

Jigsaw Unintended Bias in Toxicity Classification

Bachelor’s thesis

Electrical and Automation Engineering

Spring 2019

Minh Quan Do

1

 ABSTRACT

Electrical and Automation Engineering
Valkeakoski

Author Minh Quan Do Year 2019

Subject Jigsaw Unintended Bias in Toxicity Classification

Supervisor(s) Juhani Henttonen

Xuan Hoai Nguyen

ABSTRACT

The purpose of this thesis was to implement a Deep Learning Model to
classify the toxicity of online comments. The main focus was on analysing
the sentiment of sentences and on classifying this into categories. The data
was collected from Jigsaw Unintended Bias in Toxicity Classification
competition on Kaggle.

In this thesis, we will have a look at the following concept: Deep Learning,
what is Natural Language Processing, what is Recurrent Network (RNN),
Long-short Term Memory (LSTM) and Gated Recurrent Units (GRN).
Background information was mostly collected from papers and journals
from Google Scholar.

The method here was using pre-trained embeddings to represent the
relationship of inputs from words into vectors. Then, the data went
through Bidirectional LSTMs (GRUs) layer to extract the sentiment of
inputs.

The project was implemented successfully and the result was favourable.
The model achieved an accuracy of 93% on the public test set and ranked
at 1314 out of 2172 contestants.

Keywords Deep Learning, Machine Learning, Natural Language Processing (NLP)

Pages 30 pages including appendices 5 pages

2

CONTENTS

1 INTRODUCTION ... 3

2 BACKGROUND KNOWLEDGE ... 4

2.1 Machine Learning .. 4
2.2 Deep Learning ... 4
2.3 Neural Networks ... 4
2.4 Natural Language Processing (NLP) .. 6

2.4.1 Basic classification techniques .. 7
2.4.1.1. Naïve Bayes Classifier ... 7
2.4.1.2. Logistic Regression ... 7
2.4.2 Recurrent Neural Networks ... 7
2.4.2.1. Backpropagation Through Time (BPTT) .. 10
2.4.2.2. Long Short-Term Memory Units and Gated Recurrent Units 10

3 PROPOSED METHOD ... 17

3.1 Task Description .. 17
3.2 Model Architecture ... 17
3.3 Word Embedding .. 18
3.4 LSTMs and GRUs ... 19
3.5 Training ... 19

4 EVALUATION METRICS .. 20

4.1 Dataset Description ... 20
4.2 Evaluation ... 21

5 RESULTS AND DISCUSSION .. 22

6 CONCLUSIONS ... 23

REFERENCES ... 24

Appendices
Appendix 1 MODEL IMPLEMENTATION
Appendix 2 MODEL LOG

3

1 INTRODUCTION

This thesis discusses Machine Learning and Deep Learning. Deep Learning
is a subfield of Machine Learning that teaches computers to learn by
examples. Deep Learning is an important part of driverless cars,
observation system in China, Alpha Go and Alpha Go Zero of OpenAI, etc.

If we take a brief look at the history, before Deep Learning became a
worldwide phenomenal, Support Vector Machine (SVM) was preferred
since the limitations in the computation power and the data reduced the
accuracy of Deep Learning. Not until 2012, when Alex Krizhevsky, Ilya
Sutskever, and Geoff Hinton entered a submission that would halve the
existing error rate to 16% using a Deep Convolutional Neural Network
(AlexNet), Deep Learning has become a phenomenal, gaining back the
interest of Data Engineers and Data Scientists. In 2014, DeepFace of
Facebook and Generative Adversarial Networks (GAN) of Yann LeCun was
introduced. Next, Google’s AlphaGo beat Lee Sedol, a top-ranked
international Go player from Korea in 2016. Lastly, in 2017, Fei-Fei Li
launched the ImageNet (a free dataset of more than 14 million labelled
images, which is very important for training neural nets in supervised
learning) for researchers, educators and students.

In this thesis, we will focus on the Recurrent Neural Network for Natural
Language Processing (NLP) to classify the toxicity of online comments in
Kaggle’s competition: Jigsaw Unintended Bias in Toxicity Classification.

With the development of social networks, people easily leave a comment
online without knowing its consequences. Online comments or posts
sentiment analysis can help to solve the problem and help us prevent some
events such as: cyber bullying, negative news, negative feedbacks.

The challenge in the competition was the computing limitation and the lack
of diversity in the dataset. Hence, it made the model easily got overfitted
since there were significantly more zeros than ones. In addition, labels of
the test set and cross validation set were hidden; thus, we could not know
how good our model performed. Therefore, adjust the model to get less
overfitted or underfitted.

However, the goal of the competition was not only classifying inputs as
positive or negative but also predicting scores of the inputs. Therefore, it
can later be used to predict the severity of a sentence.

4

2 BACKGROUND KNOWLEDGE

2.1 Machine Learning

Machine Learning is a subfield of Artificial Intelligence (AI) that is said “to
learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P,
improves with experience E” (Mitchell, 1998, p. 2). That is, machine
learning is a set of algorithm, which help the performance of a task better
through training by minimizing errors using optimization methods. Some
famous machine learning methods are: supervised learning algorithms
(e.g. logistic regression, linear regression), unsupervised learning
algorithms (e.g. K-nearest neighbourhood, K-mean clustering), semi-
supervised learning algorithms (e.g. cluster assumption) and
reinforcement learning algorithms.

2.2 Deep Learning

Deep Learning is a subfield of machine learning applying algorithms
inspired by designs and functions of the brain called artificial neural
networks.
Deep artificial neural networks are a collection of algorithms that have set
breakthrough for several real-world problems: image recognition, sound
recognition, image processing, recommender systems, healthcare
services, autonomous vehicle, Artificial Intelligence, etc. (Mital, 2017).

Deep refers to the quantity of layers in a neural system. A shallow system
has one purported concealed layer; on the other hand, a deep systems has
multiple. Different concealed layers enable deep neural systems to adapt
better highlights of information, since basic highlights recombine starting
with one layer then onto the next, to frame increasingly complex
highlights. Nets with numerous layers pass input information and highlight
their attributes better than nets with less layers. However, Deep Learning
requires a large amount of data to achieve a decent accuracy and avoid
overfitting. Moreover, since Deep Learning takes matrices as input, it
requires lots of computational power to make it faster; therefore, the
deeper the network is, the more computational power it needed.

2.3 Neural Networks

Neural networks (Sarle, 1994) are a group of algorithms, imitating the
human brain, translating sensory information using computer perception,
classifying or clustering raw input; As a result, recognize a pattern and
embedded the pattern as vectors or matrices; as a result, all real-world
information such as: images, sounds, texts or statistics, have to be
translated.

5

Neural networks facilitate us cluster and classify. They assist to cluster
untagged information in keeping with similarities among the inputs, and
classifying information after their labelled of training dataset. Neural
networks may also extract features that are fed into learning algorithms
for clustering and classification.

Deep Learning is the name we tend to refer to networks are composed of
many layers; each layer is built from nodes. A node is the core where
computation happens, imitating a neuron cell in a human brain, that
activates once it encounters adequate impulses, combining inputs from the
information to form a collection of coefficients (weights), that either
magnify or lessen that input, thereby applying the trained matrices to
inputs with relation to the task correspond to the algorithmic rule; e.g. that
input is most useful is classifying information while not error? These input-
weight product are totalled then the sum is responded to a node’s
supposed activation perform, to work out whether or not and to what
extent that signal ought to progress additional through the network to
have an effect on the final word outcome, say, associate degree act of
classification. If the signal passes through, the neuron is considered as
“activated.”

Figure 1: A node (Skymind.ai, n.d.)

6

Figure 2: Simple neural networks layers

• Input layer: where data is fed into the network
• Hidden layer: containing activation functions, at this layer, the

output of the previous layer is being processed (activated). In this
case, the output of the input layer. A neural network can have more
than one hidden layer.

• Output layer: where output from hidden layers is turned into
probabilities of the target label.

2.4 Natural Language Processing (NLP)

Natural language processing (NLP) is a branch of Artificial Intelligence that
helps computers understand, analyse and work on natural language. NLP
follows many disciplines, including computer science and computational
linguistics, in order to fill the gap between human communication and
computer understanding. (Skymind.ai, n.d.).

Some applications of NLP are: Information Retrieval, Information
Extraction, Machine Translation, Sentiment Analysis, Spam Filter, Speech
Recognition, Natural Language Generation, etc. (Skymind.ai, n.d.).

7

2.4.1 Basic classification techniques

2.4.1.1. Naïve Bayes Classifier

The most basic and simple probabilistic classifier in machine learning based
on Bayes’ Theorem. Theoretically, naïve Bayes is a conditional probability
model: probability of an event (some particular situation occurring) given
that another event has occurred (Naïve Bayes Classifier, 2019).

• Bayes Theorem:

𝑝(𝐶$|	𝑥) = 	
(+,)-𝑥.𝐶$/

*(0)
 (1)

• Gaussian Naïve Bayes

𝑝(𝑥 = 𝑣	|	𝐶$) = 	
2

3456,
7
𝑒
9(:;<,)

7

7=,
7 (2)

2.4.1.2. Logistic Regression

Logistic Regression is a machine learning algorithm for classification. In this
algorithm, the probabilities describing the possible outcomes of a single
trial are using a logistic function (Logistic Regression, 2019).

• Linear Regression
𝑓(𝑥) = 	𝑤@𝑥 (3)

• PLA

𝑓(𝑥) = 𝑠𝑔𝑛(𝑤@𝑥) (4)

In the formula, the activation function, the matrix w and the inputs x
output a graph. Then, using a threshold, we can classify the input.

2.4.2 Recurrent Neural Networks

In deep learning, we can use Recurrent Neural Network to deal with NLP.
The problem with traditional neural network is that they do not consider
the relationship between inputs. Recurrent neural network can model
dynamic systems, where to previous outputs depend on past values of
outputs and inputs also. Ordinary neural network is a static model between
inputs and outputs.

8

Recurrent neural networks address the issue above. They are networks
with their own loops, allowing information to endure.

Figure 3: Folded Recurrent Neural Network (Do., 2017)

Figure 4: Unfolded Recurrent Neural Networks (Do, 2017)

Explanation of RNNs:

• xt: the input at the time step t (one hot vector or word embedding)
• st: the hidden state at the time step t

o The memory of the network
𝑠(𝑡) = 𝑓(𝑈𝑥F +𝑊𝑠F92) (5)

o The function f: nonlinearity such as tanh or ReLU
o s-1: used to compute s0 (initialized by zero)
o ot: the output at the time step t

§ For example:
𝑜F = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑉𝑠F)

 With V is vocabulary

A chunk of neural network, A, takes some input xt and produces an output
ot in the figure above. A loop allows the transmission of information from

9

one network step to the following. One can think of a recurrent neural
network as multiple copies of the same network, each passing an
information to a successor.

Recurrent networks are distinguished from feedforward networks by
means of that it connected to their past selections, taking their very own
previous outputs as input. It is regularly said that recurrent networks have
reminiscence, including memory to neural networks has a reason: there is
information inside the serie, and recurrent nets use it to carry out tasks
that feedforward networks cannot.

 Some notes on RNNs:

• st: the memory of the network
o st: captures information from previous steps

• RNN uses the same parameters (U, W, V) for all steps
o Performing the same task on different inputs
o Reducing the number of parameters

• The output ot is not necessary for all problems
o Depending on each task

§ Sentiment prediction: only needs the final state
• The need of input xt: also depends on each task
• Main feature of RNN

o The hidden states
o Capture hidden representation of a sequence

10

Figure 5: Long-term Dependencies (Do, 2017)

2.4.2.1. Backpropagation Through Time (BPTT)

Backpropagation is an optimization algorithms in Machine Learning. It
computes the portion of the error of the output by calculating the
derivatives of the inputs, weights and output. After that, the derivatives
are then used to adjust the weights matrix using other optimization
method, e.g. Gradient Descend, Adam, Adadelta, etc. (Minh-Tien, N.,
2019).

Recurrent networks depend on an expansion of backpropagation called
backpropagation through time, or BPTT. Time, for this situation, is basically
communicated by a well-characterized, ordered series of calculations
connecting one time step to the following, which is all backpropagation
needs to work (Minh-Tien, N., 2019).

2.4.2.2. Long Short-Term Memory Units and Gated Recurrent Units

The problem of RNNs is Vanishing Gradients, which is happens when a
network has too many layer and the gradients of the loss function go
toward zero, making no update on the weights matrix even though it has
not reached the optimal point. This is somewhat because of the
information going through many stages of multiplication (Minh-Tien, N.,
2019).

11

Figure 6: The relation between the number of layers and Gradient Vanishing

As a result, in the mid-90s, two German researchers Sepp Hochreiter and
Jürgen Schmidhuber introduced the idea of Long Short-Term Memory
Units (LSTMs) (Hochreiter & Schmidhuber, 2006) to encounter the
Vanishing Gradient.

LSTMs help prevent the vanishing gradient that can be backpropagated
through time and layers by keeping a small amount of error, it allows the
RNN to continue learning. The information can be stored, read or written
from a cell. Its mechanism let important feature passes through learning
from data. That is, cells learn when and what data allow to enter, leave or
be deleted through learning.

Figure 7: LSTM Forget Gate (Minh-Tien, 2019)

𝑓F = 𝜎(𝑊N. [ℎF92, 𝑥F] + 𝑏N) (6)

12

• Looks at ht-1 and xt
• For each Ct-1, output

o 1: completely keep the information
o 0: completely forget the information
o Sigmoid function

Figure 8: LSTM Storing Gate (Minh-Tien, 2019)

𝑖F = 𝜎(𝑊V. [ℎF92, 𝑥F] + 𝑏V) (7)

𝐶WF = tanh(𝑊\. [ℎF92, 𝑥F] 	+ 	𝑏+) (8)

• Deciding what new information to store
• Two steps:

o Sigmoid layer: calls the “input gate layer”
§ Decide which value to be update

o Tanh layer:
§ Create a vector of new candidate values

Figure 9: LSTM Update Gate (Minh-Tien, 2019)

𝐶F = 	𝑓F ∗ 𝐶F92 +	 𝑖F ∗ 	𝐶WF (9)

• Update the old cell state to the new cell state

o Multiply Ct-1 with ft
§ Forgetting information we want to forget

o Adding: it * 𝐶WF

13

§ A new candidate value
§ Selected by how much we decided to update each

state value
• We actually drop information about the old subject’ gender and

add new information

Figure 10: LSTM Output Gate (Minh-Tien, 2019)

𝑜F	 = 𝜎(𝑊 [ℎF92, 𝑥F] + 𝑏^) (10)

ℎF = 𝑜F ∗ tanh(𝐶F) (11)

• Deciding the output of LSTM cell
• Sigmoid layer:

o Deciding what parts of the cell state are going to output
• Tanh layer:

o Put the cell state to tanh(-1, 1)
o Multiply with the output of the sigmoid gate
o Only output the parts we decided to

• The subject to the next word is a verb
• From the output of LSTM cell

o Know the subject is plural or singular
o Output correct verb

Using the same idea and mechanism with LSTMs, a GRU (Cho et al., 2014)
can be consider as a LSTM with less gate and without output gate. As a
result, it takes less computational time and fully writes the information
from its memory cell to larger net at each time step.

14

Figure 11: GRU Update Gate (Minh-Tien, 2019)

𝑧F = 	𝜎(𝑊(`)𝑥F + 𝑈(`)ℎF92) (12)

• Compute the update gate zt for the time step t

o xt is combined with its weight
o ht-1 is combined with its weight

• Both the output are added together
o Using sigmoid function
o Between 0, 1

Figure 12: GRU Reset Gate (Minh-Tien, 2019)

𝑟F = 𝜎(𝑊(b)𝑥F + 𝑈(b)ℎF92) (13)

15

• Compute the reset gate rt for the time step t. Similar to the update

gate
o xt is combined with its weight
o ht-1 is combined with its weight

• Both the output are added together
o Using sigmoid function
o Between 0, 1

The reset gate and the update gate are computed by the 2 formulas (11)
and (12). “When the reset gate is close to 0, the hidden state is forced to
ignore the previous hidden state and reset with the current input only”
(Cho et al., 2014, p. 3). This allows the hidden state to exclude information
that is irrelevant in the future. On the other hand, the update gate decides
how much information will be forwarded to the current hidden state.

Figure 13: GRU Current Memory Content (Minh-Tien, 2019)

ℎ′F = tanh(𝑊𝑥F + 𝑟F⨀𝑈ℎF92) (14)

• Multiply

o xt with W and ht-1 with U
• Hadamard (element wise)

o Determine what to remove from the previous time steps
• Sum up
• Apply tanh function

16

Figure 14: GRU Final Memory at current time step (Minh-Tien, 2019)

ℎF = 𝑧F⨀ℎF92 + (1 − 𝑧F)⨀ℎ′F (15)

• Need to compute ht which holds information for the current time

step
o Apply element wise of zt and ht-1
o Apply element wise of zt and (1-zt)
o Sum up two parts

After computed all the step, the final memory sums up to give the matrix
and the output, this is a result of the update, reset and the shared weights
matrix.

Figure 15: GRU vs LSTM (Minh-Tien, N., 2019)

17

Table 1: Comparison table between GRU and LSTM

GRU LSTM
An Update gate which decide whether to
pass previous information to the next
cell

Two more gates for forget and output

A Forget gate is nothing but has a new
set of weight (Wt)

Two additional math operations with
two new sets of weights

3 PROPOSED METHOD

3.1 Task Description

Kaggle is an online network of data scientists and machine learning,
claimed by Google LLC. Kaggle enables clients to discover and distribute
public datasets, investigate and fabricate models in an online information
science condition, work with other information researchers and AI designs,
and enter rivalries to unravel data science challenges. Kaggle got its start
by offering AI competitions and now likewise offering an open data
platform, a cloud-based workbench for data science, and short structure AI
training.

The challenge of the competition was to detect toxic comments and
minimized unintended model bias. Unintended bias in Machine Learning
can be seen as systemic differences in performance for different
demographic groups, potentially compounding existing challenges to
fairness in society at large.

3.2 Model Architecture

Due to the kernels time limitation and the hidden test set labels. We are
unable to make a complex models. Therefore, I made tests on different
basic models to get the overview which model give the best result.

18

Figure 16: An illustration on the RNNs model (Solomon, n.d.)

 Model Architecture

⎩
⎪
⎨

⎪
⎧

𝐼𝑛𝑝𝑢𝑡	𝑙𝑎𝑦𝑒𝑟
𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔	𝑙𝑎𝑦𝑒𝑟
𝐿𝑆𝑇𝑀𝑠, 𝐺𝑅𝑈𝑠	𝑙𝑎𝑦𝑒𝑟𝑠

𝐷𝑟𝑜𝑝	𝑜𝑢𝑡
𝐻𝑖𝑑𝑑𝑒𝑛	𝑙𝑎𝑦𝑒𝑟
𝑂𝑢𝑡𝑝𝑢𝑡	𝑙𝑎𝑦𝑒𝑟

Firstly, comments are taken through pre-processing function to remove
punctuations and emoticons. The return text is cleaned and lowercased.
Secondly, comments are converted into sequence using
keras.prepocessing library. Finally, they are sliced and padded to fit the
input length.

After that, inputs went through a pre-trained embedding layers, so their
relationship can be better represented. In this thesis, I used Facebook’s
Fasttext with 600 billions tokens embedded in a square matrix of size 300
and Stanford’s Glove embedded in a square matrix of the same size using
6 billions tokens. In addition, for model using both word embedding and
char embedding, I used Standford’s char embedding using 840 billions
tokens embedded in a 300 dimension matrix. Then, the input will go
through the LSTMs or GRUs to extract their features. Bidirectional
recurrent networks allow the networks to extract sentiment from the word
before and after of the input. Next, drop out layer removes an entire 1
dimension feature map randomly, preventing model from overfitting. After
going through two hidden layers using ReLU activation function, the
sigmoid, tanh or softmax function outputs the probabilities of the inputs.

3.3 Word Embedding

Word embedding is one of the most popular representations of document
vocabulary. It is capable of capturing context of a word in a document,
semantic and syntactic similarity, relation with other words, etc. “A
fundamental problem that makes language modelling and other learning
problems difficult is the curse of dimensionality.” (Bengio et al., 2001, p. 1).

19

In word embedding, each word mapped to one vector illustrate by a real-
value vector, often tens or hundreds of dimensions. This is contrasted to
the thousands or millions of dimensions required for sparse word
representations, such as a one-hot encoding and its value learned through
training.

The representation is learned based on the usage of words. This allow to
represent words are used in a similar ways to have similar representations;
therefore, capture their meanings. This could be summarized as: words
that have similar context will have similar meanings; as a result, have the
similar representations.

Many NLP systems and traditional techniques treats words as atomic units,
that is, there is no consideration between similarity of words since they are
represented as indices in vocabulary (Mikolov et al., 2013, p. 1); therefore,
in 2013, Tomas Mikolov introduced the Word2Vec.

3.4 LSTMs and GRUs

As mentioned earlier, when dealing with sequence data, people prefer
RNN over CNN (Convolution Neural Network) since it can preserve the
history information. And the most common RNNs networks in NLP are
LSTMs and GRUs.

3.5 Training

An important algorithm of machine learning and deep learning is the loss
function. For this project, I used Binary Cross-Entropy loss, this is a popular
loss function in binary classification problems:

										𝐻*(𝑞) = 	−
2
{
∑ 𝑦V. log(𝑝(𝑦V)) + (1 −	𝑦V). log(1 − 𝑝(𝑦V)){
V�2 (16)

where y is the label (1 or 0) and p(y) is the predicted probability of the point
being 1 for all N points.

Another algorithm that makes a significant impact on Machine Learning
and Deep Learning is Optimization algorithm. In this project, we used Adam
optimizer algorithm (Kingma et al., 2017). The method is computational
efficiency, required little memory. The computation of the decaying
averages of past and past squared gradients mt and vt respectively as
follow:

𝑚F = 	ß2𝑚F92 + (1 −	ß2)𝑔F (17)

𝑣F = 	ß4𝑣F94 + (1 −	ß4)𝑔F4 (18)

20

mt and vt are estimates of the first moment (the mean) and the second
moment (the uncentered variance) of the gradients respectively.
Additionally, as the mt and vt are initialize as vectors of 0’s, the author of
Adam: Kingma and Liu Ba, observed that they bias toward 0, especially
during initial time steps or ß1 and ß2 are close to 1. Hence, they counteract
these biases by computing bias-correct mt and vt:

𝑚�F = 	
��
29	ß��

 (19)

𝑣�F = 	

��
29	ß7�

 (20)

 And then use these values to update the weights matrix:

𝜃F92 = 𝜃F −	
�

������	
𝑚�F (21)

 The authors propose default value for ß1 is 0.9, ß2 is 0.999 and 10-8 for ε.

4 EVALUATION METRICS

4.1 Dataset Description

The dataset consisted of about 1.8 million online comments. Each
comment in the training dataset had a toxicity label (target), and the model
should predict the target of the test data. For evaluation, test set example
with target >= 0.5 was considered as positive class (toxic) and vice versa.

Beside the target, the training dataset also provided us with many subtypes
attributes such as: severe_toxic, obscene, threat, insult, identity_attack,
sexual_explicit. In addition, a subset of comments was labelled with a
variety of identity attributes, representing the identities that were
mentioned in the comment: male, female, homosexual_gay_or_lesbian,
christian, jewish, muslim, black, white, psychiatric_or_mental_illness.

21

Figure 17: Description of the train data

Figure 18: Identity attributes of train data

 One drawback was that the data set was skewed, so that there were way
more positive comments than negative ones. Therefore, it was easier to
predict inputs as positive.

4.2 Evaluation

 Generalized Mean of Bias AUCs
• To combine the per-identity Bias AUCs into one overall measure,

we calculate their generalized mean as defined below:

𝑀*(𝑚�) = (2
{
∑ 𝑚�

*{
��2)

�
� (22)

• where:
o Mp = the pth power-mean function

22

o ms = the bias metric m calculated for subgroup s
o N = number of identity subgroups

• For this competition, we use a p value of -5 to encourage
competitors to improve the model for the identity subgroups with
the lowest model performance.

Final metric

• We combine the overall AUC with the generalized mean of the Bias
AUCs to calculate the final model score:

𝑠𝑐𝑜𝑟𝑒 = 	𝑤�𝐴𝑈𝐶^��b��� + 	∑ 𝑤�𝑀*(𝑚�,�)�
��2 	 (23)	

• where:
o A = number of sub metrics
o ms,a = bias metric for identity subgroup s using sub metric a
o wa = a weighting for the relative importance of each sub

metric; all four w values set to 0.25

Having a set of comments on social networks, we need to build a model to
classify the toxicity of the comments. However, the evaluation metrics is
not just classified as positive or negative but the ROC-AUC score (Receiver
Operating Curve – Area Under the Curve).

5 RESULTS AND DISCUSSION

Table 2: Accuracies of different models on public test set

Models Results
2 GRUs with char + word embeddings layers (128 hidden
states) 0.92264

1 LSTM with 2 word embeddings layers (128 hidden states) 0.92281
1 LSTM with 2 word embeddings layers (256 hidden states) 0.92308
2 LSTMs with char + word embeddings layers (128 hidden
states) 0.92648

2 GRUs with 2 word embeddings layers (128 hidden states) 0.92892
2 LSTMs with 2 word embeddings layers (128 hidden states) 0.92938
Fine-tuned 2 LSTMs with word embedding and char
embedding (128 hidden states) 0.92977

Figure 19: Position on Kaggle’s public leaderboard

The result of the model can be considered as successful as the author
meets his objective for the project and broader knowledge on relevant

23

subject. Even though, on the way to get the result, I have met some
problems, but in the end, I have successfully encountered it.

To conclude, we can observe that the model works better with two word
embeddings than char embedding combine with word embedding, except
for the fined tuned model. As a result, we can understand the importance
of optimization method in Deep Learning and Machine Learning.

Due to the limitations of the hardware and the competition, the author
could not test all the possibilities of the problems. XGBoost (Chen et al.,
2016), Deeper Neural Network, train a new characters embedding, words
embedding are proposed to make improvement on the model for further
practical application.

6 CONCLUSIONS

In this thesis, we have focused on the defining concepts such as of Machine
Learning, Deep Learning and their applications into real-world problems,
especially Natural Language Processing. In addition, we successfully
implemented a Deep Neural model to extract the semantics of sentences
and output a score for inputs. Through theoretical and empirical work, a
deeper understanding about Machine Learning in general and Deep
Learning for NLP in specific: was gained Techniques involving data
processing, simple optimization methods and classification methods
became familiar to the author as well.

Further work to improve model performance was also discussed in the
thesis such as using XGBoost, implement a new word or char embedding
instead of using a pre-trained model, Deeper and Bigger Neural Networks,
using Support Vector Machine (SVM) or Random Forest, which are both
know for theirs robust characteristics and the fact that they work well for
skewed dataset).

24

REFERENCES

Bengio, Y., Ducharme, R., Vincent, P. (2001). A Neural Probabilistic
Language Model. Retrieved from https://papers.nips.cc/paper/1839-a-
neural-probabilistic-language-model.pdf

Chen, T., Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.
Retrieved 11 May from https://dl.acm.org/citation.cfm?id=2939785

Cho, K., Bahdanau, D., Bougares, F., Shwenk, H., Bengio, Y. (2014). Learning
Phrase Representations using RNN Encoder–Decoder for Statistical
Machine Translation. Retrieved from
https://arxiv.org/pdf/1406.1078v3.pdf

Do, H. [1] (2017). LSTM là gì?. Blog publication 20 October 2017. Retrieved
11 May 2019 from https://dominhhai.github.io/vi/2017/10/what-is-lstm/

Do, H. [2] (2017). [RNN] RNN là gì?. Blog publication 19 October 2017.
Retrieved 11 May 2019 from
https://dominhhai.github.io/vi/2017/10/what-is-rnn/

Kingma D., P., Lei Ba, J. (2017). ADAM: A method for Stochastic
Optimization. Published as a conference paper at International Conference
on Learning Representation (ICLR) 2015. Retrieved from
https://arxiv.org/pdf/1412.6980.pdf

Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Efficient Estimation of
Word Representations in Vector Space. Retrieved from
https://arxiv.org/pdf/1301.3781.pdf%5D

Minh-Tien, N. (2019). Online Deep Learning course, Moodle. AI Academy
Vietnam. Retrieved 13 May 2019 from
http://103.216.114.222/moodle/pluginfile.php/1103/mod_resource/cont
ent/2/RNN.pdf

Mital, V. (2017). Top 15 Deep Learning applications that will rule the world
in 2018 and beyond. Retrieved from
https://medium.com/@vratulmittal/top-15-deep-learning-applications-
that-will-rule-the-world-in-2018-and-beyond-7c6130c43b01

Naïve Bayes Classifier (2019). Retrieved 16 May 2019 from
https://en.wikipedia.org/wiki/Naive_Bayes_classifier

25

Logistic Regression (2019). Retrieved 16 May 2019 from
https://en.wikipedia.org/wiki/Logistic_regression

Sepp, H., Jürgen, S. (2006). Long Short-Term Memory. The MIT press.
Skymind.ai (n.d.). Retrieved 13 May 2019 from
https://skymind.ai/wiki/neural-network#concept

Skymind.ai (n.d.). A Beginner's Guide to Natural Language Processing
(NLP). Retrieved 13 May 2019 from https://skymind.ai/wiki/natural-
language-processing-nlp

Solomon, F. (n.d.). Going deeper with recurrent networks: Sequence to Bag
of Words Model. Retrieved 11 May from
https://www.kdnuggets.com/2017/08/deeper-recurrent-networks-
sequence-bag-words-model.html

Tom, M. (1998). Machine Learning. 1st edition. McGraw-Hill
Science/Engineering/Math publisher.

Warren, S. (1994). Neural Networks and Statistical Models. Proceedings of
the Nineteenth Annual SAS Users Group International Conference.

26

Appendix 1
MODEL IMPLEMENTATION

import numpy as np

import pandas as pd

import re

from keras.models import Model

from keras.layers import Input, Dense, Embedding, SpatialDropout1D, Dropout, add,

concatenate

from keras.layers import CuDNNGRU, CuDNNLSTM, GlobalMaxPooling1D,

GlobalAveragePooling1D

from keras.layers.wrappers import Bidirectional

from keras.preprocessing import text, sequence

from keras.callbacks import LearningRateScheduler

from keras import optimizers

Input data files are available in the "../input/" directory.

For example, running this (by clicking run or pressing Shift+Enter) will list the files in the

input directory

import os

print(os.listdir("../input"))

Any results you write to the current directory are saved as output.

EMBEDDING_FILES = [

 # '../input/fasttext-crawl-300d-2m/crawl-300d-2M.vec',

 '../input/glove6b300dtxt/glove.6B.300d.txt',

 '../input/glove840b300dchar/glove.840B.300d-char.txt'

]

NUM_MODELS = 2

BATCH_SIZE = 512

GRN_UNITS = 128

DENSE_HIDDEN_UNITS = 4 * GRN_UNITS

EPOCHS = 4

MAX_LEN = 220

27

 DROP_OUT = 0.3

def get_coefs(word, *arr):

 return word, np.asarray(arr, dtype='float32')

def load_embeddings(path):

 with open(path) as f:

 return dict(get_coefs(*line.strip().split(' ')) for line in f)

def build_matrix(word_index, path):

 embedding_index = load_embeddings(path)

 embedding_matrix = np.zeros((len(word_index) + 1, 300))

 for word, i in word_index.items():

 try:

 embedding_matrix[i] = embedding_index[word]

 except (KeyError, UnicodeDecodeError, UnicodeEncodeError) as e:

 pass

 return embedding_matrix

def build_model(embedding_matrix, num_aux_targets):

 input_s = Input(shape=(MAX_LEN,))

 grn_s = Embedding(*embedding_matrix.shape, weights=[embedding_matrix],

trainable=False)(input_s)

 grn_s = SpatialDropout1D(0.3)(grn_s)

 grn_s = Bidirectional(CuDNNGRU(GRN_UNITS, return_sequences=True))(grn_s)

 grn_s = Bidirectional(CuDNNGRU(GRN_UNITS, return_sequences=True))(grn_s)

 hidden = concatenate([

 GlobalMaxPooling1D()(grn_s),

 GlobalAveragePooling1D()(grn_s),

])

 hidden = add([hidden, Dense(DENSE_HIDDEN_UNITS, activation='relu')(hidden)])

 hidden = add([hidden, Dense(DENSE_HIDDEN_UNITS, activation='relu')(hidden)])

28

 result = Dense(1, activation='sigmoid')(hidden)

 aux_result = Dense(num_aux_targets, activation='sigmoid')(hidden)

 model = Model(inputs=input_s, outputs=[result, aux_result])

 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])

 return model

def preprocess(text):

 text = re.sub(r"<[^>]>", '', text)

 emoticons = re.findall(r"(?:|;|=)(?:-)?(?:\)\(|D|P)", text)

 text = re.sub(r"[\W]+", " ", text.lower()) + " ".join(emoticons).replace('-', '')

 text = re.sub(r"\n", ' ', text)

 return text.lower()

train = pd.read_csv('../input/jigsaw-unintended-bias-in-toxicity-classification/train.csv')

test = pd.read_csv('../input/jigsaw-unintended-bias-in-toxicity-classification/test.csv')

train = train.fillna(0.0)

x_train = train['comment_text'].apply(preprocess)

y_train = np.where(train['target'] >= 0.5, 1, 0)

y_aux_train = train[['target', 'severe_toxicity', 'obscene', 'identity_attack', 'insult', 'threat']]

x_test = test['comment_text'].apply(preprocess)

tokenizer = text.Tokenizer()

tokenizer.fit_on_texts(list(x_train) + list(x_test))

x_train = tokenizer.texts_to_sequences(x_train)

x_test = tokenizer.texts_to_sequences(x_test)

x_train = sequence.pad_sequences(x_train, maxlen=MAX_LEN)

x_test = sequence.pad_sequences(x_test, maxlen=MAX_LEN)

29

embedding_matrix = np.concatenate(

 [build_matrix(tokenizer.word_index, f) for f in EMBEDDING_FILES], axis=-1)

model = build_model(embedding_matrix, y_aux_train.shape[-1])

model.fit(

 x_train,

 [y_train, y_aux_train],

 batch_size=BATCH_SIZE,

 epochs=EPOCHS,

 verbose=2,

 callbacks=[

 LearningRateScheduler(lambda epoch: 1e-3 * (0.6 ** 1))

]

)

predictions = model.predict(X_test, batch_size=2048)[0].flatten()

submission = pd.DataFrame.from_dict({

 'id': test['id'],

 'prediction': predictions

})

submission.to_csv('submission.csv', index=False)

30

Appendix 2
MODEL LOG

 Using TensorFlow backend.

['glove6b300dtxt', 'fasttext-crawl-300d-2m', 'jigsaw-unintended-bias-in-
toxicity-classification']

Epoch 1/4
- 774s - loss: 0.2365 - dense_3_loss: 0.1289 - dense_4_loss: 0.1076 -
dense_3_acc: 0.9491 - dense_4_acc: 0.8547

Epoch 2/4
- 775s - loss: 0.2154 - dense_3_loss: 0.1128 - dense_4_loss: 0.1026 -
dense_3_acc: 0.9541 - dense_4_acc: 0.8550

Epoch 3/4
- 777s - loss: 0.2077 - dense_7_loss: 0.1061 - dense_8_loss: 0.1015 -
dense_7_acc: 0.9563 - dense_8_acc: 0.8550

Epoch 4/4
- 777s - loss: 0.2011 - dense_7_loss: 0.1002 - dense_8_loss: 0.1009 -
dense_7_acc: 0.9582 - dense_8_acc: 0.8550

