
Bachelor’s thesis

Infromation Technology

2019

Ilja Shustov

EVALUATION AND
DEVELOPMENT OF A
PROGRESSIVE WEB APP

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Infromation Technology

2019 | 30 pages

Ilja Shustov

EVALUATION AND DEVELOPMENT OF A
PROGRESSIVE WEB APP

With the evolution of the web, and global popularization of smartphones, the market was missing
a layer of something that could combine the features of native apps and the reach of the web.
Progressive Web Applications is a response to this market demand.

This thesis was carried out to research and learn about Progressive Web Applications, with the
implementation of one of them, as a simple news aggregator.

This thesis is divided into two parts: theoretical part and practical part. The theoretical part
consists of information gathered mostly from the developers.google.com website and from other
reliable online sources. It includes a comparison between Progressive Web Applications and its
competitors. It also gives a description of the main aspects of Progressive Web Applications and
the technologies they use.

The practical part describes the implementation of a Progressive Web App. Thus, a news
aggregator application was developed with the use of such technologies as Service Worker, Web
App Manifest, App Shell and Push Notifications. The developed app supports offline mode, is
able to be installed on the home screen and has high performance, which was proven when the
testing of it was carried out.

The thesis concludes that a Progressive Web App is a great combination of technologies that has
a bright future despite facing some obstacles which are currently being solved with the support of
such influential companies as Google.

KEYWORDS:

Progressive web application, multiplatform, App Manifest, Service Worker, App Shell Model,
Push Notifications, HTTPS

CONTENTS

LIST OF ABBREVIATIONS (OR) SYMBOLS 5

1 INTRODUCTION 6

1.1 Background 6

1.2 Thesis Structure 7

2 WEB AND MOBILE APPLICATIONS 8

2.1 Native Apps 8

2.2 Web Apps 8

2.3 Progressive Web Apps 9

3 ANALYSIS OF PWA CORE TEHNOLOGIES 11

3.1 Service Worker 11

3.2 Web App Manifest 13

3.3 Application Shell 17

3.4 Push Notifications 19

4 IMPLEMENTATION OF PWA 21

4.1 Development Environment 21

4.2 Application architecture 21

5 RESULTS 26

6 CONCLUSION 29

REFERENCES 30

FIGURES

Figure 1. Simplified version of service worker lifecycle. 12
Figure 2. Service worker registration process. 12
Figure 3. Manifest.json file for PWA News app. 13
Figure 4. Linking manifest.json file in the head of index.html file. 14
Figure 5. App Manifest in Google Chrome Developer Tools. 15
Figure 6. PWA installation banner on Chrome for Android. 16
Figure 7. PWACompact library implementation script. 16
Figure 8. App Shell with and without content. 17
Figure 9. The loading speed of the app on the first and repeat visits. 18
Figure 10. Adding request permission for the Notifications to main.js file. 19
Figure 11. Push Notification request for later notifications. 20
Figure 12. Push API browsers support. 20
Figure 13. Structure of the PWA News app. 22
Figure 14. Fallback.json file of PWA news application. 23
Figure 15. Offline mode of the PWA News application. 24
Figure 16. Service worker status in Chrome Dev tools. 25
Figure 17. Lighthouse test results. 27
Figure 18. Desktop and mobile app view of PWA News application. 28

LIST OF ABBREVIATIONS

CSS Cascading Style Sheets

GPS Global Positioning System

HTTPS HyperText Transfer Protocol Secure

HTML HyperText Markup Language

JSON JavaScript Object Notation

JS JavaScript

PWA Progressive Web Application

SEO Search Engine Optimization

SSL Secure Sockets Layer

UI User Interface

URL Uniform Resource Locator

6

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

1 INTRODUCTION

1.1 Background

The web has changed significantly in the last years; it is upgrading and the functionality

increased significantly. Some years ago, we had static web pages, and that was what

the web was, but nowadays, with the advent of new technologies and the updates of the

existing ones, we have this rich functionality.

One more thing which changed in the last years is that due to the global popularization

of smartphones, and their enhanced performance, nowadays we use phones rather than

desktop computers. It is an interesting fact, that while using smartphones, time spent in

native apps is almost 7 times higher than in the web based on comscore.com[1]

research.

Unfortunately, native app development is costly both from resources and time

perspectives, due to the platform independence of native apps. Moreover, for the users

installing a native app, it is a large commitment, due to the memory space it will take and

the time they will spend on this app.

Overall, it seems that there should be something in the middle to meet the user’s

expectations.

Progressive Web Application (PWA) combines the capability of the native app and the

reach of the web. It provides a great user experience that feels integrated. PWA is a web

app, which moved to a new level, and provides new opportunities, thanks to several

technologies combined, such as Service Worker, App Shell, Web App Manifest and Push

Notifications.

Everything considered, it seems to be an interesting topic to research and the

implementation of PWA with the crucial aspects highlighted, should help in better

understanding the specifics of technologies.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

1.2 Thesis Structure

This thesis is divided into 6 chapters. Chapter 1 is an introduction part, where the

overview of the thesis topic is given and the initial idea is presented.

Chapter 2 is the theoretical part, where the main advantages and disadvantages of PWA

are presented, moreover, research and description of PWA competitors are introduced.

Chapter 3 is the theoretical part too, where the core technologies of PWA are reviewed.

Such technologies as Service Worker, Web App Manifest, Push Notifications and App

Shell are reviewed.

Chapter 4 is the practical part where the implementation process of the PWA is

described, with all main technologies implemented. It presents the application flow of this

project.

In Chapter 5 the results of the practical part are evaluated, in particular, thanks to testing

conducted with Lighthouse Tool. The final view of PWA News UI is shown.

Chapter 6 is the final chapter. It consists of summarizing the outcomes and describing

achieved goals.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

2 WEB AND MOBILE APPLICATIONS

This section briefly describes web, mobile and progressive web applications, showing

their strengths and weaknesses. This is how a comparison between them takes place in

this thesis.

2.1 Native Apps

Native Apps are applications that are developed for a particular platform, with the use of

specific programming language for each platform, thus this specificity provides optimized

performance and gives an opportunity to take full advantage of device features such as

camera, Bluetooth, GEO-location, accelerometer and etc. Native apps have to be

installed on the user’s device separately and downloaded from the platform specific app

store.

Due to platform dependence of native apps the time and the cost of their development

increases. Due to the same reason, later updates are also becoming costly. Native apps

are occupying a limited internal memory on user’s devices. Especially noticeable and

annoying for users it is becoming when app is used rarely or even just one single time.

2.2 Web Apps

Web apps are apps which the user runs in a web browser. Web apps are written using

web coding languages, such as HTML, CSS, JS and etc. They have limited functions

and cannot take full control of the device. Although a user has to be online to use those

apps, and even poor internet connection may cause application failure.

The significant advantage of the web app is that they are multiplatform. Their

development time is lower in comparison with native apps, therefore the cost is also

decreasing. Since that they run in a web browser, a user does not have to download and

install them separately.

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

2.3 Progressive Web Apps

PWA is a web app that combining new technologies with best practices for reaching

reliability, performance, be engaging and to give a user native-like feelings. PWA

characteristics are:

Reliable App loading and shows up immediately, regardless of the status and the

quality of the network connection. The level of offline functionality will depend on the

application – some applications will be able to function completely offline, while others

will display meaningful placeholder data informing the user that they are offline. In no

case should the application break or become unresponsive.[2]

Performance Network data exchange is fast, the UI is smooth and responsive.

Opportunity to be able to adapt to any kind of device: mobile, desktop and tablet are

important for PWA because it ensures compatibility even with new devices in the future.

Engaging PWA makes the user experience with the application comfortable and

enjoyable, prompting him to want to experience it again and again. It ensures that the

whole experience is still lightful. Making it easy for the user to do what they need to do.

Using features like a web Push it is always up-to-date, keeping the user informed with

notifications.

Safe It served with HTTPS. Having a secure connection really means 3 things:

identity, confidentiality, and integrity. Keeping user safe is hugely important, due to high

risks of getting into trouble.

PWA looks like native applications are, this cosmetic solution is important for the user

from a psychological point of view. All the main resources of the application can be stored

on the client, only dynamic content will be transmitted over the network.

There are differences between PWA and native applications - mainly in the rights of

access to system resources, but work in this direction goes even on the field of pure

HTML5. [3]

Hybrid Apps

Hybrid apps are built with web technologies and platform independent. Same as native

apps they run locally on the user’s device. ’’Hybrid apps run inside a native container

and leverage the device’s browser engine (but not the browser) to render the HTML and

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

process the JavaScript locally. A web-to-native abstraction layer enables access to

device capabilities that are not accessible in Mobile Web applications, such as the

accelerometer, camera and local storage.’’ [4]

Same as native apps, hybrid apps have to be downloaded and installed on the device

separately. Even though the functionality of hybrid apps is higher than web apps, they

still loosing to native apps, especially when the things are coming to some complicated

logic of the app behavior.

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

3 ANALYSIS OF PWA CORE TEHNOLOGIES

In this chapter will be shown the main components of PWA. Such technologies as

Service Worker, Web App Manifest, App Shell and Push Notifications are described. The

use of those technologies is actually, what is making the usual web app to become a

Progressive Web App.

3.1 Service Worker

The Service Worker can be called the heart of PWA. It presents the proxy layer between

the frontend and the backend that is compiled in the browser and all of the browser

requests go through it. This division into two independent layers allowed developers to

make the transition from a regular web site to PWA as simple as possible.

From the repositories, the Service Worker has access to Cache Storage for web

resources, and IndexDB for data. But, most importantly, complete freedom to implement

business logic.

It gives an opportunity, for example, to accept a request from the browser, check the

network status, take data from the storage, perform operations with them and return

some result back to the browser and based on the developers’s logic implemented it will

either think that answers came from the server or from the internet. Two browser layers

(client frontend and Service Worker) allow writing full-fledged applications.[3]

‘‘Using service worker you can hijack connections, fabricate, and filter responses.’’[5] So

for the security reasons, Service worker works only over HTTPS, to avoid man-in-the-

middle attacks.

Service worker lifecycle is separated from your web page. Below in Figure 1 is illustrated

‘‘a simplified version of the service worker lifecycle on its first installation.’’[5]

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

Figure 1. Simplified version of service worker lifecycle. Copied from [5]

From a programmer's point of view, the Service Worker is a javascript file that is included

in the html code of the page. In it, the developer defines the logic of working with requests

coming from the frontend and other functionality.

The registration process of Service Worker starts in app.js file, with declaring in it the

location of service worker Javascript file, as illustarated in Figure 2.

Figure 2. Service worker registration process.

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

3.2 Web App Manifest

Web App Manifest is a simple JSON file, which provides to a browser some basic

information about the app, such as the name of the app, icon, view of the app

(standalone, fullscreen and etc.) and some other parameters. It gives an opportunity to

install PWA in the home screen of a smartphone, which will look like a native app, and

will give to a user native-app feel. Figure 3 below shows the manifest file for PWA.

Figure 3. Manifest.json file for PWA News app.

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

As it could be seen from Figure 3, the terms used in the manifest file are clear and have

the explanations in their names. It is obligatory to have a name or short_name and

recommended to have both, the short_name is used in cases of limited space on the

user’s device. 'Icons' is an array of image objects. Each object should include the src, a

sizes property, and the type of image. [6] Mainly icons are used in the home screen, but

they also could be seen in the task switcher, splash screen and etc. Background_color

is used when the user first time opens the app and the content is loading. 'Display' gives

an option to set the UI based on application needs. Start_url setting the URL which will

be open after the user will click on an icon in the home screen.

To start using a manifest file developer first have to register it in the index file, simply by

adding a link to it, as it can be seen on the Figure 4 below.

<head>

<link rel="manifest" href="manifest.json">

</head>

Figure 4. Linking manifest.json file in the head of index.html file

With Google Chrome using DevTools developer can easily check the manifest file, as

shown below in Figure 5.

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

Figure 5. App Manifest in Google Chrome Developer Tools

In order to have an ‘Add to Home Screen’ banner, some requirements have to be met,

such as site have to use HTTPS, Service Worker has to be registered and the manifest

file should have all mandatory parts (name, icons, start_url and display mode). Finally,

when all of the conditions are fulfilled end-user will be able to see a banner prompting

him to install the app to the home screen, as is shown in Figure 6.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

Figure 6. PWA installation banner on Chrome for Android (taken from [7]).

Web App manifest faced with a lack of support in the initial stage in some browsers, due

to it PWA was not supported on IOS devices. But after a new upgrade in the middle of

2018 from Apple, it has the support of Web App manifest, even though it is still limited

and some functions like installation events are not supported. Due to that Google

released a new library called PWACompact, which allows using Web App manifest for

the non-compliant browsers. Implementation of this library consists of adding a script to

your code, as it could be seen on the Figure 7.

Figure 7. PWACompact library implementation script.

Nowadays most of the browsers having support of the Web App Manifest. Browsers like

Chrome for Android, Edge, Chrome and Android Browser having the full support of all

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

features of the Web App Manifest. Meanwhile, IOS Safari, Opera Mobile and Firefox for

Android are still having partial support.

3.3 Application Shell

App Shell is a basic template for a website which consists of a minimum of HTML, CSS

and Javascript. App Shell is cashed after the first visit of the user, then it saves on the

users' device and loads instantly when the user opens the app next time. So it giving an

opportunity to show for the user something immediately while dynamic information of the

website is loading. It makes a user have a feeling of using a native app and increase the

performance of the app. In other words, app shell could be described as a skeleton of

UI, which stored locally. The difference between how app shell looks like with and without

content could be seen in Figure 8 below.

Figure 8. App Shell with and without content. Copied from [8].

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

There are 3 main advantages of using an app shell with the service worker. The first one

is a performance, high speed of showing to the user some animation on the repeat visits

after the caching strategy is executed. For complete clarity, Google developers have

made a test to see the gap between the first and repeat visits of the same website with

app shell architecture and service worker enabled, the results of it are shown in Figure

9 below.

Figure 9. The loading speed of the app on the first and repeat visits (copied from [9]).

As illustrated in Figure 9, it took 1.2 seconds in the first case scenario and only 0.5

second in the second one, due to properly configured and implemented the work of

service worker caching. Tests were carried out on cable with Nexus 5 using Chrome Dev

Tools.

The second benefit of App shell gives to a user native-like interactions. ‘‘By adopting the

app shell model, you can create experiences with instant, native-application-like

navigation and interactions, complete with offline support.’’ [8]

Modest use of data is another advantage of the app shell combined with the service

worker. During the development time, a web app is created to use a minimum amount of

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

data, plus the result is achieved by using static assets from the cache and overall

aggressive but at the same time reasonable cache strategy.

3.4 Push Notifications

Push Notifications was the thing which was missing in the web before, and made a big

gap between the native and web apps, in the ability to reach the users' attention.

Push Notifications is one of the most popular technologies of PWA. In the initial stage of

PWA gaining its popularity, most of the websites were using PWA only for Push

Notifications. And if back then when you were visiting those websites, the first thing you

were doing is searching for the ‘Close’ button, nowadays it changed, and the idea of wise

use of notifications, that it is better do not bother the user and much better solution would

be making those offers after the second or third time of user visiting the website.

There are several options that could be push notifications used for. ‘‘They can do simple

things, such as alert the user to an important event, display an icon and a small piece of

text that the user can then click to open up your site. You can also integrate action

buttons in the notification so that the user can interact with your site or application without

needing to go back to your web page.’’ [10]

Push notifications consist of two main technologies, it is Notifications API and Push API.

Notifications API

Notifications API allows us to show to the user some pop-ups or display any other

information while he is using the browser. Before we could display those notifications,

permission from the user have to be granted. It usually consists from adding two lines of

code to our main Javascript file, as it is shown on the Figure 10 below.

Figure 10. Adding request permission for the Notifications to main.js file.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

From the users’ point of view, it looks like it is shown in Figure 11 below.

Figure 11. Push Notification request for later notifications.

Push API

Push API allows us to display notifications even when the browser is closed. It gives us

an opportunity to engage the user. Implementation of Push API is more complex work in

comparison with Notification API, but as a result, it provides the user the ability to interact

with the app even without using the browsers itself. Overall, increasing the native app

feeling.

Push API support

Push API faces a lack of support in some browsers, especially on IOS devices, as it

could be seen from Figure 12 below.

Figure 12. Push API browsers support. [11]

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

4 IMPLEMENTATION OF PWA NEWS APP

This chapter will describedthe path of creating a PWA News App. The application was

developed to show all of the features of PWA and all of the main technologies, such as

Service Worker, App Shell, Push Notifications and Web App Manifest were used. It is a

simple news aggregator with a wide choice of different news sources. News API

(newsapi.org) was used to fetch the data from various sources. The app has an add to

Home screen feature with one click from the pop-up notification, it also supports offline

mode.

4.1 Development Environment

The application was developed using a HP Pavilion with Windows 10 as an operating

system. Node.js was used to execute the Javascript code. NPM was installed and used

as a package manager for Node modules. The code itself was written in Visual Studio

Code, it is a code editor redefined and optimized for building and debugging modern web

and cloud applications. [12] It has an impressive amount of different features and a great

number of programming languages supported, overall fully covers our needs in this

project.

Firebase was used for the hosting of our app. Firebase was chosen because it is free to

use and has the support of all vital functions of the PWA, such as secure connection,

API support and etc.

4.2 Application architecture

App implementation started with creating a new main folder. Structure of this folder

shown in Figure 13 below.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

Figure 13. Structure of the PWA News app.

As it is shown in Figure 13 main folder consists of several subfolders and files.

Public

Public directory was created for hosting reasons during the initialization of the project

with the Firebase project. This directory consist of the files served publicly - static assets.

404.html file was created when the initialization progress of Firebase hosting was

running. It is a boilerplate web page that will appear in case anything goes wrong.

App.js file keeps in yourself the logic of the app. Here we have settled the creation of

articles process and their updates.

Images

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

It is a folder with images, mainly consist from various size icons that need to fulfill the

need of Web App Manifest, and all images and icons looked smooth in different types of

devices and fit the screen size.

Firebase.json, .firebaserc, and folder .firebase were added automatically when the

initialization process of Firebase Hosting was running.

.gitignore

It is a file which used to decide which files will be ignored, by the version control system.

Fallback.json

It is a file which used to display to the user some information when the internet connection

is lost.

Figure 14. Fallback.json file of PWA news application.

From the user point of view, it looks the way it is shown in Figure 15 below.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

Figure 15. Offline mode of the PWA News application.

On the Figure 15 shown the offline mode. It appears when the user is offline and he

changing the source of the news to the one he never was visited before, so it was not

cached. It was used to get rid of the standard connection interrupted messages.

Manifest.json

This file was generated using Web App Manifest Generator (https://app-

manifest.firebaseapp.com/). This tool is free to use and facilitates the work of the

developer.

Sw.js

In this file was identified events for Service worker. Its functionality was checked using

Chrome DevTools, as it is shown in Figure 16 below.

https://app-manifest.firebaseapp.com/
https://app-manifest.firebaseapp.com/

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

Figure 16. Service worker status in Chrome Dev tools.

Service Worker was identified and registered and as it is shown in Figure 16 running

without any errors.

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

5 RESULTS

After successful finishing the implementation process of PWA, when all debugging

issues were solved and the app was hosted. The testing was carried out, for it was used

LightHouse tool

Lighthouse is an open source tool which is used for the evaluation of websites. ‘’It can

be run in Chrome DevTools, from the command line or as Node Module. It runs a series

of audits against the page, and then it generates a report on how well the page did.’’ [13]

This report gives an evaluation of the page in such categories as performance,

accessibility, best practices, Search Engine Optimization (SEO) and PWA. It gives a

great opportunity for the developer to see what is already good and what can be

improved, moreover each audit having an explanation on why it is important and how to

fix it. [13]

PWA News app successfully passed the Lighthouse audition process, as it is shown in

Figure 17 below.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

Figure 17. Lighthouse test results.

As it can be seen from Figure 17, the app received 100 points in a Performance category,

81 percent in accessibility, 100 in best practices, 82 in SEO and 100 percent for PWA,

which means that completely fulfill all of the aspects of a Progressive Web App.

The final view of PWA news application is shown in Figure 18 below.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

Figure 18. Desktop and mobile app view of PWA News application.

As a result, we created a functioning PWA news app that can be added to the home

screen, thanks to the web app manifest, and supports offline mode, thanks to the service

worker and cache strategy.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

6 CONCLUSION

In conclusion, the main goal of the thesis was to learn about PWA and create an app

which would fulfill all of the aspects of PWA. While researching about PWA technologies,

pros and cons were analysed, as well as a comparison between native, PWA and hybrid

apps was made.

After studying the theory of PWA and having an understanding of PWA core

technologies, the implementation of the app itself started. A News app was decided to

be a good choice, due to simple app logic itself and the opportunity to use all of PWA

technologies. The developed app is fully consistent with the initial idea, and the test result

confirms it.

PWA seems to be a good set of technologies that moving web to a new level, and helping

the web to increase the engagement with the users. It could replace some of the native

apps and will be beneficial for all of the sides, but it does not look like something that is

going to replace them completely, but it will occupy its niche.

Challenge in gaining the popularity for PWA is still remaining some lack of support on

IOS and non-acquaintance of end users of the existence of those features. Anyway, it is

noticeable how the developers are trying to solve these problems, releasing new updates

and optimizing technologies for their greater approach.

In any case, Google is actively promoting PWA and prompting to master the PWA

technologies, by providing tutorials in particular. Moreover, the fact that such giant

companies as Facebook, Twitter, Instagram and many others have, besides their main

native apps, PWA versions of it, means only that PWA is a great technology, which will

gain popularity.

To sum up, from the author’s perspective, it was interesting to research and implement

PWA and this knowledge has strengthened the author’s overall web development

experience.

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Ilja Shustov

REFERENCES

[1] Comscore, Inc. (2019). Comscore’s 2015 U.S. Mobile App Report Available for Download. [online]
Available at: https://www.comscore.com/Insights/Press-Releases/2015/9/comScores-2015-US-
Mobile-App-Report-Available-for-Download [Accessed 9 May 2019].

[2] Vaadin.com. (2019). [online] Available at:
https://vaadin.com/pwa?utm_term=pwa&utm_campaign=PWA+search+EU+-
+Mar+20,+2018&utm_source=adwords&utm_medium=ppc&hsa_net=adwords&hsa_tgt=kwd-
303145221062&hsa_ad=258324572117&hsa_acc=7040932438&hsa_grp=55768637720&hsa_
mt=e&hsa_cam=1258602860&hsa_kw=pwa&hsa_ver=3&hsa_src=g&gclid=Cj0KCQjwh6XmBR
DRARIsAKNInDEzvhXLrjTOTQg5bt9deU1TizJhE0l75RZJWIEiZi2E95ARja8186kaApbwEALw_
wcB [Accessed 28 Mar. 2019].

[3] Weekly-geekly.github.io. (2019). PWA is just. [online] Available at: https://weekly-
geekly.github.io/articles/418923/index.html [Accessed 2 Aprill 2019].

[4] Telerik Blogs. (2019). What is a Hybrid Mobile App?. [online] Available at:
https://www.telerik.com/blogs/what-is-a-hybrid-mobile-app- [Accessed 10 Apr. 2019].

[5] Google Developers. (2019). Service Workers: an Introduction | Web Fundamentals | Google
Developers. [online] Available at:
https://developers.google.com/web/fundamentals/primers/service-workers/ [Accessed 25 Apr.
2019].

[6] Google Developers. (2019). The Web App Manifest | Web Fundamentals | Google
Developers. [online] Available at: https://developers.google.com/web/fundamentals/web-app-
manifest/ [Accessed 26 Feb. 2019].

[7] Love2dev.com. (2019). [online] Available at: https://love2dev.com/blog/beforeinstallprompt/
[Accessed 10 May 2019].

[8] Google Developers. (2019). The App Shell Model | Web Fundamentals | Google Developers.
[online] Available at: https://developers.google.com/web/fundamentals/architecture/app-shell
[Accessed 28 Apr. 2019].

[9] Google Developers. (2019). Instant Loading Web Apps with an Application Shell Architecture
| Web | Google Developers. [online] Available at:
https://developers.google.com/web/updates/2015/11/app-shell [Accessed 5 May 2019].

[10] Google Developers. (2019). Introduction to Push Notifications | Web | Google Developers.
[online] Available at: https://developers.google.com/web/ilt/pwa/introduction-to-push-notifications
[Accessed 11 Apr. 2019].

[11] Caniuse.com. (2019). Can I use... Support tables for HTML5, CSS3, etc. [online] Available
at: https://caniuse.com/#feat=push-api [Accessed 28 Apr. 2019].

[12] Code, (2019). Visual Studio Code - Code Editing. Redefined. [online] Code.visualstudio.com.
Available at: https://code.visualstudio.com/ [Accessed 14 Apr. 2019].

[13] Google Developers. (2019). Lighthouse | Tools for Web Developers | Google Developers.
[online] Available at: https://developers.google.com/web/tools/lighthouse/ [Accessed 28 Apr.
2019].

