

CHATBOT

A digital assistant with built-in AI.

LAHTI UNIVERSITY OF APPLIED
SCIENCES
Information Technology
Spring 2019
Felipe Gadea Llopis

 Abstract

Author(s)

Gadea Llopis, Felipe
Type of publication

Bachelor’s thesis
Published

Spring 2019
Number of pages

49

Title of publication

CHATBOT
A digital assistant with built-in AI.
Name of Degree

Bachelor of Information Technologies.
Abstract

The objective of the thesis was to build a digital assistant with built-in AI. A study was
carried out about which system can be used and how. Investigate about AI was car-
ried out, as well as the possibilities to integrate it to the digital assistant.
The reason for developing a digital assistant was to provide an open source digital as-
sistant with a custom experience to the users. This digital assistant is focused on the
cities of Alcoi (Spain) and Lahti (Finland), and, by that, the user obtains a better use
experience compared with the use experience provided by the traditional digital assis-
tants in these concrete paces.
The key findings of this research were, that it is possible to build the desired digital
assistant but, to obtain an advantage over the traditional digital assistants, a lot of re-
sources and time are required. The conclusion was, that bringing to users a better
treatment in specific places, Alcoi and Lahti in this case, comparing with the big busi-
nesses (Google, Apple, Microsoft and Alexa) is completely possible.

Keywords

AI, Artificial Intelligence, Chatbot, personal assistant, digital assistant, Unity, Wit.ai

CONTENTS

LIST OF ABBREVIATIONS AND TERMINOLOGY ... 1

1 INTRODUCTION .. 3

2 CURRENT TECHNOLOGIES .. 4

3 RESEARCH ... 6

3.1 Introduction to NLP (Natural Language Processing) technology 6
3.2 The role of deep learning in NLP ... 7
3.3 Cloud services for NLP .. 10

3.3.1 IBM Watson ... 11
3.3.2 Dialogflow .. 11
3.3.3 Wit.ai .. 12
3.3.4 Comparison of alternatives .. 12

3.4 Strategies and methods in training a chatbot in Wit.ai 13
3.5 Analysis of possible queries in natural language in providing services of a city 18

4 CASE: CHATBOT ASSISTANT ... 20

4.1 Implementation of the chatbot for the cities (Alcoi/Lahti) 20
4.1.1 Strategy and Cloud service selection ... 21

4.2 How Wit.ai works ... 21
4.2.1 Wit.ai rest API .. 25

4.3 Integration with Unity ... 31
4.3.1 Analysis .. 31
4.3.2 Design .. 32
4.3.3 Code .. 33
4.3.4 Test .. 42

4.4 Auto-learning implementation .. 45
4.5 Final version ... 46
4.6 Future improvements ... 47

5 CONCLUSIONS ... 48

REFERENCES .. 49

APPENDICES ... 1

1

LIST OF ABBREVIATIONS AND TERMINOLOGY

Digital assistant: term for a small, mobile, handheld device that provides computing and

information storage and retrieval capabilities for personal or business use, often for keep-

ing schedules, calendars and address book information handy.

Chatbot: synonymous of “digital assistant”. In all the place where is written “chatbot” it

means “digital assistant”. In this document, “digital assistant” and “chatbot” mean the

same.

Script: program or sequence of instructions that is interpreted or carried out by another

program rather than by the computer processor (as a compiled program is).

Method: piece of code associated with a class or object to perform a task (Part from the

script).

Cloud Platform: A Cloud service is any service made available to users on demand via the

Internet from a cloud computing provider's servers as opposed to being provided from a

company's own on-premises servers. Cloud services are designed to provide easy, scala-

ble access to applications, resources and services, and are fully managed by a Cloud ser-

vices provider.

Unity: A cross-platform game engine.

Partial class: A partial class is a special feature of C#. It provides a special ability to imple-

ment the functionality of a single class into multiple files and all these files are combined

into a single class file when the application is compiled.

Coroutine: It is a computer program component that generalize subroutines for non-

preemptive multitasking, by allowing execution to be suspended and resumed.

C#: C# is an object-oriented programming language from Microsoft that aims to combine

the computing power of C++ with the programming ease of Visual Basic.

JSON: JavaScript Object Notation. It is an open-standard file format that uses human-

readable text to transmit data objects consisting of attribute–value pairs and array data

types (or any other serializable value).

Deserializing: Process of decoding a Json file. It refers to the process of transforming a

representation of an object that was used for storage or transmission (Json file) to a repre-

sentation of the object that is executable.

2

NLP System: It is a system that implements a Natural Language processing. A system is

a set of things working together as parts of a mechanism or an interconnecting network.

And a NLP is a subfield of computer science, information engineering, and artificial intelli-

gence concerned with the interactions between computers and human (natural) lan-

guages, in particular how to program computers to process and analyze large amounts of

natural language data.

Entity: Known as Named-entity recognition (NER), it is a subtask of information extraction

that seeks to locate and classify named entity mentions in unstructured text into pre-de-

fined categories such as the person names, organizations, locations, medical codes, ...

3

1 INTRODUCTION

Artificial intelligence has received much attention in recent years since it offers a huge

range of possibilities. The artificial Intelligence can be used in almost everything. For ex-

ample, face recognizing, pattern recognizing, deep fakes, scientific problems, medical sta-

tistics, etc.

One of artificial intelligence remarkable uses is in Natural Language Processing field. It in-

cludes, among others, voice recognition and language structure analysis.

In that field, the digital assistant applications appear. They help in commons daily tasks.

These digital assistants usually work with voice commands and they can help in a variety

of possibilities. For example, finding some place in the map, searching online, adding

tasks to a schedule, calling someone, etc. Basically, they try to simplify daily tasks with

basic voice commands saving time for the user.

Along this document, a digital assistant is developed. In the process, NLP system’s tech-

nologies and the benefit-cost influence on the development are studied.

The main objective of this project is to program an application which offers a better service

than other applications like Google Assistant or Siri. To achieve this, the point is to identify

the deficiencies of the existing digital assistants and to implement them on this applica-

tion.

The main limitation of the project is the accessibility of the relevant technologies. The sys-

tems required to power Artificial Intelligence applications are usually very expensive. Be-

cause of that, their use is generally sold as a service, and free versions have a server re-

quest limit that restricts their potential as mainstream applications.

Seeing how focusing the attention in concrete places can improve significantly the perfor-

mance of this kind of applications instead of attending to the wider range of places is one

of the cases of study on this document.

4

2 CURRENT TECHNOLOGIES

Nowadays, the technological market around Digital Assistants is fully led by four big busi-

ness, Google, Apple, Microsoft and Amazon. Some other businesses are developing as-

sistants as well but, their assistants are not as complex as the big companies. These

other businesses are developing digital assistants which cannot play against the big busi-

nesses’ because their performance is lower. The big ones are Google Assistant (Google),

Siri (Apple), Cortana (Microsoft) and Alexa (Amazon).

These assistants are very good in their job, and they could be considered general-pur-

pose assistants, but they have differences. Each one of them do something better than

the others.

The most popular Digital Asistants are designed for general-purpose use. General-pur-

pose use generates problems in the development because a huge range of possibilities

must be taken in account. Because they must response correctly in a huge range of possi-

bilities, some deficiencies are generated in short term view. This chatbot is focused on

solving these deficiencies.

For example, you can have more detailed information about one place where the amount

of population is not enough for generating interest in the big businesses, like a small city

or a town. For them, the benefits of focussing on concrete places are not enough relative

to their benefit-cost expectative.

Focussing on what each of them does better than their competitors, Google Assistant

could be considered the most balance Digital Assistant between its competitors. It is really

good in almost all the general categories used to evaluate them. (Gene Munster, 2018)

In Automatic Online Evaluation of Intelligent Assistants (2015), how to evaluate the quality

of digital assistants and how the Digital assistants work in different scenarios are ex-

plained. The metrics Execute, Confirm, Question, Option, WebSearch, Error, NoAction,

Comand, Yes/No, Answer and Select, are referenced in the previously cited document

and, they can be use as “How many orders finishes with” for evaluating the Digital assis-

tants.

With these metrics, which Digital Assistant is better than the others can be identified. The

metrics are used in the testing part of the thesis to evaluate the chatbot. Finally, this

graphic (Figure 1) shows almost currently which assistant is better:

5

Figure 1 Current digital assistants comparison

6

3 RESEARCH

This chapter explains the research process made for developing a Digital Assistant. It

contains an introduction followed by an explanation of the most common systems, basic

concepts and the options that can be used for developing a Digital Assistant or Chatbot.

3.1 Introduction to NLP (Natural Language Processing) technology

This is a compact and understandable definition about what a Natural Language Pro-

cessing is:

Natural Language Processing (NLP) is a sub-field of Artificial Intelligence that is fo-

cused on enabling computers to understand and process human languages, to get

computers closer to a human-level understanding of language. (An easy introduction

to Natural Language Processing, 2018.)

The origin and history of the Natural Language Processing concept started on 1950 when

Alan Turing published an article titled “Intelligence” where he wrote the now known as Tu-

ring test. The Turing test is a test of a machine's ability to exhibit intelligent behavior

equivalent to, or indistinguishable from, that of a human.

After that, in the 1960s SHRDLU and ELIZA were developed. SHRDLU was a natural lan-

guage system that worked in a restricted “blocks worlds” (one of the most famous plan-

ning domains used in Artificial Intelligence), using a limited vocabulary, and ELIZA was a

simulation of a Rogerian psychotherapist. Both of them were written by Joseph Weizen-

baum and they are two basic programs that could be considered as the first chatbots.

The 1970s, many similar programs appear, like MARGIE (1975), SAM (1978), PAM

(1978), TaleSpin (1976), QUALM (1977). In the 1980s, the machine learning algorithms

that produces a revolution in natural language processing were introduced.

Before the machine learning algorithms, the neural processing systems were based on

complex sets of hand-written rules, requiring a lot of lines of code and making it difficult to

increase the knowledge of the chatbot because it had to be written by hand. Thanks to the

introduction of machine learning and the Markov models, the chatbots started to focus on

statistical models.

The statistical models made easy probabilistic decisions based on attaching real-valued

weights to the features making up the input data. Thanks to this, the cache languages

models (statistical language model) appeared. At the same time, many speech recognition

7

systems were generally more robust when the input had errors. That makes the develop-

ment of the chatbots much easier.

Finally, in the 2010s, the representation learning, and deep neural network machine learn-

ing methods appeared. Then, those technoques became widespread in natural language

processing. (Wikipedia, 2019c.)

NLP is a technique developed to make it easier for the computers to understand the natu-

ral languages and give them a more real feedback about what they do on the computer.

These changed and added features to the traditional system of communication between

human-machine. That provided the possibility of developing systems whose unique input

is the voice.

With voice input, developers were able to create applications where a real conversation

without problems was possible. NLP Systems allowed the voice recognition and, it in-

cludes different types of strategies or ways for get the correct result. These are:

• NLP based on Text, Voice and Audio.

• NLP based on computational models.

• NLP based on Text Analysis that leads to Discussion, Review, Opining, Contex-

tual, Dictionary building, linguistic, semantics, ontological and many fields.

• Pattern Analysis and discovery of new ways such as writing styles.

• Machine Learning of languages.

• Machine Learning focused on prediction & classification of positive and negative

views.

• First order logic.

• Automatic Report Generation from Data.

(Arora, P., 2018.)

The NLP based on Text, Voice and Audio is used in the Chatbot. The NLP System is cru-

cial part of the chatbot because it is its brain.

3.2 The role of deep learning in NLP

At this chapter, the concepts of deep learning and artificial intelligence are explained.

Also, the relation between deep learning and Natural Language Processing is explained.

Deep learning belongs to machine learning concept, subfield of Artificial Intelligence. It al-

lowed to develop better AI systems which made it possible to define some responses of

8

the computer as intelligent. Following this, to get better knowledge about what deep learn-

ing is, the Artificial Intelligence is introduced first.

The Artificial Intelligence defines the intelligence demonstrated by machines and, some-

times, it is also called machine intelligence. Conceptually, the Artificial Intelligence is the

intelligence exhibited by machines and software.

The history of the artificial intelligence started in 1943, when artificial neurons were for-

mally designed by McCullouch and Pitts. The progress of artificial intelligence started to

grow at 1970s. The Artificial Intelligence history can be divided in three parts starting at

1943.

Since 1943 until 1974, the first discovery and development of Artificial Intelligence was

done. In this period, programming languages for artificial intelligence appeared like Lisp or

Prolog. Also, foundations about the development of the artificial intelligence and, big

promises about what the Artificial Intelligence can do, were created.

After 1974, the criticism of James Lighthill appeared and, by pressures from the US Con-

gress to fund more productive projects, the U.S. and British governments cut the explora-

tory research in AI. Then, obtaining funding for AI projects was difficult almost until 1984.

This period is known as “AI winter”.

Between 1985 and 1987 expert systems (AI program which simulates knowledge and an-

alytical skills of humans) appeared in the AI market reaching over a billion dollars in these

years. But in 1987, a second period without big progresses started by the Lisp Machine

market collapse. This last period was informally named as “Second AI Winter”.

Finally, since 1990s until nowadays, the artificial intelligence began to be used for data

mining, medical diagnosis, logistics and other areas. After this, the increase in computa-

tional power and the resolution of specific problems made the artificial intelligence again

interesting for the market.

In 1997, the first computer chess-playing system beat a world chess champion. The deep

learning methods started to dominate in 2011 and, in 2016 AlphaGo was the first com-

puter Go-playing system to beat a professional Go player. (Wikipedia, 2019a.)

In summary, artificial intelligence is a word which describes other specifics and longer

concepts, like deep-learning, neural networks and machine learning. So, when these tech-

nologies are referred, it is better to specify the right name and to avoid generalizations.

Now, is the time of the deep-learning techniques explanation.

9

Deep learning is a machine learning subfield and, it is one of the methods used to train

neural networks. Different methods for training neural networks exist and these are: su-

pervised learning, unsupervised learning and reinforcement learning.

Supervised learning is a machine learning task consisting of a function that maps an input

to an output based on input-output pair examples. It infers a function from the labeled

training data.

Unsupervised learning is a type of machine learning that groups the unlabeled, unclassi-

fied and uncategorized data. It works by identifying similarities in the data using cluster

analysis. After, it reacts based on the presence or absence of this similarities in each new

piece of analyzed data.

Reinforcement learning differs from supervised learning in the labelled input/output pairs

and in the sub-optimal actions. The sub-optimal actions don’t need to be explicitly cor-

rected and the labelled input/output pairs don’t need to be presented. Then, the focus is

finding a balance between exploration (of uncharted territory) and exploitation (of current

knowledge). (Bhardwaj, A., 2018.)

Deep learning can be used in supervised and unsupervised learning. The NLP system’s

neural network used in the chatbot was trained using deep learning algorithm with super-

vised learning.

Commonly, deep learning is used in neural networks of multiple layers of nonlinear pro-

cessing units for feature extraction and transformation. Then, each successive layer uses

the output from the previous layer as input.

The deep learning’s role inside Natural Language Processing is to simplify the learning by

optimizing the time used for obtaining results. Thanks to deep learning, computational

models composed of multiple processing layers which learn representations of data with

multiple levels of abstraction can be used for teaching the NLP systems in a faster way.

(Bhardwaj, A., 2018).

In NLP, deep learning solved problems of inefficiency caused by hand-crafted features.

Hand-crafted features are time consuming and may need to be done again and again for

each task or problem. Otherwise, deep learning learns information from data and repre-

sentations across multiple levels, where the lower level corresponds to more general infor-

mation.

Without deep learning, in an NLP system, the words are treated indecently but, with deep

learning, a distributional representation that capture these similarities in a finite vector

10

space can be used. This brought the opportunity of do more complex reasoning and

knowledge derivations in the future NLP systems.

Unsupervised learning and the possibility of learning multiple levels of representations

were some of the most important advantages of deep learning. One of the advantages

was the possibility of sharing the lower level of representation across tasks.

Finally, deep learning improves the capture of information sequences in a much better

way. (Wikipedia, 2019b.). Deep learning helped to improve the NLP systems with a nota-

ble performance. Nowadays, Deep learning is still improving its performance.

3.3 Cloud services for NLP

In this chapter, first of all, what kind of services the market has for integrating an NLP sys-

tem in an application are explained. After that reasoning, why a Cloud service was chosen

and, which Cloud services are in the market are explained. Finally, the decision is ex-

plained.

Implementing an NLP system in an application has two possibilities: a local application or

a Cloud service. In this project a Cloud service option was chosen because it allowed run-

ning the application correctly in all the platforms.

An NLP Cloud service has all the features of an NLP system needs. There are many of

them on the internet. These Cloud services provide all the tools for managing the NLP

system and the only work to be done is, teaching and training the neural network provided

in the correct way.

These Cloud services provide an instance of their NLP system which can be modified de-

pending of our needs. Then, a custom NLP system can be developed using the frame-

work and tools provided.

The neural network must be trained for recognizing all the words in each one of the con-

figurable languages. Then, based on the desired response, the neural network starts to

change for fitting to the model desired by the user. Validating the correct samples in the

neural network, a custom structure of response can be defined.

The decision, about which way to take for integrating NLP system in the application, de-

pends on the developing necessities but, taking the Cloud way is more comfortable than

implement it locally. The Cloud services are very advance systems and, implementing a

similar system locally would be a titanic work rarely affordable by anyone.

11

3.3.1 IBM Watson

IBM Watson is the IBM’s NLP Cloud Platform. This platform offers great flexibility to create

a custom chatbot. It offers features like text to speech, visual recognition and Natural lan-

guage Understanding (NLP variant focused on word classifying). Also, it offers other inter-

esting features to develop a powerful chatbot.

In fact, Watson is the IBM’s digital assistant. So IBM offers to the developers all the tools

that they used in Watson. This gives developers a great experience with many options

and customization possibilities.

IBM charges a monthly share for using their systems. The IBM Watson system is not open

source, so one needs to pay to be able to use IBM Watson. IBM offers a free version that

allows 10000 requests per month and after that, $0,0025 per request must be paid. Their

other plans may cost less because they have a customized plan, but for knowing more

about the plans, the developer must contact to IBM. (IBM Systems, 2019.)

3.3.2 Dialogflow

Dialogflow is the Google’s AI system. Previously known as API.AI, Dialogflow is the NLP

Cloud Platform based on the api.ai system launched by Speacktoit in 2014 for giving third-

party support for voice interfaces in applications based on Android, IOS, HTML5 and Cor-

dova. Google bought api.ai in 2016 and, after 2017, it is known as Dialogflow.

Google brings to developers a platform with an NLP system and features similar to IBM

Watson. Among others, a text to speech service is offered and it can be used in chatbots.

Google offers streaming input of audio like IBM Watson and, all the features than an NLP

System should have. Also, like the other services, they offer a range of Languages for

speech recognition and the ability of multi-language recognizing at the same time.

As in the IBM case, Google also has a subscription model for using its systems. In this

case, the system of IBM is more powerful than Dialogflow for developing.

Dialogflow is open source and it can be implemented on local environment but, it is not

practical. To use the Cloud System is the best option if the application is distributed for the

public use.

The monthly price can change because it depends of the use of the service. They offer a

free plan, but only with 10000 request per month. It is not enough if the developer wants

to build a real chatbot. To increase the request limit, the unlimited plan is needed and has

a cost of $0,0065 per request with 15 seconds of audio. (Google, 2019.)

12

3.3.3 Wit.ai

Wit.ai is an open source platform which provides an NLP System. Facebook bought Wit.ai

on 2015 but, nowadays, Wit.ai is open source and free to use. It supports a lot of lan-

guages, almost 50. Otherwise, it doesn’t have features like Google Dialogflow or IBM Wat-

son. For example, audio streaming, simultaneous translation or text to speech are miss-

ing.

Wit.ai has the basic features of an NLP System needs. They work very well and a very

consistent chatbot can be built with them. With the correct planning, and the correct struc-

ture of the entities, a very competitive and practical chatbot can be made.

The best parts of Wit.ai are their open source philosophy and free cost. The applications

developed with their services can be used for commercial use without paying any kind of

share. (Wit.ai, Inc. 2019.)

3.3.4 Comparison of alternatives

Wit.ai was the chosen Cloud service for the chatbot. In terms of cost-benefit, Wit.ai was

the best option because its missing features are not mandatory for the chatbot. Referring

to the cost, Wit.ai offers a better service at the same price as the other platforms.

In the next table (Table 1), the features of the three Cloud services are explained. The

practical part of the project explains more exhaustively why Wit.ai was chosen.

The table compares the most important features of an NLP System. The evaluated fea-

tures are: speech-to-text, text-to-speech, streaming audio, supported languages, facility of

use, price, is it open source, rest API, training modules, importing exporting models and

limit of calls.

The comparison was made a priori with the information available on the internet. After, a

small test on the platforms was done, and then, the points were given. All the features are

evaluated from 0 to 10 and the maximum possible score is 110.

Wit.ai get the higher points with 90 and it was chosen. It must be noted that the most im-

portant feature was the price.

13

Table 1. Comparation between Cloud services

3.4 Strategies and methods in training a chatbot in Wit.ai

The strategies and logical structures used for the chatbot are explained on this chapter.

The logical structure was planned for a correct interpretation of the sentences and, for a

correct answer in the greater variety of scenarios.

First of all, to organizing the response, a logic representation was planned. Wit.ai works

recognizing entities which match with the sentences sent by the user. These entities can

be keywords or concepts and, the neural network is trained to recognize them.

Wit.ai can receive sentences by text or by audio clips. Normally, both ways work perfectly

but, in some cases, it causes some errors. When the language is strange for Wit.ai, like

German or Finnish, the audio transcription generates some errors.

The chatbot works with the following languages: Spanish, English and Catalan. With these

three languages, Wit.ai works well. The Finnish was tested for implementing it on the

chatbot but, Wit.ai has some problems with the transcriptions and with the use of Finnish.

So, the Finnish language was delayed in the development and, it is one of the future im-

provements.

features
 cloud services Ideal score

0-10

speech-to-text 10 (yes) 10 (yes) 10 (yes) 10

text-to-speech 0 (no) 10 (yes) 10 (yes) 10

streaming audio 0 (no) 10 (yes) 10 (yes) 10

languages 10 (50 languages) 2 (15 languages) 1 (1 language) 10

facility 10 (Simple to use) 6 (A bit complex) 4
(So much
tools)

10

price 10 (100% free) 2 (limited free plan) 2
(limited free
plan)

10

open source 10
(100%
opensource)

7
(opensource but
must pay for use it)

0
(Not
opensource)

10

api rest 10 10 10 10

training module 10 10 10 10

allow import/export
model

10 10 10 10

Limit api calls 10 unlimited 5 10k free plan 5 10k free plan 10

Results 110

Wit.ai

90

Dialogflow

82

IBM Watson

72

14

Wit.ai works with entities and, it has four types of entities: trait, keywords, free-text and

keywords & free-text. These types of entities are used for obtaining different responses in

the same situation depending of the context.

The Entity of type trait could be considered as the undefined entity. It is the entity respon-

sible of discern about what the meaning of the sentence is. The trait entity can be used for

defining if a sentence is affirmative or negative. Usually, this entity is used for interpreting

things that do not appear explicitly in the sentence.

This kind of entity needs to be trained correctly, and for that, a set of samples is needed.

With these samples, the solution must be known. The entity is trained with correct and in-

correct responses.

When the system starts to recognize sentences outside the set of samples, it can be con-

sidered sufficiently trained. The entity can be trained more exhaustively keeping in mind

the possibility of overfitting (when a neural network is overtrained and its results starts to

be unsure).

One point of Wit.ai is that can be trained using the received data but, sometimes, it can be

hard because the validation must be done by hand. Then, known this, this entity was used

classifying the sentences in Order, Question or Y/N(Yes/No). The entity IN of the chatbot

uses the trait way.

The keyword entity works searching matches between the defined values inside the entity

and the text. After, it returns the obtained match. This kind of entity does not need a lot of

training, but the NLP System must know which generated responses are correct. So, a lot

of samples must be verified for making consistent the response.

If the logical structure marks some exceptions, like sentences which should not be recog-

nized, these exceptions must be marked as wrong response in the validation. Only one

entity with this strategy is used on the chatbot and it is ConcretePlaces. This entity is used

as database of sites, concrete places and cities. It helps to understand and answer cor-

rectly the sentences.

The free-text entity uses a similar way than the keyword entity but it has some different

and interesting features. This entity matches their values on the sentences, like the key-

word entity does, and also it matches synonyms. In the entity, a synonym contains a

group of words. So, it can be used to identify a range of words as one word, for example,

to know if the sentence contains colors.

15

This entity can have one value named Colors and, in their synonyms, to contain all the

colors than needs to be recognized. The same functionality can be done with keyword en-

tity and trait entity but it is not affordable. In the other entities, the name of the entity would

work as synonym and, their values would work as the words to recognize.

The keywords & free-text entity combines the keywords and free-text strategies, it means

that it recognizes a match in the text, the defined values inside the entity and its syno-

nyms. This type of entity is used in some entities of the chatbot. These are: type, y/n,

verbs and recommendations. This kind of entity can have a value working as a concept

and, a concrete value working as a synonym of a concept. Also, this type of entity brings

the possibility of not to have several similar entities in the application.

To explain the logical structure of sentences, first, the purpose of the used entities must

be explained. Then, the structure of Wit.ai's response is explained, and finally, a directed

graph which explains how the chatbot internally works is presented. The entities made for

the chatbot are:

• Type. It determines the type of the sentences: question or order. Their values are

directions, actions and schedule.

• Y/N. Used for recognizing the words yes or no in the sentence. It is not contem-

plated in the schemes and, it is only used when a request needs some context.

For example:

o User: “I want bread”

o App: “Do you want to go to the nearest bakery?”

o User: “Yes, I want”

o App: “Opening Google Maps…”

• Verbs. This entity works like a big database of possible verbs that can appear in

the sentences. It helps to create a better response in the chatbot.

• ConcretePlaces. It works practically in the same way as Verbs but, with the names

of concrete places, like for example “sMarket”, “Mercadona”, “bar Manolo”, etc.

• Recommendations. Entity used for generating a kind of recommendations about

the recognized word, normally places. It is usually used for taking information

about directions or opening hours about one place. It only works when the user did

not define correctly the place on the request. For example:

o User: “I want to go to the supermarket”

o App: “The nearest supermarket is Mercadona, do you want to go there?”

o User: “Yes”

o App: “Opening Google Maps…”

16

• IN. Entity used for classifying sentence in “order”, “questions” or “y/n”.

The Figure 2 shows the structure of response planned for the chatbot. It presents, which

entities must Wit.ai return when it recognizes a sentence (when the NLP System is

trained).

There are 5 entities, IN, Type, Recommendations, Verbs and ConcretePlaces. The last

two entities are used like databases, they contain a very long range of words. The struc-

ture below defines that each response must include mandatorily the entities IN, Type and

Recommendations. After these three entities, it is possible to include the entities Verbs

and ConcretePlaces which are not mandatory.

In addition, there is a special case when the response does not include the Recommenda-

tions entity. If the ConcretePlaces entity is in the response, the Recommendations entity

can be replaced by ConcretePlaces and it is seen as a correct Wit.ai response. In the dia-

gram (Figure 2), the point on the left side means “mandatory statement” and the interroga-

tion symbol “optional statement”.

Figure 2. Abstraction of a Wit.ai response

In the Figure 2, one can see the response for the sentence “Where can I buy bread”. The

response has three mandatory entities, IN with a value or “Question”, Type with a value of

“Directions” and Recommendations with a value of “Oven”. Also, the Verbs entity with a

value of “buy” is there. The ConcretePlaces entity is not received and is interpreted as a

null value. All que responses from Wit.ai must have this structure.

17

In some cases, because Wit.ai works with probabilities, it can return twice the same entity

in the response but with different statistical values. This happens because the entity

matched more than one time in the sentences. So, in that case, the higher probability en-

tity is taken.

Finally, the Figure 3 is the final state machine made for understanding how the chatbot

works. Below, the graph’s transitions are explained with the right and wrong paths. It

helped in the programming part doing easier the implementation phase. Reco means Rec-

ommendations, cPlace means ConcretePlaces and the letters are for identifying the paths

and transitions.

Figure 3. Chatbot’s finite state machine

To get a right path, the response must have data from the entities IN, Type and Recom-

mendations. If the response has the intents IN, Type and Recommendations, the path 1 is

obtained. In the case where, the Recommendations entity is missing in the response but

ConcretePlaces is in the response, the function of Recommendations is replaced by Con-

cretePlaces (Path 2).

IN Type Reco End

NK

Verbs

cPlace

o

c

j

k

m

d

e

g

nh
b

a i

f
l

18

In addition, the response can have the entities Verbs and ConcretePlaces, but the previ-

ous entities IN, Type and Recommendations must also appear (Path 3). The right paths

are:

• a, c, i (1)

• a, c, l, m, i (2)

• a, c, j, k, l, m, i (3)

In the following cases a wrong path can be obtained. When the IN entity is not in the re-

sponse means that some error occurred in the speech recognition or another kind of error.

So, the path 4 is the followed, and an answer like this is generated: “I didn’t understand

you, could you repeat your question?”.

If the IN entity is received but Type is missing, the entities Verbs and ConcretePlaces are

checked if they are in the response. Then, the NK state generates the nearest answer to

the question made by the user. In this case, the paths 5, 7, 8 and 9 are followed.

Finally, if the entities IN and Type are in the response but Recommendations is missing,

ConcretePlaces replaces Recommendations if it is in the response. Then, the entities

Verbs and ConcretePlaces are checked and the NK state generates the nearest response

to the question made by the user. In this case the paths 6, 10, 11 and 12 are followed.

The possible wrong paths are:

• b, o (4)

• a, h, o (5)

• a, c, n, o (6)

• a, d, e, h, o (7)

• a, f, g, h, o (8)

• a, d, e, f, g, h, o (9)

• a, c, j, k, n, o (10)

• a, c, j, k, l, m, n, o (11)

• a, c, l, m, n, o (12)

3.5 Analysis of possible queries in natural language in providing services of a city

There are some queries that a normal user can ask from the chatbot. they can be divided

between the simple queries and the complex queries. The chatbot must be able to re-

spond to each of these queries.

19

Some simple queries are: “What time is it?”, “Where is the Hospital?”, “Where is the super

market?”, “What day is today?”, “I need bread”, “Call to emergencies”, “Where can I find

plants?”, “Guide me to the nearest super market”, “Which weather will tomorrow do?”,

“Will it rain today?”, “When the university is closed?”, etc.

Some complex queries: “Remind me tomorrow that I have piano class at 6”, “Call to

xxxxxxx”, “What is the schedule of Prisma?”, “When is the birthday of David?”, “Which

time slots does I have free tomorrow?”, “Put an alarm at 6 in the morning”, etc.

20

4 CASE: CHATBOT ASSISTANT

4.1 Implementation of the chatbot for the cities (Alcoi/Lahti)

In this chapter chatbot implementation using Wit.ai is explained. First, the implementation

possibilities are explained. Then, which strategy was used, and which Cloud service was

chosen are explained.

There are different ways to implement the chatbot. This chatbot was for public use, and, it

must be possible to use it in the highest possible percentage of people. At least, the chat-

bot must be available on the most common mobile platforms, Android and IOS.

The chatbot was focused on the cities of Alcoi (Spain) and Lahti (Finland) to get reliability

over its competitors, Google Assistant and Siri. By limiting the scope, it is possible to get

more accurate results with specific data and more dedicated training. Then, to make sure

that the chatbot works correctly, field work is needed. This field work includes, information

research about places and their opening hours.

For the implementation of the chatbot, one framework has to be chosen. There are a lot of

frameworks and, for this development the choice was between Flutter (Android/IOS), An-

droid Studio (Android), XCode (IOS), Xamarin (Android/IOS) and Unity (An-

droid/IOS/Web/Mac/Windows). Finally, Unity was the chosen because it allows to develop

for Android, IOS, Web (WebGL), Windows and Mac at the same time.

These frameworks are subdivided in two categories, the native frameworks and the cross-

platform frameworks. Among the native frameworks are Android Studio, for developing

Android based apps, and XCode, for developing IOS and MacOS apps.

It could be nice to work with this kind of frameworks if the application was focused on one

of them. However, if both platforms are needed, the work must be done twice. For this

reason, neither of these two options were chosen.

Then, there are the cross-platform frameworks: Xamarin, Flutter and Unity. With this type

of framework, an application can be developed on different platforms by writing the appli-

cation’s code only once.

Among three options, Unity was chosen because it allows to develop with 3D (useful in

the way of making this app different from the others). It also allows to develop for more

than three platforms (Android, IOS, MacOS, WebGL, Windows, some video game con-

soles) with the same features as Xamarin and Flutter and, adding the 3D compatibility.

21

Xamarin and Flutter allow to develop the app in a faster way, but the fact that Unity have a

lot of platforms for developing, tips the scale to Unity.

4.1.1 Strategy and Cloud service selection

Mainly, two things are needed to build this chatbot. The first is the platform or library that

brings the NLP system for the application, and the second is the framework able to sup-

port the chosen NLP system.

The decision about the NLP system was to choose a cloud platform. The cost of the ser-

vice motivated the decision. The chosen service was Wit.ai because it was completely

free, and any kind of payment was not needed. This was an important feature because

the chatbot is planned for public use in the App Store and Google Play Store.

In addition, Wit.ai was chosen because every tool needed for the chatbot was contained

on it. The response structure can be built easily without problems, and their rest API al-

lows to make a separate program for training the NLP System without updates in the ap-

plication. Then, finally Wit.ai was chosen as the NLP system of the chatbot and Unity was

the chosen framework for the development.

4.2 How Wit.ai works

This chapter gives an overview if Wit.ai. Then, how the Wit.ai's system was configurated is

also explained.

First of all, for using Wit.ai, a Facebook or Github account is needed. The recommendable

way is to login using a Github account because it is the most specific platform. After

logged in, an app must be created.

The Wit.ai’s app is a Wit.ai’s logic abstraction used for identifying an instance of the NLP

system. This instance only works with one language and its configuration is unique to the

app.

Then, a name for identifying the app is needed. While configuring the application, you

must decide if the application is open or private for external developers. The name of the

app only has relevance inside Wit.ai and it does not affect to the integration. The open op-

tion means that everyone can use and modify the app. The private app is accessible only

by the creator and authorized users (Figure 4).

22

Figure 4. Wit.ai new app interface

Each app in Wit.ai is completely independent from the others because Wit.ai does not

work in the same way with all the languages. However, Wit.ai allows to clone apps, a fea-

ture useful for working in the same way in all the languages, only doing small changes in-

side each app. Once the application has been created, it appears in the index of apps.

Next the app can be trained. For training the app, first of all the entities that the app recog-

nize must be created. The entities in Wit.ai are easy to create, by clicking on “add enti-

ties”, writing the name of the entity and clicking enter.

When the entities have been created, the correct strategy for the entity must be chosen.

The available entity strategies are trait, keyworks, free-text and keyworks&free-text. Once

the strategy has been chosen, the values can be set through the entity manager view.

When all the entities are created, the process of training by samples can be done follow-

ing the instructions of the interface. Putting the sentence, checking or modifying the sug-

gested Wit.ai’s response, and validating (figure 5).

23

Figure 5. Wit.ai app settings interface

The process of setting a sentence and validate it must be done one by one because the

interface only allows one sentence at a time. So, the process must be repeated a lot of

times. As many times as sentences the training samples have.

To modify some parameters of an entity, only a click is needed over the entity (Figure 6) in

the main view of the app. All the entities have the same UI and change their type or name

is a very intuitive.

Inside of an entity, in the lowest part of the entity selected UI appears all the sentences re-

lated with the entity. These sentences can be deleted selectively, and also, it can be done

by the Wit.ai rest API.

24

Figure 6. Entity UI

The interface has five buttons: Understanding, Samples, Inbox, logs and Settings. These

five buttons form the main menu of the app, and they are used to manage the app.

Understanding button goes to the main view of the app. There, entities can be accessed,

and examples can be added. Samples button goes to a view with a list of all the samples.

In this list the responses to the sample can be seen and modified. Also, the sample can

be deleted.

The Inbox button goes to a view where all the request done by users can be found. These

sentences must be validated or discarded by the developer. Also, the audio requests can

be listened to check the response.

The Logs button shows the NLP system processing output. Finally, the Settings button

goes to the view where the name, permissions and other about the app can be modified.

It is not affordable to put samples by hand when the amount is big, for example 2000. In

this case, Wit.ai has a rest API that allows to train the app outside the platform. This rest

25

API has request of type POST, GET, PUT and REMOVE. It can be used for training the

app.

In order to implement this rest API, Postman can be used. It functions as a request man-

ager. Any other program which implements the rest API can be used. In the project, a cus-

tom program was made because Postman did not allow to do repeated requests at time

(for example: repeating 10 times the same request). Also, Postman difficulted concatenat-

ing different requests because it is a program focused on testing.

Because of these reasons, a custom program was made for training the chatbot and it

was used at the end of the development. While in development, a short list of examples

was used. This list compiled a basic and sufficiently reliable responses. The training pro-

gram is explained in the chapter 4.5.

A complete set of useful requests is provided by the Wit.ai’s rest API, nevertheless not all

of them were used. The requests used in the development are explained in the next sub-

chapter. It must be noted that all this information may not exactly be the same as the cur-

rently available in Wit.ai as it is subject to changes.

These were the basic issues for training the Wit.ai’s app used in the Unity implementation.

There were the most important aspects of Wit.ai for training the chatbot.

Finally, before passing to the next chapter, another feature of Wit.ai must be remarked, its

learning curve. The Wit.ai’s learning curve is not very steep which means that, in short

time, anyone can manage and use Wit.ai without problems. This makes the development

compared with other services.

4.2.1 Wit.ai rest API

In this subchapter, the requests of the Wit.ai’s rest API used in the application (chapter

4.3) are explained. The requests used in the training program (chapter 4.5) are also ex-

plained. The number of available requests in the Wit.ai’s rest API is 32, but in this case

only 12 are used sorted into 5 categories.

Add, remove or get samples from an app POST/GET/DELETE

This group contains the three requests that work with the samples used for training the

NLP System. The GET request is used for requesting a list of samples. The POST re-

quest is used for inserting a sample in the app. The DELETE request is used for removing

a specific sample from the app.

26

With GET, a list of samples is obtained. The obtained list can be customized with parame-

ters. There is a mandatory argument, limit (integer) which indicates how many samples

are required. This limit can range between 1 and 10000 included.

There are other optional parameters. They allow GET to output a more specific list of

samples. These optional arguments are: offset (integer) indicates the number of samples

to skip from the start; entity_ids (array of strings) required names of entities that the sam-

ples must have; entity_values (array of strings), list of values of the specified entities that

all returned samples must include, and it requires entity_ids; and negative (boolean), if

true it will show the negative samples of the specified entity_id, and entity_values must

not be included.

Example of a GET request is presented in the Figure 7. It gets a list of 10 samples which

have the entity "entity" in their response and where the values of "entity" is "buy_car".

Figure 7. Get request example

With POST, the sample sent is added to the list of samples in Wit.ai. There is a limit of

200 samples per minute that can be modified by contacting with Wit.ai. This request vali-

dates the sample automatically for training the app, and two mandatory arguments, text

(string), and entities (array of entities object) are required.

Text field contains the sample sentence, and entities field contains a list of entity objects

where the entities and values to recognize are specified. These two arguments are con-

tained in a sample object, and this object is also contained within an array of sample ob-

jects which is sent using JSON structure seen in Figure 8.

https://api.wit.ai/samples?entity_ids=intent&entity_values=buy_car,dri
ve&limit=10

27

Figure 8. JSON example of POST request

With DELETE, the samples sent in a list are removed. This request only has one manda-

tory argument, text, which contains the sentence. It can also be sent using the POST re-

quest, but it is only recognized in the text parameter (Figure 9).

Figure 9. List of "sample" objects with two objects

 (Wit.ai, 2019.)

Add or remove expression of a value on an entity POST/DELETE

With the requests of this group, expressions of an specific value of an entity can be added

or removed. It is not possible to modify the expressions of a value in Wit.ai. So first, the

expression must be deleted, and after that, the new expression must be added.

With POST request, it is only possible to add an expression to a value. With the possibility

of executing the request programmatically, it can be added, for example, 20 expressions

with only one action.

In this request, an object of type expression must be sent as JSON object with the name

of the expression no longer than 280 characters. This request is based on two parts. The

link, where the entity and the value are specified (Figure 10), and the JSON file with the

expression (Figure 11).

[
 {
 "text": "I want to fly to sfo",
 "entities": [
 {
 "entity": "intent",
 "value": "flight_request"
 },
 {
 "entity": "wit$location",
 "start": 17,
 "end": 20,
 "value": "sfo"
 }
]
 },
]

[
 {
 "text": "I want to fly to sfo"
 },
 {
 "text": "I want a flight"
 }
]

28

Figure 10. POST url

Figure 11. JSON sample with expression

With the DELETE request, the expression to be deleted must be indicated on the url. If the

expression matches, the expression is deleted. A JSON file is not needed on this request

(Figure 12).

Figure 12. Example of DELETE expression request

(Wit.ai, 2019.)

Add or remove a value of an entity POST/DELETE

These two requests are used for adding/removing a value from an entity. POST request

adds values to an entity. However, it only works with entities of a keywork strategy. The

Samples POST (previously explained) must be used for other type of entities.

The POST request works by specifying the entity on the url, and with a JSON file as a pa-

rameter. This JSON file contains three arguments of which the first is mandatory and the

other two are optional.

The mandatory argument is value (string), the value to add to the entity. The other two op-

tional arguments are expressions (array of strings) and metadata (string). The expres-

sions field contains a list of expressions for the value, and the metadata field contains the

metadata to attach to the value (Figure 13).

Figure 13. JSON example of POST value request

The DELETE request erases the value sent as parameter in the url (Figure 14). This re-

quest erases the value sent if it matches with some of the entity’s values. It does not need

any JSON.

https://api.wit.ai/entities/favorite_city/values/Paris/expressions?v=2
0170307

{"expression":"Camembert city"}

https://api.wit.ai/entities/favorite_city/values/Paris/expressions/Cam
embert%20city?v=20170307

{
 "value":"London",
 "expressions":["London"],
 "metadata":"CITY_1234"
}

29

Figure 14. URL example of value DELETE request. entity "favourite_city", value "Paris".

(Wit.ai, 2019.)

Create, modify, delete and get entity from an app POST/GET/PUT/DELETE

These four requests work with the entity objects. With these requests it is possible to

add/modify/delete entities in the app. Furthermore, with the GET request, obtaining a list

of values with their expressions of an entity is also possible.

Only one entity can be added/deleted per request, but programmatically, more than one

request can be done. Otherwise, updating multiple entities is possible with only one re-

quest. In the case of the GET request, obtaining a list of entities is possible, but with a

maximum length of 1000 entities. However, if the entity is fetched with its values and ex-

pressions, then a maximum of 50 entities is required.

With the POST request, adding entities to the app is possible. This request works by

sending a JSON file where the name of the entity, id (string), is mandatory, and a short

description for the entity, doc (string), is optional (Figure 15). The lookup/strategy as-

signed to the entity is automatic and it can be changed in the Wit.ai web page.

With the GET request (Figure 16), a list that contains the values of the entity is obtained.

The list has a maximum of 1000 values. Otherwise, if the list contains the expressions of

each value, then 50 values is the maximum. This request is very useful for the PUT re-

quest explained next.

With the PUT request, the name of the entity followed for a list of the values is sent

through a JSON file. On this request, all the parameters are optional. Id (string), name of

entity; doc (string), description for the entity; lookup (array of strings), type of entity; and

values (array of value objects), array with objects value that contains name and expres-

sion of the value (Figure 17).

Finally, the DELETE request deletes permanently the entity indicated in the url (Figure

18). If the name of the entity is not matched, an error is returned. It must be noted that the

entity is deleted without confirmation, so, it is recommendable to backup the app before

erasing anything.

https://api.wit.ai/entities/favorite_city/values/Paris?v=20170307

30

Figure 15. POST entity request example

Figure 16. GET request example

Figure 17. JSON example PUT entity request example.

Figure 18. Sample of URL for DELETE entity request

(Wit.ai, 2019.)

Obtain a list of entities GET

This GET request returns a list of the entities. The list does not have any restriction of

length and it comes inside a JSON file (Figure 19). This is useful for checking iif the crea-

tion of an entity was successful.

Figure 19. GET entities request example.

{
 "doc":"A city that I like",
 "id":"favorite_city"
}

https://api.wit.ai/entities/first_name?v=20170307

{
 "doc":"These are cities worth going to",
 "lookups":["free-text", "keywords"],
 "values":[
 {"value":"Paris",
 "expressions":["Paris",
 "City of Light",
 "Capital of France"],
 "metadata":"{\"cityId\":342,\"countryId\":12}"
 },
 {"value":"Seoul",
 "expressions":["Seoul",
 "서울",
 "Kimchi paradise"],
 "metadata":"city_343"
 }
]
}

https://api.wit.ai/entities/favorite_city?v=20170307

[
 "wit$amount_of_money",
 "wit$contact",
 "wit$datetime",
 "wit$on_off",
 "wit$phrase_to_translate",
 "wit$temperature"
]

31

4.3 Integration with Unity

When everything about Wit.ai is known, the chatbot can be built as an application. When

building the application, the structure of the application must be defined, and how Wit.ai

and the application are going to communicate. Then, how the chatbot interprets the

Wit.ai's response must also be defined. This brings good and intelligent feedback to the

user.

In this development the incremental model of developing software is followed. This model

of development is contained inside the category of agile software development tech-

niques.

As the incremental mode indicates, this chapter is subdivided in four parts: Analysis, De-

sign, Code and Test. The model is followed as is said in the book “SWEEBOK”, certified

by the IEEE Computer Society as a guide for Software Engineering.

4.3.1 Analysis

In this chapter the requirements to bild the application, which software to use and what

platforms to use must be analyzed. This chapter has been already explained previously in

the document.

For building the application, the framework used is Unity. Unity was the chosen because it

brings the most compatibility between platforms.

Regarding the AI aspect, two options were possible: implementing the NLP System inter-

nally or using a Cloud System. The chosen option was the Cloud system.

Among the considered cloud systems, Wit.ai was chosen because, when comparing the

features of the other three options, Wit.ai was the most reasonable option. Wit.ai is open

source and is totally free to use in commercial environments. The others had to be paid in

all the use cases.

For building the chatbot nothing more is needed. With the Unity framework and the Wit.ai

cloud system, a powerful chatbot can be built.

Finally, must be noted that thanks to the framework used, the chatbot can work at least on

Android, IOS and Web environments. In a future, the possibility of build for Windows and

MacOS is taken into account. However, for the time being it will only be built for Android,

IOS and Web environments.

32

4.3.2 Design

In this chapter, the design of the chatbot is explained. The chapter comprise the re-

sponse's structure that Wit.ai must have, and the application’s workflow. These two as-

pects have been also described previously in the chapter 3.4.

For Wit.ai, a short list of samples is used in the three languages that the chatbot supports

(Spanish, Catalan, English). Then, the apps, one for each language, were trained using

the pattern designed and explained previously (Figure 2). Each response must have the

entities IN, Type and Recommendations/ConcretePlace.

Once the apps are trained, Wit.ai is ready to be integrated in the application. For integrat-

ing Wit.ai in Unity, the Wit.ai’s rest API must be used. In the Wit.ai’s rest API two requests

exist, POST/speech and GET/message. With the POST/speech, a .wav file is sent as bi-

nary data and Wit.ai internally creates speech_to_text response message. With the

GET/message, text is sent to Wit.ai and a response is generated.

On the other hand, for the software, the application was developed according to the dia-

gram explained previously (Figure 3). The application was an implementation of the finite

state machine designed to understand the Wit.ai response (Figure 3). Then, the applica-

tion is subdivided on three parts: the user interface, the networking module (Wit.ai con-

nection) and a module that processes the response of Wit.ai.

The workflow diagram of the application will be shown in the next Figure 20:

Figure 20. Workflow diagram of the chatbot.

33

4.3.3 Code

In this chapter, the third part of the process in the incremental model is explained, the

code. This process can be subdivided in three main parts. One containing all the user in-

terface functionalities. Other containing the communication between Wit.ai and the appli-

cation. And the third part contains the process of understanding the Wit.ai response, fol-

lowed by the generation of a correct answer to the user using databases and other tools.

At the same time, these three parts can be joined in two, the visual and the programming

parts. The visual part contains the user interface, and the programming part contains the

communication with Wit.ai and the answer generation. Then, this chapter explains these

two groups, the UI design and implementation, and the Wit.ai implementation.

UI design and implementation

In this chapter, the design of the user interface and the implementation of its handlers are

explained. In this point, also how the audio is recorded is explained as it also belongs to

the UI part.

The user interface was designed based on user interaction. As the application is a digital

assistant, there are two ways for it: using text or using voice. Also, the communication be-

tween the digital assistant and the user can be done in two ways, visual (text and images)

and with voice.

In this case, for the communication between the user and the digital assistant both, voice

commands and text commands, are used. These two options work independently but not

simultaneously. The user may do a request by voice or a request by text but will not be

able to do it at the same time.

For the communication between the digital assistant and the user, the voice and the visual

response are used together bringing a great user experience. These options are used at

the same time. For example, the digital assistant may respond to the question “Where am

I?” showing the text, “You are in Lahti”, followed by an image of a map which indicates the

real position with a link to Google maps. At the same time, through the speakers, the sen-

tence “You are in Lahti” is played using a text_to_speech system.

Also, must be noted that the chatbot is working on three languages and that they cannot

work together. This means that the user must specify which language they want to use,

and the interface must contain a icon indicating which language is being used.

34

Then, visually, the user interface has a button for the voice input a textbox where the re-

quest is written, and a button for selecting the language. The sketch in Figure 21 was the

base for the final implementation in Unity.

Figure 21. Sketch chatbot UI

The “microphone button” changes to a “send button” when a text is detected in the text-

box, similar to other applications like Telegram or Whatsapp. The Language button

changes depending of the chosen language, it has the appearance of the language’s flag.

The response panel is divided in two parts when some multimedia source is needed in the

response (iex: map, schedule). When the response is only text, it resizes itself.

In the Unity implementation, to make that the text look good, the plugin TextMeshPro is

being used because the native text of Unity does not scale properly to high resolution

screens. Another plugin, DOTween (http://dotween.demigiant.com), is used for making

animations without using the Unity animator tool.

The interface of the application is designed in Unity and it is shown in the next Figure 22.

In this project stage, the UI is not operational, the programming part is still missing.

35

Figure 22. Chatbot UI in Unity.

Because the app is made in 2D initially, all the interface component is built over a canvas

overlay. When the textbox is being used the view of the microphone button changes. The

handlers of the main objects are explained in the next paragraphs. The textbox, the micro-

phone/send button, the language button, and the response panel are explained.

The textbox works with an input field. Also, it contains a script named WriterController.

The script WriterController contains two methods used as handlers, OnSelectClick() and

OnDeselectClick(). OnSelectClick() method informs if it the textbox was clicked. Other-

wise, the OnDeselectClick() method handles if the texbox has text, and it changes the

functionality of the microphone button to send(Figure 23).

Figure 23. WriterController script.

36

The microphone button works in two different ways. It can work as a microphone button or

as a send button.

 When it works in microphone mode, it works like a push button. While the button is being

hold down, an audio file starts to be recorded. When the button is released the recording

stops and the audio is sent to Wit.ai through the script Master (the Master script will be ex-

plained in the Wit.ai implementation part). When it works in send mode, it works like a nor-

mal button and, when the button is released, the text is sent to Wit.ai through the Master

script (Figure 24).

The working mode of the button is based on a Boolean variable. This variable is named

isText and is initialized as False. IsText only changes if the textbox contains some text

(39, Figure 23). All the basic functionality of the microphone button is contained in a script

named OnClickMicrophone (Figure 24). The script is attached to the button and it controls

the press and release events of the button (40-82, Figure 24).

Figure 24. OnMyClickMicrophone script.

The language button is managed by the scripts: OnClickLangButton (Figure 25) and But-

tonManagement (Figure 26). OnClickLangButton manages the language panel menu and

37

the button views. ButtonManagement manages the language selection buttons, and it

changes which app of Wit.ai should be working in the application.

Figure 25. ButtonManagement script.

Figure 26. OnClickLangButton script.

Finally, the response panel is managed by two scripts, ChatPanelController (Figure 27)

and MyGoogleMapsPanelScript (Figure 28). Depending of the Wit.ai response, the script

Master sends the hiding and showing commands to the panel’s managers. The script

ChatPanelController, manages the text part of the response (Figure 21) and, the script

MyGoogleMapsPanelScript, manages the multimedia/action responses (Figure 21).

38

Figure 27. ChatPanelController script.

Figure 28. MyGoogleMapsPanelScript.

After the UI implementation, we start to implement the functionality. In the next section the

interaction between Wit.ai and the application is explained.

Wit.ai implementation

In this chapter the integration with Wit.ai and Unity is explained. How the audio/text is sent

to Wit.ai and, how the response is processed.

Unity works with C# and, it allows the creation of partial classes. The MasterScript was

created, and it is split in three files containing the same class named MasterScript. The

files are MasterScript, MasterScriptCoroutines and MasterScriptResponse.

39

MasterScript contains the necessary methods to manage the on click actions of the Micro-

phoneButton with the modes of voice and text (Figure 29, Appendix 1). Master-

ScriptCoroutine contains two coroutines, one to manage the text sending to Wit.ai, and

another to manage the voice sending to Wit.ai (Figure 30).

Figure 29. MasterScript methods.

Figure 30. MasterScriptCoroutine methods.

MasterScriptResponse contains all the methods needed for handling the Wi.ai response.

The script contains two methods, ResponseHandler() and ExecuteAction() (Figure 31).

ResponseHandler() calls the script which implements the finite state machine (Figure 3),

WitAiGraph. WitAiGraph returns an object of type ResponseSolution (Figure 32) and this

object is handled by ExecuteAction().

Figure 31. MasterScriptResponse script.

40

Figure 32. ResponseSolution object.

ExecuteAction() implements the communication between the solution and the UI, it is the

arrow “response generated” in the Figure 20. Three kind of actions can be seen in the UI:

only text, only multimedia or text and multimedia.

The most important script here is WitAiGraph (Appendix 3). This script is the most im-

portant of that part because it deserializes the response of Wit.ai and, it makes possible to

generate a good response.

Wit.ai sends a response using JSON. To deserialize the JSON object is being used Json

.NET for Unity (Json.net for Unity, 2016). This library allows to deserialize easily the re-

sponse. With this library, the script which deserialize the Json object must contain one

public class.

The Wit.ai’s json structure is built in an object containing three parameters. These param-

eters are: two strings, _text and msg_id, and one object, entities. The entities object is a

list of entity objects. It contains as many entity objects as entities the sentence has.

The entity object has four parameters, which are: suggested, confidence, value, type.

Then, in WitAiGraph must exist one public class for the main object, another for the enti-

ties object and one by each entity in the Wit.ai app. The complete WitAiGraph script can

be seen in the Appendix 3.

When the public classes are created, the Wit.ai response can be deserialized passing the

main class of to the main Json’s object, and the output to the method PopulateObject.

This method is contained inside JsonConvert (41, Figure 33).

41

Figure 33. Part of WitAiGraph script.

Then, as has been said before, WitAiGraph contains the main class WitAiGraph, and the

deserialization classes. These are: 7 classes for the entities, one for the entities object,

and one for the parent object (Figure 34).

Figure 34. Part of WitAiGraph script.

Finally, when the Wit.ai response has been deserialized, the response must be pro-

cessed. This process implements the finite state machine (Figure 3). It has one method

for each state. In each method the answer is generated and a transition is made.

The Figure35 is an example about how the state IN is handled in WitAiGraph. It must be

noted that the values of the entity must be put literally. On entities like ConcretePlaces or

Verbs, the data is taken from a real database. There are a foreach because the response

can contain repeated entities.

42

Figure 35. Part of WitAiGraph script.

Finally, when everything is implemented is time to test. In the next chapter testing of the

app is explained.

4.3.4 Test

In this chapter a short view across the versions of the application is explained. The first

implementation was Alpha version. After this, the application was tested outside the devel-

opment environment, and this generated more flaws in the UI design.

Alpha version

In this chapter the 1st version of the application is presented. The first UI was based on the

Whatsapp interface (Figure 36). It had more brilliant colors, and response panels which

show the response to the user.

43

Figure 36. UI Alpha version.

In this version, another kind of finite state machine was implemented. The finite state ma-

chine was not optimal. It had some errors caused by its complexity. The finite state ma-

chine was very complex because the Wit.ai’s apps had 19 entities.

In the Figure 37 the finite state machine used for the alpha version can be seen. The

empty nodes in the finite state machine are swap nodes. This graph causes problems

when the NLP system of Wit.ai was trained and implemented inside the application. The

complexity of the graph was one of the problems in the NLP system training. The exam-

ples needed for training the NLP system are not affordable in a short term.

Figure 37 Finite state machine alpha version.

44

The underfitting was one of the reasons to change the graph. This graph in short term

lacks training. The new graph solved this problem because the quantity of samples

needed for training less than previously.

The implementation of the structure in the application was another problem. The complex-

ity made the code longer.

Other findings in the testing were about the language and microphone buttons. The prob-

lem with the language button was that, it did not show which language was chosen.

About the microphone button were two issues, one about its interaction and another about

its aspect. About the interaction, it was reported that sometimes, the touch interaction did

not work correctly. It was caused by the Unity touch handler. About the aspect, it was re-

ported that the button was too small for a normal interaction. The beta version solved all

these problems.

Beta version

The beta version solves the problems found in the Alpha version and a new UI was made.

It can be seen in the Figure 22. This version is a good candidate for the final version.

The new UI solved the problems with the microphone button, and it works now perfectly.

Also, the new UI solved the language button problem, and now the languages button

changes depending of the language.

The other problem seen in the alpha version was the graph. In the beta version the graph

has been simplified and now it has only 7 states (Figure 22) against 18 states of the alpha

version graph (Figure 37).

In the old graph, all the entities were trait type. In the new graph, only one entity has trait

strategy and the others use different strategies. This makes easier the training of the NLP

System and the implementation of the graph in the application. Also, thanks to the simplifi-

cation of the graph, the complexity of processing and training has decreased exponen-

tially.

Finally, when the beta version was made and it solved the alpha version problems, the

test with external persons started. Based on these tests, it was decided whether the beta

version was the final or not.

45

Final version

The final version only has changes the server part. The functionality of the beta version

was good and, the programming part that implemented the finite state machine very good

working very fine.

The beta version was given to 5 persons. These persons were testing the application 5

days, and each one of them made their own tests to the application. The reports were

positive. The problems with the UI were solved and the response feedback was good.

With these reports, the beta version of the application was turned in the final version. The

changes in this version are in the Wit.ai platform, and there were only some small prob-

lems with the response in concrete cases.

Improving

There are some things to improve in future versions of the applications. The language

recognition sometimes faults and must be improved. The range of questions the app is

able to response is limited and must be improved. The UI always can be improved and

probably will be improved in future versions. And the range of actions must be improved,

like for example: to call someone by phone, to save some event in the calendar, to re-

sponse to sentences like “tell me a joke”, etc.

In a future, if the application receives some funds or similar, Wit.ai can be replaced by

some other service which brings better tools, like streaming audio input or better time of

response.

4.4 Auto-learning implementation

In this chapter implementation of the wit.ai rest API is explained. The program is used in

the process of training and improving of the chatbot’s NLP system. It allows upgrades the

chatbot without changing the front-end, only the back-end (Wit.ai).

This program implements all the rest API of Wit.ai. The program allows to train and im-

prove the performance and behavior in the chatbot without use the Wit.ai’s UI. Thanks to

that, the insertion of data in Wit.ai was easier than the normal way, by hand.

The program was built with javaFX because it is a fast environment for developing simple

programs. The program has a simple interface (Figure 38), with two check list, one table

and one button.

46

Figure 38 Training program UI

With the check list, user is able to execute one request at time choosing the entity with the

options. The table takes data for the request and, if needed, it shows the response. The

button only executes the selected request.

The addition of auto-learning makes the application faster and easier to maintain since

only the back end needs to be upgraded. If the back-end changes in the future, the front-

end can be upgraded.

4.5 Final version

As in the chapter 4.3.4 was said, the final version was born from the beta version. This

version was tested and, after some changes in the NLP System, it was ready to be the fi-

nal version.

In this version, the UI has been improved from the beta version (Figure 22), and it has

some visual changes. The microphone button has been animated when the button is

pressed. The animation involves a rainbow effect with the sound while the button is being

press.

47

Also, the response panel has been animated. When the response panel appears, it ap-

pears sliding from the right part of the screen, if it contains only text, and from the left, if it

contains multimedia information.

In the Wit.ai part, that version has some changes focused in the efficiency of the Wit.ai’s

response. Then, some adjustments have been done in Wit.ai using the autolearning pro-

gram (chapter 4.4).

Finally, this version of the application is going to be released public and, it will be pub-

lished in the Apple Store and in Google Play. The process of publishing will be done in

less than a month after publishing this document.

4.6 Future improvements

While chapter 4.1 explained the general case of the chatbot, here the Alcoi implementa-

tion is discussed. In the city of Alcoi, thanks to “Universitat Politècnica de València - Cam-

pus d’Alcoi”, the city council of Alcoi was met and, it was agreed that the city promotes the

chatbot through big touch screens in the street and, through the application.

Then, thanks to the agreement with the Alcoi’s city council, the application is going to be

promoted through the city and, for sure, some changes in the UI will be done. The new in-

terface will be adapted to a new way of interaction because it passes from a smartphone

screen to a 100-inch screen.

This future project is going to be managed together with other business. Some of these

businesses bring us a big-data environment for training the application. That new project

is already started as bifurcation of the chatbot and, it is estimated to finish it before Sep-

tember of 2019.

48

5 CONCLUSIONS

Developing an application which offers a better service than other applications like Google

Assistant or Siri was the target of the thesis. While developing the main objective, other

goals appeared like how digital assistants work using an NLP system, the importance of

UIs and how cost-benefit analysis affects the development process.

For working in the cities of Alcoi and Lahti a field study was made but, only the information

of Alcoi has been implemented in the application so far because it was more consistent

and precise than Lahti’s.

Several UIs along the project were designed and those user experience cualuated. Some

problems occurred in first versions like wrong feedback or wrong behavior. These and

other errors were fixed in the following version.

The NLP system implementation was the crucial part of the project. Two versions were

made where the first version followed a complex strategy, which caused undesired behav-

ior. The second, more simplified version brought the designed behavior.

Finally, some aspects were affected by the cost-benefit analysis. Some of these aspects

are the information about Lahti in the application and the NPL system implementation.

This project is affordable if it is focused in concrete places. If the focus is every place, it

means a general purpose focus, and it is completely not affordable for only one person.

The time of development was a bit longer than estimated, but it was due for the inexperi-

ence in this area of development.

Concluding, the main goal of the project was achieved, and the project was finished suc-

cessfully. This project is still under development and will implement future improvements

like Lahti’s data and the features stated in the Alcoi’s agreement.

49

REFERENCES

Arora, P. 2018. Different types of Natural Language Processing. Available at:

https://www.quora.com

Bhardwaj, A., Di, W., & Wei, J., 2018. Deep Learning Essentials: Your Hands-On Guide to

the Fundamentals of Deep Learning and Neural Network Modeling. Birmingham: Packt

Publishing Ltd []. Available at: https://www.kdnuggets.com

Bourque, P., R, E., D, F., 2004. SWEBOK Guide V3.0. Available at: www.swebok.org

Google, 2019. Dialogflow web page. Available at: https://dialogflow.com

IBM systems, 2019. IBM web page. Available at: https://www.ibm.com/watson

JGraph Ltd.,2019. Draw.io [accessed 5 Apr 2019]. Available at: https://www.draw.io

Munster, G. 2018. We Ran HomePod Through the Smart Speaker Gauntlet. Available at:

https://loupventures.com

Pages 506-516. Automatic Online Evaluation of Intelligent Assistants [referenced

5.18.2015]. Proceedings of the 24th International Conference on World Wide Web. Availa-

ble at: https://dl.acm.org

ParentElement, LLC, 2016. Json .NET for Unity [accessed 20 Jan 2019]. Available at:

https://www.newtonsoft.com

Seif, G. 2018. An easy introduction to Natural Language Processing. Available at:

https://towardsdatascience.com

Wallace, E. 2010. Finite State Machine Designer. Available at: http://madebyevan.com

Wit.ai, Inc, 2019. Wit.ai web page. Available at: https://Wit.ai

Wikipedia, 2019a. Artificial intelligence. Available at: https://en.wikipedia.org

Wikipedia, 2019b. Deep Learning. Available at: https://en.wikipedia.org

Wikipedia, 2019c. Natural language processing. Available at: https://en.wikipedia.org

1

APPENDICES

Appendix 1 MasterScript

2

3

