

Dung Nguyen

SERVERLESS ARCHITECTURE ON AWS

SERVERLESS ARCHITECTURE ON AWS

 Dung Nguyen
 Bachelor’s Thesis
 Autumn 2019
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme of Information Technology

Author: Dung Nguyen
Title of the bachelor’s thesis: Serverless Architecture on AWS
Number of pages: 51
Supervisor: Kari Laitinen
Term and year of completion: Autumn 2019

This thesis aimed at extending knowledge on the serverless architecture and its
possibility on Amazon Web Services. Additionally, under the scope of this
thesis, a comparison between different cloud providers was also conducted to
strengthen the fact that AWS would be the solid choice for serverless
development.

In general, the serverless architecture can help organizations to reduce
operational costs while maintaining a high-performance system which scales
based on the load. AWS has a wide range of services which can support the
serverless development and deployment at the advanced level. The thesis is
divided into three main parts: Part I focuses on theories and fundamentals of
the serverless architecture, Part II contains a comparison of different cloud
providers and in-depth research on AWS serverless platform. Finally, Part III
provides the feasibility of developing a serverless application on AWS through a
practical example.

The result of this thesis can be promoted as a reference for the serverless
architecture and why it should be taken into consideration by organizations.
Besides, choosing the right cloud provider from the beginning is also crucial and
AWS was proved to be a stable contender in the serverless era.

Keywords: AWS, serverless, system architecture

 4

PREFACE

This thesis was conducted as the final project of my study at Oulu University of
Applied Sciences. The aim of the project was to strengthen my knowledge on
the serverless architecture which can boost my contribution to my daily work at
Haltian. I would like to express my gratitude towards my company – Haltian and
my supervisor Mr. Kari Latinen. He has supported the idea from the beginning
and guide me to come up with the proper outline. I would also like to thank Mrs.
Kaija Posio for reviewing my writing in this thesis.

Besides, I would like to thank my girlfriend, who has always been by my side
and supported me for this thesis work.

Oulu, 04.08.2019
Dung Nguyen

 5

CONTENTS

ABSTRACT 3

PREFACE 4

CONTENTS 5

VOCABULARY 7

1 INTRODUCTION 8

2 SERVERLESS FUNDAMENTALS 9

2.1 The evolution of system architecture 9

2.2 What is Serverless 17

2.3 Serverless Pros & Cons 21

2.3.1 Advantages 21

2.3.2 Disadvantages 23

3 CLOUD PROVIDERS ANALYSIS 25

3.1 Serverless platform of cloud providers 27

3.1.1 Amazon Web Services 27

3.1.2 Microsoft Azure 28

3.1.3 Google Cloud Platform 29

3.2 Comparison of serverless offers 30

3.3 AWS in depth 33

3.3.1 AWS Lambda 33

3.3.2 Amazon API Gateway 37

3.3.3 Amazon S3 38

3.3.4 Amazon DynamoDB 38

3.3.5 Amazon SNS 38

3.3.6 Amazon SQS 39

3.3.7 Amazon CloudWatch 40

3.3.8 Amazon CloudFormation 40

4 A SIMPLE SERVERLESS APPLICATION 41

4.1 High-level architecture 42

4.2 Technologies introduction 43

4.2.1 Google Home Mini Device 43

4.2.2 Dialogflow 44

 6

4.2.3 Go Programming Language 44

4.2.4 Serverless Framework 45

4.3 Detailed user flow 46

5 CONCLUSION 49

REFERENCES 50

 7

VOCABULARY

API: Application Programming Interface

AWS: Amazon Web Services

BaaS: Backend as a Service

CLI: Command Line Interface

CPU: Central Processing Unit

EC2: Elastic Compute Cloud

FaaS: Function as a Service

GCP: Google Cloud Platform

HTTP: Hypertext Transfer Protocol

IaaS: Infrastructure as a Service

IT: Information Technology

PaaS: Platform as a Service

RAM: Random Access Memory

SOA: Service Oriented Architecture

SaaS: Software as a Service

S3: Simple Storage Service

SNS: Simple Notification Service

SOA: Service Oriented Architecture

SQS: Simple Queue Service

URL: Uniform Resource Locator

VM: Virtual Machine

VPS: Virtual Private Server

 8

1 INTRODUCTION

Technologies evolve from time to time, which opens up a variety of new

possibilities to build extraordinary things that we have never thought of before.

As a result, the industrial standard of software has gone up, and so do the

requirements from users. Businesses now strive to focus on improving user

experiences as well as competing with other competitors. With that being said,

time to market, which is the needed time for businesses to go from a business

idea to a real product, is very crucial in this era. To materialize a business idea,

there are various ways of utilizing technologies to design a system from ground-

up which suits the business model. Choosing the right technology while

ensuring the scalability of the system as well as keeping the cost at a minimum

is a challenging problem and should be taken into consideration.

Serverless technologies were invented as a solution to the problem that many

organizations are facing in today’s market. By taking serverless technologies

into use, organizations now have a way to eliminate idle, underutilized servers

to reduce the costs. Indeed, analysts estimate that around 85% of servers in

practice have underutilized capacity, which is proved to be costly and wasteful

[1]. In addition to saving costs, organizations now also have the ability to build

the microservices, event-driven systems that can scale automatically depending

on the load, thus improving time to market.

This thesis was conducted to provide an in-depth study about the serverless

architecture and how to apply it in real-world contexts. All cloud providers are

now jumping to the serverless war since they know it is going to be the future of

the system architecture. Choosing the right cloud provider is also under the

scope of this thesis since it is not straightforward to change to another provider

after committing to one. Needless to say, having a comprehensive knowledge

about this architecture and understanding when to apply it will bring substantial

advantages for companies towards their competitors.

 9

2 SERVERLESS FUNDAMENTALS

Serverless, undoubtedly, is currently one of the most popular topics in the

software architecture world. Before diving into the definition of the term

“serverless”, the evolution of system architecture must be introduced first to see

why there is such a change which leads to the current state of the architecture

today. Then, the discussion on the advantages and disadvantages of the

serverless architecture would act as a pre-cursor for companies when

reasoning whether it would be a good fit for them.

2.1 The evolution of system architecture

Pre-virtualization era

This is the beginning of the system architecture. In this era, organizations need

to set up a physical server or a fleet of servers called a rack to deploy their

software system (on-premises model). Components inside a physical server are

depicted in the Figure 1. The Figure 2 demonstrates how server racks in a data

center look like in reality. Those servers are usually put inside a data center with

high-speed networks and excessive power supplies to ensure that the system is

running 24/7. In the data center, there are normally a group of infrastructure

engineers who work together to install the servers on the rack, power them up

and connect them to the network. After that, an operating system needs to be

installed to those servers together with various software dependencies such as

web servers, databases, and caches needed for the system. Then, the system

source code has to be copied to each server. Besides, servers need to be

constantly monitored, and patches need to be applied regularly to prevent any

vulnerabilities [3]. Needless to say, the process is repetitive and has to be

performed again and again whenever there are new servers.

 10

FIGURE 1. Components of a physical server [4]

FIGURE 2. Server racks in a data center [5]

 11

With this kind of system architecture, companies need to spend a substantial

amount of money on human resources just to maintain the system. The

maintenance cost could exceed the development cost in the long term.

Additionally, the system cost is also increased unnecessarily due to the fact that

there have to be more servers than needed to ensure the availability during the

peak load time, which leads to various under-utilized servers.

During this time, there is a service on the market called “bare metal servers

rental” which allows companies to rent the physical servers. This service model

is called IaaS, which stands for an Infrastructure as a Service. Service providers

will take care of the maintenance process. Using the service will help

organizations reduce the maintenance cost as well as infrastructure cost to

some extent.

Virtualization era

The next advancement in the system architecture world is made possible by the

virtualization technology. By utilizing software called “hypervisor” which mimics

a physical server, one physical server can now run multiple virtual servers with

a different operating system for each server, as shown in the Figure 3 [3].

 12

FIGURE 3. The transition of physical servers to virtual servers [6]

FIGURE 4. The virtualization server architecture [3]

 13

As can be seen in the Figure 4, there are two physical servers, in which there

are four different virtual servers with the support of the hypervisor software.

There are two web servers running in the first physical server, one application

server and one database server running in the second physical server, all using

Linux as their operating system. The most popular application to run this kind of

virtualization is called VMware Workstation.

Even though they are called “virtual” servers, each server instance is completely

isolated from others, meaning that they use separate RAM and CPUs which are

assigned to them from the physical server. Moreover, a failure in one server

does not cascade to others. Another benefit of using virtualization is that

engineers can create a “snapshot” of the current state of the server [3]. Thus,

the snapshot can be transferred to other servers to create many replications of

the original server.

The existence of virtualization opens up a new market in the IT industry which is

called a VPS hosting service. In this service, the providers set up server racks

in which the virtualization software is installed. After that, one physical server

will host multiple virtual servers in different sizes which then can be rented out

by users. By using the service, developers will have some benefits, such as:

1. The server will only need to be set up one time. Then a snapshot will be

created which can be replicated to as many servers as is necessary. The

number of instances can scale up or down on demand.

2. If there is a failure in the underlying physical server, the system can be

recovered by putting the snapshot to another physical server.

3. Developers can choose different types of server instances depending on

the functionality and the load of the component.

Containerization era

After the wave of virtualization technology, people seem to be not fully satisfied

with the advantages brought to them. A new challenge has been raised which is

how to reduce the deployment time as well as the size of the deployment

package. Virtual machines have slow deployment time because they have to

 14

boot up the whole operating system. In addition, since it requires an operating

system to run, the deployment package needs to include that as well which

leads to an increase in size. Thus, a container technology was born as an

answer to the challenge. In 2007, a contribution to the Linux kernel made by

Google brought the possibility to perform the virtualization in a limited form

without the need of the hypervisor layer, which is called “containers” [3].

The term “containers” comes from the physical containers which are used to

store various objects for transportation purposes (e.g. a container ship). By

using that kind of physical containers, a standard way to carry goods around is

established. Different means of transportation only need to ensure that it has

enough space for a container without concerning how to sort different kinds of

goods inside the container [7]. Having a similar idea, a container in the software

world can pack an application with all of its dependencies into something called

a container image. Container images can be placed into different machines in

which they will span running containers utilizing the host operating system and

containing the underlying applications.

FIGURE 5. Containers vs VMs [3]

 15

The Figure 5 demonstrates the differences between containers and VMs. There

are many reasons why organizations might favor containers over virtual

machines. Firstly, the container technology brings the possibility of replicating

exactly the production environment to different developments such as local,

test, and staging. In that way, developers and testers can ensure what works in

the local development and the staging environment will work on the production

environment. Moreover, it also eliminates the problem of having different

versions of dependencies in different environments. Secondly, a single server

can host many more containers than virtual machines due to the difference in

size (tens of megabytes vs several gigabytes). Thirdly, the deployment time will

be vastly reduced for containers since they do not require to boot up an entire

operating system like virtual machines. Thus, containers can be spanned and

discarded on demand. Finally, containers leverage the idea of “microservices”,

where each component in the application can be a container or a set of

containers called a module. Each team inside the company can take over one

or more isolated modules and develop them in parallel with other teams which

increases the development as well as the maintenance time of the application

[8].

Serverless era

The first mark of the serverless era is the introduction of PaaS (Platform as a

Service). The reason why PaaS exists is that providers observe that developers

tend to create the same type of application over and over. They use a certain

set of programming languages together with some popular frameworks and

dependencies (e.g. database solutions, proxy servers) which leads to the fact

that providers can just manage those components for them and what is left for

them is the business logic of their application. Management tasks for providers

include setting up virtual or physical servers, and installing an operating system

with software dependencies, such as language runtime, and database engines

[3]. This type of service can be considered as “serverless” since developers do

not need to concern about servers anymore. Some popular PaaS services are:

Heroku, AWS Elastic Beanstalk, Google App Engine.

 16

As time went by, service providers realized that applications usually run on

request, rather than staying online all the time. By only initializing servers and

executing the business logic when there is a request, providers can distribute

the requests across the set of servers, thus utilizing the resource more

efficiently [3]. Moreover, providers can also support scalability seamlessly since

each request is stateless and short-lived, meaning that a request can be served

by any of the servers. For instance, if there are 500 concurrent requests, there

will be 500 servers which are spanned immediately to serve all the requests.

After executing the requests, those servers will be turned off and ready to be

initialized again when there is a new request. This model is called FaaS

(Functions as a Service) and it is the key component in the event-driven

architecture where the logic is only executed when there are events happening

in the system (e.g. an API request, a database update or an image uploaded).

From the developer’s perspective, this model brings various perks over the

traditional one. Firstly, they only need to focus on the core business logic code,

meaning that the code will be much shorter and focus only on serving a single

client. As a result, writing the code for FaaS is the same as writing the code for

a function in a normal program where the logic is to transform a set of inputs to

an output. The whole program is built by connecting many FaaS functions

together. Secondly, they do not need to take provisioning into consideration, it

should be the job of the providers. The development environment will be the

same as the production development since the system will scale up or scale

down automatically according to the load. Finally, as said above, they only need

to pay for the execution time which is spent on requests, there is nothing called

“idle time” in this FaaS mode [3].

With the existence of FaaS, providers even pushed it further by not only

providing functions as a service but also various serverless services. Some

popular services currently are serverless databases, serverless file storages,

and serverless message queues [3]. Those services have several common

characteristics. First, the same as serverless functions, there is no provisioning

requirement. Users do not need to specify how many instances the service

should have. The capacity of the service will automatically increase if needed.

 17

Second, users only need to pay for the amount of usage. A serverless file

storage system is a case in point. In this type of service, users usually only have

to pay for the total size of all the files (e.g. 50GB) that they store in the service.

There is mostly no limit on the storage size, the service will scale on demand.

In summary, the main difference between different service models is the level of

abstraction in each service, which is shown in the Figure 6.

FIGURE 6. Differences in the level of abstraction for each type of services [10]

2.2 What is Serverless

Serverless is a broad term which can cause confusions for many individuals. At

the heart of the term is a serverless architecture, which is a new methodology to

architect a software system. It is a combination of BaaS (Backend-as-a-Service)

and FaaS (Functions-as-a-Service). BaaS describes components in the system

that are hosted in the infrastructure of third-party providers. The scalability and

availability of those components are also guaranteed by them. Some examples

are databases, messaging platforms, and user management. On the other

hand, FaaS is a way to host the business logic of the system that will be

triggered through some events in a fully-managed platform provided by a

 18

vendor. Also, it also delegates the tasks of deployment, maintenance,

monitoring, provisioning and scaling to the vendor [2].

By applying the serverless architecture, organizations can build applications

which are called “serverless applications” by utilizing “serverless services”

provided by third parties. A service is defined to be serverless if it has the

following five characteristics [2]:

Require no management of servers which host the service

There would probably be some servers or infrastructures needed to host the

service, no matter whether companies are using a traditional architecture or a

serverless architecture. Serverless here does not imply that there are no

servers, it just means that they are hosted and maintained by someone else.

AWS S3 (Amazon Simple Storage Service), which is a file storage service, is a

case in point. Users communicate with the service through the APIs (Application

Programming Interface) provided by the service to store their files without the

need to know where and how those files are stored.

When it comes to monitoring the service, traditional metrics, such as the CPU

usage are no longer needed since they would be controlled by vendors. Thus,

measuring metrics that reflect how the service is used should now be the main

focus of this architecture.

Scale seamlessly and automatically based on the load of the service

In the traditional server architecture, there are many challenging problems that

need to be considered when maintaining the infrastructure. Firstly, engineers

need to estimate resource types and numbers the application requires. To be

more specific, they have to pick which machines, and which operating systems

should be used and how strong the CPU is for the underlying servers. In

addition, they also need to anticipate the expected load so that they can choose

the right number of machines to be used. Secondly, they need to obtain the

machines and prepare them so that those machines are ready to be put into

production. Finally, they have to observe how the machines behave based on

the load of the service so that they can scale the number of machines up and

 19

down in a timely manner. As a result, it would cost organizations a significant

amount of time and human resources just to ensure that the service is running

correctly. Usually, the safest way is to over-provision the resources which

ensure that the service is always performed expectedly. Nevertheless, the

solution would lead to the waste of resources as well as the increase in

resource costs.

A serverless service has the ability to scale based on the load it receives. In

other words, engineers no longer need to fulfill all the items in the list above to

deploy the service in production.

AWS Lambda is a case in point. It is a service provided by AWS to run the

business logic of the system which is represented as “functions” when external

events happen. For example, if there is an HTTP request to our system, the

Lambda service will automatically allocate a host which in turns spins up a

container which will be used as an environment to execute the needed business

logic. In addition, if there is another request coming in at the same time when

the old request is still executing, the Lambda service will just allocate another

host and repeat the process to serve the request. As a result, the service scales

effortlessly no matter how many requests there are. After finishing processing

those requests, the service will tear down those two allocated hosts which

ensure there are no idle resources, thus reducing the cost.

Pay per request

The serverless service utilizes a bill-per-request model, meaning that users only

pay for what they use. Thus, this model can reduce or increase the cost

depending on the load of the system. For example, AWS Lambda only charges

users for the execution time of the business logic per 100ms. This means that if

the logic takes 4 seconds to complete, users pay for only that 4 seconds.

Contradictory, traditional services, such as EC2, will charge users per hour,

even only 10 seconds are used during that hour. Another example is AWS S3,

which only counts the amount of data in GB stored in the service.

 20

With this model, organizations can set up similar services to act as a back-up

plan in other regions in case a disaster or an outage happens in one region

without paying for any usages, thus increasing the availability of the system

while keeping the cost to be the same.

However, this model does not always guarantee to bring benefits to all business

use cases. Large systems with the constant or predictable load during the day

should probably use the traditional architecture instead of the serverless

architecture since it would be more economical in terms of infrastructure cost.

Define performance capabilities based on other characteristics

Generally, performance capabilities of a service are specified based on several

servers the service is running on and how powerful those servers are. However,

it is not the case for the serverless service. Serverless services use other

attributes to determine how robust the service is. For instance, the AWS

Lambda service allows users to specify how much RAM is needed for a

function. By adjusting RAM, the CPU power is going to scale proportionally to

that. Another example is AWS DynamoDB, which allows users to choose the

provisional throughput in order to scale the underlying infrastructure based on

that.

It is argued that serverless services are inferior to traditional services for this

trait since users cannot specify the exact capability the service should have.

However, it would bring justice to serverless services by emphasizing that today

it is still the early days of serverless era. Thus, fine-grained configurations for

those services are supposed to occur in the future.

Ensure high availability implicitly

A service is considered to have a high availability when it could operate

normally or in the degraded state, even when one of its instances is

malfunctioned. In the traditional architecture, a high availability is obtained by

eliminating a single point of failure, meaning that each component in the system

should have at least two instances running at the same time (e.g. multiple

database instances or multiple web servers).

 21

Needless to say, when it comes to serverless service, users no longer control

the underlying infrastructure of a service, which leads to an assumption that the

vendor who provides the service must ensure the high availability characteristic.

For instance, if a serverless database is used then users can safely assume

that a database cluster exists and is managed on their behalf. Similarly, for the

serverless storage service, users’ data must always be available even when the

underlying nodes holding the data fail unexpectedly. Thus, it is the job of

vendors to guarantee implicitly that serverless services will always be available.

2.3 Serverless Pros & Cons

There are no free lunches. Everything has two sides and serverless

technologies are no exception. The most crucial factor when considering any

technologies is that it has to fit business use cases. By analyzing the

advantages and disadvantages of the serverless architecture, organizations can

evaluate the viability of the serverless solution.

2.3.1 Advantages

Economical

Since the serverless architecture is built around serverless services, the billing

model of those services will be the key factor in determining the cost of the

system. Serverless services are billed per requests, meaning that there are no

charges for idle capacity [1]. As a result, companies can save expenses by not

paying for the idle time of the services while ensuring that they are always

available when needed and the cost of the system can be seen as the reflection

of the traffic going into the system.

Apart from service costs, operational costs are also reduced since service

providers are in charge of managing the underlying infrastructure of the

services.

Faster deployment

The serverless architecture encourages the microservices approach, meaning

that the system is broken into smaller independent deployable services which

 22

are faster to deploy, thus improving the time to market as well as the ability to

respond to any changes [11].

Scalability

Serverless services, which are the building blocks of the serverless architecture,

are automatically scaled based on the actual use. AWS Lambda is a case in

point. Each Lambda function contains some business logic which can be

triggered if an event happens in the system. One example is that when a client

(e.g. a website) makes an API call to an endpoint (e.g. API Gateway), it is

considered to be an event and it can trigger the Lambda function which

executes the logic. Assuming that there are five clients making API calls to the

same endpoint at the same time, there will be five events which trigger five

Lambda functions, all run at the same time. AWS S3 is another case in point.

No matter whether a user needs to store 5GB or 5TB in the service, it can

handle the requirement automatically by adding more disk spaces under the

hood.

Besides, serverless services also ensure the availability, which is the ability to

respond at least something to the request, and the fault tolerance by spanning

the service to multi-region to avoid disasters in one region causing the entire

service to be offline. There are no requirements in configuration or management

to obtain those two features [11].

Operations overhead reduction

As said above, the operation responsibilities are now in the hand of service

providers. To be more specific, organizations no longer need to provide, update,

or monitor the servers. All problems related to hardware and server software

are handled by the vendors. Besides, maintaining the tools, processes or on-

call rotations to support the uptime of servers is unnecessary in this type of

architecture [11]. As a result, companies can distribute more resources to the

crucial parts of the business.

Easy transition

 23

The conversion from the traditional architecture to the serverless architecture is

straightforward if the codebase is already well-structured by following some

design patterns, such as SOA (Services Oriented Architecture) or Clean

Architecture. In that case, isolating the business logic of the application is all

that is required for the transformation.

2.3.2 Disadvantages

Vendor lock-in

The serverless architecture is always made using serverless services, which

are provided by cloud vendors. Undoubtedly, users can choose to adopt

different services from different cloud vendors. However, the decision to go with

different cloud vendors usually comes with the cost of complex configurations to

integrate services from those vendors together. By using a set of services from

the same provider, the smooth combination between services to build the

complete architecture would be ensured.

Nevertheless, using a single vendor for the whole architecture would lead to the

problem which is called “vendor lock-in”. Changing the vendor later, whether

because of technical or business challenges, would be impossible without

refactoring a large part of the codebase. That is why organizations should make

careful considerations between diving into any cloud providers.

Uncontrolled environment

Since the responsibilities to manage the underlying infrastructure now belong to

cloud vendors, users no longer have a transparent view about the environment.

As a result, unexpected problems happening in the system are inevitable and

the system should be designed to prepare for that. Power outages, disasters,

and security breaches are some cases in point.

Unpredictable cost

The pay-per-execution model of serverless services is a great model targeted at

systems that are not online all the time. Users do not have to pay for idle time,

which turns out to be economical in the long run. However, due to the nature of

 24

the model, the cost can be varied since a load of a system is changing through

the lifecycle of the product. At the beginning, there are only few users meaning

that the cost for running the system will be minimal. As time goes by, the

product becomes more popular, there will be more and more users using the

product which leads to an enormous increase in the system cost. Moreover,

during peak hours, there will also be a spike in the number of users, which

makes the cost more and more unpredictable.

Local testing

A local test is the act of testing the behavior of the system in the local

development environment. The system must work correctly in the local

development before being deployed to the staging or production environment

There are different types of testing, namely unit tests, integration tests, and e2e

tests. Unit tests mean testing each component in isolation. Integration tests

mean testing the interaction between components and e2e tests mean testing

the full application flow as a user. This disadvantage is mostly applied to

integration tests. With the traditional architecture, testing is trivial since every

piece of software and dependencies needed to run on the production

environment can be installed and used in the local environment. For instance,

both environments can use the same MySQL database and web server with the

difference only in configurations.

However, when it comes to the serverless architecture, things are not as

straightforward as it seems anymore. In this type of architecture, serverless

services are the core components which are provided by the cloud vendors.

Since those services are closed-source, it is challenging to obtain the local

installations to use in the development. Hence, integration tests between

components in the system take a lot of effort to set up.

 25

3 CLOUD PROVIDERS ANALYSIS

Since this thesis is about the serverless architecture, the analysis is carried out

based on the serverless perspective, not the whole platform of each provider.

When considering which providers to rely on, companies should not only look at

the serverless computing service to execute the core business logic code but

also the whole serverless portfolio of the provider since serverless architecture

is built around serverless services [11]. This is a crucial decision right from the

beginning due to one disadvantage of serverless architecture which is vendor

lock-in. Choosing the wrong one then changes to the right one later is going to

cost a lot of resources.

A serverless platform consists of many services which can be combined to build

a serverless application. A computing service, storage service, monitoring

service, and message queue service are some cases in point. Each of the

services should have the ability to scale automatically depending on the load of

the application. The platform must meet the need of different types of

customers, ranging from small startups to large enterprises. To fulfill that

requirement, the features shown in the Figure 7 should be offered [11].

 26

FIGURE 7. Capabilities of a serverless platform [11]

As can be seen in the Figure 7, firstly, the minimum capability is the cloud logic

layer which is in charge of running core business logic on demand. In addition,

the ability to integrate that layer into various first-party or third-party services

which act as event sources is critical as well. For instance, users might want to

execute some business logic when an image is uploaded to the system. The

provider should take responsibilities of that integration complexity and require

users to perform as few configurations as possible. Secondly, easy-to-use

integration libraries should also be a part of the platform [11]. Using the library

can provide developers a trivial way to interact with the services, which makes it

easy to adopt the new serverless model. Besides, having a stable developer

ecosystem can support users during their day-to-day development [11].

Reusable solutions to some problems which are contributed by the community

can improve the productivity of them.

 27

Thirdly, the application modeling framework also needs to be supported to

express the infrastructure as a code. By utilizing the framework, the deployment

task now becomes declarative since users only need to provide which

components exist in the application and cloud providers will manage the

deployment. Besides, the orchestration and state management framework is

also critical since it helps users to coordinate many short-lived functions in the

cloud logic layer to become a long-running workflow that is suitable for various

use cases [11].

Fourthly, in order to support a wide range of customers, including large

enterprises which are multinational, the platform must offer a global scale

meaning that there should be data centers located around the world. More than

that, the reliability and performance of serverless services are also a key factor

when considering cloud providers since the whole serverless system depends

on them to operate properly [11].

Finally, the platform must have a built-in security and access control, such as

virtual private networks, role-based and access-based permissions. The

security of the system can be depicted as bread and butter of the organization

thus cloud providers must strengthen it to complete their portfolio [11].

3.1 Serverless platform of cloud providers

There are many providers who joined the cloud game, but in this thesis, only

three most popular ones are considered: Amazon Web Services, Microsoft

Azure and Google Cloud Platform.

3.1.1 Amazon Web Services

AWS, which stands for Amazon Web Services, is a cloud service which is

provided by Amazon. It offers different types of services which can be combined

to build a software system. Some example services are computing services

(e.g. Amazon EC2, AWS Lambda), storage services (e.g. Amazon S3),

database services (e.g. Amazon RDS), and messaging services (e.g. Amazon

SQS, Amazon SNS) [12]. Other core services are described in the Figure 8.

 28

FIGURE 8. Services offered by AWS [16]

The existence of AWS Lambda marks the beginning of the serverless era for

AWS. It was introduced in 2014 and has attracted countless organizations to

start transforming their system to the serverless architecture since then.

Netflix’s adoption of serverless using AWS Lambda is a popular case in point

[13].

3.1.2 Microsoft Azure

Microsoft Azure, which was introduced in February 2010, is the answer of

Microsoft for the cloud war. They offer many cloud services which can be

leveraged to build a software system. Some example services are computing

services (e.g. Azure Functions, Azure Virtual Machines), database services

(e.g. Azure CosmosDB, Azure Database for MySQL), storage services (e.g.

Azure Blob storage), messaging services (e.g. Azure Queue Storage, Event

Grid) [14]. Other core services are described in the Figure 9.

 29

FIGURE 9. Services offered by Azure [17]

Just like AWS, the existence of Azure Functions in 2016 marks the beginning of

the serverless era for Microsoft.

3.1.3 Google Cloud Platform

GCP, which stands for Google Cloud Platform, was introduced in April 2008.

They offer a wide range of services just like Microsoft Azure and AWS. Some

example services are computing services (e.g. Google Cloud Functions, Google

Compute Engine), database services (e.g. Google Cloud Datastore, Google

Cloud SQL), storage services (e.g. Google Cloud Storage), messaging services

(e.g.Google Cloud Pub/Sub) [15]. Other core services are described in the

Figure 10.

 30

FIGURE 10. Services offered by GCP [18]

Just like AWS and Microsoft Azure, the existence of Google Cloud Functions in

2017 marks the beginning of the serverless era for Google.

3.2 Comparison of serverless offers

There are many factors that need to be analyzed when choosing to utilize the

serverless platform of a cloud provider [13]. No cloud provider is dominant at

every factor which leads to the fact that the decision depends on the nature of

the system and the organization.

Pricing Models

When it comes to a cloud logic layer, which is the main service in the serverless

platform, all cloud providers follow the pay-per-use model, but the cost is varied

per second.

AWS Lambda offers a free-tier plan which includes 1 million requests and

400000GB-seconds of computing time per month. After the free-tier, the

 31

computing time is charged $0.00001667/GB-s. Allocated memory and CPU are

billed together.

Azure offers the same free-tier plan as AWS, but after the free-tier, the billing is

$0.000016/GB-s. Azure also differs from AWS to the extent that they charge

consumed memory instead of allocated one.

GCF offers 2 million requests per month and the same computing time which is

similar to Azure and AWS for their free-tier plan. After that, the price is

$0.000004 per request including network traffic, which is considered to be

higher than others regarding the length of time a function runs versus the

number of requests. They also bill memory and CPU separately.

To sum up, in this factor, AWS Lambda offers more reasonable pricing than

others.

Supported programming languages

AWS supports a wide range of languages for writing their cloud logic layer,

which is AWS Lambda. The supported languages are JavaScript, Python,

Golang, Java, C#, Visual Basic and F#.

Azure Functions supports JavaScript, C#, F#, Python, PHP, Bash, Batch and

PowerShell.

Google Cloud Functions only supports JavaScript for now.

As can be seen clearly, AWS and Azure are more flexible since they allow a list

of different languages.

Trigger types

Trigger types are different kinds of events that can be used to invoke the

function.

AWS Lambda has a wide range of triggers. Some examples are HTTP triggers

(e.g. when an API request reaches in an API Gateway), a file-based trigger (e.g.

 32

when a file is uploaded to S3), database triggers (e.g. when a data is inserted

into DynamoDB).

Azure Functions has the same trigger types with AWS Lambda.

Google Cloud Functions offers fewer types, such as HTTP triggers and

messaging triggers (e.g. when a message is sent to a topic in Cloud Pub/Sub)

In conclusion, AWS Lambda and Azure Functions offer many more trigger

types, allowing different kinds of combinations for the event-driven architecture.

Maximum execution time and concurrency

Execution time means how long a function can run before it is automatically

timed out. Concurrency denotes the ability to run several functions in parallel.

AWS allows 1,000 concurrent functions at any given point of time. The

maximum execution time for a function is 15 minutes.

Azure offers unlimited concurrent functions per application. The maximum

execution time for a function is 5 minutes by default, but it can be upgraded to

10 minutes.

GCP defines the limit per trigger types. To be more specific, the HTTP trigger

type supports unlimited concurrent functions. For other types, the limit is 1,000

functions at any given point of time. The maximum execution time is 1 minute

by default and 9 minutes after being upgraded.

To sum up, if concurrency is important, then GCP and Azure would be best

choices. However, if long execution time is necessary, then AWS would be a

safe option.

Deployment methods

With the introduction of the Serverless framework, all three cloud providers are

the same in this category. Deployment is straightforward and trivial with just one

CLI command.

 33

Monitoring

A monitoring service is crucial in the serverless architecture because of the

server abstraction. Developers cannot control the underlying infrastructure

which is why the monitoring service is everything they can rely on to keep track

of the health of the system.

All providers seem equal in this category since they all have their monitoring

service. AWS has Amazon CloudWatch, Microsoft Azure has Microsoft Monitor

and GCP has Stackdriver.

3.3 AWS in depth

There are many services provided by AWS that can be combined to build a

serverless application, namely:

- Compute: AWS Lambda

- APIs: Amazon API Gateway

- Storage: Amazon Simple Storage Service (Amazon S3)

- Databases: Amazon DynamoDB

- Messaging: Amazon Simple Notification Service (Amazon SNS) and

Amazon Simple Queue Service (Amazon SQS)

- Deployment: Amazon CloudFormation

- Monitoring: Amazon CloudWatch

3.3.1 AWS Lambda

Among those services, AWS Lambda is the most crucial one since it is the core

of a serverless application. By achieving an in-depth understanding of Lambda,

the serverless architecture will become more accessible to developers.

AWS Lambda is a FaaS service. It is the cloud logic layer of a serverless

application. It provides computing functionality under the form of functions.

Those functions can be triggered by various events which happen on AWS or

third-party services. The event sources for those events are usually AWS

services (e.g. Amazon S3 and Amazon API Gateway). Functions will execute in

parallel if there are many concurrent events [19]. In addition, it follows the pay-

 34

per-request model as discussed in the previous section, meaning that there are

no additional charges if there are no events.

As shown in the Figure 11, each Lambda function contains the application logic

as code, the configuration for the function and at least one event source which

emits events that Lambda will respond to. Amazon S3 as an event source is a

case in point. Lambda can be configured so that whenever a file is uploaded to

S3, a function will be run the information about the file. The logic for that

function can be to compress the file, for example.

FIGURE 11. The simplified architecture of a running Lambda function [19]

What happens under the hood is that whenever an event is emitted from the

event source which is attached to a Lambda function, that Lambda function will

be initialized. The initialization process includes spinning up the execution

environment for the function, which is usually a container inside a virtual

machine. After the container is up, software dependencies for the programming

language that are used by the function will be installed. Then, the code for

application logic, which is usually uploaded on Amazon S3 by developers, is

downloaded. Finally, the code will be executed with the parameters depending

on the type of the event.

One important consideration when writing code on AWS Lambda is that the

logic should not make any assumptions about the state of the function [19]. The

container running the first function might be different from the one which runs

 35

the second function, which results in a completely different state between two

functions.

Event sources for a Lambda function can follow either a push model or a pull

model. In the push model, a Lambda function will be executed whenever an

event happens in the event source. On the other hand, in the pull model,

Lambda will poll the event source periodically and combine several new events

into one function invocation. The Table 1 below shows different types of event

sources and their trigger condition:

TABLE 1. Examples of event sources [19]

Event Source Invocation Model Example Trigger

Condition

Amazon S3 Push Whenever an object is

created or removed in

S3, a Lambda function

can be triggered to run

with the information

about that file.

Amazon API Gateway Push Whenever an API

request comes in, a

Lambda function can be

triggered to run with the

information about that

request and it is

expected to return a

response to the client.

Amazon SNS Push Whenever there is a

message that is

published to an SNS

topic, a Lambda function

can be triggered to run

 36

with the content of the

message.

Amazon SQS Pull A Lambda function can

be configured to poll the

SQS queue periodically

to check for new

messages and perform

some logic with the

content of those

messages.

Amazon DynamoDB Pull A Lambda function can

be configured to poll the

DynamoDB stream to

check for any updates

(e.g. new rows inserted,

old rows deleted) since

the last batch and

perform some logic with

the content of those

rows.

Amazon CloudWatch

Event

Push Whenever there is a

change in the state of a

resource, a Lambda

function can be

triggered to run with the

information about the

change.

 37

3.3.2 Amazon API Gateway

The Amazon API Gateway is a serverless service managed by AWS providing

the ability to create REST and WebSocket APIs for a system. The service acts

as the entry point to the system and is heavily used in almost every serverless

application today as an event source together with AWS Lambda. The following

terminologies are crucial when working with the API Gateway [20]:

1. Resource: Each resource is an URL endpoint with its path. For instance,

api.foo.com/bar is a resource.

2. Method: A method consists of a resource path and an HTTP verb. For

example, GET /bar is a method.

3. Method Request: A method request consists of the method itself together

with URL query string parameters and HTTP request headers.

4. Integration Request: Defines the backend target to be used with the

method. Lambda integration is a case in point where requests are

forward to a Lambda function. Request mappings to transform the

request body to the appropriate parameters for the backend target are

also performed at this point.

5. Integration Response: Defines the response mapping between the

backend target and the API Gateway. To be more specific, the API

Gateway can transform the response from the backend target to be the

understandable one for the client.

6. Method Response: A method response consists of response types, their

headers, and their content types.

7. Model: A model defines the shape of the request body. A model can be

used to perform validation against the body. The model is written in the

JSON schema format.

8. Stage: A stage is used to separate different deployment environments so

that they can exist in parallel. The development stage and production

stage are cases in point.

 38

3.3.3 Amazon S3

Amazon S3 is a serverless storage service provided by AWS. Users can put an

unlimited number of files in S3 for a persistent storage. However, one file is

limited to the maximum size of 5TB. AWS ensures that Amazon S3 meets the

durability of 99.999999999% and the availability of 99.99%.

One example use case of Amazon S3 is to store AWS Lambda sources code of

a serverless application. In addition, S3 can also be configured as an event

source for AWS Lambda so that whenever there is a change, such as a file is

uploaded, a Lambda function is triggered to respond to that event.

3.3.4 Amazon DynamoDB

Amazon DynamoDB is a serverless NoSQL database provided by AWS. It is

well known by its highly scalable feature which can handle millions of requests

per second. Since it is a serverless database, users can increase its capacity

and throughputs by modifying RCU (Read Capacity Unit) and WCU (Write

Capacity Unit).

The unit model of DynamoDB are tables with a partition key and an optional

range key. A partition key is used to divide the data into different partitions.

Each partition will hold a portion of the total data. A range key is used to sort the

data inside a partition. By combining the partition key and the range key,

powerful queries can be executed to extract needed data from the database.

Another option is to get all the data in the database regardless of the keys.

However, it is not a common use case since getting all the data is an expensive

operation regarding the performance and the cost. With that being said,

understanding the query patterns of the data before setting up the database is

essential.

3.3.5 Amazon SNS

Amazon SNS is a serverless pub/sub messaging service provided by AWS. It

allows publishers to send messages to subscribers. In this service, publishers

do not know about subscribers and they do not interact with each other directly

 39

but through a thing called “topics”. Publishers can send messages to a topic

from which the messages will be delivered to the subscribers of the topic. The

Figure 12 provides a visual overview on how the service works.

This service encourages asynchronism, which is the ability of a component to

communicate with other components in the system asynchronously, without

waiting for the response.

FIGURE 12. How AWS SNS works [21]

3.3.6 Amazon SQS

Amazon SQS is a serverless messaging queuing service provided by AWS.

Messages are sent by senders to the message queue from where receivers

continuously poll to get the messages. After processing a message, the receiver

needs to delete it from the queue so that it will not be processed twice.

This service is somehow similar to Amazon SNS when observing from the

outside since they are both a messaging service, but they are much different in

their nature. Amazon SNS is a push model in which messages are pushed to

the subscribers and there can be various subscribers processing the same

message. On the other hand, Amazon SQS is a poll model where the receivers

need to poll the queue to get the messages and process them. A message

cannot be received by multiple receivers at the same time. The message should

be deleted after the receiver finishes processing it.

 40

3.3.7 Amazon CloudWatch

Amazon CloudWatch is a serverless monitoring service provided by AWS. By

utilizing CloudWatch, developers can obtain statistics about the system health

in near real-time. Logs, metrics, and events can be collected from the system

and are sent to Amazon CloudWatch. For example, when integrating with AWS

Lambda as an event source, logs emitted from Lambda functions can be sent to

CloudWatch for analyzing purpose.

In addition, it also provides CloudWatch Alarms which can be triggered when

the predefined condition is violated. For instance, whenever a Lambda function

throws an error, an alarm can be triggered to send a message with information

about the function to a topic in Amazon SNS, which can be attached to another

Lambda function to perform some logic based on the error.

3.3.8 Amazon CloudFormation

Amazon CloudFormation is a service provided by AWS that can help engineers

to describe the components in their system in a declarative way.

CloudFormation encourages companies to adopt the Infrastructure-As-A-Code

model. In this type of model, components in the system, such as databases and

computing resources, are described in a template as code. The template can be

committed to a version control platform so that any engineer in the team can

explore and contribute to the infrastructure without the need for consulting the

engineer who maintains the infrastructure. The template can then be deployed

to AWS in which it becomes a CloudFormation stack. One AWS account can

have many stacks and each stack represents a set of system components. To

update a stack, a changeset needs to be created by modifying the template and

uploading it to AWS again. A stack can be deleted manually through an AWS

console or programmatically through AWS SDK which will also delete all the

components associated with the stack.

 41

4 A SIMPLE SERVERLESS APPLICATION

In the practical part, a serverless application will be implemented to

demonstrate the ability to create and develop serverless applications on AWS.

The motivation for the application comes from the daily life need of the author.

The author needs to track the expiration date of meat boxes he bought. Instead

of using pen and paper, he would like to leverage his Google Home device to

perform this task. To be more specific, Google Home can answer two different

kinds of requests from the author: “Hey Google, meat XX (will expire/expiration

date) on 10th of December)” and “Hey Google, what is the nearest meat

expiration date?”. The high-level architecture will be presented first, which will

be followed by the brief introduction of technologies used in the application and

the detailed user flow.

 42

4.1 High-level architecture

FIGURE 13. High-level architecture

As shown in the Figure 13, the high-level architecture of the application is

generic enough to be adapted to applications following traditional architectures

as well. Main components in the architecture are User Interface, Backend

System, Messaging Service, and Database. Initially, a user will interact with the

user interface, which is in charge of communicating with the backend system to

save or fetch data from the database. In addition, the backend system also

connects with the messaging service to provide asynchronous communication.

In this demo application, the user interface is a Google Home Mini device, the

backend system is the AWS API Gateway + AWS Lambda, the messaging

service is Amazon SNS and the database is DynamoDB. The application is

 43

written in the Go programming language and is deployed on AWS using the

Serverless framework.

4.2 Technologies introduction

Since the Amazon API Gateway, AWS Lambda, Amazon DynamoDB and

Amazon SNS have been discussed in the previous section, only the Google

Home Mini device, Serverless framework and Go programming language are

introduced in this section.

4.2.1 Google Home Mini Device

Google Home Mini, which is depicted in the Figure 14, is a smart speaker

developed by Google. It provides the ability for users to interact with devices

using commands through Google Assistant. Google Assistant is powered by

Machine Learning under the hood, which offers powerful capabilities to respond

to different kinds of complex commands from users. Some example use cases

include asking for today’s weather or turning on the TV and music. It can also

be integrated into various electronic devices to perform home automation.

FIGURE 14. The Google Home Mini device [22]

 44

4.2.2 Dialogflow

Dialogflow is a Google service that can be used to create custom functionalities

for Google Assistant which is the underlying technology of Google Home

devices. At the heart of the service is an agent, which represents an application.

Each agent can have many intents which represent user requests, such as play

a video or make an order. One intent can have many entities, which can be

extracted to get information about a user request. Finally, each intent can be

associated with a fulfillment which can be used to provide a custom response

for a request. In this thesis, the agent is the meat expiration tracking service.

The service will have two intents, which are the “ask meat expiration date” and

the “save meat expiration date”. Inside those intents, there will be two entities,

namely the “meat name” and the “expiration date”. The fulfillment will be a

custom endpoint provided by the backend system to respond to the requests.

4.2.3 Go Programming Language

Go is a statically typed, compiled programming language developed at Google.

The goal of Go is to have a static typing and run-time speed like C++,

readability and simplicity like Python, and JavaScript with efficient

multiprocessing. The most critical feature of Go is the ability to compile the code

to a single executable binary without any dependency, which makes the

deployment process effortlessly. The Figure 15 shows an example of a Go

program.

 45

FIGURE 15. An example of a Go program

4.2.4 Serverless Framework

The Serverless framework is an open-source deployment framework for

serverless applications. Components and configurations of an application can

be written declaratively in a file called “serverless.yml”, which is shown in the

Figure 16. After having the “serverless.yml” file, the application can be deployed

with just one CLI command which vastly improves the developer experience.

Since the framework is provider-agnostic, every serverless cloud platform can

be integrated and can take advantage of it.

 46

FIGURE 16. An example serverless.yml file

The example above will create an AWS Lambda function which is written in

NodeJS and deployed in the us-east-1 region.

4.3 Detailed user flow

Flow 1: Save meat expiration date

FIGURE 17. The user flow to save the meat expiration date

As demonstrated in the Figure 17, a user will make a voice command to a

Google Home device, such as: “Hey Google, meat XX will expire on 10th of

December”. After receiving the command, the device will extract the information

such as a meat name and expiration date from the command and send a POST

request with that information to the webhook endpoint URL provided by the API

Gateway, for example, https://api.example.com/meat-request-handler. Then,

the API Gateway will trigger a Lambda function and pass command information

 47

as arguments to the function. Next, the Lambda function will create a message

containing the meat name and expiration date and act as a publisher to send it

to an SNS topic. Lastly, a subscriber of that SNS topic, which is a Lambda

function, will receive the message and attempt to save the meat name with its

expiration date to DynamoDB. The reason for choosing asynchronous

communication through Amazon SNS is that the data persistence process does

not need to happen immediately. Also, by leveraging Amazon SNS, different

type of business logic can be performed on the information about the meat

name and its expiration date through attaching more Lambda functions later if

needed.

Flow 2: Ask for nearest expiring meat

FIGURE 18. The user flow to ask for nearest expiring meat

As demonstrated in the Figure 18, a user will make a voice command to a

Google Home device, such as: “Hey Google, when is my nearest meat

expiration date?”. After receiving the command, the device will extract the

information, such as the meat name and expiration date from the command and

send a POST request with that information to the webhook endpoint URL

provided by the API Gateway, for example, https://api.example.com/meat-

request-handler. Then, the API Gateway will trigger a Lambda function and

pass command information as arguments to the function. Next, the Lambda

function will make the query to DynamoDB to figure out which meat will expire

next. After getting the query result from DynamoDB, the function will respond to

 48

the API Gateway, which in turn responds to the Google Home device. In the

end, the user will hear the response from the device which is: “The nearest

expiring meat is pork on 12th of December 2019”.

The full source code is available at https://gitlab.com/ntuandung93/joelin.

 49

5 CONCLUSION

Serverless architecture appears to be a solid choice for organizations. It can

cover various use cases while keeping the advantages outweigh the

disadvantages. Infrastructure costs can now be utilized for other areas which

can boost the core product value. From the author’s perspective, the serverless

architecture would probably have strong potentials in the future and can

become a standard way of developing cloud-based systems.

However, adopting the serverless model would require an extensive refactor

process. Companies need to consider and split the resources wisely to balance

between core business values and internal restructurings. The recommendation

from the author is to reconstruct the codebase to follow the service-oriented

architecture first. Then, converting each service to the serverless architecture

incrementally.

 50

REFERENCES

1. Wagner, T. 2017. Optimizing Enterprise Economics with Serverless

Architectures. Amazon Web Services

2. Roberts, M. 2017. Defining Serverless – Part 1. Date of retrieval 4.6.2019

https://blog.symphonia.io/defining-serverless-part-1-704d72bc8a32

3. Lahiri, M. 2017. The evolution from servers to functions. Date of retrieval

10.6.2019 https://read.acloud.guru/the-evolution-from-servers-to-functions-

21833b576744

4. Reed, J. 2018. Physical Servers vs Virtual Machines: Key Differences and

Similarities. Date of retrieval 13.6.2019

https://www.nakivo.com/blog/physical-servers-vs-virtual-machines-key-

differences-similarities/

5. Fiber Optic Solutions. 2017. Server Rack Choice: How to Make the Right

Decision? Date of retrieval 15.6.2019 http://www.fiber-optic-

solutions.com/server-rack-choice-right-decision.html

6. Network Computing Solutions. NCS-Server-Virtualization. Date of retrieval

20.6.2019 http://www.ncs-grp.com/project/project-three/ncs-server-

virtualization/

7. Lardinois, F. 2016. WTF is a container? Date of retrieval 22.6.2019

https://techcrunch.com/2016/10/16/wtf-is-a-container/

8. Rubens, P. 2017. What are containers and why do you need them? Date of

retrieval 25.6.2019 https://www.cio.com/article/2924995/what-are-

containers-and-why-do-you-need-them.html

9. Watts, S. & Raza, M. 2019. SaaS vs PaaS vs IaaS: What’s The Difference

and How To Choose. Date of retrieval 28.6.2019

https://www.bmc.com/blogs/saas-vs-paas-vs-iaas-whats-the-difference-and-

how-to-choose/

10. McKim, J. 2016. Abstracting the Back-end with FaaS. Date of retrieval

30.6.2019 https://serverless.zone/abstracting-the-back-end-with-faas-

e5e80e837362

 51

11. Bashir, F. 2018. What is Serverless Architecture? What are its Pros and

Cons? Date of retrieval 2.7.2019 https://hackernoon.com/what-is-serverless-

architecture-what-are-its-pros-and-cons-cc4b804022e9

12. Sharma, H. 2019. What is AWS? – An Introduction to AWS. Date of retrieval

4.7.2019 https://www.edureka.co/blog/what-is-aws/

13. Lobastov, I. 2019. Comparing Serverless Architecture Providers: AWS,

Azure, Google, IBM, and Other FaaS Vendors. Date of retrieval 5.7.2019

https://dzone.com/articles/comparing-serverless-architecture-providers-aws-

az

14. Microsoft Azure. Azure Products. Date of retrieval 5.7.2019

https://azure.microsoft.com/en-in/services/

15. Wikipedia. Google Cloud Platform. Date of retrieval 6.7.2019

https://en.wikipedia.org/wiki/Google_Cloud_Platform

16. Guillermo 2018. Why to choose AWS Cloud for your Web Application? Date

of retrieval 8.7.2019 https://www.clickittech.com/aws/why-aws-cloud/

17. Chauhan, S. 2017. What is Microsoft Azure? – An Introduction to Azure.

Date of retrieval 11.7.2019 https://www.dotnettricks.com/learn/azure/getting-

started-with-microsoft-azure-platform

18. Bespin Global. Google Cloud Platform. Date of retrieval 12.7.2019

https://en.bespinglobal.com/product-solutions/google-cloud-platform/

19. Baird, A. & Huang, G. & Munns, C. & Weinstein, O. 2017. Serverless

Architecture with AWS Lambda. Amazon Web Services

20. QwikLabs. Introduction to Amazon API Gateway. Date of retrieval 13.7.2019

https://www.qwiklabs.com/focuses/269?parent=catalog

21. AWS. Amazon Simple Notification Service. Date of retrieval 15.7.2019

https://aws.amazon.com/sns/

22. Fingas, J. 2017. Google Home Mini is a basic $49 smart speaker. Date of

retrieval 20.7.2019 https://www.engadget.com/2017/10/04/google-home-

mini/

