

Xiaoyun Li

Kamill-Maximilian Simon

MIRROR-BASED INFORMATION DISPLAY FOR HOME

MIRROR-BASED INFORMATION DISPLAY FOR HOME

Xiaoyun Li, Kamill-Maximilian
Simon
Bachelor’s Thesis
Spring 2019

 Information Technology
Oulu University of Applied
Sciences

ABSTRACT

Oulu University of Applied Sciences
Information Technology

Authors: Xiaoyun Li, Kamill-Maximilian Simon
Title of Bachelor´s thesis: Mirror-Based Information Display for Home
Supervisor: Kari Laitinen
Term and year of completion: Spring 2019 Number of pages: 68 + 1 appendix

The objective of this thesis was to build a smart mirror system which would show
information to the users while also reflecting their own image.

For building the mirror, a monitor was used along with a Raspberry Pi system and
a two-way acrylic mirror. The Raspberry Pi is connected to the monitor through
an HDMI cable and the mirror is acting as a layer in front of the mirror for showing
the information displayed on the monitor while reflecting the images. The software
of the mirror was developed using ElectronJS, a JavaScript library for building
desktop applications.

As a result, the mirror was built, and the software was developed. They were
assembled together to act as a real mirror.

Keywords: Smart mirror, Raspberry Pi, smart home

4

PREFACE

This thesis was made at Oulu University of Applied Sciences. During the thesis
work we learned a lot about technologies like API, ElectronJS, node packages,
building a frame, Raspberry Pi.

The supervisor of this thesis was Kari Laitinen, who helped a lot in writing it, giving
ideas, providing resources and information about styling and conveying
information and Kaija Posio for helping to correct the grammar and writing.

Oulu, 05.05.2019
Xiaoyun Li
Kamill-Maximilian Simon

5

CONTENTS

ABSTRACT.. 3

PREFACE .. 4

CONTENTS ... 5

VOCABULARY ... 7

1 INTRODUCTION ... 8

2 USED TECHNOLOGY ... 9

2.1 Node.JS (Kamill) ... 9

2.2 Electron (Xiaoyun) ... 10

2.3 Raspberry Pi (Kamill) .. 11

2.4 Philips Hue (Kamill) ... 12

2.5 Philips Hue API (Kamill) ... 14

2.6 neDB (Kamill) .. 15

2.7 Dark Sky API (Xiaoyun).. 15

2.8 Sports API (Kamill) .. 16

2.9 Github and Gitkraken (Kamill) .. 18

2.10 Trello (Kamill) .. 23

3 MIRROR HARDWARE .. 25

3.1 Mirror Hardware layout (Xiaoyun) .. 25

3.2 Mirror Physical frame (Kamill & Xiaoyun) ... 26

3.2.1 Planning the frame .. 26

3.2.2 Building the frame .. 27

3.3 Mirror Selection (Xiaoyun) ... 30

3.3.1 Difference between real mirror and two-way mirror 31

3.3.2 Two-way mirror comparison ... 31

3.4 Preparation of the monitor (Xiaoyun) ... 33

4 MIRROR USER INTERFACE DESIGN (XIAOYUN) .. 34

4.1 Mirror Layout Design ... 34

4.2 Weather Interface Design .. 37

4.3 Light Interface Design ... 40

4.4 Sports UI design ... 41

6

4.5 Font Family .. 43

5 FRONTEND DEVELOPMENT (XIAOYUN) ... 44

5.1 Front Page Layout ... 44

5.2 Time implementation ... 45

5.3 Weather Implementation .. 46

5.4 Lights Implementation ... 50

5.5 Sports Implementation .. 51

6 BACKEND DEVELOPMENT (KAMILL) .. 53

6.1 Setting up the project .. 53

6.2 Starting development .. 54

6.3 Setting up the database ... 55

6.4 Setting up Philips Hue API .. 57

6.5 Setting up the sports API ... 61

6.6 Setting up weather API (Xiaoyun) ... 62

7 FUTURE DEVELOPMENT POSSIBILITIES ... 63

7.1 Remote controlled mirror ... 63

7.2 Integrated smart light control .. 63

7.3 Light reacting to sport results ... 64

7.4 Touch screen mirror .. 64

7.5 Voice Control system .. 64

8 CONCLUSION ... 65

REFERENCES ... 66

7

VOCABULARY

API Application Programming Interface

BE Backend

CPU Central Processing Unit

CSS Cascading Style Sheets

DB Database

FE Frontend

GB Gigabyte

GHz Gigahertz

GUI Graphical User Interface

HDMI High-Definition Multimedia Interface

HTML Hypertext Markup Language

IR Infrared

JS JavaScript

JSON JavaScript Object Notation

LAN Local Area Network

OS Operating System

RAM Random Access Memory

SD Secure Digital

SQL Structured Query Language

UI User Interface

USB Universal Serial Bus

UV Ultraviolet

8

1 INTRODUCTION

The purpose of this thesis work was to create a functional smart home system.

The smart home system includes a smart mirror, a monitor for displaying

information, and a Raspberry Pi minicomputer. These will collaborate to create a

so called “Smart mirror” [1], which will display useful information to the users.

The smart mirror is capable of displaying a multitude of information, such as time,

weather, the state of the lights in the home, and football match results.

The bulbs which are compatible with this system are the Philips Hue lights, which

are controlled by using an API.

The main idea to create this project sparked from the desire to combine many

components together in a unified, simple to use system. The mirror also acts as

a way to make the system more fun to use and more aesthetically pleasing.

Throughout this thesis work, we improved our software development skills,

learned more about APIs, and also learned a bit about wood cutting and frame

making.

In this thesis work glass and wood have been used. The Raspberry Pi works to

enhance the current technology into a modern technology.

9

2 USED TECHNOLOGY

2.1 Node.JS (Kamill)

“Node.js is an open-source, cross-platform JavaScript run-time environment that

executes JavaScript code outside of a browser. Node.js lets developers use

JavaScript to write command line tools and for server-side scripting—running

scripts server-side to produce dynamic web page content before the page is sent

to the user's web browser. Consequently, Node.js represents a "JavaScript

everywhere" paradigm, unifying web application development around a single

programming language, rather than different languages for server side and client-

side scripts.” [2]

The advantage of using Node.js

1. It is an open source framework. It has hundreds of libraries or modules

free of charge. In this case, the authors found more than one library to

control Philips Hue light easily in the most popular package manager

website. Additionally, there are 4 features in this smart Mirror project.

Using a library provides a better performance and it is less time

consuming, as the authors are not familiar with every device, for example

Philips bridge. Thus, it was decided to use a specific library to control

Philips Hue and the Amazon Echo system, Alexa.

2. Node.js is a cross-platform runtime environment for developing server-

side and networking applications. Node.js can be used to produce dynamic

web pages, not only for the frontend side but also for the server side. As

the smart mirror does not have the same complexity as dynamic websites,

it does not need a heavy and complex server language to run. Node.js is

a light but powerful language. Secondly, every developer could

understand easily the entire stack, and corporate it easily.

10

3. It supports Electron framework. Node.js is one of the best and competitive

eco-system for Electron.

The disadvantages of using Node.js

1. Some of the Node packages found in the repository are poorly

documented or have no support from their creator, meaning that the API

compatibility is lackluster, since Philips has changed the way their Hue API

works during recent times.

2.2 Electron (Xiaoyun)

Electron is the main framework for the frontend side in this project. As this project

is not a website or a mobile web application, it is critical to find a framework which

fits in this mirror project (See Figure 1).

“Electron is a framework for creating native applications with web technologies

like JavaScript, HTML, and CSS. It takes care of the hard parts so you can focus

on the core of your application.” [3]

FIGURE 1. The Light Flow of Two-Way Mirror [3]

11

Electron is an interesting tool to create applications by using HTML, JavaScript,

and CSS. For this project, the authors needed to create one desktop application

to show the information and data. Instead of creating a website, desktop

applications are more powerful than websites. For instance, the authors would

like to add the Alexa Voice Service and Video Play service into this project in the

future. Thus, a simple website cannot fulfill potential features implementation.

With Electron, it saves time and energy to create a real application based on

authors’ web technology knowledge.

Electron is open source. There are more open source UI toolkits and UI

component for building applications. For instance, PhotoKit is one of UI toolkits,

offering macOS style components. Currently, there are not many UI components

in this project. However, if there are more features and components added into

the project, PhotoKit will be the first option to add.

2.3 Raspberry Pi (Kamill)

The Raspberry Pi is a small computer which is commonly used for projects where

low computer processing power is sufficient.

There are multiple models of Raspberry Pi released. Raspberry Pi Zero is the

cheapest model. It has lower processing power than other models, thus it is ideal

for simple projects.

In the Smart Mirror project, the chosen model is the Raspberry Pi B+. It has a slot

for a micro SD to hold data and the OS, an HDMI connectivity for a display,

multiple USB ports, an Ethernet port for a faster Internet connection and a 3.5mm

audio for sound output. A wireless connection is also included, in case an

Ethernet cable is not available.

12

This model was chosen because it fits the scope of the project well. It has a

display connection which helps displaying the information on the Smart Mirror, a

wireless connectivity to communicate over the network to allow a remote control,

and enough processing power to handle the running of the software, while

outputting graphics.

FIGURE 2 shows a Raspberry Pi Model B+ with its circuits and ports visible.

In terms of specifications, this model has 1.4GHz 64-bit quad-core ARM Cortex-

A53 CPU, 1 GB RAM, On-board wireless LAN - dual-band 802.11 b/g/n/ac, On-

board Bluetooth 4.2 HS low-energy.

FIGURE 2. Raspberry Pi B+ [4]

2.4 Philips Hue (Kamill)

Philips Hue lights are a variety of smart lights which can be controlled remotely

over the network. The main controls for the lights are setting the state to on/off,

setting the brightness of the bulb. The lights can be controlled with multiple

13

devices, the most common being a phone application. Smart assistants such as

Amazon Echo, Google Home and Apple’s HomePod can also control the lights

when receiving voice commands.

The Hue ecosystem has Zigbee 3.0 support, meaning that it is compatible with

3rd party devices with Zigbee support. Amazon Echo plus is an example for this.

The basic setup for the Philips Hue light is a Hue bridge, which is connected

through an Ethernet cable to a router and a set of any number of smart bulbs.

The bridge makes it possible to handle the communication between the controller

devices and the bulbs. This is possible for devices connected to the same

network, although it is also possible to change the state of the lights outside the

network if a Philips account is linked to the bridge and the device.

Philips has released a variety of lights for indoor and outdoor use. Some bulbs

are only capable of outputting white color, while others are capable of the output

of 16 million colors by mixing multiple colors.

FIGURE 3 below shows a room lit by multiple Philips Hue lights.

FIGURE 3. Philips Hue room setup [5]

14

FIGURE 4. Philips Hue Bridge [6]

FIGURE 4 shows a Philips Hue bridge, which acts as a controller for the network

of bulbs.

In this project, Philips Hue color bulbs are used for developing and testing. This

allows testing with multiple colors and is enough for the basic usage.

2.5 Philips Hue API (Kamill)

Philips Hue API is a REST API created to allow the control of Philips Hue bulbs.

A developer account is needed to access it.

The API supports GET, POST, UPDATE, PUT operations which allow setting the

state of the lights on or off, setting the brightness of the lights, grouping lights,

and changing the colors of the lights. For security reasons, a username is

required for these operations. This can be obtained by pressing the link button on

the Philips Hue bridge and making a request to the API.

15

2.6 neDB (Kamill)

neDB is a JavaScript database. It includes multiple methods to save the data,

such as persisting it in the memory or saving it to a file in a JSON format.

The API of neDB is a subset of MongoDB’s API, making it a NoSQL database. It

supports operations, such as insert, delete, update.

The reason for choosing this as a data storage is that it is commonly used with

Electron.js, the main framework used for creating the Smart Mirror app and it is

suitable for small scale data, which aligns with the purposes of this project.

2.7 Dark Sky API (Xiaoyun)

Dark Sky API is one of the most significant weather API providers. It offers not

only a daily and weekly forecast, but also accurate to-the-minute weather

information. In developers’ perspective, it is easy to use with a detailed document.

The free tier gives 1,000 call per day, and $0.0001 per call if over the limitation.

This platform updates weather information approximately every 3 minutes, which

improves the accuracy of the data.

There are 3 features which attracted the authors to choose this API.

It is free of charge within 1,000 calls every day. As the mirror project only needs

every 3 minutes to call the API, thus everyday it would be about 480 calls per

day, which is a good deal for saving the cost of this project.

The API returns weather conditions in the requested units. For example, in

temperature, the default unit is the Fahrenheit temperature, but in Europe, the

default unit is the Celsius temperature. Adding a unit request in the API would

solve this issue easily. In addition, the language can be changed in the same way

as the temperature.

16

It returns a weather condition requested by time. It returns the particular date

weather information, including the past and the future. It is a good feature for the

mirror project to offer the specific date weather data searching, or the past week

weather display.

2.8 Sports API (Kamill)

This project required a sports API to display sport competition results on selected

matches. The criteria for choosing an API are listed below:

-Cheap price: A cheap price is required to test the data and check if it fits the

scope of the project and can be implemented with the ease of using the Electron

framework. Preferably, the API is free but a low cost per month is also acceptable

-Calls per minute: Calls per minute is also an important factor in the API. The user

wants to get fresh data of sport competitions, thus a low restriction on calls can

come as detrimental. The preferred number of calls is between 10-30, meaning

that as much as an API call can be made every 2 seconds.

-Competitions: The competitions from which the API feeds data on. As many

competitions as possible is preferred from a multitude of sports, such as football,

tennis, darts. If the list of competitions is limited to a low number of coverages, it

is considered what that list includes. It is preferable to have popular competitions

which appeal to a broader range of users.

-Update interval: The update interval is also to be considered when choosing a

sports API. For example, data which is updated every 2 minutes or more

frequently is preferable over APIs which update the data less frequently or just

contain the results of the competitions.

After doing some extensive research, the chosen API is the Football Data API.

17

FIGURE 5. Football Data API pricing plans [7]

FIGURE 5 above shows the prices of different Football Data API plans.

This API fits the criteria of pricing, it has a free version which can be used initially

for testing. The scores are delayed, meaning that the API only shows the

competition results at the end of the match, but it is suitable to check if it fits the

project.

Calls per minute criteria are also reached by this API, with 10 calls/minute it is

possible to have the data refreshed every 6 seconds.

The competitions broadness criteria did not fit, but other APIs are more costly

and do not provide a good free testing opportunity, as a result this API is used.

18

FIGURE 6. Available competitions in the free plan [8]

FIGURE 6 shows all the competitions which are available in the free plan of the

Football Data API.

Initially, the free plan is used in developing this application, but later when more

features are implemented, an upgrade is possible to the standard plan, which

offers live results of the competitions, provides a broader range of tournaments,

and increases the limit of API calls per minute.

2.9 Github and Gitkraken (Kamill)

“GitHub is a web-based hosting service for version control using Git. It is mostly

used for computer code.” [9]

Github was the choice for using a version control in this project. It was already

familiar before and it offers an easy way to create repositories and collaborate

with multiple persons on them.

With Github it is easy to manage the code and quickly share it between multiple

computers. A repository consists of multiple folders and files which can be

accessed by anyone who is a collaborator in the private repository.

19

For the scope of this project a private repository was created. The next task was

to plan how the workflow of the project will work. This was decided to work in the

following way:

1. A master branch is the main branch of the repository. This will be used as

a starting point after cloning the repository to a system.

2. When a feature is planned and ready to be implemented, a new branch

can be started from the master branch. The naming of the branch can

describe the feature which it will implement.

3. The feature is implemented in the feature branch. There can be multiple

commits on that branch until the feature is finished.

4. After the feature is implemented in the feature branch, a pull request is

made from the feature branch to the master branch. The other collaborator

in the repository can review this pull request and comment/accept it.

5. Once the pull request has been accepted, the feature branch can be

merged into the master branch.

Github’s other useful functionality is a version control. In case the code breaks

something or something is not working, the code can be reverted to a previous

state where it was working well.

Following this workflow, it can help improve the project code and stability. If

multiple persons are checking each other’s code and suggesting better

alternatives or conventions, it can improve the ease of implementing new features

in the future.

20

FIGURE 7. A pull request in the repository

In FIGURE 7 a pull request can be seen from the repository. This pull request

asks to merge the authentication code to the bride from the feature branch named

“bridge-authentication” to the “master” branch.

As it can be seen from the figure, there is a comment suggesting that a variable

type can be changed from “var” to “constant”. Following this suggestion, the line

of code can be changed and when it is accepted, it can be merged to the “master”

branch.

Github has multiple tools for managing branches and pull requests. In the

described case, there is a possibility to add comments to the pull request, suggest

some alternative code, accept the pull request. In case when alternative code is

suggested, the code can be changed easily from the UI on the Github repository’s

webpage. In case the pull request is accepted, it can also be merged easily by

pressing a button on the webpage.

21

FIGURE 8. Github repository of the project

In FIGURE 8, a screenshot of the Github repository can be seen. There is useful

information on that page, such as how many commits have been made to this

repository, how many branches are there in the repository, how many

contributors, how many percentage of each programming language is used in the

code, and a list of all the files and folders in the repository.

Gitkraken is a Git client which helps perform git operations easily. It has a GUI

interface for managing branches, making commits, and merging branches.

22

FIGURE 9. GUI of Gitkraken

FIGURE 9 shows the GUI of the Gitkraken client. In there, the project repository

is opened. There is a tree in the middle to show the commits, branches and how

they relate to each other. If some branches are ahead of the master branch, it will

show as a fork in the interface. On the left side, the UI displays the branches

which were used in this repository. It is also possible to switch branches there by

double clicking a branch.

On the right side, there is more information about the selected commit. It shows

the commit message and the files which were modified in that commit.

Merging branches can be done by right clicking on a branch and selecting another

branch to merge into it from the menu.

Gitkraken also has a conflict resolver built into it. In case merging a branch to

another one causes some conflicts, it will have the option to resolve those

conflicts right from the client. Gitkraken was chosen for this project to make the

repository management easier and less time consuming compared to the

command line management.

23

2.10 Trello (Kamill)

 “Trello is an incredibly versatile tool for project management. Its flexibility allows

for it to be a simple tool for personal organization or a powerful engine for product

development with large teams. In this article we share how we use Trello, along

other interesting use cases from different startups.” [10]

Trello was used in this project as a SCRUM board to keep track of the tasks which

had to be done and the overview of the project.

FIGURE 10. Screenshot of early version of Trello board

In FIGURE 10 the Trello board for the project is shown. This is the state it was in

the first few weeks. On the first column there is a “Backlog” column. This column

shows all the tasks that need to be completed to reach the aims and finish the

project.

The second column is “Sprint 2 Backlog”. This column contains all the tasks that

need to be done during the second week of development.

24

The “In progress” column has the tasks which are currently on progress and

which the project members are working on. The “Completed Sprint 1” column

shows the tasks which were completed in the first week of development.

The tasks have colored labels to show which category they belong to. There is

“FE”, “BE, “Thesis”, and “Other administration” tasks. FE tasks are tasks which

concern the frontend development. BE tasks are task which concern the backend

development. Thesis tasks are tasks which require a thesis specific work, such

as writing the document, taking notes. Other administration tasks are tasks which

require anything other than developing or writing the thesis. These can be tasks,

such as ordering a mirror or building a frame.

25

3 MIRROR HARDWARE

3.1 Mirror Hardware layout (Xiaoyun)

The smart Mirror is also called as a magic mirror. The smart mirror is highly

customized, there is no specific rule for the mirror features or appearance. Due

to the lack of time and financial support, only a basic prototype was made in this

project. There are four basic hardware components used for this smart mirror

project.

1. Raspberry Pi

2. Monitor / Monitor screen

3. Two-way mirror

4. Frame

Depending on the requirement of the smart mirror, it is possible to add a speaker,

a microphone, motion sensors and other peripherals. For instance, with a

microphone and speaker, a voice control system can be constructed. In the

chapter 7 Future development possibilities, there will be more detailed

information and plans for this project.

FIGURE 11. Smart mirror structure

26

Hardware contains all the necessary physical material. Each material should be

put on over another. FIGURE 11 shows the structure of the smart mirror [11]. The

frame is supposed to be on the top to hold the glass and monitor. Raspberry Pi

is required to stick on the back to monitor and connect with it.

If the IR frame is added into the smart mirror, it is supposed to be between the

frame and the two-way glass. Other peripherals can be added next to Raspberry

Pi.

3.2 Mirror Physical frame (Kamill & Xiaoyun)

The physical frame for the mirror is required to hold the monitor and the mirror

together and make the smart mirror look more aesthetically pleasing [12]. In this

section, the building process of the frame will be presented.

3.2.1 Planning the frame

Building the physical frame required some planning and shopping for materials

necessary to build it. There were 3 main things to consider:

1. The size of the frame

2. The materials needed to build the frame

3. The tools needed to build the frame

Unfortunately, after attempting to build a frame, the results were not satisfying

enough to use it in a real-case scenario. However, the building process took some

time, therefore it will be documented here.

27

3.2.2 Building the frame

When starting to build the frame, the monitor size and the mirror were measured.

There was one issue in the beginning. The monitor was wider than the mirror,

thus calculating the size needed for the frame became more difficult. The monitor

width and the mirror height had to be measured. along with the thickness of the

two objects combined. Once the measurements were done, some estimations

could be made for the frame.

The authors’ mirror size is 30 inch, which is 46cm wide and 61cm long. The

monitor is 64.5 cm wide. In order to hold each element, the inner frame size is

41.8 cm * 57.8 cm at least. FIGURE 12 shows the size of our mirror.

FIGURE 12. Frame Size

The next step was to buy materials for building the frame. Some wooden planks,

glue, nails and screws were bought. The planks will act as the base of the frame

and the screws, and nails will hold the frame together, along with some help from

the glue.

The main structure of the frame is the following:

28

1. An outer frame, which is deep enough to hold the monitor and mirror

together

2. An inner frame which holds the whole structure together.

FIGURE 13. Workshop room for cutting wood

In FIGURE 13, there is a picture of the room were the frame was being created.

It had all the tools needed for this purpose.

First, the wooden planks had to be cut because their length was too long. The

length of the wood had to be in accordance to the measurements made before.

Secondly the wood edge had to be cut in a 45-degree angle to make it possible

to connect the wooden pieces together.

29

FIGURE 14. Wood cutter machine

In FIGURE 14, the machine, which was used to cut the wooden planks, can be

seen. When it was turned on, its blades rotated, cutting through wood. The handle

helped to push down the blade onto the plank.

After the wood had been cut, the frame was ready to be assembled. This was

supposed to happen by nailing the four wooden planks together and inserting a

screwdriver between them to hold the wood together. This is the step which failed

when building the frame.

The idea of the frame would have been the following:

1. The monitor and the mirror are held together to the frame

2. The Raspberry Pi is attached to the side of the frame

3. The cables connecting the Raspberry Pi and the monitor are arranged

behind the frame

30

Although, the frame was not successful, it can be included as a future project to

create it and use it with the mirror and the monitor. This will make the mirror

hangable on the wall or usable in a vertical position.

3.3 Mirror Selection (Xiaoyun)

The most important material in this project is the mirror. As it was necessary to

leave a monitor behind the mirror to show the data, it was necessary to select a

two-way glass.

A two-way mirror is also called one-way mirror or semi-transparent mirror. It has

2 sides. On the front side, it reflects light, allowing people to see their own

reflection, on the back side light goes through the glass, enabling people to see

through it, and it could be transparent if the back side is dark enough (see

FIGURE 15).

FIGURE 15. The Light Flow of Two-Way Mirror

31

3.3.1 Difference between real mirror and two-way mirror

FIGURE 16. Comparison of mirrors [13]

Common mirrors reflect most of the light, but in some case some light could pass

through. Generally, a mirror is coated with silver and two or more layers. Thus,

the reflectivity is higher than that of a two-way mirror and the transmissivity is

lower than that of a two-way mirror.

As shown in FIGURE 16, the way of checking a two-way mirror from a common

mirror is to place a fingernail against the reflective surface. If there is a gap

between the nail and reflection, it is a common mirror. But if the nail is directly

touching the reflection, it is most likely a two-way mirror.

3.3.2 Two-way mirror comparison

Based on material and cost, there are various types of glass in the current market.

If the size is 12” x 24”, Table 17 shows the difference between different types of

mirrors [14].

https://www.howitworksdaily.com/how-do-two-way-mirrors-work/

32

TABLE 17. Difference Among Different Mirrors

Visible

Reflectance
Visible

Transmittance Thickness Price

Glass Two
Way Mirror

70% 11%
1/4" / 6mm

$99.99

Acrylic 2-way
mirror

70% 30%
1/4" / 6mm

$136

Glass Smart
mirror

70% 30%
1/4" / 6mm

$138

Dielectric Tv
mirror

30% 70%
1/4" / 6mm

$345

One normal
glass with
two-way

mirror film

99% 5%
1/4" / 6mm

$45

Except those factors shown in the table, we still need to consider e.g. size, tactile,

and environment.

For the size, if it is larger than 24cm by 48cm or longer than its width, it is better

to not consider an acrylic mirror because acrylic material is plastic and bends in

a large size.

Touchable: Acrylic material is easy to scratch; the mere coating is more fragile.

Environment: If the environment where the mirror is left is wet like a bathroom,

the wetness could damage the mere coating.

Frameless: An acrylic mirror generally has a sandy edge.

Monitor size: If the monitor’s size is smaller than that of a mirror. For a dielectric

mirror, it is obvious to see the screen’s edge, because of high transparency

Based on all of the reasons listed above, it was decided to use a Two-Way Glass

Mirror. Thus, the authors can build one mirror, which is touchable, 27cm long and

easy to purchase in the local store.

33

3.4 Preparation of the monitor (Xiaoyun)

The monitor was chosen based on the size and cost. Cheap monitors can be

easily found in a second-hand shop. The monitor used in this project is Asus 27

inch. Generally, it is better to assemble the whole mirror with a monitor screen,

where the monitor’s bezel is removed, as the bezel has thickness, which affects

the mirror performance. If an IR frame is needed, the thickness of bezel could

affect the touch quality of an IR frame.

However, in this project, the monitor back bezel is glued to a monitor. At least,

the front bezel was removable. It is easier to glue the glass and monitor together,

and there is potential chance to insert an IR frame inside the project. The back

bezel of monitor, if it is more than 4cm thick is taking more space in the wooden

frame.

34

4 MIRROR USER INTERFACE DESIGN (XIAOYUN)

Generally, a User Interface refers to the design of software or applications. In this

chapter, there will be user design for this application and hardware design like

the arrangement of cables and mirror frame design.

4.1 Mirror Layout Design

A Smart Mirror Project has a variety of examples on the Internet, however, most

of them represent a simple and clean designed interface [15]. Also, in this mirror

project, the mirror will be above the monitor, but the mirror transparency is not as

good as that of the monitor, thus, color from the mirror is lighter than from the

monitor. For a better viewing experience, white color is the main font color, as a

contrast to the dark background. As for the UI tool, Balsamiq wireframes is

suitable for this project, which focuses more on the structure and content,

avoiding the usage of unnecessary colors in the project.

There were two versions of UI layout design in the beginning. The mirror order

was delayed due to the difficulty of purchase. Thus, there were two basic models,

depending on the mirror size. In the first model, shown in FIGURE 18, the mirror

size is bigger than the monitor size.

35

FIGURE 18. Version one UI Mockup

In this model, the mirror is the whole subject, and it is divided into 2 areas. On

the left side, the monitor will hide behind the mirror. On the other side, it is for

users to use as a common mirror. The advantage of this idea is that users can

have the normal mirror area to use without distraction and interruption. Relatively,

there is enough space, but it is difficult to show all necessary features only on the

left side of the mirror. Thus, it needs more detail design in the left area. But the

basic information will be shown, especially the status of lights. For example, if

the living room lights are off, the bulbs color will be black, otherwise, the bulb

color will be yellow.

The second layout (FIGURE 19) is when the mirror size is the same as the

monitor size and the monitor is square.

36

FIGURE 19. Version two UI Mockup

As for this design, obviously, there is more space to place the UI components,

but it interrupts users’ experience to use it as a normal mirror. So, it is critical to

choose where to put those UI components. As the picture above is showing, time

is an independent subject, short and simple as well. Thus, it fits on the left corner

to give the time information to users without disturbing. On the right corner, it will

be the calendar and lights data. The middle area is for users as a common mirror.

The advantage of this model is that there is more spare space for an information

display. Because of these small areas, the bigger UI component cannot fit in this

mirror, for example, there will be weather information and sports information

needed to be shown. Thus, it is necessary to redesign the calendar and other

features, making those small and tidy enough.

After the authors got the mirror in hand, it changed their previous plans. The

mirror is 46cm * 61cm, which is a standard 30inch monitor size with 4:3 ratio. The

monitors that were prepared are two 21inch monitor (1:1 ratio), which are much

smaller than this mirror. As the limitation of Raspberry Pi where only one HDMI

connector is available, a single 21inch monitor is not matching the size of the

mirror. Thus, a third monitor was purchased, with the size of 27inch. Currently,

the monitor is having the same width as the two-way mirror, but it is shorter than

37

it. The third version UI design came after a 27inch monitor and mirror were

settled.

FIGURE 20. Version three UI Mockup

Due to the same width for both the monitor and screen (see FIGURE 20), it offers

more space in the middle area to display. Time and weather information is

represented on the left corner. On the right side, room lights information is shown.

There is sports information added below lights, making it convenient for users to

gather sports data.

If there is more information needed to be added, there is still some amount of

space available on the mirror.

4.2 Weather Interface Design

Weather information is one of the necessary and valuable data in the project. The

design of a weather user interface is devoted to being informative and clear.

Therefore, the layout is important to let users just to have a quick glance to get

needed data.

FIGURE 21 shows parsed data gotten from the Dark sky API, which locates in

Oulu.

38

FIGURE 21. Weather API Data

The weather data includes a large amount of information, such as latitude, current

time, current summary. It is grouped separately by currently-group, hourly-group

and daily-group. Inside of each group, it contains time, summary, humidity wind

information and UV Index.

Based on simple design concepts [16], only the most valuable data is shown.

Thus, data is chosen from currently-group. To make sure of the accuracy of the

weather, weather information will be updated every 3 minutes. Additionally, a

weather summary, icon and temperature are grouped into a weather UI

component.

39

Considering visual and usable aspects, the weather component needs to be

pleasant-looking and clear. Thus, there will be less text, one big icon to attract

users’ attention and one temperature information for users to read.

FIGURE 22. Weather UI Component

FIGURE 22 shows one weather UI component sample, whereas the temperature

and summary may differ, depending on the location. The top text of this UI

component is the weather summary, such as sunny, rainy, snow. The icon is the

main object to attract attention as well as explain a summary by a visual image.

The temperature is displayed below the icon to offer additional information.

According to the Dark sky official document, there are only 10 icon values

defined. Thus, the following property of icons are clear-day, clear-night, rain,

snow, sleet, wind, fog, cloudy, partly-cloudy-day, or partly-cloudy-night. Each

icon property can have each icon as a match. In case of future utility, there are

still 37 icons available.

Icons are downloaded from web FLATICON, which is one of the biggest free

icons database[17]. See FIGURE 23.

40

FIGURE 23. FLATICON and icon package [17]

This icon package is selected because of the high contrast and curvy style. As

the monitor is placed below the mirror and the two/way mirror having low

transparency, the high contrast color can be seen easily without an additional

light. And a curvy style could give users a pleasant and relaxing feeling.

4.3 Light Interface Design

In UI design, one of the important refactors is consistency. ‘Consistency in UI

design is concerned with making sure elements in a user interface are uniform.

They’ll look and behave the same way. This helps constantly prove a user’s

assumptions about the user interface right, creating a sense of control, familiarity,

and reliability.’ [18] Based on the weather UI design, the lights component keeps

the same layout and style (see FIGURE 24).

41

FIGURE 24. Lights UI Component

For a future use, lights components are designed as clickable button, which can

be clicked. The purpose of border is to help a distinguish button from a non-button

object. Icons are simple bulbs images and the color of bulbs describes whether

those bulbs are on or off.

To keep the same curvy style, borders of two lights buttons are set to

border-radius: 15px;

which makes it rounder and cuter.

The amount of lights is fetched from the Philips Hue bridge API. Depending on

the number of registered Philips bulbs, the frontend controller will display the

same number of lights UI components. The detail will be shown in the next

chapter.

4.4 Sports UI design

The last UI design is for sports. In the beginning, information related to tennis was

decided to be added into this mirror, but as there is no free tennis API available,

thus, football information is implemented instead.

The data returned from the football API has 24 objects, containing a live match,

finished match and upcoming match. As the amount of data is large and the mirror

has little space, it is not possible to fit everything on the mirror. The first solution

to solve this issue is to make a dynamic data loop display. (FIGURE 25)

42

FIGURE 25. Example Of dynamic data display

The data will be changed every 30 seconds. In total, 12 minutes is spent for 24

groups of data. However, the disadvantage is that not many users have patience

to wait for the desired match to display. Even if this design is improving users’

interactive experience and keeping the whole structure clean, it still gives users

a bit of an inconvenient experience.

Thus, the alternative option is used to insert a short table on the mirror. As for the

size of the data, only the latest 5 matches are selected to be shown on the front

side. In addition, there are no icons of teams shown in the mirror because the

colors are diminished from this mirror material.

FIGURE 26 below shows the final design:

FIGURE 26. Sports UI

43

4.5 Font Family

The entire project style is tending to curvy, round, and cute. So is the Font style.

In this mirror, the main UI components are time, weather, lights and sports.

FIGURE 27 shows mainly time and weather components. Fonts can be divided

into numerals and text. Numerals represent more important data than text. Thus,

for keeping the curvy style, the Font family Pacifico (see FIGURE 28) is selected

for numerals. Meanwhile, the Font family Righteous serves for text.

FIGURE 27. Mirror Left side Design

FIGURE 28. Font Pacifico and Righteous

44

5 FRONTEND DEVELOPMENT (XIAOYUN)

This chapter will explain the detail and logic about the Frontend implementation.

5.1 Front Page Layout

On the front page, the Bootstrap grid system is used as one frontend framework

(The other frontend framework is Electron). Bootstrap provides the grid system

to align and layout elements. It allows 1 to 12 columns and unlimited rows on the

page.

FIGURE 29 shows the layout for this project.

.col-xs-4

.col-xs-2

.col-xs-

offset-6

.col- xs-4

.col-xs-6 .col-xs-6

 .col-xs-8 .col-xs-offset-2

FIGURE 29. Smart Mirror Layout

In FIGURE 29, the purple color cell represents elements’ spots. Generally, there

are 12 columns in a row. “.col-xs-4” means three equal-width columns across.

“.col-xs-offset-6” means six equal-width columns across to left.

In the first row, there are 2 areas for showing the date time and lights UI

component. The left cell is for time and date. The other side is showing the lights

status. In the middle (none purple area), it is left for blank. The second row is only

for weather information. The last row shows sentences. With the Bootstrap grid

system, it is easy to locate each element in its own location.

45

5.2 Time implementation

As the project was planned, the whole mirror was regarded as home-use

furniture. Thus, time and date were the first planned and required feature in this

project. Due to the simplicity of this single element, there is not much design for

it. Only one JavaScript file is necessary to create time and date nodes when the

browser is rendering the page.

FIGURE 30. Time JavaScript File

FIGURE 30 shows the code that returns time and date. The code of time function

is inspired by W3Schools. The date function is written by Xiaoyun. The basic logic

is to get the date and time from the Data Object and the transfer the data into

different format. For instance, in the function date.getMonth(), the month data

which returned is number 5. After months[date.getMonth()], month 5 has been

transferred to “May”. Gathering the date and time data, then this function will

create a nodes element on the front page to show the needed data.

Nevertheless, there is a drawback, time is based on the current location and it is

not changeable. Thus, the smart mirror can only show the local time, not time in

other time zones.

46

5.3 Weather Implementation

Weather is another important feature in this project. It is used in daily life,

therefore it is becoming absolutely necessary.

Weather data is coming from Dark Sky API. To implement this feature, the first

step is to connect this application to the weather API [19].

FIGURE 31. Weather API connection

FIGURE 31 shows the API connection code, which is made with JavaScript and

module axios [20]. Axios is making the Promise [21] call from Dark Sky API. As it

is a promise, this application achieves an asynchronous transmission. Whereas,

the request to the Philips API is a promise as well. After it gets a response, it will

call a getWeatherData() function from a module WeatherJs on the frontend side.

Meanwhile, the getWeather() function will update every 3 minutes to get the latest

data.

After getting the data from the API, the second step is to fetch the data on the

front page. There is one JavaScript file on the frontend side named weather.js. In

total, there are three functions in this weather JS file. The first function is used to

be called in the backend side. Just because the request to the weather API is a

promise, the frontend side cannot get data immediately. It caused a promise

47

pending issue. To avoid it, the getWeatherData function is exported in the

weather JS file and imported in weatherApi JS. Thus, when the data returns, the

function getWeatherData will be called and it will call to the createWeatherNodes

function in the following way

“module.exports = {

 getWeatherData: function (data){

 createWeatherNodes(data);

 }

}”

The second function createWeatherNodes (FIGURE 32) is used to create

necessary nodes elements on the frontend side and to give values into these

nodes. Because of the new data coming every three minutes, there is one “if”

programming condition to filter the old weather data out and to replace the latest

data.

48

FIGURE 32. Function of creating nodes

The third function (FIGURE 33) getWeatherIcon is choosing the relative images

based on the weather status and returning them to the front page.

49

FIGURE 33. Function of Icons selection

The last step is to align each weather element and text together and rearrange

the size to match the screen size. This is achieved by the home.css file.

50

5.4 Lights Implementation

Lights implementation is similar to weather implementation. Both of them share

the same data processing. Firstly, promises will trigger the frontend function after

it gets data from the API. Secondly, data will be parsed and processed into

frontend files. After filtering the unnecessary data, the valuable data will be

inserted into node elements and fetched into web rendering. The only difference

is that the weather UI component is grouped into 1 unit. This unit group is

composed a of weather icon, a weather status, and temperature. But for light

components, there are unknown groups, and it depends on the amount of users’

Philips’ lights and users’ lights setting. In this case, there are 4 Philips lights which

are grouped into bedroom and living room (JSON data can be seen in appendix

1). Thus, data is divided into bedroom and living room separately. In case of

adding new lights in the future, looping through data is compulsory to get all

necessary data. In this case (FIGURE 34), a data object name is detected if there

is “room” in the name, this object will be filtered into the needed data.

FIGURE 34. Lights data filter function

After the needed data is available, data will be parsed into node elements created

by JavaScript. One issue which was found during the development is that using

appendChild (nodes) always requires removing the old elements. As a result of

the mechanism of lights setting, new node elements are coming every 10

seconds. In case of showing duplicated elements, the solution shown in FIGURE

35 is used to clean those old elements.

51

FIGURE 35. Detection of the old elements

Before inserting the latest elements into the template, this function will check

whether old elements exist or not. If they exist, they will be wiped out.

5.5 Sports Implementation

Sports data is the largest data on the frontend side. There are 24 objects in one

API call, and the data structure is different from other data. One object is

separated into awayTeam, homeTeam, and score. (FIGURE 36).

FIGURE 36. One object in Sports data

52

For gathering the fitful data, it needs to be extracted and replaced. As data has 2

main groups, awayTeam and homeTeam, 2 node elements are created based on

them. According to each team, a function will get and insert a relative name and

score into node elements. (FIGURE 37).

If a match is not started , score data is null in the data API. For a better user

experience, a score will show “In playing” instead of null.

FIGURE 37. Sports data transformation

53

6 BACKEND DEVELOPMENT (KAMILL)

6.1 Setting up the project

The project development was started by planning the required hardware and

software for the development of the app and running the app.

The necessary hardware was a glass mirror, a monitor for displaying information,

a Raspberry Pi for running the app and another computer for development.

The necessary software was the Raspbian operating system to run on the

Raspberry Pi and Visual Studio Code to write code.

The first step on setting up the project was to turn on the Raspberry Pi and

connect it to a display, mouse, and keyboard. The Raspberry Pi came with a

preinstalled OS on a micro SD card, thus completing the OS setup was also a

necessary step. When the OS booted up, the required packages, such as

Node.js, had to be installed along with the Electron framework. There was one

issue on the Raspbian operating system, which made it incompatible with

Electron version 4 framework, thus Electron 3 had to be installed. Raspbian has

planned support for Electron 4, but for the purpose of this project the third version

was enough.

After the framework had been set up, a simple test was made to check the

Raspberry Pi capability of running apps written in Electron. The test was

successful. As a result, the Raspberry Pi was set up and ready to run the

application in this project (FIGURE 38).

54

FIGURE 38. User interface of Raspbian OS

6.2 Starting development

The development on Raspberry Pi was not possible as it has a low processing

power, thus another solution had to be considered. The development was made

on a PC using Visual Studio Code as the main software (FIGURE 39).

FIGURE 39. Example of development on Visual Studio Code

55

A git repository was set up to have a version control and to synchronize the files

between the PC, Raspberry Pi and other computers that were used for the

development.

6.3 Setting up the database

The most important step in the beginning was to set up a database which can

hold user data. This was necessary since the application needs authentication

for the Philips Hue API and its user’s username needs to be saved.

For this purpose, the neDB JavaScript database was selected since the data is

small, and Electron works well with this NoSQL DB.

When setting up neDB, some aspects had to be considered:

1. Which method of saving data is to be used

2. How to make the code reusable everywhere for easy database access

In the first case, it was decided to use a text file as a memory storage for the

application. This means that the database will store all the data which is inserted

in the JSON format to a file specified in the code. If the file does not exist, neDB

will create one. Using this form of data storing makes it easier to test the

application while developing, since the data is easily viewable when opening the

file where it was written to.

56

FIGURE 40. Reusable code for database operations

In FIGURE 40, it was created a JavaScript file which can be imported in any

other JavaScript file for quick, reusable code. In this file there is a function for

all the common database operations, such as creating a database, inserting

data in the database, finding data in the database by a specific keyword, and

finding all the data in the database.

The file where the data is stored is specified at the beginning of the code.

While using these functions, there were some issues in passing the variables

around to other files, since accessing the database is promise based. The

solution for this was to return a promise and use that to manipulate variables.

57

Calling the create database function is necessary in all the files where this

code is used. This does not mean that the database is created each time, it is

just a way to start doing database operations.

The function, “insertData”, gets the data as a parameter and inserts it to the

database. This data can be in an object format.

The function, “findData”, accepts some data object as a parameter and will go

through the database to check if the specified data exists in the database. The

find all function will return the whole collection in the database.

6.4 Setting up Philips Hue API

The first thing to be considered when setting up the Philips Hue API was to use

some node package while doing the API operations. Searching for that, there

appeared to be multiple node packages for that purpose. The criteria for choosing

a package were:

1. Making development easier

2. Compatible with the latest Philips Hue API

3. Well maintained

After some research, it was chosen a node package which is compatible with the

latest API and seems to be still maintained.

The first challenge was to register the users when opening the app for the first

time. Each API call needs a username to be passed on for security reasons. The

solution for this was to check if a username already exists in the database or not.

If it exists, it is used for making the API calls, if it does not, a new user is

registered. Registering a new user requires pressing the link button on the Philips

Hue Bridge. The interface should warn the user about this in case the button was

not pressed. The API call will return a message in case that did not happen.

58

After pressing the link button, the registration can go on and the username can

be saved into the database. On later API calls, that username can be used to

authenticate the user.

FIGURE 41. Searching for Philips Hue bridges

In FIGURE 41, a search is performed for Philips Hue bridges on the local network.

If a bridge is found, its IP will be saved into the database. If multiple bridges are

found, the user should have the ability to choose which bridge they want to

connect to.

59

FIGURE 42. Registering new users

In FIGURE 42, a function is called to search the database for usernames. If

there is no username in the database, an API call will be made to the Philips

Hue API to register a new user. This requires the bridge link to be pressed

beforehand.

The Philips Hue API generates a username automatically and returns it. This

username consists of numerous numbers and letters. When the username is

generated, it will be saved into the database for a future use.

60

FIGURE 43. Listing all lights

In FIGURE 43, an API call is made to the Philips Hue API to get all the lights

which are connected to the bridge. Each light bulb is an object and contains

a name which makes it easier to identify it. The object also includes other

useful information, such as the state of the lights (whether they are on or off),

the brightness, color.

The result from this call is passed to the frontend page where information

about the bulbs can be displayed.

There is no way to get real data from the API. As a result, the state of the

bulbs is updated every 10 seconds.

61

6.5 Setting up the sports API

Similar to setting up the Philips Hue API, it was also considered whether to use

a node package or not when setting up the sports API. After some searching, it

came to light that packages for sports APIs are scarce. As a result, API calls need

to be made using an AXIOS call.

FIGURE 44. Simple Sports API call

In FIGURE 44, a simple API call is made to get the recently played football

matches. The result will come organized by football leagues and teams that

played.

A token needs to be passed to the API call. This token can be obtained when

registering for the API usage.

After the results are fetched, they are looped through and then they can be used

in frontend to display results and competitions.

In case the API call limit is reached, this call will return an error.

62

6.6 Setting up weather API (Xiaoyun)

The weather API configuration is one of the simplest configurations in this project.

According to the official document of Dark Sky, only secret key is needed inside

an API call (Secret Key is the key which Dark Sky offered to allow the API calling).

Besides the API key, a customized parameter is critical to be added into URL.

The first parameter is location coordinates. In Oulu, a coordinate is defined as

65.0121° N, 25.4651° E, searched from Google [22]. The second parameter is a

temperature unit. The default unit in Dark Sky is the Fahrenheit scale. To switch

to the Centigrade scale, unit setting is required to insert into URL.

For getting an asynchronous call, a promise is used as the main function. As for

reducing the issue of promise delay, the frontend function is injected into the

promise. After data is caught from the API, the frontend function getWeatherData

will be triggered and the data is passed into the weather JS file. For keeping the

accuracy of weather data, there is one setInterval function to make an API call

every 3 minutes (See FIGURE 45).

FIGURE 45. Simple Sports API call

63

7 FUTURE DEVELOPMENT POSSIBILITIES

During the development of the software and building the mirror, many ideas came

up about implementation possibilities. This chapter will focus on the most

interesting ideas that came up but did not end up being implemented in this thesis

work.

7.1 Remote controlled mirror

In its current state, the mirror is not a touch screen and cannot be controlled

without connecting a mouse and keyboard to the Raspberry PI. While this is a

good way to get information from it, there is no possibility to input information

which could open up to further development possibilities.

This idea can be implemented by creating a node server to which a smart phone

can be connected from the same network. The connected smartphone will act as

a controller to the mirror. To keep the connection alive and make it possible to

establish a communication between the node server and the Electron app, a

socket needs to be used. The socket will listen to inputs and control the output

on the mirror. The mirror will display a QR code or an IP address where the phone

can establish the connection to the mirror. A mobile optimized interface will show

up on the phone and multiple actions can be performed there.

Implementing this idea will open to multiple development possibilities discussed

in-depth in the next sections.

7.2 Integrated smart light control

Once the remote connection has been established to the mirror, the Philips Hue

lights can be controlled by pressing a button on the mobile interface. That will

make an API call to trigger the light bulb state changing from on to off or vice

64

versa. The mirror interface will also update to reflect the changes in the light bulb

state.

Controlling the colors or the brightness of the light will also be a possibility in this

case. That could be a slider on the UI for the brightness control or a color palette

where the colors can be selected.

7.3 Light reacting to sport results

This feature could be implemented to make the smart lights react to sports results

in real time. The user could choose a football match to follow. When the football

match starts and a team scores, the light can change color or blink.

7.4 Touch screen mirror

The mirror can be made a touchscreen by attaching an IR frame to its original

frame. The IR frame will register the inputs of the users on the screen and allow

pressing buttons or performing various other actions.

7.5 Voice Control system

The voice control system is achievable in 2 ways. First, to integrate with the

Amazon Echo system Alexa. Or using the tiny JavaScript library named annyyang

[23]. The annyang library supports node JS and light weight.

65

8 CONCLUSION

This whole project is built by developers’ interest. During the implementation,

there were many issues and difficulties. Even though some of them have been

fixed and solved, there are still some drawbacks in the prototype. But from

developers’ perspective, it is still a milestone for combining our knowledge with a

real life experience.

The purpose of this thesis work was not only to make a smart home system but

to practice skills and train our mind. In the near future, this project will continue to

be developed. The next step will be adding an IR frame to achieve a tangible

mirror device and integrating it with the Amazon Alex system to achieve Voice

Control.

Currently, the smart mirror is showing multiple information. There are still more

ideas coming into this project, like playing YouTube videos, and a mobile remote

control. The ideas will never end.

After this thesis, we got more passion about the IoT development and

encouraged our friends to join us. We hope that we can make more smart devices

to serve our real life.

66

REFERENCES

1. Cohen Evan. 2019. Smart Mirror. Date of retrieval 05.05.2019

https://docs.smart-mirror.io/

2. Node.js. Date of retrieval 10.04.2019 https://en.wikipedia.org/wiki/Node.js

3. Electron Official document. 2019. Date of retrieval 05.05.2019

https://electronjs.org/

4. The Pi Hut. Raspberry Pi 3 Model B+. Date of retrieval 10.04.2019

https://thepihut.com/products/raspberry-pi-3-model-b-plus

5. Coolshop. Philips Hue - Starter kit E27 Richer colors 2018. Date of

retrieval 10.04.2019 https://www.coolshop.co.uk/product/philips-hue-

starter-kit-e27-richer-colors-2018/AD7F8B/

6. HeikoAL. The Philips Hue Tap. Date of retrieval 10.04.2019

https://pixabay.com/photos/philips-hue-bridge-smarthome-3146129/

7. Football-data. 2019. Pricing. Date of retrieval 04.05.2019

https://www.football-data.org/pricing

8. Football-data. 2019. Free Tier. Date of retrieval 04.05.2019

https://www.football-data.org/coverage

9. Github. Date of retrieval 04.05.2019 https://en.wikipedia.org/wiki/GitHub

10. How we effectively use Trello for project management. Date of retrieval

04.05.2019 https://wpcurve.com/trello-for-project-management/

11. Kore. 2017. Building an intelligent voice controlled mirror. Date of

retrieval 05.05.2019 https://medium.com/@akshaykore/building-an-

intelligent-voice-controlled-mirror-2edbc7d62c9e

12. Hoffmann Robert. 2018. Building a big MagicMirror with metal frame –

The summary, part list and prices. Date of retrieval 05.05.2019

http://robstechlog.com/2017/06/25/building-a-big-magicmirror-with-metal-

https://docs.smart-mirror.io/
https://en.wikipedia.org/wiki/Node.js
https://electronjs.org/
https://thepihut.com/products/raspberry-pi-3-model-b-plus
https://www.coolshop.co.uk/product/philips-hue-starter-kit-e27-richer-colors-2018/AD7F8B/
https://www.coolshop.co.uk/product/philips-hue-starter-kit-e27-richer-colors-2018/AD7F8B/
https://pixabay.com/photos/philips-hue-bridge-smarthome-3146129/
https://www.football-data.org/pricing
https://www.football-data.org/coverage
https://en.wikipedia.org/wiki/GitHub
https://wpcurve.com/trello-for-project-management/
https://medium.com/@akshaykore/building-an-intelligent-voice-controlled-mirror-2edbc7d62c9e
https://medium.com/@akshaykore/building-an-intelligent-voice-controlled-mirror-2edbc7d62c9e
http://robstechlog.com/2017/06/25/building-a-big-magicmirror-with-metal-frame-the-summary-parts-prices/?fbclid=IwAR26o-Tgg7NqOF8-vLKan3ulm1RstAdeSV_lM6st2kaVpxkyGhu4VE7t0O4

67

frame-the-summary-parts-prices/?fbclid=IwAR26o-Tgg7NqOF8-

vLKan3ulm1RstAdeSV_lM6st2kaVpxkyGhu4VE7t0O4

13. Mir Rehman Rayees. 2011. How to detect 2-Way Mirror and Hidden

Camera at any place. Date of retrieval 05.05.2019

https://mirrayees.blogspot.com/2012/10/how-to-detect-2-way-mirror.html

14. Two Way Mirrors. 2018. Acrylic Vs Glass For Smart Mirror

Project(2018). Date of retrieval 05.05.2019

https://www.youtube.com/watch?v=tOC48aQ3JKo

15. Rahul, Jain. 2017. Prototyping Smart Mirror — UX Case Study. Date of

retrieval 05.05.2019 https://blog.prototypr.io/prototyping-smart-mirror-ux-

case-study-da20571c4428?fbclid=IwAR1TgM0pLBJmAktw-

z6_NFJEUGaPVC25oHz_SrMVhkRsxFV8Jt-Fu2ViKhc

16. Rouse Margaret. 2005. User Interface (UI). Date of retrieval 05.05.2019

https://searchmicroservices.techtarget.com/definition/user-interface-

UI?fbclid=IwAR1vkkl_AJglLq6l2gtnPRGUF4IKlxWpmJ7UTRzliHxm1D9gj

wxLUpbJ4iQ

17. Weather Icon Pack. Date of retrieval 02.04.2019

https://www.flaticon.com/packs/weather-165

18. De la Riva Maria. 2018. Consistency of UI design. Date of retrieval

04.04.2019 https://careerfoundry.com/en/blog/ui-design/the-importance-

of-consistency-in-ui-design/

19. Morelli Brandon. 2017. Build Weather App. Date of retrieval 15.04.2019

https://codeburst.io/build-a-simple-weather-app-with-node-js-in-just-16-

lines-of-code-

32261690901d?fbclid=IwAR0ayvh0rhnR0hg4epG5PHKS8OrCaHfy8XLm

2Z0a-O-EkSHGYGCz57TY69c

20. Eschweiler Sebastian. 2017. Getting Started With Axios. Date of retrieval

05.05.2019 https://medium.com/codingthesmartway-com-blog/getting-

started-with-axios-

166cb0035237?fbclid=IwAR1AvKGJ2zxY2fuvHBfKhWe-Z-RvCZDM-

c0DYCevWBxp_uBuZWrK849E1uI

http://robstechlog.com/2017/06/25/building-a-big-magicmirror-with-metal-frame-the-summary-parts-prices/?fbclid=IwAR26o-Tgg7NqOF8-vLKan3ulm1RstAdeSV_lM6st2kaVpxkyGhu4VE7t0O4
http://robstechlog.com/2017/06/25/building-a-big-magicmirror-with-metal-frame-the-summary-parts-prices/?fbclid=IwAR26o-Tgg7NqOF8-vLKan3ulm1RstAdeSV_lM6st2kaVpxkyGhu4VE7t0O4
https://mirrayees.blogspot.com/2012/10/how-to-detect-2-way-mirror.html
https://www.youtube.com/watch?v=tOC48aQ3JKo
https://blog.prototypr.io/prototyping-smart-mirror-ux-case-study-da20571c4428?fbclid=IwAR1TgM0pLBJmAktw-z6_NFJEUGaPVC25oHz_SrMVhkRsxFV8Jt-Fu2ViKhc
https://blog.prototypr.io/prototyping-smart-mirror-ux-case-study-da20571c4428?fbclid=IwAR1TgM0pLBJmAktw-z6_NFJEUGaPVC25oHz_SrMVhkRsxFV8Jt-Fu2ViKhc
https://blog.prototypr.io/prototyping-smart-mirror-ux-case-study-da20571c4428?fbclid=IwAR1TgM0pLBJmAktw-z6_NFJEUGaPVC25oHz_SrMVhkRsxFV8Jt-Fu2ViKhc
https://searchmicroservices.techtarget.com/definition/user-interface-UI?fbclid=IwAR1vkkl_AJglLq6l2gtnPRGUF4IKlxWpmJ7UTRzliHxm1D9gjwxLUpbJ4iQ
https://searchmicroservices.techtarget.com/definition/user-interface-UI?fbclid=IwAR1vkkl_AJglLq6l2gtnPRGUF4IKlxWpmJ7UTRzliHxm1D9gjwxLUpbJ4iQ
https://searchmicroservices.techtarget.com/definition/user-interface-UI?fbclid=IwAR1vkkl_AJglLq6l2gtnPRGUF4IKlxWpmJ7UTRzliHxm1D9gjwxLUpbJ4iQ
https://careerfoundry.com/en/blog/ui-design/the-importance-of-consistency-in-ui-design/
https://careerfoundry.com/en/blog/ui-design/the-importance-of-consistency-in-ui-design/
https://codeburst.io/build-a-simple-weather-app-with-node-js-in-just-16-lines-of-code-32261690901d?fbclid=IwAR0ayvh0rhnR0hg4epG5PHKS8OrCaHfy8XLm2Z0a-O-EkSHGYGCz57TY69c
https://codeburst.io/build-a-simple-weather-app-with-node-js-in-just-16-lines-of-code-32261690901d?fbclid=IwAR0ayvh0rhnR0hg4epG5PHKS8OrCaHfy8XLm2Z0a-O-EkSHGYGCz57TY69c
https://codeburst.io/build-a-simple-weather-app-with-node-js-in-just-16-lines-of-code-32261690901d?fbclid=IwAR0ayvh0rhnR0hg4epG5PHKS8OrCaHfy8XLm2Z0a-O-EkSHGYGCz57TY69c
https://codeburst.io/build-a-simple-weather-app-with-node-js-in-just-16-lines-of-code-32261690901d?fbclid=IwAR0ayvh0rhnR0hg4epG5PHKS8OrCaHfy8XLm2Z0a-O-EkSHGYGCz57TY69c
https://medium.com/codingthesmartway-com-blog/getting-started-with-axios-166cb0035237?fbclid=IwAR1AvKGJ2zxY2fuvHBfKhWe-Z-RvCZDM-c0DYCevWBxp_uBuZWrK849E1uI
https://medium.com/codingthesmartway-com-blog/getting-started-with-axios-166cb0035237?fbclid=IwAR1AvKGJ2zxY2fuvHBfKhWe-Z-RvCZDM-c0DYCevWBxp_uBuZWrK849E1uI
https://medium.com/codingthesmartway-com-blog/getting-started-with-axios-166cb0035237?fbclid=IwAR1AvKGJ2zxY2fuvHBfKhWe-Z-RvCZDM-c0DYCevWBxp_uBuZWrK849E1uI
https://medium.com/codingthesmartway-com-blog/getting-started-with-axios-166cb0035237?fbclid=IwAR1AvKGJ2zxY2fuvHBfKhWe-Z-RvCZDM-c0DYCevWBxp_uBuZWrK849E1uI

68

21. Archibald Jake. 2019. JavaScript Promises: an Introduction. Date of

retrieval 05.05.2019

https://developers.google.com/web/fundamentals/primers/promises?fbcli

d=IwAR3EG80iikdixsQn3HpvVL789G1Wea7T9MVMl5GIIyxtzIdx6TtEcm

Uc23o

22. World Atlas . 2019. Where Is Oulu, Finland? Date of retrieval 05.05.2019

https://www.worldatlas.com/eu/fi/15/where-is-oulu.html Date of retrieval

5-May-2019

23. Annyang Speech Recognition Library. Date of retrieval 05.05.2019

https://www.talater.com/annyang/?fbclid=IwAR2-M5ff8MM5n-

lOC5KVtLpofb_KN0VTisKH2PK8cfypfB8UJpA0gk1Sffc

https://developers.google.com/web/fundamentals/primers/promises?fbclid=IwAR3EG80iikdixsQn3HpvVL789G1Wea7T9MVMl5GIIyxtzIdx6TtEcmUc23o
https://developers.google.com/web/fundamentals/primers/promises?fbclid=IwAR3EG80iikdixsQn3HpvVL789G1Wea7T9MVMl5GIIyxtzIdx6TtEcmUc23o
https://developers.google.com/web/fundamentals/primers/promises?fbclid=IwAR3EG80iikdixsQn3HpvVL789G1Wea7T9MVMl5GIIyxtzIdx6TtEcmUc23o
https://www.worldatlas.com/eu/fi/15/where-is-oulu.html%20Date%20of%20retrieval%205-May-2019
https://www.worldatlas.com/eu/fi/15/where-is-oulu.html%20Date%20of%20retrieval%205-May-2019
https://www.talater.com/annyang/?fbclid=IwAR2-M5ff8MM5n-lOC5KVtLpofb_KN0VTisKH2PK8cfypfB8UJpA0gk1Sffc
https://www.talater.com/annyang/?fbclid=IwAR2-M5ff8MM5n-lOC5KVtLpofb_KN0VTisKH2PK8cfypfB8UJpA0gk1Sffc

APPENDIX APPENDIX 1/1

Philips Lights JSON DATA

[

 {

 "id": "0",

 "name": "Lightset 0",

 "type": "LightGroup"

 },

 {

 "id": "1",

 "name": "Living room",

 "lights": [

 "1",

 "2"

],

 "sensors": [],

 "type": "Room",

 "state": {

 "all_on": false,

 "any_on": false

 },

 "recycle": false,

 "class": "Living room",

 "action": {

 "on": false,

 "bri": 1,

 "alert": "select"

 }

 },

 {

 "id": "2",

 "name": "QuickHue: Switch Lights",

 "lights": [

 APPENDIX 1/2

 "1",

 "2"

],

 "sensors": [],

 "type": "LightGroup",

 "state": {

 "all_on": false,

 "any_on": false

 },

 "recycle": false,

 "action": {

 "on": false,

 "bri": 1,

 "alert": "select"

 }

 },

 {

 "id": "3",

 "name": "Bedroom",

 "lights": [

 "3",

 "4"

],

 "sensors": [],

 "type": "Room",

 "state": {

 "all_on": false,

 "any_on": false

 },

 "recycle": false,

 "class": "Bedroom",

 APPENDIX 1/3

 "action": {

 "on": false,

 "bri": 1,

 "hue": 7676,

 "sat": 199,

 "effect": "none",

 "xy": [

 0.5016,

 0.4151

],

 "ct": 443,

 "alert": "none",

 "colormode": "xy"

 }

 },

 {

 "id": "4",

 "name": "Entertainment area 1",

 "lights": [

 "4",

 "3"

],

 "sensors": [],

 "type": "Entertainment",

 "state": {

 "all_on": false,

 "any_on": false

 },

 "recycle": false,

 "class": "TV",

 "stream": {

 "proxymode": "auto",

 APPENDIX 1/4

 "proxynode": "/lights/4",

 "active": false,

 "owner": null

 },

 "locations": {

 "3": [

 0.1,

 0.19,

 0

],

 "4": [

 0.05,

 0.21,

 0

]

 },

 "action": {

 "on": false,

 "bri": 1,

 "hue": 7676,

 "sat": 199,

 "effect": "none",

 "xy": [

 0.5016,

 0.4151

],

 "ct": 443,

 "alert": "none",

 "colormode": "xy"

 }

 },

 {

 APPENDIX 1/5

 "id": "5",

 "name": "Group for wakeup",

 "lights": [

 "3",

 "4"

],

 "sensors": [],

 "type": "LightGroup",

 "state": {

 "all_on": false,

 "any_on": false

 },

 "recycle": true,

 "action": {

 "on": false,

 "bri": 1,

 "hue": 7676,

 "sat": 199,

 "effect": "none",

 "xy": [

 0.5016,

 0.4151

],

 "ct": 443,

 "alert": "none",

 "colormode": "xy"

 }

 }

]

