
Advantages and limitations of using a server cluster for Server Ap-

pliances (specifically, X - Web Form Manager by Avain Technologies

Oy)

Alexei Mikhailov

Bachelor’s Thesis

DP in Information Technologies

2010

Authors
Alexei Mikhailov

Group

The title of your thesis
Advantages and limitations of using a server cluster for Server Appli-
ances (specifically, X - Web Form Manager by Avain Technologies
Oy)

Number of pages
and
appendices
33

Supervisors
Markku Somerkivi

This thesis describes some general concepts and logic behind server clusters, as well as gives
a few examples on technologies available as of 2009.
It also depicts a certain problems that can occur when using clustering environment in a cer-
tain situations. As an example, a test of X-Web Form Manager application by Avain Techno-
logies is presented.
The objective of this paper was to find out the basics of clustering technologies and to try out
X–WFM in a new environment.

Key words
Server clusters, clustering, web applications, javascript, java, xml, jetty, cocoon

Table of Contents

1 Introduction.. 2

2 Theoretical part: Clusters... 3

2.1 What is clustering.. 3

2.2 Need of high availability... 4

2.3 Types of HA clusters.. 6

2.3.1 What is virtual ip...6

2.3.2 HA IP clusters..7

2.3.3 HA application clusters... 8

2.4 Available solutions: Unix-based systems.. 11

2.4.1 Linux HA...11

2.4.2 OpenAIS..11

2.4.3 Red Hat Cluster Suite..12

2.4.4 Veritas Cluster Server..12

2.5 Available solutions: Windows... 13

3 Theoretical Part: X – Web Form Manager... 14

3.1 Basic structure of X – WFM... 15

3.2 Possible problems with using X – WFM in clustering environment............................18

4 Empirical part... 20

4.1 Stress testing web servers with JMeter..20

4.2 Setup..22

4.3 Expected results...24

4.4 Test case...24

4.5 Results of stress-testing X – WFM on Windows..28

4.6 Result assertion..29

4.7 Possible solutions.. 30

5 Summary and conclusion... 32

6 Bibliography...33

1 (33)

1 Introduction

Ever since first web-servers emerged, there was a problem of systems failing due to

heavy load on the server, and thus whole service being unavailable during the server down-

time. Clustering several servers arise become one of the most popular ways to battle this

problem. Nowadays, high availability is one of the biggest need for any online service that

should be available 24 hours a day. So the support of HA is among the key aspects of suc-

cess for any big application.

Apart from availability, all HA-systems provide greater overall performance and ca-

pacity, or some combination of these three. One of the main goals of HA-systems is to

minimize system down-time due to malfunction of either software or hardware compon-

ents. However, there are several different ways of implementing HA system, which provide

a bit different functionality and are priced differently.

In this paper, I'll describe the general structure of high-availability clusters, and show

the difference between cluster implementation and single server implementation of a web

application using the X – Web Form Manager by Avain Technologies as an example. Sev-

eral examples of ways to stress test web application using JMeter will be shown, and gen-

eral idea behind this kind of testing depicted.

Structure of X–WFM will be shown as described as well, possible drawbacks of us-

ing it in a clustered environment discussed, and possible solutions provided.

2 (33)

2 Theoretical part: Clusters

2.1 What is clustering

As noted in introduction, computer cluster is a system, consisting of two or

more server nodes, running the same application. In case one node fails, requests that were

supposed to be processed by that node are redirected to other nodes, by that ensuring that

the application is still available. Clustering technologies also make it possible for multiple

servers to work in unison, making, the whole system that runs on cluster appear to the out-

er world as a single computing environment [HP-UX System Administrators Guide (Ver-

sion 3), Chapter 2]. Even though technically each server is running its own operating sys-

tem and software, they work together as if they were one, ensuring the minimal down-time

of the system.

As you might have noticed, this comes hand-in-hand with general idea of

high availability systems, which states that everything should be duplicated [High Avail-

ability Fundamentals]. Modern servers have lots of components and features that help

them run day and night without any need to shut them down for any maintenance. Quite

many implementations also allow hot-swap of any components (including critical ones,

like processors, network interfaces, even power supplies) in no time. However, the weak

point remains – server is one single machine, physically located in one certain geographic-

al place. What if fire happens in the server room? Or an accident leads to a water flood?

Regardless of how well the server is protected from any other outside hazard, it still stays

as a weak link in a chain from company providing service to end user in case it is the only

server used.

Now if we zoom out to a higher abstraction perspective of a server applica-

tion – servers are one of the components of it. Thus, the most logical way to ensure high

availability of our application would be to duplicate them, and voila – we got a cluster of

servers.

3 (33)

2.2 Need of high availability

Failures are generally impossible to eliminate completely, regardless of how

well the system is designed or how durable and bullet-proof it's components. Nevertheless,

it is possible to manage the failures, thus minimising the impact on the system [HP-UX

System Administrators Guide (Version 3)]].

There are two different types of down-time: planned and unplanned [HP-UX

System Administrators Guide (Version 3)]. Making each of these as minimal as possible re-

quires different approaches. Planned down-time includes time for system updates and

maintenance which requires shut down of the main application. Those are getting more and

more rare nowadays because of both new engineering solutions to providing possibility of

hot swap of critical server components, as well as because of new software features and

improvements (like recent Linux kernel (the heart of any Linux distribution) update, mak-

ing it possible to update it without any need for restart afterwards).

Unplanned down-time includes all other system unavailability reasons [HP-

UX System Administrators Guide (Version 3)]. That might be a software bug (for example

one causing huge memory leaks and slowing down the whole system), network issues and

problems (too much network connections to a single server), or physical accident (which is

4 (33)

Illustration 1: Silicon Graphics Cluster (photo from Wikipedia)

quite unlikely to happen in modern server rooms, but still); everything that is rather hard to

predict, in other words. Even though HA systems are mostly associated with minimizing

unplanned down-time, they also proved to be useful during planned down-time.

Because term “clustering” itself is so broad, often other terms are used to de-

scribe different cluster implementations (failover, load balancing, parallel and grid comput-

ing). Grid computing (like SETI@home, one of the largest distributed grid, using three

million home computers all over the world to analyse data from the Arecibo Observatory

radio telescope) also uses clusters, but is focused mostly on throughput rather than minimal

down-time. However, HA clustering solutions mostly concentrate on enhanced availability

for a single service or application, which is the scope of this research.

5 (33)

mailto:SETI@home

2.3 Types of HA clusters

According to HP-UX System Administrator's Guide HA clusters can be sub-

divided into two common types: HA IP clusters and HA application clusters. However be-

fore discussing those two, one common term should be described – that is virtual ip, since

both types of clustering use that one extensively.

2.3.1 What is virtual ip

A typical IP address resolves to a single server. Now, lets consider the situ-

ation when we have a set of servers that have the same content, but unique (and sometimes

private) IP addresses, behind a hardware switch. In this situation, only hardware switch is

assigned a public IP address; it receives all incoming public requests and then redirects

them to a host in the cluster, basing on load. Thus, IP address of a switch is actually a virtu-

al IP that represents a clustered application servers. The responses can be returned directly

from application servers, or the same way they came (via the switch) [IBM iSeries Inform-

ation Center, Version 5 Release 3].

6 (33)

Dr

awing 1: An example of network structure with virtual IP

2.3.2 HA IP clusters

HA IP clusters are used to ensure availability for network access points

(which are typically IP addresses used to access network services). They are usually repres-

ented by the virtual IP address (or addresses) clients use to access the clustered services [

HP-UX System Administrator's Guide].

This is usually implemented with a certain mechanism (Linux Virtual Server

(LVS) in case of Linux HA, for example), which provides virtual IP support and can also

load-balance applications (in case applications data is replicated on a pool of application

servers).

Basically, virtual server represents application servers to network clients as if

they were a single system. They are kept unaware of the physical IP addresses used by vir-

tual server, as well as of physical addresses used by application servers; the clients access

only virtual IP address managed by virtual server [IBM iSeries Information Center, Ver-

sion 5 Release 3].

Virtual server is responsible for routing requests to application servers. High

availability here is achieved by having multiple destinations that can process request –

even if one of application servers goes down, one or more will be capable to process re-

7 (33)

Illustration 2: Monitoring health of servers with heartbeats

quest. Same goes for the IP cluster itself – if one of the servers comes out, there are always

other servers that can receive request.

High availability is also ensured by monitoring servers health. This monitor-

ing is usually performed with so-called heartbeat mechanism. Heartbeat packets are con-

stantly being sent between cluster nodes at regular time interval (usually one every couple

of seconds). If a heartbeat is not received in a certain period of time, the application server

is assumed to be down, and requests are being redirected from it to another server until it

comes up again [Basic structure of Linux-HA].

Even though HA IP is not really an application balancer, it can be used quite

effectively for load-balancing static Web and File Transfer Protocol (FTP) servers, as well

as video streaming servers.

2.3.3 HA application clusters

Transactional application is an application where every operation is a transac-

tion between application and external service. A database server would be a good example

of a transactional application. These usually use HA application clusters to ensure high

availability, which is achieved through monitoring continuously the health of an applica-

tion in question and the resources the applications depends on for normal operation, includ-

ing the server the application is running on. If application or server starts to malfunction,

the cluster will restart (failover) it on one of the remaining servers, until failing node is

back to normal operation state [HP-UX System Administrator's Guide].

Resources used by application (IP addresses, software modules, disks) may

be also overtaken by other nodes, depending on the implementation taken in use. Gener-

ally, there are three approaches to ensure the availability of application data or storage to

reminding servers: “mirroring”, “shared nothing” and “shared everything” [HP-UX Sys-

tem Administrator's Guide].

Mirroring involves constant copying of data between separate data storages

of application servers. This one ensures high recovery rate (since each node will have a

copy of most data), but will result in big network and system overhead due to those data

synchronization operations. Also a data loss might occur in case of failover.

“Shared nothing” and “shared everything” are in a way opposite to each oth-

er. In “shared nothing”, each application server has its own storage, meaning that in case

there is some temporary files that are stored on hard-drive (like counters), while with

8 (33)

“shared everything” all nodes share almost all available resources (except for CPU), which

involves quite complex systems that can lock certain parts of memory or hard drive for cer-

tain node. An intermediate version would be “shared disk”, when all nodes share the same

storage system. This is quite common in case of fail-over clusters – since usually only one

instance of application is running, and when it fails, the backup cluster gains rights to the

storage system.

HA application clusters also have their own implementation of active/passive

and active/active concepts. A common approach to achieve high availability is the passive

standby mode, when one server acts as the primary node, and having a secondary server as

a backup in case of failure [TCP/IP for dummies, 6th edition] . The secondary server

doesn't do any data processing, but instead just stands by to take over if the primary server

fails, which enables maximum resources to be available to the application during failure.

9 (33)

Drawing 2: Active-active system with shared storage

On the other hand, this is quite an expensive way to implement HA cluster, since it requires

twice the amount of hardware to be purchased without any performance increase for the

application.

Thus, for most of the applications, active/active configurations can be more

effective. These one also consist of two servers; however each server performs useful pro-

cesses, while retaining the ability to take over for another server in case of emergency. On

the other hand, implementation of active/active configuration will also result in increased

design complexity, as well as the potential performance issues in case one or several serv-

ers go out of order [TCP/IP for dummies, 6th edition] .

10 (33)

2.4 Available solutions: Unix-based systems

2.4.1 Linux HA

One of the most known existing HA

cluster solution is, among the others,

Linux HA. As projects site says,

”The Linux-HA project is a widely

used and important component in

many interesting High Availability

solutions, and ranks as among the best HA software packages for any platform. We estim-

ate that we currently have more than thirty thousand installations up in mission-critical

uses in the real world since 1999. Interest in this project continues to grow.”

[Linux-ha.org main page]

Linux HA supports most of the features required for efficient clustering, like

load balancing (with Linux Virtual Server), load distribution, data replication, time-based

events, no fixed maximum number of nodes, etc. It also includes GUI for configuring, con-

trolling and monitoring resources and nodes.

It works with Linux, FreeBSD and OpenBSD, Solaris and Mac OS X. It is

also open source, with all its benefits and drawbacks. It doesn't have any specific system

requirements, and supports lots of platforms and architectures, including ia32, ia64,

x86_64, pSeries, zSeries mainframes.

Full feature list can be found at project pages:

http://linux-ha.org/FactSheetv2

Basic architecture is described there as well:

http://www.linux-ha.org/BasicArchitecture

2.4.2 OpenAIS

Another linux-based implementation of a clustered servers would be

OpenAIS. It is being ship as a part of a default package together with many popular linux

distributions, including Debian (starting from latest (2009) stable release ”Lenny”),

Ubuntu, Fedora, Red Hat and SUSE. OpenAIS mostly concentrates on providing high-

availability features, but not so much of a load balancing features.

11 (33)

http://www.linux-ha.org/BasicArchitecture
http://linux-ha.org/FactSheetv2

To quote the description from official web site, ”the OpenAIS Standards

Based Cluster Framework <...> is a software API and policies which are used to develop

applications that maintain service during faults. Restarting and failover of applications is

also provided for those deploying applications which may not be modified. The OpenAIS

software is built to operate on the Corosync Cluster Engine which allows any third party

to implement plugin cluster services using the infrastructure provided.”

2.4.3 Red Hat Cluster Suite

Red Hat Cluster Suite provides both applica-

tion failover cluster features (clusters consisting of several

server nodes for applications failover), as well as IP Load

Balancing (load balance incoming IP networks).

The key benefit for big companies in using Red

Hat solution is, of course, a possibility to buy a support li-

cense, so the company is in a way protected from possible

losses in case the system malfunctions. This is more of an exception then a rule in Linux

world, however.

2.4.4 Veritas Cluster Server

Veritas Cluster Server is developed by Symantec, and provides most of a re-

quired features of high availability clusters to decrease both planned and unplanned down-

time. One of the interesting features of Veritas is that it supports heterogeneous physical

and virtual operating system platforms with out-of-the-box solutions for all major database,

application, and storage vendors – that, naturally, makes it quite attractive for business with

important mission critical application servers.

12 (33)

2.5 Available solutions: Windows

For Windows operating system, HA solutions are

mostly presented by Microsoft itself, with either

Windows Compute Cluster Server 2003 or Win-

dows HPC 2008. Another option would be everRun

HA or everRun FT by Marathon Technologies, which both provide active/passive or

active/active clustering solutions respectively. These ones, however, are based on virtual-

isation technologies rather than hardware solution, so its out of the scope of current re-

search. Nevertheless, seems like with every new Windows Server version support of virtu-

alisation (and, specifically, Marathon products) is increased.

Both Microsoft solutions are based on Windows Server edition (2003 and 2008 re-

spectively), adding a number of features like better failover support and virtualisation ser-

vices. There is also quite big amount of graphical tools available to administrators for mon-

itoring servers health, performing maintenance, and other operations.

The latest release of Windows Server requires quite an advanced hardware (even in

case of the simplest “Foundation” version), and works only with 64-bit architecture.

It also provides Failover API and two APIs: the Failover Cluster API and the Cluster

Automation Server. These Failover Cluster APIs let programmers develop management

tools and high-availability resources for failover clusters. (MSDN, http://msdn.microsoft.-

com/en-us/library/cc296100(VS.85).aspx – accessed 20.11.2009)

13 (33)

http://msdn.microsoft.com/en-us/library/cc296100(VS.85).aspx
http://msdn.microsoft.com/en-us/library/cc296100(VS.85).aspx

3 Theoretical Part: X – Web Form Manager

X – Web Form Manager is an integrated product developed by Avain Techno-

logies Oy. It implements an idea of paperless document workflow, providing its users with

possibility to submit information through web-forms and process it through a customizable

workflow, where each phase can be secured by digitally signing it. Access rights to the

forms, their phases and certain fields can be also configured [X-WFM Documentation].

X – WFM suite consists of X – WFM itself, X – DSS (Digital Signature

Suite), which makes it possible to digitally sign X – WFM forms, and X – Archive, which

enables system to store information according to the archiving laws. This makes the system

especially useful for the organizations that deal with sensitive information (like hospitals) –

there is no need any more to store archived information on paper, since its digital copy

already has legal force.

The whole form processing system is based on a workflow model, thus the

forms are processed much as a traditional paper forms are, only with all advantages of an

online system.

The system is based on the Java 5 platform, and uses SQL relational database

management systems to store information. It is highly portable to a variety of operating

system and application server platforms, including IBM WebSphere, Oracle Internet Ap-

plication Server, Microsoft IIS on Windows, and Apache 2 with Jetty 6 on Linux.

14 (33)

3.1 Basic structure of X – WFM

X – WFM is a four-tier structure.

User interface logic is executed on the browser-side of the application, and includes

X – WFM form viewer and user desktop, as well as administration tools and X – DSS Sig-

nature Widget (which will require client-side Mozilla plugin or Active-X control for client

certificate signatures).

It is represented mostly by concatenated and compressed Javascript files, which ex-

tend Dojo Toolkit Development framework, and CSS styled HTML pages, which are

served by the server.

User interface server tier is a connection layer between UI logic and Application lo-

gic tiers. It is based on Apache Cocoon framework, and mostly serves HTML pages to UI

tier by transforming static or externally received XML files. It is also used for internation-

15 (33)

Drawing 3: X – WFM basic structure (c) Petteri Sulonen

alization purposes, as well as rendering PDF's, generating cache, or any other task that

would require any level of transformations of input XML file.

16 (33)

Illustration 3: X-WFM 3 User Desktop

Illustration 4: X-WFM 3 View with signature widget.

The Application tier is based on Java 5 and uses Picocontainer framework for de-

pendency injection (in short that is a way of encompassing Inversion of Control main prin-

ciple to keep dependency resolution, configuration and lifecycle of a component out of

component's concern).

It does all the internal processes in X – WFM, be it connecting to Persistence layer,

recovering from errors, logging or reporting. The structure of components in Application

layer is module-based, so it is considerably easy to improve or substitute one module

without the need of rewriting the whole application.

Finally, Persistence tier consists of relational database management system and serv-

er file system. Forms, their related information and user rights information are stored in

database, while logs and counters are stored on the file system [X-WFM Documentation].

3.2 Possible problems with using X – WFM in clustering environment

The system is considerably fast even when operating on only one server –

even though there is a somewhat complex processing involved in extracting information

from the database (mostly due to implementation of different legal requirements related to

storing and archiving information) during transactions – even during heavy load the wait

time for user will rarely be more than 30 seconds. The benefit of using two parallel servers,

each of which will handle half calculations of each request won't be big. Even worse, this

might introduce certain slowness or inconvenience, since system originally wasn't optim-

ized to work in a clustered environment.

Same goes for the fail-over cluster scenario: X – WFM, running on different

servers, would have to have a certain shared storage for its temporary files (mostly transac-

tion information is stored there for back tracking and queueing requests). Hence there is a

problem in case there is no such storage present. For example, X – WFM stores it's own in-

ternal counters in a separate files on the server hard-disk. These files contain (among other

things) instance id's for each separate record in X – WFM. In case of more than two serv-

ers, this might cause problems in case the servers hard drives are not synced (for example

failover server will try to create new instance with id 155, even though main server already

used id 155).

This, however, is already partly solved by having a separate prefix for in-

stances ids. Thus, each server in a cluster can have it's own index, so it can be guaranteed

17 (33)

that instance id's of one server won't ever duplicate instance id's of other servers (so in ex-

ample before, instance id's that will go to requests and/or database will be 1155 and 2155).

On the other hand, since we are talking about active-passive system here, it

should be relatively easy to setup a shared storage than in case of active-active system –

there would be no need to lock files for editing when one of the systems reading from/writ-

ing to the file, for example. Still, system administrators are not always willing to create

such a shared storage, preferring the situation when each application server has its own

hard drive with its own copy of all resources, temp files and other.

Also, it is not quite clear, how will different modules of X – WFM will be-

have when shut down in middle of processing. Theoretically, they should be able to wait

until processing is finished, and then stop properly, but you can never know for sure.

Otherwise, there should be no problems.

18 (33)

4 Empirical part

4.1 Stress testing web servers with JMeter

Apache JMeter is an open source ”pure Java” application for stress testing the

web applications. It is designed to be useful not only for testing web servers and their

components (jsp servlets, or CGI scripts), but also an FTP servers and even databases (us-

ing a JDBC driver). It also supports authorization mechanisms of virtual users and user

sessions, so a heavy load situation when big amount of information is transferred between

application servers and outside world can be simulated.

Alongside with stress testing, Jmeter also provides a certain level of regres-

sion testing by asserting the results returned by application.

Since it is a Java application, JMeter requires a JRE/JDK pre-installed on the

computer you wan't to run your tests from. It also provides necessary tools to create a test

plan, which you can save locally and run later on.

Since stress testing usually has to be performed on the actual production serv-

ers, you can also define a timeout for the test plan to start (for example run the test for 50

000 threads starting from 1:00 in the night till 5:00 in the morning). Test plans are stored as

an xml files. From user interface they will look something similar Illustration 4.

A usual test plan consists of one or more thread groups, logic controllers,

sample generating controllers and, listeners, timers, assertions, and configuration elements

(Apache JMeter user manual, ”Building a test case”). In my test, I've used mostly thread

groups and listeners to be able to monitor the results.

19 (33)

However, I wasn't really that interested in results parsed by JMeter. The only

reason I've used it is for it's ability to create heavy load on the server.

20 (33)

Illustration 5: An example of JMeter test plan.

4.2 Setup

The following server configuration was used for the stress testing:

• Servers 1, 2 and 3 are identical machines, running Microsoft Windows 2003 Stand-

ard edition with Service Pack 2 and security updates by November 2009. They have

the same Java JRE 1.5.0_16. The X–WFM installations are also identical (version

3.1.0, built on September 23, 2009)

• JMeter tests were run from a usual notebook.

• Server 1 is the main node, which redirects all the requests to server 2

• In case Server 2 fails – all the requests were redirected to server 3.

• Finally, both Server 2 and Server 3 are using the same MSSQL database server

Drawing 4: Test environment

21 (33)

Both server 2 and server 3 have the same version of X – WFM installed, and

altogether are identical copies of each other. Server 1 basically works as a switch, and also

starts redirecting requests to server 3 in case response from server 2 takes too much time.

Server 3 is in a “hot stand-by mode”, meaning it has a running copy of X – WFM, so when

it receives a request, it can start processing requests immediately.

22 (33)

4.3 Expected results

Since this was pretty much a first round of testing, it wasn't expected that

everything will work right away as it should (in fact this probably would mean that some-

thing was incorrectly set up).

No big guesses on what problems might occur weren't made. Apart from the

things listed in chapter 3.2, the most likely part to break would still be the form processing

in the backend modules, which includes quite a lot of talking between different backend

modules and the database server.

4.4 Test case

The test case was rather trivial. Since we wanted to test the worst possible

case (X – WFM shuts down due to too much incoming requests, and “hot backup” takes

it's place), the first step would be to put a heavy load on the server,. JMeter is quite good at

that – I've created a rather simple test plan, where couple of hundreds of users log in to the

system, list all the forms, submit a new form several times, and log out. I've also added

short timeouts between each user login, so that system won't crush immediately.

Next, we should wait for a while until the system will start queueing in-

stances – that would indicate, that the load is heavy enough, and rate of new instances cre-

ation is greater than rate of processing those instances. We can tell that queued instances

appeared by monitoring transaction temp storage on the servers hard drive: when new in-

stance's log file will have “queued” state, it will mean that it's time to move to the next

stage.

That would be to imitate a server failure. We can do that by manually shut-

ting down Jetty web server. This will cause the application to stop as well (and possibly

some part of it will crash, if something goes wrong).

Now, since the main server is down, our router server should start redirecting

requests to a backup server. The switch won't be immediate, though (depending on the

timeout we specify for the router), so we might see few transactions failing with HT-

TP-status 500 (Service unavailable) in the meantime.

However, when traffic will finally be re-routed, everything should get back to

normal. Then we can stop the JMeter, stop the backup Jetty and start up the original Jetty

to see, what will happen to instances that were queued or under processing, but weren't

23 (33)

processed completely. This is quite simple to see from the log, if that one is properly con-

figured (“playing safe” here would be to enable debug level of logging on all modules.

However, that will seriously slow down the system).

So, in short:

1. Run JMeter to put a heavy load on the server.

2. Monitor transactions temp folder to find out when instances will start to queue.

3. When 2. happens, stop Jetty

4. Make sure that traffic is properly re–routed to backup Jetty, and transactions are

being processed.

5. When 4. happens, stop JMeter and fail-over Jetty.

6. Start original Jetty and check what happens to queued and half-processed instances

The test case looks rather compact in JMeter viewer, but takes about 70 pages

as an xml file, so I won't put it here.

Below you can find screenshots for each step.

24 (33)

Illustration 6: Jmeter running test

25 (33)

Illustration 7: Grep showing instances with 1001 status code, which means that this

instance is queued

At this point, error log file got couple of messages similar to this one:

ERROR - [2010-03-07T13:59:16.122+0300] - com.avaintech.cab-

rakan.connectivity.impl.DefaultHttpConnectionHandler -

17244592@qtp-17933220-480 - "Got error HTTP status code

[503]"

ERROR - [2010-03-07T13:59:16.128+0300] - com.avaintech.cab-

rakan.http.impl.DefaultSearchHandler - 17244592@qtp-17933220-

480 - "Caught exception while handling request."

java.lang.Exception: Got error HTTP status code [503]

FATAL – [2010-03-07T13:59:17.766+0300] - "Writing event to

closed stream."

Some of the queued instances failed because Jetty hasn't startup X-Archive backend before

Queue. The others were processed successfully.

On the other hand, instances that were under transaction had the following action log:

26 (33)

Illustration 8: Results when server switched to other Jetty. Fields with unselected check

box represent failed operations.

REGULAR - 0 - put - Error - Action failed with message [In-

ternal error.].

ROLLBACK - 0 - put - Error - Got Bad Request from critical

action handler, rollback failed.¢

27 (33)

4.5 Results of stress-testing X – WFM on Windows

All the servers were set up, and the Jmeter test was initiated. Then after ap-

proximately 20 minutes (just when the test reaches peak performance), Server 3 was shut

down, so the Server 4 took its place. After another 10 minutes of testing, the Jmeter test

was stopped, and both servers shutdown.

From the log-files it was clear, that forms which were “in process” during

Servers 3 shutdown got stuck in that phase, and rollback for them (i.e. reverting the modi-

fications related to the instance in question) failed. On the other hand, most of the forms

that were only queueing were processed. Some, however, failed since Jetty first started up

Queue and only then X-Archive backend.

Altogether, 1054 instances were sent, 1032 of them got processed success-

fully, 8 failed to be processed at all due to temporary unavailability of the service, 9 were

stuck in half-processed state and unreachable through user interface, and 5 were success-

fully rolled back when main server was started up.

28 (33)

4.6 Result assertion

As it was noted before, in order to be able to deal with high load, X – WFM

has a queue mechanism, which stores the basic information about each request (like re-

quest ID, instance ID to be processed, its status and instance itself as a blob) on disk, and

feeds them to the core part of X – WFM one by one. That help to avoid excessive memory

consumption by the application in case of a big number of requests to be processed.

Also, each X–WFM servlet that deals with processing received information

has certain algorithms that run on its startup and shut down. The startup ones usually in-

stantiate all necessary processing tools and objects and also rollback any instances they

find in temp storage (in case of queue module, for example). Whereas shut down al-

gorithms stops all the processing, saves information to transaction log (so it can be pro-

cessed when system starts up again), and cleans up all what was created during startup.

It seems that shut down operation didn't had time enough to properly cancel

all the processing instances, neither to store or update information about them properly.

This resulted in several instances being stuck in a half-digested form, when some part of

metadata information regarding instance was updated, while the other part wasn't. As a res-

ult, on startup queue mechanism first tried to continue process those instances step by step,

but since they were already modified, queue wasn't able to find them and failed the whole

transaction. Rolling back to original state also didn't worked out exactly for the same reas-

on. Another problem was incorrect applications boot-up order, which caused several in-

stances to fail with the same “service unavailable” error.

Rollback of instances that were only queued was completed successfully. It

also makes sense that they were rollbacked and not processed – it is quite likely that users,

finding out that their form didn't went through, will try to submit form again. Regardless of

which server will be active at the moment, if the original queued instance also will be pro-

cessed, we'll end up with forms containing duplicate information, which is not very good.

Except for that problem, everything worked just as usual.

On the other hand, this problem was also found later on, when I've tried the

same test but in a one server setup – the instances that were in process at the time were

broken.

29 (33)

4.7 Possible solutions

One possible way to deal with that problem would be to refine the way queue

processes instances on startup. It would be logical to rollback all instances that were in

“processing” stage, since the end user most likely received a “server error” message when

submitting a form. And, as we can see from the log, this is what exactly queue tries to do

on the startup; however since it tries to rollback instances in a usual way, with user rights

validation etc., it fails. Another problem is that queue cannot locate the current instance –

there are more than one parameter used when searching for it, and for example in case of

update, some parameters might have been changed, but due shut down weren't written to

transaction log.

This problem then should be addressed in a bit different way than usual roll-

back – the system should ignore user rights and just rollback the instance to it's original

state. Another problem here is that currently queue doesn't store that original state -– only

steps that were taken during transaction operation. It also rolls back the instance to original

state step by step – hence the first step usually fails for the reasons mentioned above.

Thus, in this special case the system should probably ignore all the steps that

were taken before, and simply change all the information related to the particular instance

id to information stored as “original state”. Alternatively, since all the changes are stored

on a database level in a history node tree, certain node can be marked as starting point for

each transaction, so during rollback on startup operation system would rollback the in-

stance to the latest starting point history node.

Shared partition for queue temporary files doesn't really matters in this case –

queue of the fail-over server will act the same way as queue of main server after restart.

Besides, as it was mentioned before, one-server installation has exactly the same problem.

However, how likely is this problem to occur? During the test, system (at its

peak) consumed roughly 1500 megabytes of operating memory, which leaves it with

roughly 600 megabytes of memory still available for utilization. Further more, since java

virtual machine has a limit of memory it can utilize (2 gigabytes total), the application can

be split into several Jetty's, each running certain module (up to eleven Jetty's, five per each

cocoon module and front-end javascripts, and six per each Java module). Thus they can

utilize enormous (in terms of 2010) amount of memory, and each module becomes very

unlikely to crash due to out of memory. However, here another problem arises: failure of

30 (33)

one of the Jetty's will still make application look like its working fine, when it is actually

not.

Nevertheless, so far, none of the customers using the system reported that

system crashed due to lack of memory, hence it can be assumed that the system is rather

thread-safe. Thus, any other problems that might occur (collapse of a network, hardware

malfunction), as long as they don't cause Jetty to shut down, won't result in any data loss,

as our worst scenario. Even though the users won't be able to access the system, it will still

be able to process all the data it received. Then again, our application can't really control

hardware or network problems.

31 (33)

5 Summary and conclusion

X – WFM does perform as good in failover clustering system as in system

with one server only. As it was shown before, there is a possibility of data loss during a

sudden shut down of a Jetty web server which runs application. This problem, however, is

unrelated to clustering environment.

After this problem will be addressed, system can be used in a active/passive

clustering environment in case both systems will have shared database.

As for the active/active clustering environment, additional testing required in

case of need for support of such architectures. Then again, X –WFM performs fast enough

on one server as well, and so far there was no need for faster response time.

32 (33)

6 Bibliography

1. Windows HPC 2008 Product documentation
(http://www.microsoft.com/hpc/en/us/product-documentation.aspx – accessed

15.11.2009) – Official documentation for Microsoft Cluster Server 2008.
Would be useful to compare both 2003 and 2008 versions, whether there are
big differences between them.

2. Technical reference for Microsoft Windows Compute Cluster Server 2003
(http://technet.microsoft.com/en-us/library/cc720095(WS.10).aspx – accessed

16.11.2009) – Official docs for MSCS 2003

3. Enrique Vargas. High Availability Fundamentals, Sun Blueprints Online,
November 2000 (http://www.sun.com/blueprints/1100/HAFund.pdf – ac-
cessed 19.04.2010) – Article about different system categories aimed to
help find a server type best suited to specific business availability needs.

4. IBM iSeries Information Center, Version 5 Release 3 (http://publib.boulder-
.ibm.com/infocenter/iseries/v5r3/index.jsp – accessed 18.04.2010) – Docu-
mentation related to IBM's iSeries servers. Also contains quite a few general
technical descriptions regarding networking principles and technologies

5. Basic structure of Linux-HA
(http://www.linux-ha.com/BasicArchitecture – accessed 27.10.2009) – Ba-
sic structure of Linux-HA solution nicely explained. The same site also con-
tains guides on installing and running the system, as well as examples of
systems that use Linux-HA as their cluster solution

6. X – WFM 3 documentation

7. Candace Leiden, Marshall Wilensky. TCP/IP for dummies, 6 th edition. Au-
gust 2009 – Chapter IV has a rather ascetic yet easy to understand informa-
tion about clustered resources and high availability

8. HP-UX System Administrator's Guide – A guide dedicated to managing
Hewlett-Packard's popular UNIX operating system HP-UX. Apart from oth-
er things, it also has some information on how to configure and manage
cluster with this system, as well as some general information on clustering.
(http://docstore.mik.ua/manuals/hp-ux/en/5992-4580/index.html – accessed
11.11.2009)

9. Apache JMeter user guide
(http://jakarta.apache.org/jmeter/usermanual/ - Accessed 12.01.2010)

33 (33)

http://jakarta.apache.org/jmeter/usermanual/
http://docstore.mik.ua/manuals/hp-ux/en/5992-4580/index.html
http://www.linux-ha.com/BasicArchitecture
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp
http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp
http://www.sun.com/blueprints/1100/HAFund.pdf
http://technet.microsoft.com/en-us/library/cc720095(WS.10).aspx
http://www.microsoft.com/hpc/en/us/product-documentation.aspx

	1 Introduction
	2 Theoretical part: Clusters
	2.1 What is clustering
	2.2 Need of high availability
	2.3 	Types of HA clusters
	2.3.1 What is virtual ip
	2.3.2 HA IP clusters
	2.3.3 HA application clusters

	2.4 Available solutions: Unix-based systems
	2.4.1 Linux HA
	2.4.2 OpenAIS
	2.4.3 Red Hat Cluster Suite
	2.4.4 Veritas Cluster Server

	2.5 Available solutions: Windows

	3 Theoretical Part: X – Web Form Manager
	3.1 Basic structure of X – WFM
	3.2 Possible problems with using X – WFM in clustering environment

	4 Empirical part
	4.1 Stress testing web servers with JMeter
	4.2 Setup
	4.3 Expected results
	4.4 Test case
	4.5 Results of stress-testing X – WFM on Windows
	4.6 Result assertion
	4.7 Possible solutions

	5 Summary and conclusion
	6 Bibliography

