uwaterloo.ca/hac/.
Accessed 15 January 2019.

8 Julian Debus. Consensus Methods in Blockchain Systems [online]. Frankfurt
School, Blockchain Center; May 2017.
URL: http://explore-ip.com/2017_Consensus-Methods-in-Blockchain-
Systems.pdf.
Accessed 30 January 2019.

9 Koshik Raj. Foundations of Blockchain [online]. Packt Publishing; 2019.
URL: https://www.packtpub.com/big-data-and-business-intelligence/foundations-
blockchain.
Accessed 10 February 2019.

10 Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System [online].
Bitcoin.org.
URL: https://bitcoin.org/bitcoin.pdf.
Accessed 15 February 2019.

11 Jamie Redman. Satoshi Nakamoto’s Brilliant White Paper Turns 9-Years Old
[online]. Bitcoin.com; October 2017.

37

URL: https://news.bitcoin.com/satoshi-nakamotos-brilliant-white-paper-turns-9-
years-old/.
Accessed 15 February 2019.

12 Ethereum Homestead. Ethereum Homestead Documentation [online].
Ethdocs.org; June 2018.
URL: http://ethdocs.org/en/latest/index.html.
Accessed 20 February 2019.

13 Dr Gideon Greenspan. Multichain Private Blockchain - White Paper [online]. Coin
Sciences Ltd; July 2015.
URL: https://www.multichain.com/download/MultiChain-White-Paper.pdf.
Accessed 25 February 2019.

14 BigchainDB. BigchainDB 2.0 The Blockchain Database [online]. Berlin, Germany:
BigchainDB GmbH; May 2018.
URL: https://www.bigchaindb.com/whitepaper/bigchaindb-whitepaper.pdf.
Accessed 26 February 2019.

15 Andrew Tar. Proof-of-Work, Explained [online]. Cointelegraph; 17 January 2018.
URL: https://cointelegraph.com/explained/proof-of-work-explained.
Accessed 27 February 2019.

16 Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance [online].
545 Technology Square, Cambridge, MA: Massachusetts Institute of Technology;
February 1999.
URL: http://pmg.csail.mit.edu/papers/osdi99.pdf.
Accessed 19 May 2019.

17 Nick Szabo. [Online].Smart Contracts: Building Blocks for Digital Markets [online].
Amsterdam: Phonetic Sciences; January 2006.
URL:
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/
LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html.
Accessed 2 March 2019.

18 Elli et al. Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains [online]. IBM; 17 April 2018.
URL: https://arxiv.org/pdf/1801.10228.pdf.
Accessed 1 February 2019.

19 Hyperledger Fabric. Hyperledger Fabric Documentation [online]. Linux
Foundation; July 2018.
URL: https://hlf.readthedocs.io/en/release-1.1.
Accessed 15 January 2019.

20 Petr et al. Blockchain Development with Hyperledger [online]. Packt Publishing;
March 2019.
URL: https://www.packtpub.com/big-data-and-business-intelligence/blockchain-
development-hyperledger.
Accessed 15 May 2019.

21 Stefanos Georgiou. A Trustworthy Process-Tracing System for B2B-Applications
based on Blockchain Technology [online]. Technical University of Munich; 14
May 2018.

38

URL:
https://www.net.in.tum.de/fileadmin/bibtex/publications/theses/2018_trustworthy_
process_tracking.pdf.
Accessed 15 May 2019.

22 Hyperledger Composer. Hyperledger Composer Documentation [online]. Linux
Foundation; October 2018.
URL: https://hyperledger.github.io/composer/latest/introduction/introduction.html.
Accessed 1 January 2019.

23 Simon Stone. Hyperledger Composer Architecture [online]. IBM; 1 June 2017.
URL: https://www.slideshare.net/SimonStone8/hyperledger-composer-
architecture.
Accessed 20 April 2019

24 Hubject. Get to know Hubject [online]. Hubject.
URL: https://www.hubject.com/en/about-us/.
Accessed on 19 May 2019.

25 Gireve. Our Expertise [online]. Gireve.
URL: https://www.gireve.com/en/our-expertise/.
Accessed on 19 May 2019.

	1 Introduction
	2 Background
	2.1 Basic Concepts
	2.1.1 Distributed and Decentralized System
	2.1.2 Peer-to-peer Network
	2.1.3 Ledger

	2.2 Cryptography
	2.2.1 Symmetric Cryptography and Asymmetric Cryptography
	2.2.2 Digital Signatures
	2.2.3 Hash Functions

	2.3 Introduction to Blockchain Technology
	2.3.1 Permissionless (Public) Blockchain
	2.3.2 Permissioned (Private) Blockchain

	2.4 Consensus Mechanisms
	2.4.1 Computation Power: Proof-Of-Work
	2.4.2 System Stake: Proof-of-Stake, Delegated-Proof-of-Stake
	2.4.3 Inter-Network Relationships: Practical Byzantine Fault Tolerance

	2.5 Smart Contracts
	2.6 Platform Selection

	3 Hyperledger Fabric
	3.1 Components
	3.1.1 Membership Service
	3.1.2 Ordering Service
	3.1.3 Peer
	3.1.4 Ledger

	3.2 Architecture
	3.3 Transaction Flow

	4 Implementation
	4.1 Network Architecture
	4.2 Application Development with Hyperledger Composer
	4.2.1 Chaincode (Smart Contract) Development
	4.2.2 Hyperledger Composer Rest Server as API Server
	4.2.3 Hyperledger Composer Playground

	5 Results
	6 Discussion
	7 Conclusion and Future Works
	References

