

Automated train track -

development of features.

Bachelor’s thesis

Automation Engineering Valkeakoski

Spring 2019

Pavel Kulaev

ABSTRACT

Automation Engineering
Valkeakoski

Author Pavel Kulaev Year 2019

Subject Automated train track: renewal and development of
 features.

Supervisor(s) Juha Sarkula

ABSTRACT

The thesis was commissioned by the Automation Engineering Degree
Programme at Häme University of Applied Sciences Valkeakoski. The aim
of the project was to renew old features and to develop new features for
the train track model table present at HAMK Valkeakoski. A renewal of
features was necessary for the use of the table by future automation
students at the university. The topic for the project was provided by Juha
Sarkula at Häme University of Applied Sciences Valkeakoski.

The main part of the project was formed by an introduction of new
features through coding and by looking for solutions for an improved
tracking of trains moving on the train track table. The difference in price
and complexity of these solutions were taken into account. Many possible
tracking solutions were examined. Other improvements for the table were
discussed as well.

A new solution was developed to meet the requirements of the
commissioning party. A program was written for the train track table which
allowed the selection of different trains as well as a manual and an
automatic movement of a train. Necessary safety features were
implemented. Project goals were met in a satisfactory fashion.

Keywords Electrical engineering, automation, PLC, locomotive

Pages 65 pages including appendices 28 pages

CONTENTS

1 INTRODUCTION ... 1

1.1 Project description .. 1

1.2 Objectives .. 1

1.3 Train track table .. 2

1.4 Issues with tracking ... 2

2 THEORY .. 3

2.1 Scale models and their uses .. 3

2.1.1 Practical uses of scale models ... 3

2.1.2 Use of scaled models in studying automation .. 3

2.2 Rail transport modelling .. 4

2.2.1 History of railroad modelling ... 4

2.2.2 Powered railroad models .. 4

2.2.3 Control systems ... 5

2.3 Small scale object tracking on a surface ... 5

2.3.1 Optical Detection ... 5

2.3.2 Conductive Detection .. 6

2.3.3 Proximity Detection ... 6

2.3.4 Reed sensors .. 6

2.4 Programmable Logic Controller .. 7

2.4.1 History ... 7

2.4.2 Structure .. 8

2.4.3 Principle of Operation ... 11

2.5 TwinCat Software .. 12

2.5.1 TwinCat XAE ... 12

2.5.2 Advantages .. 13

2.5.3 Main functions of TwinCat .. 13

2.6 Serial Communication and RS-232 protocol ... 14

2.6.1 Serial communication .. 14

2.6.2 Baud rate ... 14

2.6.3 Data framing .. 14

2.6.4 Wiring .. 14

2.6.5 Beckhoff implementation .. 14

2.6.6 RS-232 protocol ... 15

2.7 RFID ... 15

2.7.1 History of RFID ... 15

2.7.2 Working principle .. 16

2.7.3 Types of RFID ... 16

2.7.4 RFID regulations .. 17

2.7.5 Applications ... 18

2.8 Reed Switches ... 18

3 RESEARCHED SOLUTIONS .. 19

3.1 Ultrasonic sensor system .. 19

3.2 RFID ... 20

3.3 Increase in the number of magnetic sensors .. 20

3.4 Re-positioning of the available sensors .. 21

3.5 Image Processing ... 21

4 SOLUTION .. 21

4.1 Rail model in HAMK ... 21

4.1.1 Control method ... 22

4.1.2 I/O box internals .. 23

4.1.3 Beckhoff PLC .. 23

4.1.4 Present issues and challenges ... 24

4.2 Implementation ... 24

4.3 Advantages .. 25

4.4 Disadvantages ... 25

4.5 Coding process .. 26

4.5.1 Libraries used ... 27

4.5.2 Program and Function Blocks .. 27

4.6 Visualisation and operation .. 32

5 CHALLANGES ENCOUNTERED .. 34

5.1 Serial communication .. 34

5.2 Second train .. 34

5.3 Sensor delay .. 34

5.4 Visualization upload to PLC ... 35

6 CONCLUSION ... 35

REFERENCES .. 36

Appendices
Appendix 1 I/O list
Appendix 2 MAIN program
Appendix 3 SerialCom program
Appendix 4 GO function block
Appendix 5 Switch function block example
Appendix 6 Paths function block example
Appendix 7 StationN function block
Appendix 8 LocalTime function block

LIST OF FIGURES

Figure 1. Train track scale model .. 3

Figure 2. Relay example .. 7

Figure 3. PLC structure .. 8

Figure 4. Coupler ... 9

Figure 5. Relay output ... 10

Figure 6. Transistor output .. 11

Figure 7. Main PLC operations .. 12

Figure 8. TwinCat operation .. 13

Figure 9. Serial communication message frame ... 14

Figure 10. RS-232 frame .. 15

Figure 11. Example of passive and active RFID tags ... 17

Figure 12. Electromagnetic switch patent .. 18

Figure 13. Positioning software .. 20

Figure 14. Twin-Center .. 23

Figure 15. Beckhoff based PLC .. 24

Figure 16. Repositioned pair of sensors. .. 25

Figure 17. Track schematic. .. 26

Figure 18. Used libraries. .. 27

Figure 19. GO function call in MAIN. .. 27

Figure 20. Polarity change... 28

Figure 21. Serial communication configuration. ... 29

Figure 22. Function for sending the data string to the Twin-Center device. 29

Figure 23. Train path from station one to station two. .. 30

Figure 24. Train path from station one to station three... 30

Figure 25. Switch operation. ... 31

Figure 26. Switch reset function, .. 32

Figure 27. Visualization. .. 33

1

1 INTRODUCTION

1.1 Project description

The first part of the thesis describes the objectives of the project, the
equipment available at the start of the project and problems that had to
be solved in order to meet the project goals.

The second part is the theoretical part of the project. It describes in detail
the system that was used for the project: communication method between
the trains and the controllers, operation of trains, methods of train
tracking present at the beginning of the project.

Chapter three showcases the solutions that were researched and
discussed as part of the project but were rejected as the main solution.
Chapter four is used to showcase the accepted solution of the problem as
well as new additions to the system. Chapter five describes the resulting
state of the project. Part six talks about setbacks and unexpected issues
encountered during the project.

1.2 Objectives

The project was provided by Juha Sarkula from Häme University of Applied
Sciences (later referred to as HAMK) Valkeakoski. One of the main
objectives of the project was the renewal of the train track table system at
HAMK Valkeakoski. The system present at the beginning of the project was
supposed to be used for practice for the automation students at the
university however, multiple issues made the use of the table impractical.
The project was started to solve those issues and to add additional
functionality to improve the systems potential for practice-based exercises
at campus. The thesis also touched different methods for small scale object
tracking and use of such systems in combination with modern automation
solutions.

After consideration the flowing objectives were established:

− Research the operation of the train track table.

− Develop a new tracking system for the trains or introduce
improvements to the existent system.

− Develop new features.

− Write a program to showcase the capabilities of the train track
installation.

− Create a robust user interface for the PLC

2

1.3 Train track table

A train track table present at HAMK Valkeakoski is a table with miniature
track, switch rails, magnetic sensors and a programmable logic controller.
The dimensions of the train track table are 404x147 cm. Serial
communication was used to send commands to the Twin-Center device
which in turn encoded the commands and send them to the train’s
decoder. Multiple trains could operate on the track at the same time, but
no solution was in place to prevent train collision. However, this train track
table had a great potential to be used for practical exercises on automation
but was riddled with a magnitude of issues. The magnetic sensors were
installed in pairs with equal distance between pairs. Because of the
position of the magnetic sensors, the actual location of the trains was hard
to track, and it was impossible to stop the train at the precise moment it
reached the end of the track.

1.4 Issues with tracking

There are some viable options available for tracking on a small scale.
Plenty of solutions are either unreliable or economically unfeasible. Some
companies provide finished solutions for this specific problem, but these
solutions were too expensive, and the use of complete solutions went
against the spirit of a thesis project. The ways in which small scale tracking
can be implemented was examined here and these methods are included
into the second chapter of the thesis.

3

2 THEORY

2.1 Scale models and their uses

Figure 1. Train track scale model (Railroad Modelling, 2015).

A scale model, as seen in Figure 1, is a model that represents interactions
between objects and the world on a smaller scale. Usually only particularly
important properties of the objects are translated to the scale model.

2.1.1 Practical uses of scale models

Scale models can be used for simulation purposes. Specifically, in the
aerospace industry such models are used to test the aerodynamic
properties of aeroplane designs. Furthermore, educational institutions
often possess scale models for the purpose of showcasing on practice the
operations of machinery without the need of the students to visit real life
installations. HAMK Valkeakoski possess multiple such models.

2.1.2 Use of scaled models in studying automation

At HAMK one can find many examples of scale models. These models allow
students to study automation practices on a smaller scale, without
inconveniences such as size, price or maintenance which come with the
real object.

4

2.2 Rail transport modelling

2.2.1 History of railroad modelling

According to the NMRA National Model Railroad Association railroad
modelling can help with developing planning, development and
engineering skills (Why Model? 2015).

The First miniature trains were made in Germany. These models were
made of tin and lacked methods of locomotion. The first steam powered
train model is credited to Sir Henry Wood from England. Such models were
known as “Dribblers”. Later clockwork mechanisms were used in the
creation of moving train models. Theodore Marklin, a toy maker from
Germany is credited for the production of Europe’s first electrical train set.
He also developed the first figure-eight layout (Coulter & Coulter n.d.).

Train modelling received recognition as a popular hobby only after WW2
then technology behind model trains became cheaper and easily available
to the general public. Today, international train modelling communities
exist that help bring more people into the hobby and serve as hubs for
aspiring train modelers to receive guidance on their hobby. Through
history many great people were model railroaders such: Winston Churchill,
Walt Disney, Frank Sinatra (Why Model? 2015).

2.2.2 Powered railroad models

Today, train models are usually powered by low voltage electricity
received from the track. First rail models were powered by steam and had
very little control functionality. Later clockwork was used to power model
trains. These models were controlled by levers on the train itself. (Railroad
Modelling, 2015).

First electrical models were used three rails with the middle track
providing power to the locomotive through a skid below the model. That
system was used because many modern materials were unavailable so
most of the model parts were conductive which led to a variety of
problems (Railroad Modelling, 2015).

With increasing importance of model accuracy, a new system was
adopted, which used only two rails: one providing positive supply and one
negative. DC is the most common power supply today but sometimes AC
power is also used (Railroad Modelling, 2015).

At first electrical train models used battery power as few houses were
wired for electricity at the time. Today battery powered trains are often
considered toys by the railway modelling enthusiasts ("Railroad
Modelling", 2015).

5

2.2.3 Control systems

The first models which ran on clockwork or steam had no way to change
speed or to stop the locomotive during operation thus the models ran until
they were out of power. Appearance of electric trains allowed to change
the models speed and direction. AC powered models had a mechanism
which allowed to change direction when the power was cycled. DC
powered models can reverse polarity for the same effect. A model layout
can be divided into blocks which allows to operate multiple trains at the
same time. Many modern layouts are controlled digitally and use PLC’s
(Railroad Modelling, 2015).

2.3 Small scale object tracking on a surface

Tracking objects orientation in space is a relatively easy endeavour - you
can find an accelerometer in many modern smartphones. Things get
complicated then the position of a small-scale object needs to be tracked
in space with adequate precision. When detecting miniature locomotives
on a track National Model Railroad Association (NMRA) provides some
possible solutions.

2.3.1 Optical Detection

Optical detection is used in many applications. Such system can be
independent from the track power and locomotive control systems. It can
also consistently detect the moment the locomotive crosses the sensor.
Doesn't require modifications to be made to the locomotives. That said,
the sensor can only detect position when the train crosses it and the
detector parts must be aligned to function (Train Detection, 2019).

LIGHT DEPENDENT RESISTOR

In the past, the most used miniature train detecting method used Light
Dependent Resistors (LDR). It is a simple part that changes its resistance
when exposed to light. To detect locomotives a LED light would be
positioned on one side of the track with a LDR on the other side. When the
locomotive passes that part of the track it will break the line of sight
between the LDR and the LED. Of course, such sensor can be ineffective if
heavy light pollution is present (Train Detection, 2019).

PHOTO TRANSISTORS AND IR DETECTOR PAIRS

An IR transmitter and a receiver can be used similarly to the LDR and detect
the train, then the train passes between them. This solution is more
resistant to light pollution than LDR. The IR detector pair is more precise
and has a much longer effective range (Train Detection, 2019).

6

2.3.2 Conductive Detection

Another way of train detection uses the changes in current on different
parts of the track to determine locomotive location. It only allows for block
detection: detection of which section of the track the rolling stock is in.
This method, however, is independent from the light pollution and lacks
the requirement of complicated positioning. The current consumption is
also higher, and the track must be separated into isolated parts (Train
Detection, 2019).

VOLTAGE DROP

A section of the track is connected to power supply through a Diode. When
a voltage drop occurs, diode detects current flow in the track thus
detection which section of the track the train is in. This solution has one
fatal flaw. If the Diode fails an entire section of the track will stop to
function (Train Detection, 2019).

CURRENT TRANSFORMER

Power to the track passes through a Current Transformer and a detection
circuit is used to measure generated current. This solution does not cause
a voltage drop, produces less noise (Train Detection, 2019).

HALL EFFECT CURRENT SENSOR

Power passes through a Hall Effect sensor. A detection circuit is used to
measure the response of the sensor. Just like the current transformer
method, HE does not cause voltage drop. This sensor is more sensitive to
current (Train Detection, 2019).

2.3.3 Proximity Detection

Metallic or ultrasonic sensors can be used to detect the locomotive passing
over or close to the sensor. Such solution could work independently from
the track power and has low amount of errors, although has its own
limitations. For example, metallic sensors will have trouble with detecting
plastic locomotives unless additions are made for better detection (Train
Detection, 2019).

2.3.4 Reed sensors

The type of system present at HAMK Valkeakoski at the beginning of the
thesis project. The Switches are activated by the magnet on the train. The
switches themselves are positioned either between the tracks, under the
train or on the sides of the track (Train Detection, 2019).

7

2.4 Programmable Logic Controller

A programmable logic controller (PLC) is a device based on a
microprocessor that allows engineers and programmers to implement
engineering solutions. Programmable memory is used to store
instructions. PLC are programmed using specialized control programs that
make use of simplified programming languages. This allows engineers with
limited programming experience to carry out engineering tasks (Bolton,
2009).

2.4.1 History

PLC have originated from relay control systems. Before PLC all automatic
control was done by combination of switches, clocks, relays and counters.
A lot of complicated wiring was required, and such solutions required a lot
of space to accommodate the relays. Implementation of such control
systems takes a lot of time. If a change must be introduced the entire
physical unit of relays must be rewired. Since relays were used the faults
and operational interruptions were common (Bolton, 2009). Two examples
of the relays can be seen in Figure 2.

Figure 2. Relay example (Bolton, 2009).

When General Motors were in need for a replacement for relay control
systems, the first PLC was developed. They wanted a software-based
replacement for the older relay systems. The new solution had to be easy
to change, program and had to be astronomically viable. The company to
develop the first PLC was Bedford Associates, Inc. Based in Bedford,
Massachusetts. It was called MODICON (modular digital controller). The
controller used LD programming language, which had similarities with
previously used relay diagrams (Bolton, 2009).

When the microprocessors became available in the early 1970s the
development of programmable logic controllers continued with renewed
vigour. Today, PLC include a variety of premade functions and

8

development tools. Around 1983 Modbus system was developed by
Modicon. This system allowed for efficient communication between
multiple PLC units and the ability to position the PLC further from
production (Bolton, 2009).

Before the IEC 61131-3 standard was taken into use, the has been a lot of
differences between different PLCs made by different PLC producers thus
there was a large difference in implemented programming languages.
Implementation of IEC 61131-3 finally allowed for greater compatibility
between systems (Bolton, 2009).

2.4.2 Structure

Figure 3. PLC structure (Bolton, 2009).

Structure of a PLC can be seen in Figure 3. Below, is a detailed explanation
of the structure.

BUSES

A bus is a combination of wires, which is used for communication between
parts of a PLC. Usually PLC have a control, system, address and data buses
(Bolton, 2009).

CPU

CPU (Central Processing Unit) carries out calculations and controls how the
program operates (Bolton, 2009).

MEMORY

There are three types of memory used by the modern PLC:

− ROM (Read-Only Memory) is used to store system data. EPROM
(Erasable Programmable Read-Only Memory) is used then it is
important to be able to update the PLC software since the standard
ROM data cannot be deleted.

− RAM (Random Access Memory) is used to store programs currently
used, since it allows for fast calculations and memory access. A

9

battery is used to prevent the loss of information from RAM, since it
cannot keep data without current.

− Sometimes memory cards can be added to increase available
memory (Bolton, 2009).

COMMUNICATION UNIT

Communication unit contains the communication protocols. Some PLC
manufacturers provide their own communication solutions for example
PROFIBUS, CANbus. More and more manufactures offer solutions for
Ethernet protocol which allows for increased speed and low response time
(Bolton, 2009).

POWER SUPPLY

PLC manufacturers produce their own power supplies, usually in the form
of modules. Usually manufacturers produce 24 V DC, 220 V AC and 120 V
AC power supplies however, PLC electronics run at 5 V. PLCs often have 24
V output for powering sensors (Bolton, , 2009)

I/O

I/O blocks allow for PLCs to receive and transmit signals. Inputs and
outputs have their own addresses in the system. Many PLC available can
process signals on their own (Bolton, 2009).

INPUTS

Although 5 V is the typical PLC voltage input signals use 24 V DC. To protect
the PLC optical couplers are used.

Figure 4. Coupler (Bolton, 2009).

A coupler is made from a LED and a phototransistor. When the sensor
signal is HIGH the LED lights up, the light travels to the photo transistor,
which triggers HIGH signal in the 5 V circuit. For analog inputs analog to
digital converters are used. The signal is converted into binary values.

10

Usually 16 bit are used (Bolton, 2009). Coupler operation can be seen in
Figure 4.

OUTPUTS

There are three main output module versions: relay, triac and transistor
outputs.

The least used type is the Triac outputs. They are used if fast AC switching
is required. They must be sufficiently protected from overcurrent.

Relay Outputs can be used with both DC and AC at different voltages. This
method allows the PLC and the external circuits to be isolated. Then CPU
changes the output signal, an external circuit is closed completing the
connection (Bolton, 2009). An example of a relay output can be seen in
Figure 5.

Figure 5. Relay output (Bolton, Programmable Logic Controllers,
2009).

Another type of outputs is the Transistor output as seen in Figure 6. Such
outputs cost less than the other types. A transistor is used on order to
complete an external circuit. Transistor outputs are faster at switching
then the relays. Such outputs can only operate with DC. Fuses must be
used to protect these outputs from overloads and wrong polarity (Bolton,
2009).

11

Figure 6. Transistor output (Bolton, Programmable Logic Controllers,
2009).

2.4.3 Principle of Operation

PLC operation is very similar to that of a typical PC. One of the main
differences is that the PLC is mostly used to control and monitor the
process. The PLC must be programmed in order for it to carry out
commands. Processes are divided can be divided into different states.
Process type dictates the required sensor types (Bolton, 2009).

As seen in Figure 7, during a normal operation of the PLC there are 4 main
operations performed contentiously: Internal processing, Input reading,
program execution and output update (Bolton, 2009).

12

Figure 7. Main PLC operations (Bolton, 2009).

2.5 TwinCat Software

TwinCat by Beckhoff is a software system that can be used to turn a PC into
a real time control system for automation. TwinCat software applicable to
most automation solutions. User has access to an array of different
programming languages. TwinCat 3 supports the modern advancements in
automation and modular structure (The Windows Control and Automation
Technology n.d.). This is the software used for the purpose of this thesis.

2.5.1 TwinCat XAE

eXtended Automation Engineering (XAE) brings the twincat integration
into the Microsoft Visual Studio. Microsoft Visual Studio brings to the table
a future-proof platform with plentiful expansion possibilities. A single tool
is needed for the development of the software for a solution. This greatly
simplifies the process of software engineering (eXtended Automation
Engineering XAE n.d.). You can see a detailed comparison between
integrated and standard TwinCat software in Figure 8.

13

Figure 8. TwinCat operation ("eXtended Automation Engineering
XAE").

2.5.2 Advantages

TwinCat software offers a number of useful features:

− TwinCat software can be used for both programming and
configuration.

− TwinCat is integrated into the Microsoft Visual Studio environment.

− TwinCat systems execute control programs in real-time.

− Logical and sophisticated PC interface.

− Expansive function libraries.

− Easy I/O management.

− Supports both textual and graphical languages such as Structured
Text, Function Block Diagram, Ladder Diagram etc (The Windows
Control and Automation Technology n.d.).

2.5.3 Main functions of TwinCat

Following are the main functions of TwinCat software:

− Automation Device Specification (ADS) is a protocol that controls
data transmission, writing and reading of data within TwinCat.

− TwinCat I/O allows for data collection from different fieldbuses. It is
possible to use different cyclic task for different fieldbuses.

− TwinCat PLC allows for multiple PLCs to be realized on one CPU.
“PROGRAM” type files can be connected to tasks

− TwinCat C++ allows for the execution of programs written in C++ (The
Windows Control and Automation Technology n.d.).

14

2.6 Serial Communication and RS-232 protocol

2.6.1 Serial communication

Two main methods exist for data communication between devices:
parallel and serial. Serial communication sends data one bit at a time and
thus requires only one connection. This however leads to serial
communication being slower than the parallel communication and should
only be used if data transfer speed is inconsequential (Blom. n.d.).

2.6.2 Baud rate

Baud rate is the speed at which the data is sent through the serial
communication. The measuring unit of baud rate is bit per second (bps).
For serial communication to function both connected devices must
operate at the same baud rate.

2.6.3 Data framing

Data sent through the serial communication is organized into a frame
consisting of bits. The frame consists of synchronization bits, data bits and
parity bits as seen in Figure 9. The main part of this frame is the data being
send. It can range from 6 bits to 9 bits. Bits at the start and the end of the
frame are called synchronization bits. They are used to recognize the
beginning and the start of the frame. Finally, the parity bits are used for
simple error handling (Blom, n.d.)

Figure 9. Serial communication message frame (Blom. n.d.).

2.6.4 Wiring

Serial communication makes use of two connections Receiver (RX) and a
transmitter (TX). TX from one device is connected to the RX from another
device.

2.6.5 Beckhoff implementation

KL6001 Terminal from beckhoff was used to implement serial
communication for the train track installation described in this thesis. This
terminal allows for serial communication to be established with RS-232
protocol devices. Beckhoff Twincat 3 Software includes a download-able

15

serial communication library that is used to set up serial communication
through the KL6001 terminal.

2.6.6 RS-232 protocol

RS-232 allows for serial binary data exchange between devices through
connection between data terminals. It initially was used for
communication using telephone lines. A modem can convert digital data
into a form that can be transmitted over a telephone line. Today the RS-
232 protocol is widely used for communication between PC’s and
compatible devices (The RS-232 protocol, n.d.).

RS-232 Low signal indicate a value 1 or a stop bit while the High signal
indicates data value of 0. Example of this signal can be seen in Figure 10.

Figure 10. RS-232 frame (Blom, n.d.).

2.7 RFID

2.7.1 History of RFID

First roots of RFID started in the beginning of the 20th century. Soviet
physicist Lev Theremin (Leon Theremin) is considered to have created the
first simple RFID device. Reflected radio frequency was modulated by a
resonator, which in turn, changed shape by the sound waves vibrating a
diaphragm. Although it was not an id tag it is widely considered to be a
predecessor to the RFID technology (History of RFID n.d.).

That said, the technology used in the creation of RFID has existed since
1935 when the Scottish physicist Sir Robert Alexander Watson-Watt
developed radar technology. During World War 2 German pilots began
changing the roll angle of their airplanes before returning to base in order
to change the reflected radio signal to identify themselves as friendly. An
identify friend or foe (IFF) system was then developed for the British
military by a research team under Watson-Watt. Every British plane had a
transmitter that, when it received a signal from the radar system, would

16

broadcast a signal back, identifying aircraft as friendly. Modern RFID uses
similar basic concept.

The first US RFID patent was received by Mario W. Cardullo on January 23,
1973. The patent was for an active RFID tag that had modifiable memory.
It is considered that US government has been working on the RFID systems
in secret before that (RFID History n.d.).

2.7.2 Working principle

Generally, RFID (Radio Frequency identification) refers to any form of radio
communications used for identification. Usually RFID uses a tag or a label
on an object. After the tag receives a signal it then returns identification
information back to the transmitter. Of course, the system may be much
more complicated than that (Thornton & Lanthem, 2006).

2.7.3 Types of RFID

Modern RFID system contains a tag (transponder) and a reader (receiver).
The reader sends a signal to the tag, receives information and either sends
it somewhere else or Internets it and shows it on the interface display. A
tag (transponder) can both receive and transmit data. Some types of
transponders can do calculations before sending the signal back, some can
only receive data and send its own data in reply. Usually an RFID tag
contains power supply, an antenna, encoder/decoder and communication
control (Thornton & Lanthem, 2006). There two types of RFID: active and
passive. Comparison between these RFID types can be seen in Figure 11.

An active tag has power supply, often in a form of a battery. Such tags can
both receive and transmit data without the help of the readers antenna.
The operating range of such tags is longer then passive tags. This comes
with bigger size of the tag and the requirement to change power supply
then it runs out, if the tag lacks connection to the power supply (Thornton
& Lanthem, 2006).

Unlike the active tag, the passive tag lacks its own power source thus the
passive tag must obtain its power from the reader device. It is done using
The Near Field principle. The Near Field provides power to the tag.
One issue with this is that the tag must be close to the reader since the
passive tag does lacks a power source (Thornton & Lanthem, 2006).

When in radio transmission, electromagnetic is substantially strong to
induce an electric field in a coil, such phenomenon is called The Near Field.
The range of The Near Field can be calculated using this formula: r=λ/2π
where λ is wavelength. If the passive tag is to function it needs to be within
this distance from the antenna (Thornton & Lanthem, 2006).

17

There is also a number of semi-passive tags that are partly powered by the
internal power and partly by The Near Field (Thornton & Lanthem, 2006).

Figure 11. Example of passive and active RFID tags
(Thornton & Lanthem, 2006).

2.7.4 RFID regulations

RF waves can travel substantially long distances and pass through solid
objects. Because of this different RF devices can interfere with each over
and at substantial power levels can even be harmful to living tissue
(Thornton & Lanthem, 2006).

Countries usually have their own RF standards. Bringing all regions to the
same standard can be difficult due to the use of older RF devices in
different fields. Different standards allocate frequency range to different
applications.

The recent regulation, EN 302-208 has the following features:

− A device should have a listen before talk functionality.

− Effective radiated power levels of 100 mW, 500 mW, and 2 W.

− Before the transmission starts the device must be in listening mode
for 5 milliseconds.

− Continuous transmissions should be no longer than 4 seconds
Transmission should be within 865-868 MHz.

− 100 ms should pass between transmissions on the same subband or
device should transmit on a different frequency.

18

− Subbands should be at 200 kHz (Thornton & Lanthem, 2006).

2.7.5 Applications

RFID has moved a long way from its original uses such as spying and friend-
foe identification. Today RFID is used in many peaceful fields such as
logistics, inventory monitoring, material management, library systems,
shopping, interactive marketing, farming, engineering and many others.

2.8 Reed Switches

One of the best methods of sensing proximity is the Reed Sensor. A
permanent magnet is moving with the object, which proximity to the
sensors must be observed. Such object can be a locomotive, a door, a
piston etc. Many companies produce reed sensors for different specific
operations. Such sensors include a reed switch which is affected by the
magnetic field (Sensors & Magnets n.d.).

Figure 12. Electromagnetic switch patent (Ellwood, 1941).

Reed switch is a magnetically operated switch developed by Walter B
Ellwood in 1940. In the patent it is stated that the electromagnetic switch
is a reliable and easily replaceable contact device (Ellwood, 1941).

The switch itself consists of the electrical contacts made from magnetic
material, sealed in the tube with either inert gas or vacuum. These

19

electrical contacts are positioned parallel to each-over, with a small
overlap. A third non-magnetic contact is connected to one of the magnetic
contacts. Then magnetic force is applied to the circuit, the two magnetic
contacts are moved closer and one magnetic contact is moved from the
non-magnetic contact to the second magnetic contact (Ellwood, 1941).
Figure 12 shows the electromagnetic switch cross section as present in the
original patent.

On figure 13 FIG. 1 object number 4 is the non-magnetic contact, object
number 3 is the first magnetic contact and object number 6 is the second
magnetic contact (Ellwood, 1941).

3 ALTERNATIVE SOLUTIONS

3.1 Ultrasonic sensor system

GamesOnTrack , a company specializing in indoor positioning systems has
number of products that can allow for locomotive monitoring. Their
positioning system consists of 3 “receivers”, which with the combination
of radio communication between units and ultrasound, can provide the
position of the “sender” unit that can be directly connected to the train
supply. Their GT-Xconnect unit receives the information from the system
and sends it to a PC, which using the provided software shown in Figure 13
can interpret the data into the position information. Although the system
works and can, according to the company, detect the position of the
locomotive with precision up to 10mm, its expensive and can only
calculate the position using the provided software so, in order to use it
with a PLC, a separate program must be created. In the end this solution is
both expensive and more complicated the necessary thus it was rejected
(Indoor GPS, our real time Positioning System n.d.).

20

Figure 13. Positioning software (Indoor GPS, our real time
Positioning System n.d.).

3.2 RFID

Another possible solution is to replace the magnetic sensors with RFID tags
and readers. Passive RFID tags can be placed on the bottom of the train
and the readers could be installed underneath the track.

Although, today passive RFID tags can be extremely cheap, some could
cost below one USD, the transmitters can be quite expensive. In addition,
small transmitters that can fit below the track have a severe lack of range.
Comparing to the magnetic sensors, RFID system could distinguish
between different locomotives.

That said, to even maintain coverage comparable to the magnetic sensor
system, around 400 USD worth of RFID readers will be required, and
substantial modifications need to be applied to the track table, requiring
drilling the table. Combined with the lack of meaningful improvement on
the existing system, this solution was deemed enviable.

3.3 Increase in the number of magnetic sensors

There is a simple way to increase the coverage of the monitoring system:
increasing the number of sensors. However, there are multiple issues with
that option. More I/modules must be added to the control box and there
is only room for one more, two if one output module is replaced with an
input module. This solution also requires drilling more holes into the table.

21

3.4 Re-positioning of available sensors

At the beginning of the project the magnetic switches are positioned in
pairs on both sides of the track. That positioning was excessive and
prevented accurate locomotive speed calculation. As an option the sensor
pairs can be moved apart and positioned 2-3 cm from each over. This will
allow to calculate the trains speed then it passes the gap.

3.5 Image processing

A camera can be positioned above the table and background subtraction
technique can be used to find the position of the trains on the track.
This solution requires the camera to be positioned high enough in order to
cover the entire table and the ceiling in HAMK Valkeakoski prevent the
camera from being positioned high enough. Multiple cameras can
potentially be used to remedy that, and the image combined using
software. Although this technique can provide accurate locomotive
position information it can be resource heavy and have a substantial delay.

4 FINAL SOLUTION

The train track was a low priority installation in HAMK thus more expensive
solutions were unviable.

After consideration the “Re-positioning of the available sensors” became
the accepted solution. Two sensors were re-positioned as a proof of
concept, an automation program and visualization were created to
showcase the features of the train track.

Before the process could take place, the necessary documentation was
gathered and research was done on the basic operation principles of
existing equipment, an outline of expected features was drafted.

4.1 Rail model in HAMK

Train model in HAMK Valkeakoski is an advanced scaled installation. It
consists of the track table and the I/O box.

The table has the following properties:

− Three tables, 135 cm x146 cm each, connected together with a track
on top.

− The distance between rails is 2 cm.

− There is a total of 46 ASSEMtech magnetic switches positioned on
both sides of the track.

− Electric locomotive with a decoder.

22

− Twin-Center device.

The I/O box contains the following:

− EK1100 EtherCat coupler

− IMO DPS-1-060-24 Power supply

− Switches

− KL6001 serial interface

− KL1002 2-channel digital input terminal 24 V DC

− 10x KL1408 8-channel digital input terminal 24 V DC

− 6x KL2114 4-channel digital output terminal 24 V DC

− KL9010 End terminal

In addition, a Beckhoff based PLC CPU is used to process and store the
program.

4.1.1 Control method

Fleischmann Twin-Center control unit is used to control the trains. As
name suggests two trains can be controlled at the same time on the same
track. Usually miniature trains are controlled using variable D.C. voltage.
The higher the voltage the faster the motor runs. Because of that all trains
on the track will move with the same speed at the same time. However,
the Twin-Center uses digital train control so trains can operate
independently. The track is under 20 volts A.C. voltage. It is both used to
power the trains and to control the train systems. Commands are stored
within the Twin-Center controller and are sent using digital impulses to the
locomotives. Decoders within the trains receives the impulses and
interpret the commands. Each piece of equipment connected to the
system has its own address and will only carry out the commands directed
at this address. Therefore, multiple trains can operate on the same track
independently (Fleischmann Twin-Center 6802 Operating Instruction
Manual, n.d.). The layout of the Twin-Center system can be seen in Figure
14.

23

Figure 14. Twin-Center (Twin-Center Operating
Instruction Manual, n.d.).

4.1.2 I/O box internals

The following are the descriptions of the I/O box terminals:

− EK1100 EtherCat coupler must be the first terminal.

− IMO DPS-1-060-24 is a DIN-rail power supply with one output
operating at 24V/60W. Cooled by air convection.

− KL6001 serial interface terminal allows for communication with
devices that use RS232 interface.

− KL1002 2-channel digital input terminal transmits signals to the PLC.
It has 2 LED lights signifying the state of the input channels.

− KL1408 8-channel digital input terminal transmits signals to the PLC.
It contains 8 channels and 8 LED lights signifying the state of the
input channels. Power contacts are looped.

− KL2114 4-channel digital output terminal connects the PLC to the
actuators. Similarly, to the input terminal it has LED lights showcasing
the status of the outputs. This terminal contains 4 channels.

− Any terminal assembly must end with a KL9010 End terminal. It
allows for the data exchange between the bus terminals and
couplers.

Full I/O list can be found in Appendix 1.

4.1.3 Beckhoff PLC

To store and run the created program, a Beckhoff based PLC CP6606 was
used. The above-mentioned PLC is shown if Figure 15 and is designed to
be installed on the front of control cabinets. It can be used for a variety of
engineering solutions. The PLC has an integrated seven-inch display with

24

touch screen. It makes use of an ARM Cortex-A8 1 GHz Processor. CP6606
is powered by 24 V DC power supply. Microsoft Windows Embedded
Compact 7 is used as an operating system for the PLC.

Figure 15. Beckhoff based PLC

4.1.4 Present issues and challenges

Train track table came with a number of issues:

− All sensors were doubled on both sides of the track. This was
unnecessary and lowered the sensor coverage.

− Because all sensor pairs were so far apart calculating the train speed
accurately was impossible.

− A part of the track was not connected properly and might have
caused a short circuit if the train passed over that part.

4.2 Implementation

Sensors 36 and 38 were re-positioned as the proof of concept for the
system that can detect the speed of the moving train using the available
sensors. Sensors were moved further apart allowing the program to use
the distance between them and the system time to establish the speed.
The repositioned sensors are shown in Figure 16.

25

Figure 16. Repositioned pair of sensors.

Following that the program was written to showcase the capabilities of the
train track as well as to add new features to the control method. The
program now allows for the train to be operated manually or
automatically. All switches can be operated separately.

4.3 Advantages

The solution has its drawbacks though there are also clear advantages.

− No extra installations are necessary. This solution uses the devices
that are already part of the installation.

− No financial investment is needed.

− Since major changes to the table such as drilling or cutting were
prohibited many solutions became non-viable. Re-positioning of the
sensors requires no irreversible changes made to the table itself.

4.4 Disadvantages

Although there was a clear economical advantage of the above-mentioned
method, there was also an array of issues and drawbacks:

− Each train possess two magnets which activate the reed switches.
That needs to be taken into account during the coding process.

− Accurate position of the train could only be established at the
location of the sensor.

− If the trains starting location was between the sensor and one of the
two intersections, requiring a change of polarity, then the program
would be incapable of changing the polarity unless the train crossed
one of the sensors beforehand.

26

− Sensors detected the train with a slight delay which could lead to an
overshoot.

− Due to the length of the sensor cables repositioning of the sensor
was not possible everywhere thus only one pair of sensors was
repositioned.

4.5 Coding process

The presentation code for the program consists of two program files, five
function blocks and a visualization. Two PLC tasks are required for the
handshake between the train control device and the PLC to function
properly.

The following requirements for the program were established by the thesis
supervisor:

− It must be possible for the operator to run the train manually using
visualization. The operator must be able to change the speed of the
train during operation.

− The train must be able to freely traverse the areas where the track
polarity must be changed to prevent short circuit.

− The train speed that is acquired from the sensors must be displayed
on the visualization screen.

− It must be possible to use visualization to switch between two trains
that can be operated by the Twin-Center device.

− It must be possible to operate all the available switches using the
visualization.

− An automated program must be written to allow for an automatic
movement of the train between the train stations.

− Visualization must contain the information on the switch position.

Before the code could be implemented the location of the sensors and the
switches had to be recorded. A schematic was created using a third-party
program Simple Computer Aided Railway Modeller (SCARM). The
schematic can be seen in Figure 17.

Figure 17. Track schematic.

Following that, part of the program responsible for manual operation was
written and necessary safety features preventing die-railing added to the

27

solution. Thirdly, paths for the trains were programmed and visualization
elements created for convenience of operation. Finally, additional features
such as track intersection indicators were added.

4.5.1 Libraries used

The following libraries were used for the purpose of this project. Libraries
with the Visu prefix are used for visualization elements used in the project.
Tc2_SerialCom library contained the necessary functions and data types
for the serial communication. The rest of the libraries contained functions
used for the rest of the program. Figure 18 contains a list of references.

Figure 18. Used libraries.

4.5.2 Program and Function Blocks

In this chapter the most crucial parts of the code and their functions are
presented. The “MAIN” program contains the function calls, most parts of
the code responsible for the visualization and the code that switches the
polarity of the track then necessary.

Figure 19. GO function call in MAIN.

28

In the above mentioned program the most important part is a function call
responsible for the “GO” function block. This function call can be seen in
figure 19. A Boolean variable “I_bTrain_Go” is set to FALSE after a single
data frame is sent through the serial communication and is set to TRUE if
the communication instruction changes. This ensures that duplicate
frames are not sent as otherwise the important communications will be
delayed.

The code shown in Figure 20 ensures that the train can move through the
areas of the train track where the change in polarity is required to prevent
short circuit.

Figure 20. Polarity change.

The “SerialCom” program is responsible for the implementation of the
serial communion between the PLC and the Twin-Center device. Figure 21
shows the standard functions used for serial communication with a
necessary setting for the Twin-Center device.

29

Figure 21. Serial communication configuration.

Function block “GO” is used for compiling and sending of instructions to
the Twin-Center. The message must be five characters long. In Figure 22
the function which handles the sending of the data string can be seen.

Figure 22. Function for sending the data string to the
Twin-Center device.

Message is sent to the decoder in the train. It uses special syntax to
establish the address of the train, type of command and the speed. For
example, in message “V3V07” character “V” establishes that this command
will change the direction of the train. The opposite direction is set by

30

replacing characters “V” with “R”. Number “3” is the address of the train
and “07” is the expected speed of the train. Due to settings selected in the
Twin-Center “00” would mean full stop and “20” would be the maximum
safe speed for the train.

Function block “Paths” is designed to control the automatic movement of
the train between the stations. The paths a separated into the basic paths
and the combined paths. Examples of these paths can be seen in Figures
23 and 24. Basic paths are the shortest possible paths between two
stations. The combined paths are the paths that consist of multiple basic
paths. Below are the examples of the basic path and the combined path.

Figure 23. Train path from station one to station two.

Figure 24. Train path from station one to station three.

In the Path 1-3 the train follows the path 1-2 first then continues using the
path 2-3 once it reaches the station two.

Function block “StationN” detects the station at which the train has
stopped. This information is used in the “Paths” function block and the
visualization.

31

Function block “Switch” operates the rail switches and the two cross-rails.
It is important that the switches are switched off after the track is operated
because they are rated for lower operational voltage. In the current set up
if the switches are left on, they will eventually burn out.

Two switches are used to operate one track intersection thus it is
necessary for the program to remember the position of the track. Figure
25 contains the operational code for one track intersection.

Figure 25. Switch operation.

32

Since the position of the switches may change at the time that the PLC is
off, code was introduced to allow the operator to reset the position of the
switches as seen in the Figure 25.

Figure 26. Switch reset function.

Function block “LocalTime” collects the local system time and uses it in
conjunction with the sensor data to establish the speed of the train. The
solution also contains a single global variable list “IO”.

4.6 Visualisation and operation

Clear and easy to read interface is just as important as functionality of a
solution. After a system is installed it will be operated by people with little
to no contact to the engineers that installed the equipment. Thus, a lacking
interface may lead to a severe productivity loss. A good interface must
possess all necessary functions for a correct operation of a device or an
installation while maintaining simplicity.

The creation of the visualization started with the schematic of the train
track. It included the location of all the track intersections and sensors
present on the track table. Full visualization can be seen in Figure 27.

33

Figure 27. Visualization.

The Visualization is split into parts according to their functions.

Train track schematic contains the locations of the train stations that
change colour to indicate if the train is currently present at the station.
After the program recognizes the initial station containing the train, station
number boxes can be pressed to initiate automatic movement of the train
towards that station. Round buttons are used to operate the switches.
Green and grey rectangles indicate the current position of the switches.

Below the systematic is the speed display according to the sensor. If the
sensors are not currently receiving speed information, this display will stay
invisible.

Display containing three buttons designated as “COUNTERCLOCKWISE”,
“STOP” and “CLOCKWISE” as well as nearby display containing a “SPEED”
slider, are used for the manual operation of the train. If “STOP” is pressed
all current path programs and movement are immediately ceased.

The “STATION SELECT” display creates an alternative method to select the
automatic station path. The availability of the stations depends on the
current location of the train. Measures are taken to prevent the operator
from choosing a new path while the previous one is in progress.

34

Next to the “STATION SELECT” screen, the “TRAIN SELECT” screen allows
the operator to choose which train will be controlled by the program.

In the “UTILITY” display the switch select button allow the operator to
reset the position of all the switches. This button must be operated before
the use of the program may commence. Between the operation sessions
the position of the intersections may change and since track switches lack
sensors indicating their position, the program must record the current
position of the sensors in the software. This is the main reason for above
mentioned feature.

The final display “TRAIN POSITION” is used to mirror the controls in case
the train is turned around by the operator. The train possess no sensors
that could indicate the directional position of the locomotive thus the
operator must distinguish the facing of the train by looking at the train and
choosing its correct position manually in the visualization.

5 CHALLANGES ENCOUNTERED

During the development process multiple issues were encountered and
are listed here.

5.1 Serial communication

Serial communication, especially the protocol used for the purpose of this
research project, generally lacks the response time of a parallel
communication method. Thus, care must be taken to ensure that only
important communications are sent to prevent a delay in communication.
This issue was resolved in the software.

5.2 Second train

Although in the current configuration control the of a second train using
the Twin-Center device is possible, that functionality is coincidental. The
second train is a device from a different generation of Fleichman solutions
and uses a different syntax. A longer message must be sent to control the
second train and neither serial communication configuration nor the
current Twin-Center device allow for it. Further developments must be
made to ensure the correct operation of the second train. However, such
development requires further investment into the track table.

5.3 Sensor delay

There is a substantial delay between the reed switch activation and the
receival of the signal by the PLC. Because of this fact, if the train speed is

35

too high, a serious overshoot of the station may occur. This issue can be
fixed in the program by limiting the maximum speed of the train during the
automatic operation.

5.4 Visualization upload to PLC

A problem was encountered during an attempt to upload the current
visualization to be used with the PLC touch display. The visualization is too
complex and will cause watchdog errors wehn an upload to PLC is initiated.
Thus, the visualization exists only in the Twin-Cat software window and not
in the embedded PLC display.

6 CONCLUSION

The objective of the project was accomplished successfully, within a
reasonable timeframe. The purpose was to familiarize the author with the
development of software solutions using the Twin-Cat software, and to
familiarize the author with a research and development process.

The finalized solution is simple and easily reversible if the need arises. A
PLC is required to run the solution and a compatible PC is necessary to
upload the program to the PLC as well as to access the visualization
interface. Software interface is engineered to allow an operator to interact
with the program after minimal orientation. The project consists of a
TwinCat solution and the changes made to the train track table. Features
requested by the commissioner were developed in full.

Object detection on a small scale poses a continuous challenge to
automation engineers of different specialties. Indeed, a single solution can
be used for a multitude of tasks, but a task may be found where any
generic solution may be lacking and a separate, specialized solution must
be developed. Operational and installation costs must be taken into
consideration when choosing the correct solution for a task.

Due to limitations in funding and physical properties of the train table
system the accepted solution was less complex then initially planned. The
solution allows a detection of the train speed at a single point of the track
that contains repositioned sensors. It serves as proof of concept for the
developed solution.

Extensive knowledge of digital communication and scale model operation
was gained over the duration of the thesis. Overall, all project milestones
were reached, and valuable experience was gained by the author. The
commissioner has accepted the project as complete.

36

REFERENCES

Blom, J. (n.d.). Serial Communication. Retrieved April 17, 2019, from
https://learn.sparkfun.com/tutorials/serial-communication/all

Bolton, W. (2009). Programmable Logic Controllers (5th ed.). Elsevier
Science & Technology.

Coulter, L. (n.d.). History of model trains. (B. Coulter, Ed.). Retrieved from
http://www.o-gauge.com/Model_Train_History.htm

Ellwood, W. B. (1941). U.S. Patent No. US2264746A. Washington, DC: U.S.
Patent and Trademark Office. Retrieved from
https://patents.google.com/patent/US2264746

EXtended Automation Engineering XAE. (n.d.). Retrieved March 30, 2019,
from
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_
overview/4275768971.html&id=5986876456246657686

Fleischmann Twin-Center 6802 Operating Instruction Manual [PDF]. (n.d.).
Fleischmann.

History of RFID. (n.d.). Retrieved December 5, 2018, from
https://www.globalventurelabels.com/history-of-rfid/

Indoor GPS, our real time Positioning System. (n.d.). Retrieved September
9, 2018, from http://www.gamesontrack.com/satellites.html

Railroad Modeling. (2015, August 14). Retrieved October 25, 2018, from
https://dccwiki.com/Railroad_Modeling

RFID History. (n.d.). Retrieved December 6, 2018, from
https://www.electronics-notes.com/articles/connectivity/rfid-radio-
frequency-identification/development-history.php

Sensors & Magnets. (n.d.). Retrieved February 5, 2019, from
https://standexelectronics.com/products/reed-sensors-magnets/

The RS-232 protocol. (n.d.). Retrieved March 5, 2019, from
https://www.omega.co.uk/temperature/z/rs232standard.html

The Windows Control and Automation Technology. (n.d.). Retrieved March
30, 2019, from https://www.beckhoff.com/twincat/

Thornton, F., & Lanthem, C. (2006). RFID Security (1st ed.). Elsevier Science
& Technology Books.

https://learn.sparkfun.com/tutorials/serial-communication/all
http://www.o-gauge.com/Model_Train_History.htm
https://patents.google.com/patent/US2264746
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_overview/4275768971.html&id=5986876456246657686
https://infosys.beckhoff.com/english.php?content=../content/1033/tc3_overview/4275768971.html&id=5986876456246657686
https://www.globalventurelabels.com/history-of-rfid/
http://www.gamesontrack.com/satellites.html
https://dccwiki.com/Railroad_Modeling
https://www.electronics-notes.com/articles/connectivity/rfid-radio-frequency-identification/development-history.php
https://www.electronics-notes.com/articles/connectivity/rfid-radio-frequency-identification/development-history.php
https://standexelectronics.com/products/reed-sensors-magnets/
https://www.omega.co.uk/temperature/z/rs232standard.html
https://www.beckhoff.com/twincat/

37

Train Detection. (2019, March 1). Retrieved March 18, 2019, from
https://dccwiki.com/Train_Detection

Why Model? (2015, January 9). Retrieved October 24, 2018, from
https://www.nmra.org/beginner/why-model

https://dccwiki.com/Train_Detection
https://www.nmra.org/beginner/why-model

38

Appendix 1

I/O list

Serial Communication I/O

Inputs

Terminal Channel Variable Device N.

KL6991-S 1 stIn_KL6001

Outputs

Terminal Channel Variable Device N.

KL6991-S 1 stOut_KL6001

I/O

Inputs

Terminal Channel Variable Device N.

KL1408(1) 1 Term4_1 43

2 Term4_2 44

3 Term4_3 39

4 Term4_4 40

5 Term4_5 42

6 Term4_6 41

7 Term4_7 15

8 Term4_8 16

KL1408(2) 1 Term5_1 11

2 Term5_2 12

3 Term5_3 22

4 Term5_4 21

5 Term5_5 37

6 Term5_6 38

7 Term5_7 20

8 Term5_8 17

KL1408(3) 1 Term6_1 18

2 Term6_2 19

3 Term6_3 14

4 Term6_4 45

5 - -

6 - -

7 Term6_7 25

8 Term6_8 30

39

KL1408(4) 1 Term7_1 26

2 Term7_2 29

3 Term7_3 4

4 Term7_4 3

5 Term7_5 31

6 Term7_6 32

7 Term7_7 2

8 Term7_8 1

KL1408(5) 1 Term8_1 27

2 Term8_2 28

3 - -

4 - -

5 Term8_5 36

6 Term8_6 35

7 Term8_7 23

8 Term8_8 24

KL1408(6) 1 Term9_1 34

2 Term9_2 33

3 Term9_3 13

4 Term9_4 7

5 Term9_5 5

6 Term9_6 6

7 Term9_7 8

8 Term9_8 10

KL1408(7) 1 - -

2 Term10_2 9

3 - -

4 - -

5 - -

6 - -

7 - -

8 - -

KL1408(8) 1 - -

2 - -

3 - -

4 - -

5 - -

6 - -

7 - -

8 - -

KL1408(9) 1 - -

2 - -

3 - -

4 - -

5 - -

6 - -

7 - -

8 - -

40

Outputs

Terminal Channel Variable Device N. Intersection/Relay pair N.

KL2114(1) 1 bSwitch1 1 1

2 bSwitch2 2 1

3 bSwitch3 3 2

4 bSwitch4 4 2

KL2114(2) 1 bSwitch5 5 3

2 bSwitch6 6 3

3 bSwitch7 7 4

4 bSwitch8 8 4

KL2114(3) 1 bSwitch9 9 5

2 bSwitch10 10 5

3 bSwitch11 11 6

4 bSwitch12 12 6

KL2114(4) 1 bSwitch13 13 7

2 bSwitch14 14 7

3 bSwitch15 15 8

4 bSwitch16 16 8

KL2114(5) 1 bSwitch17 17 9

2 bSwitch18 18 9

3 bSwitch19 19 Polarity

4 bSwitch20 20 Polarity

KL2114(6) 1 - -

2 - -

3 - -

4 - -

41

Appendix 2

MAIN program

IF NOT b_Busy THEN
IF b_VisuSwitchL THEN
 CASE b_dirChanged OF
 0:
 i_Direction := 1;
 I_bTrain_Go:=TRUE;
 1:
 i_Direction := 2;
 I_bTrain_Go:=TRUE;
 END_CASE
END_IF
IF b_VisuSwitchR THEN
 CASE b_dirChanged OF
 0:
 i_Direction := 2;
 I_bTrain_Go:=TRUE;
 1:
 i_Direction := 1;
 I_bTrain_Go:=TRUE;
 END_CASE
END_IF
END_IF

IF b_VisuSwitchS THEN
 i_Direction := 0;
 I_bTrain_Go:=TRUE;
END_IF
// Changes button color if moving
CASE b_dirChanged OF
 0:
 IF i_direction=1 THEN
 b_aVisuSwitchCOLOR[1]:=TRUE;
 ELSE
 b_aVisuSwitchCOLOR[1]:=FALSE;
 END_IF
 IF i_direction=2 THEN
 b_aVisuSwitchCOLOR[2]:=TRUE;
 ELSE
 b_aVisuSwitchCOLOR[2]:=FALSE;
 END_IF
 1:
 IF i_direction=1 THEN
 b_aVisuSwitchCOLOR[2]:=TRUE;
 ELSE

42

 b_aVisuSwitchCOLOR[2]:=FALSE;
 END_IF
 IF i_direction=2 THEN
 b_aVisuSwitchCOLOR[1]:=TRUE;
 ELSE
 b_aVisuSwitchCOLOR[1]:=FALSE;
 END_IF
END_CASE

//checks if speed or direction changes in order to activate the send
function
s_StringSpeed := INT_TO_STRING (i_VisuSpeed) ;
b_SpeedChange:= i_VisuSpeed <> i_RealSpeed; //This updates the speed
b_DirChange:= i_Direction <> i_RealDir;
IF b_SpeedChange OR b_DirChange THEN
 I_bTrain_Go:=TRUE;
END_IF
//Send function call
IF I_bTrain_Go THEN
GOTRAIN(
 s_StringSpeed:=s_StringSpeed ,
 i_StringTrainSelect:= ,
 i_sDirection:=i_Direction ,
 fbSend_Go:= ,
 I_bTrain_Go:=I_bTrain_Go,
 TxBuffer:=TxBufferKL ,
 RxBuffer:=RxBufferKL);
END_IF

StatN(i_sDirection:=i_Direction);
//Paths function caöö
Paths1(i_SwitchSelect:=i_SwitchSelect , i_Direction:=i_Direction ,
StringSpeed:=s_StringSpeed);

Switch1(i_SwitchN:= i_SwitchSelect);
//Used for station select buttons
IF b_Button1 THEN
 b_aProgSwitch[1]:=TRUE;
END_IF

IF b_Button2 THEN
 b_aProgSwitch[2]:=TRUE;
END_IF

IF b_Button3 THEN
 b_aProgSwitch[3]:=TRUE;
END_IF

43

IF b_Button4 THEN
 b_aProgSwitch[4]:=TRUE;
END_IF

IF b_Button5 THEN
 b_aProgSwitch[5]:=TRUE;
END_IF

IF b_Button6 THEN
 b_aProgSwitch[6]:=TRUE;
END_IF

IF b_Button7 THEN
 b_aProgSwitch[7]:=TRUE;
END_IF

IF b_Button8 THEN
 b_aProgSwitch[8]:=TRUE;
END_IF

IF b_Button9 THEN
 b_aProgSwitch[9]:=TRUE;
END_IF
//Changes switch color
FOR i:=1 TO 9 DO
 IF b_aSwitchState[i] THEN
 b_aSwitchColor[i]:=TRUE;
 ELSE
 b_aSwitchColor[i]:=FALSE;
END_IF
END_FOR
LocalTime(seconds=> , milliseconds=>);

IF NOT b_Busy THEN //prevents the train from running off track
 IF Term5_4 THEN
 b_aStopT[1]:=TRUE;
 END_IF

 IF Term4_1 THEN
 b_aStopT[2]:=TRUE;
 END_IF

 IF Term10_2 OR Term9_5 OR Term7_5 OR Term7_3 THEN
 b_aStopT[3]:=TRUE;
 END_IF

 IF b_aStopT[1] THEN //Station 6 stop

44

 IF Term9_2 THEN
 i_Direction:=0;
 b_aStopt[1]:=FALSE;
 END_IF
 END_IF

 IF b_aStopT[2] THEN //Station 3 stop
 IF Term6_4 THEN
 i_Direction:=0;
 b_aStopt[2]:=FALSE;
 END_IF
 END_IF

 IF b_aStopT[3] THEN //Station 8 stop
 IF Term9_3 THEN
 i_Direction:=0;
 b_aStopt[3]:=FALSE;
 END_IF
 END_IF
END_IF
//Color change for train select
CASE i_TrainVisuSelect OF
 0:
 StringTrainSelect := '3';
 b_aTrainVisuCOLOR[1]:=TRUE;
 b_aTrainVisuCOLOR[2]:=FALSE;
 1:
 StringTrainSelect := '4';
 b_aTrainVisuCOLOR[2]:=TRUE;
 b_aTrainVisuCOLOR[1]:=FALSE;
END_CASE
IF b_aTrainVisuSelect[1] THEN
 i_TrainVisuSelect:=0;
END_IF
IF b_aTrainVisuSelect[2] THEN
 i_TrainVisuSelect:=1;
END_IF
IF Term5_7 OR Term5_3 OR Term7_1 OR Term8_2 OR Term6_8 OR
Term5_6 THEN
 bSwitch19:=FALSE;
 bSwitch20:=FALSE;
 //b_pArea:=FALSE;
END_IF
IF Term7_3 OR Term9_6 OR Term9_8 OR Term9_3 OR Term7_6 OR
Term4_8 OR Term4_5 OR Term4_2 OR Term9_7 OR Term5_2 THEN
 bSwitch19:=TRUE;
 bSwitch20:=TRUE;
END_IF

45

Appendix 3

SerialCom program

//Serial communication
fbKL6001Config(
 Execute:= bKL6001ConfigExe,
 Mode:= SERIALLINEMODE_KL6_5B_STANDARD,
 Baudrate:= 9600, //9600
 NoDatabits:= 8, //8
 Parity:= 0,
 Stopbits:= 2,
 Handshake:= 1, //HANDSHAKE_RTSCTS
 ContinousMode:= FALSE,
 pComIn:= ADR(stIn_KL6001),
 pComOut:= ADR(stOut_KL6001),
 SizeComIn:= SIZEOF(stIn_KL6001),
 Done=> ,
 Busy=> ,
 Error=> bKL6001ConfigError,
 ErrorId=> eKL6001ConfigErrorID);
IF NOT fbKL6001Config.Busy AND NOT bKL6001ConfigError THEN
 bKL6001ConfigExe := FALSE;
 fbKL6001Ctrl(
 Mode:= SERIALLINEMODE_KL6_5B_STANDARD,
 pComIn:= ADR(stIN_KL6001),
 pComOut:= ADR(stOut_KL6001),
 SizeComIn:= SIZEOF(stIn_KL6001),
 Error=> bKL6001CtrlError,
 ErrorID=> eKL6001CtrlErrorID,
 TxBuffer:= TxBufferKL,
 RxBuffer:= RxBufferKL);
END_IF

46

Appendix 4

GO function block

StringDirectionR := 'R';
StringDirectionV := 'V';
StringDirectionR2 := 'R0';
StringDirectionV2 := 'V0';

i_Speed := 9;

s_StringSpeed1:= STRING_TO_INT (s_StringSpeed);

b_SpeedLow := i_VisuSpeed <= i_Speed;
//Combines the data command
CASE i_sDirection OF
0:

 StringCon := CONCAT(StringDirectionV,StringTrainSelect);
 StringCon1 := CONCAT(StringCon,StringDirectionV);
 stringSelect := CONCAT(StringCon1, '00');
1:

 IF b_SpeedLow THEN
 StringCon := CONCAT(StringDirectionR,StringTrainSelect);
 StringCon1 := CONCAT(StringCon,StringDirectionR2);
 stringSelect := CONCAT(StringCon1, s_StringSpeed);
 ELSE
 StringCon := CONCAT(StringDirectionR,StringTrainSelect);
 StringCon1 := CONCAT(StringCon,StringDirectionR);
 stringSelect := CONCAT(StringCon1, s_StringSpeed);
 END_IF
2:

 IF b_SpeedLow THEN
 StringCon := CONCAT(StringDirectionV,StringTrainSelect);
 StringCon1 := CONCAT(StringCon,StringDirectionV2);
 stringSelect := CONCAT(StringCon1, s_StringSpeed);
 ELSE
 StringCon := CONCAT(StringDirectionV,StringTrainSelect);
 StringCon1 := CONCAT(StringCon,StringDirectionV);
 stringSelect := CONCAT(StringCon1, s_StringSpeed);
 END_IF
END_CASE

//Here is the function block that sends a string to the train.
 stringSent := StringSelect;

47

 fbSend_Go(SendString:= stringSent,
 TXbuffer:= TxBuffer,
 Busy=> bSendBusy_Go,
 Error=> eSendErrorID);
i_RealDir:= i_sDirection;
i_RealSpeed:=i_VisuSpeed;
I_bTrain_Go:=FALSE;
//This resets the send string command to make sure only one string is sent

//Echo communication
fbReceive(
 Prefix:= ,
 Suffix:= ,
 Timeout:= ,
 Reset:= ,
 StringReceived=> bStringReceived,
 Busy=> bReceiveBusy,
 Error=> eReceiveErrorID,
 RxTimeout=> bReceiveTimeout,
 ReceivedString:= sReceivedString,
 RXbuffer:= RxBuffer);
IF bStringReceived THEN
 sLastReceivedString := sReceivedString;
END_IF

48

Appendix 5

Switch function block example

 //Switch reset button

IF BtR THEN
 FOR i:=1 TO 9 DO
 b_aSwitchState[i]:=TRUE;
 IF b_aSwitchState[i] THEN
 b_aProgSwitch[i]:=TRUE;
 END_IF
 END_FOR
 b_SwitchR:=FALSE;
END_IF
//Switches
//1:
IF b_aProgSwitch[1] THEN
 IF b_aSwitchState[1] THEN // Switch 1 & 2
 CASE i_StepA[0] OF

 0:

 i_StepA[0]:=i_StepA[0]+1;

 1:
 i_StepA[0]:=i_StepA[0]+1;
 2:
 TP1(IN:= TRUE, PT:=T#500MS , Q=>bSwitch1 ,
ET=>);
 TON1(IN:= TRUE , PT:=T#500MS , Q=>
b_CasA[0] , ET=>);
 IF b_CasA[0] THEN
 TP1(IN:= FALSE);
 TON1(IN:=FALSE);
 b_CasA[0]:=FALSE;
 i_StepA[0]:=i_StepA[0]+1;
 END_IF
 3:
 b_aSwitchState[1]:=FALSE;
 i_StepA[0]:=0;
 b_aProgSwitch[1]:=FALSE;

 END_CASE

 ELSE
 CASE i_StepA[0] OF

 0:

49

 i_StepA[0]:=i_StepA[0]+1;

 1:
 i_StepA[0]:=i_StepA[0]+1;
 2:
 TP1(IN:= TRUE, PT:=T#500MS , Q=> bSwitch2 ,
ET=>);
 TON1(IN:= TRUE , PT:=T#500MS , Q=>
b_CasA[0] , ET=>);
 IF b_CasA[0] THEN
 TP1(IN:= FALSE);
 TON1(IN:=FALSE);
 b_CasA[0]:=FALSE;
 i_StepA[0]:=i_StepA[0]+1;
 END_IF
 3:
 b_aSwitchState[1]:=TRUE;
 i_StepA[0]:=0;
 b_aProgSwitch[1]:=FALSE;

 END_CASE

 END_IF
END_IF

50

Appendix 6

Paths function block example

 //Button for direction change

IF b_adirChangedBUTTON[1] THEN
 b_dirChanged:=0;
END_IF
IF b_adirChangedBUTTON[2] THEN
 b_dirChanged:=1;
END_IF
CASE b_dirChanged OF
0:
i_Direction2:=2;
i_Direction1:=1;
b_adirChangedCOLOR[1]:=TRUE;
b_adirChangedCOLOR[2]:=FALSE;
1:
i_Direction2:=1;
i_Direction1:=2;
b_adirChangedCOLOR[2]:=TRUE;
b_adirChangedCOLOR[1]:=FALSE;
END_CASE

//Detects if the train is busy
FOR y:=1 TO 8 DO
 FOR i:=1 TO 8 DO
 IF b_aPath[y, i] THEN
 b_Busy:=TRUE;
 END_IF
 END_FOR
END_FOR
IF b_VisuSwitchS THEN
 FOR x:=1 TO 8 DO
 FOR z:=1 TO 8 DO
 b_aPath[x, z]:=FALSE;
 END_FOR
 END_FOR
 FOR u:=0 TO 40 DO
 i_aCase[u]:=0;
 END_FOR
END_IF
IF b_Busy THEN
 i_VisuSpeed:=5;
END_IF
IF i_Direction=0 THEN
 b_Busy:=FALSE;

51

END_IF

//Visu limits
CASE i_CaseStatN OF

 0:

 1:
 IF NOT b_Busy THEN
 IF b_aStatSwitch[0] OR b_aTrackBSwitch[2] THEN
 b_aPath[1, 2]:=TRUE;

 END_IF
 IF b_aStatSwitch[1] OR b_aTrackBSwitch[3] THEN
 b_aPath[1, 3]:=TRUE;

 END_IF
 IF b_aStatSwitch[2] OR b_aTrackBSwitch[4] THEN
 b_aPath[1, 4]:=TRUE;

 END_IF
 IF b_aStatSwitch[3] OR b_aTrackBSwitch[5] THEN
 b_aPath[1, 5]:=TRUE;

 END_IF
 IF b_aStatSwitch[4] OR b_aTrackBSwitch[6] THEN
 b_aPath[1, 6]:=TRUE;

 END_IF
 IF b_aStatSwitch[5] OR b_aTrackBSwitch[7] THEN
 b_aPath[1, 7]:=TRUE;

 END_IF
 IF b_aStatSwitch[6] OR b_aTrackBSwitch[8] THEN
 b_aPath[1, 8]:=TRUE;

 END_IF
 END_IF
 2:
 IF NOT b_Busy THEN
 IF b_aStatSwitch[0] OR b_aTrackBSwitch[1] THEN
 b_aPath[2, 1]:=TRUE;

 END_IF
 IF b_aStatSwitch[1] OR b_aTrackBSwitch[3] THEN
 b_aPath[2, 3]:=TRUE;

 END_IF

52

 IF b_aStatSwitch[2] OR b_aTrackBSwitch[4] THEN
 b_aPath[2, 4]:=TRUE;

 END_IF
 IF b_aStatSwitch[3] OR b_aTrackBSwitch[5] THEN
 b_aPath[2, 5]:=TRUE;

 END_IF
 IF b_aStatSwitch[4] OR b_aTrackBSwitch[6] THEN
 b_aPath[2, 6]:=TRUE;

 END_IF
 IF b_aStatSwitch[5] OR b_aTrackBSwitch[7] THEN
 b_aPath[2, 7]:=TRUE;

 END_IF
 IF b_aStatSwitch[6] OR b_aTrackBSwitch[8] THEN
 b_aPath[2, 8]:=TRUE;

 END_IF
 END_IF
 3:
 IF NOT b_Busy THEN
 IF b_aStatSwitch[0] OR b_aTrackBSwitch[1] THEN
 b_aPath[3, 1]:=TRUE;

 END_IF
 IF b_aStatSwitch[1] OR b_aTrackBSwitch[2] THEN
 b_aPath[3, 2]:=TRUE;

 END_IF
 IF b_aStatSwitch[2] OR b_aTrackBSwitch[4] THEN
 b_aPath[3, 4]:=TRUE;

 END_IF
 IF b_aStatSwitch[3] OR b_aTrackBSwitch[5] THEN
 b_aPath[3, 5]:=TRUE;

 END_IF
 IF b_aStatSwitch[4] OR b_aTrackBSwitch[6] THEN
 b_aPath[3, 6]:=TRUE;

 END_IF
 IF b_aStatSwitch[5] OR b_aTrackBSwitch[7] THEN
 b_aPath[3, 7]:=TRUE;

 END_IF
 IF b_aStatSwitch[6] OR b_aTrackBSwitch[8] THEN

53

 b_aPath[3, 8]:=TRUE;

 END_IF
 END_IF
 4:
 IF NOT b_Busy THEN
 IF b_aStatSwitch[0] OR b_aTrackBSwitch[1] THEN
 b_aPath[4, 1]:=TRUE;

 END_IF
 IF b_aStatSwitch[1] OR b_aTrackBSwitch[2] THEN
 b_aPath[4, 2]:=TRUE;

 END_IF
 IF b_aStatSwitch[2] OR b_aTrackBSwitch[3] THEN
 b_aPath[4, 3]:=TRUE;

 END_IF
 IF b_aStatSwitch[3] OR b_aTrackBSwitch[5] THEN
 b_aPath[4, 5]:=TRUE;

 END_IF
 IF b_aStatSwitch[4] OR b_aTrackBSwitch[6] THEN
 b_aPath[4, 6]:=TRUE;

 END_IF
 IF b_aStatSwitch[5] OR b_aTrackBSwitch[7] THEN
 b_aPath[4, 7]:=TRUE;

 END_IF
 IF b_aStatSwitch[6] OR b_aTrackBSwitch[8] THEN
 b_aPath[4, 8]:=TRUE;

 END_IF
 END_IF
 5:
 IF NOT b_Busy THEN
 IF b_aStatSwitch[0] OR b_aTrackBSwitch[1] THEN
 b_aPath[5, 1]:=TRUE;

 END_IF
 IF b_aStatSwitch[1] OR b_aTrackBSwitch[2] THEN
 b_aPath[5, 2]:=TRUE;

 END_IF
 IF b_aStatSwitch[2] OR b_aTrackBSwitch[3] THEN
 b_aPath[5, 3]:=TRUE;

54

 END_IF
 IF b_aStatSwitch[3] OR b_aTrackBSwitch[4] THEN
 b_aPath[5, 4]:=TRUE;

 END_IF
 IF b_aStatSwitch[4] OR b_aTrackBSwitch[6] THEN
 b_aPath[5, 6]:=TRUE;

 END_IF
 IF b_aStatSwitch[5] OR b_aTrackBSwitch[7] THEN
 b_aPath[5, 7]:=TRUE;

 END_IF
 IF b_aStatSwitch[6] OR b_aTrackBSwitch[8] THEN
 b_aPath[5, 8]:=TRUE;

 END_IF
 END_IF
 6:
 IF NOT b_Busy THEN
 IF b_aStatSwitch[0] OR b_aTrackBSwitch[1] THEN
 b_aPath[6, 1]:=TRUE;

 END_IF
 IF b_aStatSwitch[1] OR b_aTrackBSwitch[2] THEN
 b_aPath[6, 2]:=TRUE;

 END_IF
 IF b_aStatSwitch[2] OR b_aTrackBSwitch[3] THEN
 b_aPath[6, 3]:=TRUE;

 END_IF
 IF b_aStatSwitch[3] OR b_aTrackBSwitch[4] THEN
 b_aPath[6, 4]:=TRUE;

 END_IF
 IF b_aStatSwitch[4] OR b_aTrackBSwitch[5] THEN
 b_aPath[6, 5]:=TRUE;

 END_IF
 IF b_aStatSwitch[5] OR b_aTrackBSwitch[7] THEN
 b_aPath[6, 7]:=TRUE;

 END_IF
 IF b_aStatSwitch[6] OR b_aTrackBSwitch[8] THEN
 b_aPath[6, 8]:=TRUE;

 END_IF

55

 END_IF
 7:
 IF NOT b_Busy THEN
 IF b_aStatSwitch[0] OR b_aTrackBSwitch[1] THEN
 b_aPath[7, 1]:=TRUE;

 END_IF
 IF b_aStatSwitch[1] OR b_aTrackBSwitch[2] THEN
 b_aPath[7, 2]:=TRUE;

 END_IF
 IF b_aStatSwitch[2] OR b_aTrackBSwitch[3] THEN
 b_aPath[7, 3]:=TRUE;

 END_IF
 IF b_aStatSwitch[3] OR b_aTrackBSwitch[4] THEN
 b_aPath[7, 4]:=TRUE;

 END_IF
 IF b_aStatSwitch[4] OR b_aTrackBSwitch[5] THEN
 b_aPath[7, 5]:=TRUE;

 END_IF
 IF b_aStatSwitch[5] OR b_aTrackBSwitch[6] THEN
 b_aPath[7, 6]:=TRUE;

 END_IF
 IF b_aStatSwitch[6] OR b_aTrackBSwitch[8] THEN
 b_aPath[7, 8]:=TRUE;

 END_IF
 END_IF
 8:
 IF NOT b_Busy THEN
 IF b_aStatSwitch[0] OR b_aTrackBSwitch[1] THEN
 b_aPath[8, 1]:=TRUE;

 END_IF
 IF b_aStatSwitch[1] OR b_aTrackBSwitch[2] THEN
 b_aPath[8, 2]:=TRUE;

 END_IF
 IF b_aStatSwitch[2] OR b_aTrackBSwitch[3] THEN
 b_aPath[8, 3]:=TRUE;

 END_IF
 IF b_aStatSwitch[3] OR b_aTrackBSwitch[4] THEN
 b_aPath[8, 4]:=TRUE;

56

 END_IF
 IF b_aStatSwitch[4] OR b_aTrackBSwitch[5] THEN
 b_aPath[8, 5]:=TRUE;

 END_IF
 IF b_aStatSwitch[5] OR b_aTrackBSwitch[6] THEN
 b_aPath[8, 6]:=TRUE;

 END_IF
 IF b_aStatSwitch[6] OR b_aTrackBSwitch[7] THEN
 b_aPath[8, 7]:=TRUE;

 END_IF
 END_IF
END_CASE

//Train Paths
IF b_aPath[1, 2] THEN
 i_Direction:= i_Direction2;
 IF b_aSwitchState[6] THEN
 b_aProgSwitch[6]:=TRUE;
 END_IF
 IF Term9_4 OR Term9_7 THEN
 i_Direction:= 0;
 b_aPath[1, 2]:= FALSE;
 END_IF
END_IF

IF b_aPath[1, 3] THEN
 CASE i_aCase[0] OF
 0:
 b_aPath[1, 2]:=TRUE;
 i_aCase[0]:= i_aCase[0]+1;
 1:
 IF NOT b_aPath[1, 2] THEN
 b_aPath[2, 3]:=TRUE;
 i_aCase[0]:= i_aCase[0]+1;
 END_IF
 2:
 IF NOT b_aPath[2, 3] THEN
 b_aPath[1, 3]:=FALSE;
 i_aCase[0]:=0;
 END_IF
 END_CASE
END_IF
IF b_aPath[1, 4] THEN
 CASE i_aCase[1] OF

57

 0:
 b_aPath[1, 2]:=TRUE;
 i_aCase[1]:= i_aCase[1]+1;
 1:
 IF NOT b_aPath[1, 2] THEN
 b_aPath[2, 4]:=TRUE;
 i_aCase[1]:= i_aCase[1]+1;
 END_IF
 2:
 IF NOT b_aPath[2, 4] THEN
 b_aPath[1, 4]:=FALSE;
 i_aCase[1]:=0;
 END_IF
 END_CASE
END_IF

IF b_aPath[1, 5] THEN
 CASE i_aCase[2] OF
 0:
 b_aPath[1, 2]:=TRUE;
 i_aCase[2]:= i_aCase[2]+1;
 1:
 IF NOT b_aPath[1, 2] THEN
 b_aPath[2, 5]:=TRUE;
 i_aCase[2]:= i_aCase[2]+1;
 END_IF
 2:
 IF NOT b_aPath[2, 5] THEN
 b_aPath[1, 5]:=FALSE;
 i_aCase[2]:=0;
 END_IF
 END_CASE
END_IF

IF b_aPath[1, 6] THEN
 CASE i_aCase[3] OF
 0:
 b_aPath[1, 5]:=TRUE;
 i_aCase[3]:= i_aCase[3]+1;
 1:
 IF NOT b_aPath[1, 5] THEN
 b_aPath[5, 6]:=TRUE;
 i_aCase[3]:= i_aCase[3]+1;
 END_IF
 2:
 IF NOT b_aPath[5, 6] THEN
 b_aPath[1, 6]:=FALSE;
 i_aCase[3]:=0;

58

 END_IF
 END_CASE
END_IF

IF b_aPath[1, 7] THEN
 CASE i_aCase[27] OF
 0:
 b_aPath[1, 2]:=TRUE;
 i_aCase[27]:= i_aCase[27]+1;
 1:
 IF NOT b_aPath[1, 2] THEN
 b_aPath[2, 7]:=TRUE;
 i_aCase[27]:= i_aCase[27]+1;
 END_IF
 2:
 IF NOT b_aPath[2, 7] THEN
 b_aPath[1, 7]:=FALSE;
 i_aCase[27]:=0;
 END_IF
 END_CASE
END_IF

IF b_aPath[1, 8] THEN
 i_Direction:= i_Direction2;
 IF NOT b_aSwitchState[8] THEN
 b_aProgSwitch[8]:=TRUE;
 END_IF
 IF NOT b_aSwitchState[6] THEN
 b_aProgSwitch[6]:=TRUE;
 END_IF
 IF Term9_3 THEN
 i_Direction:= 0;
 b_aPath[1,8]:=FALSE;
 END_IF
END_IF

59

Appendix 7

StationN function block

//Detects the current station
IF Term7_7 OR Term7_8 THEN
 i_CaseStatN:= 1;
 b_aStationN[1]:=TRUE;
END_IF

IF Term9_4 OR Term9_7 THEN
 i_CaseStatN:= 2;
 b_aStationN[2]:=TRUE;
END_IF

IF Term6_4 THEN
 i_CaseStatN:= 3;
 b_aStationN[3]:=TRUE;
END_IF

IF Term4_4 THEN
 i_CaseStatN:= 4;
 b_aStationN[4]:=TRUE;
END_IF

IF Term5_8 OR Term6_1 THEN
 i_CaseStatN:= 5;
 b_aStationN[5]:=TRUE;
END_IF

IF Term8_5 OR Term8_6 THEN
 i_CaseStatN:= 6;
 b_aStationN[6]:=TRUE;
END_IF

IF Term7_5 OR Term7_6 THEN
 i_CaseStatN:= 7;
 b_aStationN[7]:=TRUE;
END_IF

IF Term9_3 THEN
 i_CaseStatN:= 8;
 b_aStationN[8]:=TRUE;
END_IF
//Resets the station visualization
IF b_Busy OR i_sDirection<>0 THEN
 FOR y:=1 TO 8 DO
 b_aStationN[y]:=FALSE;

60

 END_FOR
END_IF

//Station visualization text
CASE i_CaseStatN OF

 0:

 1:
 IF b_Busy THEN
 s_aStatB[0]:= ' ' ;
 s_aStatB[1]:= ' ' ;
 s_aStatB[2]:= ' ' ;
 s_aStatB[3]:= ' ' ;
 s_aStatB[4]:= ' ' ;
 s_aStatB[5]:= ' ' ;
 s_aStatB[6]:= ' ' ;
 ELSE

 s_aStatB[0]:= '2' ;
 s_aStatB[1]:= '3' ;
 s_aStatB[2]:= '4' ;
 s_aStatB[3]:= '5' ;
 s_aStatB[4]:= '6' ;
 s_aStatB[5]:= '7' ;
 s_aStatB[6]:= '8' ;
 END_IF
 2:
 IF b_Busy THEN
 s_aStatB[0]:= ' ' ;
 s_aStatB[1]:= ' ' ;
 s_aStatB[2]:= ' ' ;
 s_aStatB[3]:= ' ' ;
 s_aStatB[4]:= ' ' ;
 s_aStatB[5]:= ' ' ;
 s_aStatB[6]:= ' ' ;
 ELSE

 s_aStatB[0]:= '1' ;
 s_aStatB[1]:= '3' ;
 s_aStatB[2]:= '4' ;
 s_aStatB[3]:= '5' ;
 s_aStatB[4]:= '6' ;
 s_aStatB[5]:= '7' ;
 s_aStatB[6]:= '8' ;
 END_IF
 3:

61

 IF b_Busy THEN
 s_aStatB[0]:= ' ' ;
 s_aStatB[1]:= ' ' ;
 s_aStatB[2]:= ' ' ;
 s_aStatB[3]:= ' ' ;
 s_aStatB[4]:= ' ' ;
 s_aStatB[5]:= ' ' ;
 s_aStatB[6]:= ' ' ;
 s_aStatB[6]:= ' ' ;
 ELSE

 s_aStatB[0]:= '1' ;
 s_aStatB[1]:= '2' ;
 s_aStatB[2]:= '4' ;
 s_aStatB[3]:= '5' ;
 s_aStatB[4]:= '6' ;
 s_aStatB[5]:= '7' ;
 s_aStatB[6]:= '8' ;
 END_IF
 4:
 IF b_Busy THEN
 s_aStatB[0]:= ' ' ;
 s_aStatB[1]:= ' ' ;
 s_aStatB[2]:= ' ' ;
 s_aStatB[3]:= ' ' ;
 s_aStatB[4]:= ' ' ;
 s_aStatB[5]:= ' ' ;
 s_aStatB[6]:= ' ' ;
 ELSE

 s_aStatB[0]:= '1' ;
 s_aStatB[1]:= '2' ;
 s_aStatB[2]:= '3' ;
 s_aStatB[3]:= '5' ;
 s_aStatB[4]:= '6' ;
 s_aStatB[5]:= '7' ;
 s_aStatB[6]:= '8' ;
 END_IF
 5:
 IF b_Busy THEN
 s_aStatB[0]:= ' ' ;
 s_aStatB[1]:= ' ' ;
 s_aStatB[2]:= ' ' ;
 s_aStatB[3]:= ' ' ;
 s_aStatB[4]:= ' ' ;
 s_aStatB[5]:= ' ' ;
 s_aStatB[6]:= ' ' ;
 ELSE

62

 s_aStatB[0]:= '1' ;
 s_aStatB[1]:= '2' ;
 s_aStatB[2]:= '3' ;
 s_aStatB[3]:= '4' ;
 s_aStatB[4]:= '6' ;
 s_aStatB[5]:= '7' ;
 s_aStatB[6]:= '8' ;
 END_IF
 6:
 IF b_Busy THEN
 s_aStatB[0]:= ' ' ;
 s_aStatB[1]:= ' ' ;
 s_aStatB[2]:= ' ' ;
 s_aStatB[3]:= ' ' ;
 s_aStatB[4]:= ' ' ;
 s_aStatB[5]:= ' ' ;
 s_aStatB[6]:= ' ' ;
 ELSE

 s_aStatB[0]:= '1' ;
 s_aStatB[1]:= '2' ;
 s_aStatB[2]:= '3' ;
 s_aStatB[3]:= '4' ;
 s_aStatB[4]:= '5' ;
 s_aStatB[5]:= '7' ;
 s_aStatB[6]:= '8' ;
 END_IF
 7:
 IF b_Busy THEN
 s_aStatB[0]:= ' ' ;
 s_aStatB[1]:= ' ' ;
 s_aStatB[2]:= ' ' ;
 s_aStatB[3]:= ' ' ;
 s_aStatB[4]:= ' ' ;
 s_aStatB[5]:= ' ' ;
 s_aStatB[6]:= ' ' ;
 ELSE

 s_aStatB[0]:= '1' ;
 s_aStatB[1]:= '2' ;
 s_aStatB[2]:= '3' ;
 s_aStatB[3]:= '4' ;
 s_aStatB[4]:= '5' ;
 s_aStatB[5]:= '6' ;
 s_aStatB[6]:= '8' ;
 END_IF
 8:

63

 IF b_Busy THEN
 s_aStatB[0]:= ' ' ;
 s_aStatB[1]:= ' ' ;
 s_aStatB[2]:= ' ' ;
 s_aStatB[3]:= ' ' ;
 s_aStatB[4]:= ' ' ;
 s_aStatB[5]:= ' ' ;
 s_aStatB[6]:= ' ' ;
 ELSE

 s_aStatB[0]:= '1' ;
 s_aStatB[1]:= '2' ;
 s_aStatB[2]:= '3' ;
 s_aStatB[3]:= '4' ;
 s_aStatB[4]:= '5' ;
 s_aStatB[5]:= '6' ;
 s_aStatB[6]:= '7' ;
 END_IF

END_CASE

64

Appendix 8

LocalTime function block

 //Gets local system time

LocalTime(
 sNetID:= ,
 bEnable:= TRUE,
 dwCycle:= 1,
 dwOpt:= ,
 tTimeout:= ,
 bValid=> ,
 systemTime=> ,
 tzID=>);
LocalFileTime:=Tc2_Utilities.SYSTEMTIME_TO_FILETIME(LocalTime.syste
mTime);
seconds := (SHL(DWORD_TO_ULINT(LocalFileTime.dwHighDateTime), 32)
+ DWORD_TO_ULINT(LocalFileTime.dwLowDateTime)) / 10000000 -
11644473600;
milliseconds := (SHL(DWORD_TO_ULINT(LocalFileTime.dwHighDateTime),
32) + DWORD_TO_ULINT(LocalFileTime.dwLowDateTime)) / 10000 -
11644473600000;
//term88 -> 87
curTime:= ULINT_TO_LREAL(milliseconds);
T1(CLK:=Term8_7 , Q=> T1T);
T2(CLK:=Term8_8 , Q=> T2T);
//Records system time then passing sensor
IF T2T THEN
 Time1:=curTime;
END_IF

IF T1T THEN
 Time2:=curTime;
END_IF

Time3:=Time1-Time2;
b_nZero:= Time3 <> 0;
//Calculates speed
IF b_nZero THEN
Time4:=ABS(Time3);
SpeedP:= 5/Time4;
Speed:= SpeedP*36;
b_VisuInvisu:=FALSE;
END_IF
//Turns the sensor visu invisible if necissary
IF Term5_3 OR Term5_4 OR Term7_1 OR Term6_7 OR NOT b_nZero THEN
 b_VisuInvisu:=TRUE;
END_IF

65

Appendix 9

Global Variables

//Train_GO : GO;

 //b_SwitchTheRails : BOOL;
 b_Busy: BOOL;
 b_VisuSwitchL : BOOL;
 b_VisuSwitchS : BOOL;
 b_VisuSwitchR : BOOL;
 b_aVisuSwitchCOLOR : ARRAY[1..2] OF BOOL;

 i_VisuSpeed : INT;
 i_RealSpeed : INT;
 i_RealDir : INT;
 Speed: REAL;
 i_TrainVisuSelect:INT;
 b_aTrainVisuSelect: ARRAY[1..2] OF BOOL;
 b_aTrainVisuCOLOR: ARRAY[1..2] OF BOOL;
 b_VisuInvisu: BOOL;

 StringTrainSelect: STRING;

 b_dirChanged: INT;
 b_adirChangedBUTTON: ARRAY[1..2] OF BOOL;
 b_adirChangedCOLOR: ARRAY[1..2] OF BOOL;

 RxBufferKL : ComBuffer;
 TxBufferKL : ComBuffer;

 i_CaseStatN : INT;
 i_CaseStatN2 : INT;
 b_SwitchReset : BOOL;
 b_aStatSwitch : ARRAY [0..6] OF BOOL;
 b_aTrackBSwitch : ARRAY [1..8] OF BOOL;
 s_aStatB : ARRAY [0..6] OF STRING(1);
 b_aStationN : ARRAY [1..8] OF BOOL;
 b_aProgSwitch : ARRAY [1..9] OF BOOL;
 b_aSwitchState : ARRAY [1..9] OF BOOL;
 b_aSwitchColor : ARRAY [1..9] OF BOOL;

