

Junbo Cai

Improvement of Java-based NS-2

Visualizer

Information Technology

2011

VAASAN AMMATTIKOREAKOULU
UNIVERSITY OF APPLIED SCIENCES
Degree Programme of Information Technology

ABSTRACT

Author Junbo Cai
Title Improvement of Java-based NS-2 Visualizer
Year 2010
Language English
Pages 53
Supervisor Gao Chao

NS-2 (Network Simulator version 2) is the most popular open-source network

simulation program. NS-2 kernel is made in C++ but simulation scenario design

is done in TCL (Tool Command Language). TCL is not a popular language for

most networking researchers and engineers; therefore a user-graphic interface

program is highly appreciated. We are aimed to design this software and denote

it as NSSV (NS-2 Scenario Setup Visualizer).

In this project, my work is to continue the leading work done by Miss Huang

Cheng to improve the functions (mobile network simulation) of such a program.

The program was designed using Java language so that it is compatible in

different operating systems. Due to the limit of time and workload, Huang

Cheng did not implement the function of mobile network simulation setting. By

carefully reviewing the source code, as well as based on my deep understanding

of wireless network communications. I have implemented mobile network

simulation scenario design by enabling traffic generating function and node

mobility generating function.

In the new version of this program a user is able to set up a mobile network

simulation easily, and the TCL scripts and scenarios can be generated with the

NSSV program.

CONTENT

ABSTRACT

ABBREVIATIONS

1. INTRODUCTION.. 1

1.1 Rationale of this project.. 2

2. BACKGROUND of NS-2.. 3

2.1 NS-2 working flow ... 3

2.2 NS-2 Structures... 4

2.3 NS contains OTcl and C++ languages.. 5

2.4 Simulation of Wired Network... 5

2.4.1 Nodes ... 6

2.4.2 Links... 6

2.4.3 Agents... 7

2.4.4 Traffic Generators .. 9

2.5 Simulation of Wireless Network... 11

2.5.1 Packet Headers ... 12

2.5.2 Mobile Nodes ... 13

2.5.2.1 Link Layer ... 14

2.5.2.2 Interface Queue.. 14

2.5.2.3 MAC Layer.. 14

2.5.2.4 Network Interfaces .. 14

2.5.2.5 Radio Propagation Model.. 15

2.5.2.6 Antenna.. 15

2.5.3 Wireless channel... 15

2.5.4 Forwarding and routing.. 15

3. APPLICATION DESRIPTION.. 17

3.1 Requirement Analysis... 17

3.2 Accessing the functions .. 18

3.3 Users interface .. 18

3.4 Analysis and Design .. 19

3.4.1 UML (Unified Modeling Language) Diagrams 19

3.4.1.1 Main Components.. 19

3.4.1.2 Application Main Modules .. 20

3.4.1.3 Class Diagrams .. 20

3.5 A wireless example of Simulation file.. 24

4. IMPLEMENTATION... 27

4.1 Coding .. 27

4.2 Debugging .. 34

4.3 Results .. 35

5. CONCLUSION.. 43

6. SUMMARY ... 45

REFERENCES

LIST of ABBREVIATIONS

AODV Ad-hoc On-demand Distance Vector

API Application Programming Interface

CBQ Class Based Queuing

CBR Constant Bit Rate

DSDV Destination Sequenced Distance Vector

DSR Dynamic Source Routing

FTP File Transfer Protocol

IDE Integrated Development Environment

IQT Interface Queue Type

ISI Information Sciences Institute

GUI Graphical User Interface

NS-2 Network Simulator ver.2

NSSV NS-2 Scenario Setup Visualizer

PUMA Protocol for Unified Multicasting through Announcements

TCL Tool Command Language

TCP Transmission Control Protocol

TORA Temporally-Ordered Routing Algorithm

UDP User Datagram Protocol

VBR Variable Bit Rate

WLAN Wireless Local Area Network

1/51

1. INTRODUCTION

Network Simulator (Version 2), is widely known as NS-2, which provides

support for simulation of wired as well as wireless network functions and

protocols (e.g., routing algorithms, TCP (Transmission Control Protocol), UDP

(User Datagram Protocol)).

NS2 is an object-oriented network simulator, which is essentially a discrete

event simulator. NS2 has a virtual clock, all the simulation by the discrete

event-driven. Nowadays, NS2 simulation can be used for a variety of

communication networks. NS-2 has the strong functions and great modules, has

achieved some of the simulation modules: Network Transfer Protocol module,

e.g. TCP and UDP; Business Source Flow Generator module, e.g. FTP (File

Transfer Protocol), Telnet, CBR (Constant Bite Rate) and VBR (Variable Bit

Rate); Routing Queue Management module, e.g. Droptail, Red and CBQ (Class

Based Queuing); Routing Arithmetic module, e.g. Dijkstra, WLAN (Wireless

Local Area Network), Ad hoc Router, Mobile IP Wireless Network and Satellite

Communication Network. NS-2 also has achieved multicast and some MAC

sub-layer protocol for local network simulation.

However, NS2 was developed by C++ and OTCL languages. But OTCL

language is not popular for most users.

This application was to design a Graphical User Interface to generating the NS

codes for network simulation. We use Java as the platform for this software, so

that the users can use this program on different operating systems.

2/51

1.1 Rationale of this project

NS-2 is the most popular open-source network simulation program, but

simulation scenario design is done in TCL. TCL is not a popular language for

most networking researchers and engineers. Therefore the existing program

mentioned above is also made for most networking researchers and engineers as

a user-graphic interface, but a program made in Java can work on any operating

system that supports Java.

The purpose of the project is to develop a GUI (Graphical User Interface) that is

used to generate the TCL scripts. Simple use friendly interface will allow user to

generate the TCL scripts easily. My work is to continue the previous project

done by Huang Cheng. And my task is to improve the connection pattern and

node movement for the mobile/wireless simulation and to make an automatic

traffic generation.

My thesis structure is started from the introduction of my work; see what is my

work, why this work has to be done and how did I do it. The rest of the thesis is

arranged as follows: In Chapter 2 I briefly introduce NS-2 background, explain

how wireless network simulation works. In Chapter 3 I detailed describe what

the function of this project is. In Chapter 4 I analyze and design the project by

together software. In Chapter 5 I focus on implementation by codes and results.

Finally in Chapter 6 I conclude my work.

3/51

2. BACKGROUND of NS-2

2.1 NS-2 working flow

A Simulation program in NS-2 is designed by OTcl script, using the NS

simulator library (Event scheduler objects, Network component objects and

Network setup helping modules) to compile and simulate by OTcl interpreter.

NS2 outputs either text-based or animation-based simulation results. To analyze

a particular behavior of the network, uses can extract a relevant record of

simulation results to generate the network topology picture, or data visualization

charts. Figure 1 shows the basic architecture of NS-2.

Figure1: Basic architecture of NS-2 [4]

4/51

2.2 NS-2 Structures

Figure 2: NS-2 Structure [4]

OTcl is the object-oriented extension which is established over the part of Tcl.

Event scheduler and Network component these tow parts are written by C++.

And C++ in the lowest layer means C++ is the core of NS2. TclCl is linkage

between OTcl and C++. And TclCl is “Tcl with classes” which is an interface

between C++ and Tcl.

In a word, when we simulate a new protocol, firstly we need to describe the

protocol by C++ language. This includes deciding for protocol specification and

processing for protocol version. Then we establish a simulator by Tcl script, and

define the protocol for MAC layer, network layer and etc. which we need to

simulate in this simulator. Finally it is to be analyzed its characteristics by

simulating network activity.

5/51

2.3 NS contains OTcl and C++ languages

OTcl is short for Object Tcl, an extension to Tcl/Tk for object-oriented

programming, used as a front-end to setup the simulator, configure objects and

schedule events. Here is the function of OTcl code.

 Used to build the network structure and topology this is just the surface

of your simulation;

 Easily to configure your network parameters;

 Not enough for research schemes and protocol architecture adaption.

C++ is most important and kernel part of the NS2, used for the creation of

objects because of speed and efficiency. Here is the function of C++ scripts.

 To implement the kernel of the architecture of the protocol designs;

 From the packet flow view, the processes run on a single node;

 To change or “comment out” the existing protocols running in NS2;

 Details of your research scheme.

2.4 Simulation of Wired Network

Nodes and Links are demanded in wired network simulation for creating the

topologies. Agent and traffic frame can be attached to the nodes. And all the

nodes should be connected by link, the agent need to be connected as well.

6/51

2.4.1 Nodes

There are two important roles of a node in NS2. A node acts as a router and a

host. As a router, it forwards packets to the connecting link based on a

routing table. As a host, it delivers packets to the transport layer agent

attached to the port specified in the packet header.

2.4.2 Links

A link is an OTcl object which connects two nodes and carries packets from

the beginning node to the terminating node. There are three link types in

NS2 which are Simplex-Link, Duplex-Link and Duplex-Intserv-Link. And

there are some attributes of each link in the following. Table1 lists some

attributes of each link.

Bandwidth Link bandwidth in bits per second

Delay Link propagation delay in seconds

Queue Type Link uses queue types: DropTail, Fair Queuing (FQ),

Stochastic Fair Queuing (SFQ), Deficit Round Robin (DRR),

Random Early-Detection (RED)

Orientation Where the packets flow

Monitor position Where to captured the flow

Queue Limit Control the flow

Table1.The Attributes of each link [2]

7/51

2.4.3 Agents

An agent is a program that gathers information or performs some other

service without your immediate presence and on some regular schedule. The

agent includes enough internal state to assign fields to a simulated packet

before it is sent. There are some agents supported in NS2. They show in

following. Table2 lists some agents and specifications above.

TCP a “Tahoe” TCP sender

TCP/Reno a “Reno” TCP sender

TCP/Newreno a modified Reno TCP sender

TCP/Sack1 a SACK TCP sender

TCP/Fack a “forward” SACK TCP sender

TCP/FullTcp a more full-functioned TCP with 2-way traffic

TCP/Vegas a “Vegas” TCP sender

TCP/Vegas/RBP a Vegas TCP with “rate based pacing”

TCP/Vegas/RBP a Reno TCP with “rate based pacing”

TCP/Asym an experimental Tahoe TCP for asymmetric links

TCP/Reno/Asym an experimental Reno TCP for asymmetric links

TCP/Newreno/Asym an experimental Newreno TCP for asymmetric links

TCPSink a Reno or Tahoe TCP receiver

TCPSink/DelAck a TCP delayed-ACK receiver

TCPSink/Asym an experimental TCP sink for asymmetric links

TCPSink/Sack1 a SACK TCP receiver

TCPSink/Sack1/DelAck a delayed-ACK SACK TCP receiver

UDP a basic UDP agent

RTP an RTP sender and receiver

RTCP an RTCP sender and receiver

LossMonitor a packet sink which checks for losses

8/51

IVS/Source an IVS source

IVS/Receiver an IVS receiver

CtrMcast/Encap a “centralized multicast” encapsulator

CtrMcast/Decap a “centralized multicast” de-encapsulator

Message a protocol to carry textual messages

Message/Prune processed multicast routing prune messages

SRM an SRM agent with non-adaptive timers

SRM/Adaptive an SRM agent with adaptive timers

Tap interfaces the simulator to a live network

Null a degenerate agent which discards packets

 rtProto/DV distance-vector routing protocol agent

Table2. The detail of agent [2]

Agent states for each type. All the states will be used in my project. Table3

lists the states of each agent.

Flow ID the flow identifier

Priority the ID priority field

Flag packet flags

Time to live default is 32

Class the node class field

Address Address of the attached node

Port number Port where the agent is attached

Window size window size in bytes

Packet size packets size in bytes

Destination address where it is sending packets to

 Destination port where it is directing packets to

Table3. The states of each agent [2]

9/51

2.4.4 Traffic Generators

Sitting on top of a transport layer agent, an application informs the attached

agent of user demand. Application can be classified into traffic generators

(Traffic/CBR, Traffic/Exponential, Traffic/Pareto) and simulated

applications (FTP and Telnet).

FTP (File Transfer Protocol)

An NS2 FTP module does not need an input file. It simply informs an

attached sending transport layer agent of a file size in bytes. Upon receiving

user demand, the agent creates packets which can accommodate the file and

forwards them to a connected receiving transport layer agent through a

low-level network.

Telnet

Telnet is an interactive client-sever text-based application. Telnet is not

implemented based on a predefined schedule, since its data traffic is created

in response to user demand. NS2 models a Telnet application in the same

way as it does for traffic generators: sending a fixed size packet for every

randomized interval.

Traffic/CBR (Constant Bit Rate)

A CBR traffic generator creates a fixed size payload burst for every fixed

interval. The parameters of a CBR traffic can be seen in Table 4.

Inst_Var Default_value Description

packetSize 210 Application payload size in bytes

rate Sending rate in bps 310488

10/51

random 0 (false) If true, introduce a random time to the

inter-burst transmission interval.

maxpkts Maximum number of application payload 716

packet that CBR can send

Table4. Instruction Variables of Traffic/CBR [2]

Traffic/Exponential

An exponential on/off traffic generator acts as a CBR traffic generator

during an ON interval and does not generate any payload during an OFF

interval. ON and OFF periods are both exponentially distributed. The

parameters of a Traffic/Exponent can be seen in Table 5.

Inst_Var Default_value Description

packetSize 210 Application payload size in bytes

rate Sending rate in bps during an ON period 31064

burst_time 0.5 Average ON period in seconds

idle_time 0.5 Average OFF period in seconds

Table5. Instruction Variables of Traffic/Exponential [2]

Traffic/Pareto

A pareto on/off traffic generator does the same as an exponential on/off

generator but the ON and OFF periods conforms to a Pareto distribution.

The parameters of a Traffic/Pareto can be seen in Table 6

11/51

Inst_Var Default_value Description

packsize 210 Application payload in bytes

rate Sending rate in bps during an ON period 31064

burst_time 0.5 Average ON period in seconds

idle_time 0.5 Average OFF period in seconds

shape 1.5 A “Shape” parameter of a Pareto distribution

Table6. Instruction Variables of Traffic/Pareto [2]

2.5 Simulation of Wireless Network

The components of mobile networking are Packet Headers, Mobile nodes,

Wireless channels and Forwarding and routing. Simulation of wireless network

needs to configure the mobile nodes, movement path, and scenarios.

12/51

2.5.1 Packet Headers

Figure3. Wireless Packet Format [5]

From the Figure3 we can know the main variables of wireless that are LL,

MAC, Channel Type, Antenna Type and Interface Queue Type. So these

variables will be used for wireless nodes in ns and configured in my

project.

13/51

2.5.2 Mobile Nodes

Figure4. Portrait of a Mobile Node [5]

Figure 4 is a mobile node processing under the CMU (Camegie Mellon

University) Monarch (the name of the project) wireless extensions to NS-2.

It shows the network components in the mobile node and the data path of

sending and receiving packets.

The mobile node needs the parameters that are location (coordinates (x,y,z))

and movement (speed, direction, starting/ending location, time, and etc.).

14/51

2.5.2.1 Link Layer

Link Layer is the protocol layer with a separate ARP (Address

Resolution Protocol) module. It handles the moving of data in and out in

a network.

2.5.2.2 Interface Queue

Interface queue is a real time packet scheduler which gives priority to

routing protocol packets.

2.5.2.3 MAC Layer

MacTdma and IEEE 802.11 Mac layer protocols are used in NS2. NS2

has used their implementation Distributed Coordination Function (DCF)

from CMU.

2.5.2.4 Network Interfaces

NS uses Phy/WirelessPhy as wireless media interface to access the

channel. Wireless media interface subject is collisions; the radio

propagation model receives packets transmitted by other node interfaces

to the channel.

15/51

2.5.2.5 Radio Propagation Model

NS-2 manual is given the math expression of these 3 models:

TwoRayGround, Shadowing and FreeSpace.

2.5.2.6 Antenna

OmniAntenna and DirAntenna are used by mobile nodes as the antenna

type. And antenna provides a good abstraction to wireless networking

simulation.

OmniAntenna in NS-2 is a virtual Omnidirectianal antenna system.

DirAntenna in NS-2 is a virtual Directional Antenna system.

2.5.3 Wireless channel

The wireless channel simulates the transmission of packets at the physical

layer. It is the receiver’s responsibility to decide if it will accept the packets.

2.5.4 Forwarding and routing

The five different ad hoc routing protocols currently implemented for mobile

networking in NS-2 are:

 Destination-Sequenced Distance-Vector (DSDV)

 Dynamic Source Routing (DSR)

 Ad hoc On-demand Distance Vector (AODV)

 Temporally-Ordered Routing Algorithm (TORA)

 Protocol for Unified Multicasting Through Announcements (PUMA)

16/51

In NS2 forwarding and routing function is archived by a classifier object.

The NS nodes contain many different classifiers. Different classifiers have

different tasks. When one extends the functionality of the node, more

classifiers are added into the base node, and each of these blocks needs its

own classifiers. Multiple classifier objects, each looks at a specific portion of

the packet forward the packet through the node. The node contains the base

routing module.

17/51

3. APPLICATION DESRIPTION

The main functionality of this program is the generation of the TCL code. And

the purpose of this design is made the TCL to be used simply for the NS users.

3.1 Requirement Analysis

At this application there are two parts tasks. One was done by Huang Cheng.

Now I am going to do another one. Here is a list of functions which the

program must include in my application.

 Traffic generation has to be set manually with program Actually NS-2

contains an automatic traffic generation utility “cbrgen” which can

generate traffic randomly by the given parameters

 Another improvement is for the mobile/wireless network simulation.

NS-2 contains another utility “setdest”. With this utility, a random

movement path for all the mobile nodes in the simulation can be

randomly set up.

The program should have the following functions:

 All the implementation should cover all the parameter setting for both

of “cbrgen” and “setdest” utilities.

 The program should generate a command to be executed as TCL file.

It is nice to have these functions now.

18/51

3.2 Accessing the functions

The function should be accessed simply in the normal way in which

parameters are usually set in programs.

Firstly the program is an executable jar file, users need the java environment

in own computer. There two parts need to pay attention. One is “cbrTraffic”,

which can generate traffic randomly by “cbrgen” utility. In this case, cbrgen.tcl

file should be run firstly in Linux Operating System, and then continue the

next tcl file. On the other hand, that is “setdest” for creating a node-movement

scenario randomly. In this part, this is the “./setdest” makefile, which should

be run firstly in Linux Operating System. The rest can be generated by the

given parameters, and then executed in Linux environment.

3.3 Users interface

There should be a main window that has simulation parameters, script content,

network layout and five main tabs. Script content displays the script here.

Main tabs are Node, Link, Agent, cbrtraffic and setdest.

Normally a wired simulation TCL file needs three parts in this program; they

are Node, Link and Agent. And cbrTraffic is used optionally, it depends on

using random traffic or not. But a wireless simulation TCL file does not need

Link part.

When the script generation was done, saves as TCL file. And run it in Linux

environment.

19/51

3.4 Analysis and Design

For software applications, the first and the most important thing are to analyze

and know the logic of TCL before implementation. It is important to have the

Java Swing knowledge since it benefits any program and makes the

implementation easier.

3.4.1 UML (Unified Modeling Language) Diagrams

The UML design of this program is done with Borland Together 6.1.

3.4.1.1 Main Components

In the following diagram, it shows the main components in the main

window.

We can see there is only one actor which is user self. User is able to use

the program components setting the parameters for Link, Node, Select,

Agent, cbrtraffic, setdest, Network Layout, Simulation Parameters as well

as Script content. All of these cases apply for generating TCL code.

Figure5. Use Case diagram

20/51

3.4.1.2 Application Main Modules

Application is divided into three main packages: MainPackage, GUI, and

NetworkComponents. DrawAction package is for selecting and drawing

node or link. MainPackage package is for the main window function and

the GUI package is for the entire NS frame. The package

NetworkComponents is for all the components of NS2.

Figure6. Components diagram

3.4.1.3 Class Diagrams

Here we take a more detailed look at the class and roles of each class.

Figure 7 shows the class diagram in package GUI. There are eight classes

in this package: MainView, NodeFrame, LinkFrame, AgentFrame,

TraceAndSchedulerFrame, cbrTrafficFrame, Setdest, as well as

21/51

DrawModel. Most of these represent a window in the graphical user

interface. The class called MainView is the window which shows the

parameter field’s layout. And the other classes NodeFrame, LinkFrame,

AgentFrame, cbrTrafficFrame, cbrTrafficFrame and Setdest show their

own component of simulation parameter. But TraceAndSchedulerFrame

and DrawModel show the window of Script Content and Network Layout.

Figure7. Class diagram of GUI

22/51

Shown in Figure 8 is the class diagram in package MainPackage. There are

five classes in this package. The class called Main_Class starts the

program and it will launch the MainView window.

Figure8. Class diagram of MainPackage

NetworkComponent package has four classes. Agent class sets all the

types of agent component parameters and lists all the variables. Link is a

class which lists all the variables in link component. Node is also a class

which lists all the variables in node component and sets the position of

23/51

nodes. Traffic class initializes the traffic packages and set the parameters

of traffic component.

Figure9. Class diagram of NetworkComponent

24/51

3.5 A wireless example of Simulation TCL file

Part 1: Node and protocol parameter setting

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna type

set val(x) 600 ;# X dimension of the topography

set val(y) 600 ;# Y dimension of the topography

set val(ifqlen) 50 ;# max packet in ifq

set val(adhocRouting) DSDV ;# Routing protocol

set val(nn) 3 ;# how many nodes are simulated

set val(cp) "../cbr-3-test" ;# connection file

set val(sc) "../scen-3-test" ;# scenario file

set val(stop) 400.0 ;# simulation time

===

Main Program

===

Initialize Global Variables

create simulator instance

set ns_ [new Simulator]

setup topography object

set topo [new Topography]

create trace object for ns and nam

set tracefd [open wireless1-out.tr w] # trace file

set namtrace [open wireless1-out.nam w] # nam file

$ns_ trace-all $tracefd

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

define topology

$topo load_flatgrid $val(x) $val(y)

Create God

set god_ [create-god $val(nn)]

define how node should be created

#global node setting

25/51

$ns_ node-config -adhocRouting $val(adhocRouting) \

 -llType $val(ll) \

 -macType $val(mac) \

 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \

 -propType $val(prop) \

 -phyType $val(netif) \

 -channelType $val(chan) \

 -topoInstance $topo \

 -agentTrace ON \

 -routerTrace OFF \

 -macTrace OFF

Create the specified number of nodes [$val(nn)] and "attach" them

to the channel.

Part 2

for {set i 0} {$i < $val(nn) } {incr i} {

 set node_($i) [$ns_ node]

 $node_($i) random-motion 0 ;# disable random motion

}

Define node movement model

puts "Loading connection pattern..."

source $val(cp)

Define traffic model

puts "Loading scenario file..."

source $val(sc)

Define node initial position in nam

for {set i 0} {$i < $val(nn)} {incr i} {

20 defines the node size in nam, must adjust it according to your scenario

The function must be called after mobility model is defined

 $ns_ initial_node_pos $node_($i) 20

}

Tell nodes when the simulation ends

for {set i 0} {$i < $val(nn) } {incr i} {

 $ns_ at $val(stop).0 "$node_($i) reset";

}

at $val(stop).0002 time ns will stop

$ns_ at $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt"

Part 3

add informative header for CUM trace file

puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $val(adhocRouting)"

26/51

puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)"

puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)"

puts "Starting Simulation..."

$ns_ run

before run ns, Make sure the connection-pattern and node-movement files exist under

the directories as declared above.

List1. TCl file sample

Firstly, we need to setup the parameters and option from the mobile nodes like

e

n

e

g

part 1 which is shown in TCL file sample. So that we can create network

topology, nodes object, trace file and namtrace file. Secondly traffic sourc

and movement are created in part 2. In this TCL file sample they are the

random setting by “cbrgen.tcl” and “setdest” utilities for connection and

movement. There is optional setting for the part. For connection pattern, a

agent protocol entity is attached to a mobile node; traffic source packet will b

set. For node movement, mobile nodes are initialized the position; and then

specified with the node moving destination and speed. Finally, it is processin

procedures in part 3, in order to close the output files.

27/51

4. IMPLEMENTATION

In this chapter I will show how the program gets the TCL script. After getting

the tcl script I need to check it in the Cgywin environment. During this part, I

found the variables mistake in the pervious code. Because the utility “cbrgen”

and the utility “setdest” are used in the wireless simulation. These two utilities

generate the node variable is “node(i)” [i means which number of node is

used] and “$ns_”. “n(i)” and “$ns” are used in the pervious code.

4.1 Coding

On the basis of Huang Cheng’s project, I improve some functions for this

program. From the beginning, for the design of my parts I need to study the

NS2 arithmetic. Here is output of its main script for simulation a network by

TCL in the following.

public String getFinishProc(){

 String finishProc="";

 if(mc.getSimParameter().TFselected==true&&mc.getSimParameter().TNselected==tru

e) //select function 1

 finishProc = "proc finish {} {\n" +" "+" global ns_ tf nf\n"+

 " $ns_ flush-trace\n"+" close $tf\n"+

 " close $nf\n"+" exec nam out.nam &\n"+

 " exit 0\n"+"}\n";

 else

 if(mc.getSimParameter().TFselected==true&&mc.getSimParameter().TNselected==fal

se) //select function 2

 finishProc = "proc finish {} {\n" +" global ns_ tf\n"+

 " $ns_ flush-trace\n"+" close $tf\n"+"}\n";

 else

 if(mc.getSimParameter().TFselected==false&&mc.getSimParameter().TNselected==tr

ue) //select function 3

 finishProc = "proc finish {} {\n" +" global ns_ nf\n"+

 " $ns_ flush-trace\n"+" close $nf\n"+

 " exec nam out.nam &\n"+" exit 0\n"+ "}\n";

28/51

 return finishProc;

}

Listing2. Get a “finish” procedure

Listing 2 has the “finish” procedure dialog for TCL script. When the

different parameters will be set, there are different dialogs. And it depends

on trace file or trace nam. The procedure will be selected and trace file or

trace nam is given here as parameters.

if(mc.getModel().getLinkList().size()==0){

scriptContent=scriptContent+"\n#Create nodes\n"+

 "for {set i 0} {$i <= $val(nn) } {incr i} {\n"+

 " set node_($i) [$ns_ node]\n"+

 " $node_($i) random-motion 0

 ;#disable random motion"+"\n"+

 "}\n"; }

Listing3. Create wireless nodes

Listing 3 is the part scripts for creating the node in the action button function.

If link number is “0”, it will print out this script. Otherwise the script will

return the wired nodes which showed on Listing 3.

public String getWiredNode(){

 String createNodes="";

 createNodes = "for {set i 0} {$i < $opt(nn)} {incr i} {\n"+

 " set node_($i) [$ns node]\n"+

 "}\n";

 return createNodes; }

Listing4. Create wired nodes

Listing 4 is the creating wired nodes source.

public String getWiredLink(){

 String createLinks="";

 Vector links=mc.getModel().getLinkList();

 Link linkTemp;

29/51

 for(int i=0;i<links.size();i++){

 linkTemp=(Link)links.get(i);

 createLinks = createLinks +"\n$ns_ "+linkTemp.type+

 " $node_("+linkTemp.sNode+") $node_("+linkTemp.dNode+

 ") "+linkTemp.bandwidth+" "+linkTemp.delay+

 " "+linkTemp.queueType+"\n";

 if(!linkTemp.orientation.equals(""))

 createLinks=createLinks +"$ns_ "+linkTemp.type+

 "-op $node_("+linkTemp.sNode+") $node_("+linkTemp.dNode+

 ") orient "+linkTemp.orientation+"\n";

 if(!linkTemp.linkMonitorPos.equals(""))

 createLinks=createLinks +"$ns_ "+linkTemp.type+

 "-op $node_("+linkTemp.sNode+") $node_("+linkTemp.dNode+

 ") queuePos "+linkTemp.linkMonitorPos+"\n";

 if(!linkTemp.queueLimit.equals(""))

 createLinks=createLinks +"$ns_ queue-limit $node_("

 +linkTemp.sNode+") $node_("+linkTemp.dNode+") "

 +linkTemp.queueLimit+"\n";

 }

 return createLinks; }

Listing5. Create links between the nodes

Listing 5 is loop for creating links setup and links types. This is available

when the wired simulation is used. Link amount, orientation, monitor

position and queue limit are given as parameters. If each parameter is true,

its command will be print out.

public String getString(){

 String s ="\nset "+aName+" [new Agent/"+aType.replace('_', '/')

 +"]\n"+"$ns_ attach-agent $node_("+anodeID+") $"+aName+"\n";

 if(aType.equals("TCP")){

 if(!aWindow.equals("20"))

 s=s+"$"+aName+" set window_ "+aWindow+"\n";

 if(!aPacketSize.equals("1000"))

 s=s+"$"+aName+" set packetSize_ "+aPacketSize+"\n";

 }else

30/51

 if(aType.equals("TCPSink")){

 if(!aWindow.equals(""))

 s=s+"$"+aName+" set window_ "+aWindow+"\n";

 if(!aPacketSize.equals("40"))

 s=s+"$"+aName+" set packetSize_ "+aPacketSize+"\n";

 }else

 if(aType.equals("RTP")){

 if(!aWindow.equals(""))

 s=s+"$"+aName+" set window_ "+aWindow+"\n";

 if(!aPacketSize.equals("210"))

 s=s+"$"+aName+" set packetSize_"+aPacketSize+"\n";

 }else

 if(aType.equals("Message")){

 if(!aWindow.equals(""))

 s=s+"$"+aName+" set window_ "+aWindow+"\n";

 if(!aPacketSize.equals("180"))

 s=s+"$"+aName+" set packetSize_ "+aPacketSize+"\n";

 }else

 if(aType.equals("Ping")){

 if(!aWindow.equals(""))

 s=s+"$"+aName+" set window_ "+aWindow+"\n";

 if(!aPacketSize.equals("64"))

 s=s+"$"+aName+" set packetSize_ "+aPacketSize+"\n";

 }else

 if(aType.equals("UDP")){

 if(!aWindow.equals(""))

 s=s+"$"+aName+" set window_ "+aWindow+"\n";

 if(!aPacketSize.equals("1000"))

 s=s+"$"+aName+" set packetSize_ "+aPacketSize+"\n";

 }else{

 if(!aWindow.equals(""))

 s=s+"$"+aName+" set window_ "+aWindow+"\n";

 if(!aPacketSize.equals(""))

 s=s+"$"+aName+" set packetSize_ "+aPacketSize+"\n";

 }

 if(!afID.equals("0"))

 s=s+"$"+aName+" set fid_ "+afID+"\n";

 if(!aPrio.equals("0"))

 s=s+"$"+aName+" set prio_ "+aPrio+"\n";

 if(!aflag.equals("0"))

 s=s+"$"+aName+" set flags_ "+aflag+"\n";

 if(!aTTL.equals("32"))

 s=s+"$"+aName+" set ttl_ "+aTTL+"\n";

31/51

 if aClass.equals("0")) (!

 s=s+"$"+aName+" set class_ "+aClass+"\n";

 if aAddress.equals("-1")) (!

 s=s+"$"+aName+" set agent_addr_ "+aAddress+"\n";

 if aPort.equals("-1")) (!

 s=s+"$"+aName+" set agent_port_ "+aPort+"\n";

 if aDstAddress.equals("-1")) (!

 s=s+"$"+aName+" set dst_addr_ "+aDstAddress+"\n";

 if aDstPort.equals("-1")) (!

 s=s+"$"+aName+" set dst_port_ "+aDstPort+"\n";

 return s;

 }

Listing6. Creating agent

Listing6 is the creating agent function.

public String getString(){

 String s="\nset "+Name+" [new Application/" + trafficType +"]\n"+

 "$"+Name+" attach-agent $" + sendAgent +"\n"+

 "$ns_ connect $" + sendAgent + " $"+receiveAgent+"\n";

 if rafficType.equals("Traffic/CBR")){ (t

 if(!tPacketSize.equals("210"))

 s=s+"$"+Name+" set packetSize_ "+tPacketSize+"\n";

 if(!tRandom.equals("0"))

 s=s+"$"+Name+" set random_ "+tRandom+"\n";

 if(!tInterval.equals("1.0"))

 s=s+"$"+Name+" set interval_ "+tInterval+"\n";

 if(!tRate.equals("448kb"))

 s=s+"$"+Name+" set rate_ "+tRate+"\n";

 if tMaxPacketNumber.equals("268435456")) (!

 s=s+"$"+Name+" set maxpkts_ "+tMaxPacketNumber+"\n";

 }else

 if(trafficType.equals("Traffic/Exponential")){

 if(!tPacketSize.equals("210"))

 s=s+"$"+Name+" set packetSize_ "+tPacketSize+"\n";

 if(!tBurstTime.equals("500ms"))

 s=s+"$"+Name+" set burst_time_ "+tBurstTime+"\n";

 if(!tIdleTime.equals("500ms"))

 s=s+"$"+Name+" set idle_time_ "+tIdleTime+"\n";

 if(!tRate.equals("64kb"))

32/51

 s=s+"$"+Name+" set rate_ "+tRate+"\n";

 }e e ls

 if(trafficType.equals("Traffic/Pareto")){

 if(!tPacketSize.equals("210"))

 s=s+"$"+Name+" set packetSize_ "+tPacketSize+"\n";

 if(!tBurstTime.equals("500ms"))

 s=s+"$"+Name+" set burst_time_ "+tBurstTime+"\n";

 if(!tIdleTime.equals("500ms"))

 s=s+"$"+Name+" set idle_time_ "+tIdleTime+"\n";

 if(!tRate.equals("64kb"))

 s=s+"$"+Name+" set rate_ "+tRate+"\n";

 if tShape.equals("1.5")) (!

 s=s+"$"+Name+" set shape_ "+tShape+"\n";

 }else{

 }

 return s;

 }

Listing7. Create the traffic source

Listing 7 is the traffic source.

if(source==cbrRun){

cbrTrafficTemp="ns cbrgen.tcl -type "+jcbTrafficType.getSelectedItem()

 +" -nn " + Integer.parseInt(mc.getSimParameter().getNoNodes())

 +" -seed " + jtfSeed.getText()+" -mc " + jtfMc.getText()

 +" -rate " + jtfRate.getText();

StringBuffer sb = new StringBuffer();

try {

 Process p = Runtime.getRuntime().exec(cbrTrafficTemp); //process the command

 InputStreamReader ir = new InputStreamReader(p.getInputStream());

 LineNumberReader input = new LineNumberReader(ir);

 String getOutputdata;

 while((getOutputdata = input.readLine()) != null){

 sb.append(getOutputdata+"\n"); //get output data

 }

 }catch (java.io.IOException e1) {

 System.err.println("IOException "+e1.getMessage());

 } y{ tr

 FileWriter fstream = new FileWriter(jtfName.getText());

 //save the file name

33/51

 BufferedWriter out = new BufferedWriter(fstream);

 out.write(sb.toString()); //write down all the output

 out.close();

 }

 catch (Exception ae){

 System.err.println("Error: " + ae.getMessage());

 }

 }

Listing8. cbrgen command output

Listing 8 is an independent component in this project. This is “cbrgen”

if(source==setdestRun){

utility format outputting. If the RUN button pressed, this command will be

executed.

 if(jcbVersionType.getSelectedItem().toString()==("2")){

 SetdestTemp="./setdest "+" -v "+jcbVersionType.getSelectedItem().toString()

 +" -n "+jtfNoNode.getText()+" -P " + jtfPType.getText() + " -p "

 + jtfPTime.getText() + " -s " + jtfSType.getText()+ " -t "

 + jtfSTime.getText()+ " -m " + jtfMinS.getText() + " -M "

 + jtfMaxS.getText()+ " -x " + jtfWoSpace.getText() + " -y "

 + jtfHoSpace.getText();

 }

 if(jcbVersionType.getSelectedItem().toString()==("1")){

 SetdestTemp="./setdest "+" -v"+jcbVersionType.getSelectedItem().toString()

 +" -n " +jtfNoNode.getText()+ " -p " + jtfPTime.getText()

 +" -t " +jtfSTime.getText()+ " -M "+ jtfMaxS.getText()+" -x "

 +jtfWoSpace.getText() + " -y " + jtfHoSpace.getText();

 }

 StringBuffer sb = new StringBuffer();

 try {

 Process p = Runtime.getRuntime().exec(SetdestTemp);

 InputStreamReader ir =new InputStreamReader(p.getInputStream());

 LineNumberReader input = new LineNumberReader(ir);

 String getOutputdata;

 while((getOutputdata = input.readLine()) != null){

 sb.append(getOutputdata+"\n");

 }

34/51

 }catch (java.io.IOException e1) {

 System.err.println("IOException "+e1.getMessage());

 }

 try{

 FileWriter fstream =new FileWriter(jtfOutputName.getText());

 BufferedWriter out = new BufferedWriter(fstream);

 out.write(sb.toString()); //write down all the output

 out.close();

 }

 catch (Exception ae){

 System.err.println("Error: " + ae.getMessage());

 }

 }

Listing9. setdest command output

Because Listing 9 is an alone component in this program as well as. When

4.2 Debugging

Debugging is an important part of implementation of any software. With

button RUN pressed, the command will be printed out and executed. Version

type is given as a parameter. There are two versions command of “setdest”

utility.

debugging, all possible errors in logic and function can be found. Debugging

of this program was done with two different ways. One is debugging the

program window, are there any errors in parameter fields? Another is

debugging the generation script in Cygwin environment, any there any errors

in tcl script? In this case, I tested many examples of tcl file.

35/51

4.3 Results

s of this project, I show you how the program working and

looking like, and I also give some personal opinions about it. In this chapter,

I try to explain how each part of this program works.

In the result

Figure10. Main Window

Figure10 shows the main w s the name of the program

and version. Below there is menu, which has following items. File (Open,

Save), View (Background color) and Window (New Window, Exit Window

and ReadMe). Below the menu there are six component bars that are Select,

Node, Link as well as Agent. Below these component bars it is divided

from middle in two parts. Network Layout and Script content tabs are on the

left side and Simulation Parameters is on the right side. Network diagram is

displayed on the Network Layout, and the generated script is displayed on

Script content. Final step is getting the script by Generate Script button.

indow. In the title, it ha

36/51

Figure11. Node (wired) Configuration Window

This project is started by setting node. When Node component bar selected,

it show like Figure11. In this case, we need to choose which kind of network

will be simulated. So node type (wired or wireless) is selected. And then we

are going to set the parameters which they require. Finally when user presses

OK button, the nodes will be displayed on Network Layout. If node type

“wireless” is selected. It will be showed in Figure 12.

Figure12. Node (wireless) Configuration Window

Here shows all the parameters of wireless node configuration. There are

37/51

mobile nodes setting, node movement, cbrgen command, setdest command

as well as LAN setting. For the wireless nodes, we need to set the node

movement (specify nodes position and set pattern file), which is showed in

Figure13. In the nodes position configuration, there are random movements

ON and OFF. When OFF is selected, we need to fill up all the parameters in

specify nodes position field for each node. For the set pattern file tab, “create

cbr|tcp traffic” tab (Figure14) and “setdest” tab (Figure15) are used firstly to

generate a connection pattern and a scenario file. And user browses the

connection file named as Traffic Name in “create cbr|tcp traffic” tab and

scenario file named as Output file name in “setdest” tab. When all setting is

done, remember to press the confirm button.

Figure13. Node movement of wireless nodes

Here is node movement configuration panel. The current position of node (X,

Y) moves to another position (X, Y) at X time by X speed.

38/51

Figure14. Cbrgen command layout

When user selects cbrtraffic from the “create cbr|tcp traffic” tabs, random

traffic setting window is shown. This window is used alone to run “cbrgen”

command for generating the connection file available in wireless simulation.

This command is for creating a traffic-connection file named as Traffic name.

An automatic traffic generation utility “cbrgen” should be launch “ns cbrgen.tcl

[-type cbr|tcp] [-nn nodes] [-rate rate] [-seed seed] [-mc

connections] >file_name”. In this part, I can not execute the utility

“cbrgen” command directly. Because Cgywin platform is the Linux

environment for my computer. I need to input the command in Cgywin and

generate the connection file (named as file_name).

39/51

Figure15. Setdest command layout

When the user needs to create node-movements for wireless scenarios,

“setdest” component tab is used. In NS2 there are two version “setdest”

commands, he or she can select one of them. There are difference required

parameters between version1 and version2. A random movement path utility

“setdest” should be launch.

“./setdest [-v Version 1] [–p pause time] [–t sim time] [–M
max speed] [–n nodes] [–x width space] [–y height space] >

File Name” or

“./setdest [-v Version 2] [–p pause time] [–t sim time] [–M
max speed] [–m min speed] [–P pause type] [–s speed type]

[–n nodes] [–x width space] [–y height space] > File Name ”

The same as utility “cbrgen”, I need to get the output of the command, and

execute the command in Cgywin for generating the scenarios file (named as

File Name).

40/51

Figure16. Link Configuration Window

When node type is wired, we need to configure the Link parameters. In this

component, it defines what kind of link we selected. When user is satisfied

for each attribute, he or she can press SAVE button to save the data on right

side. If he or she makes any mistake, it can be done easily with RESET

button, and does it again. User can click ADD button to connect two nodes

displaying on Network Layout. Removing the link can again be easily done

with ROMOVE button. EDIT button can be used, when user wants to edit

the data for the link.

41/51

Figure17. Agent and Traffic setting Window

Creating agent, which can be done through Agent component tab, attaches to

the nodes. When the Add Agent button is pressed, the agent will be attached

to the nodes. For example, agent TCP and node ID 0 are set, when Add

Agent button pressed, the message “TCP attach node 0” will show. In

addition, we need to connect the agents and create the traffic by clicking

Connect Agent tab, which shows in Figure18.

42/51

Figure18. Connect Agent Tab in Agent Window

.This window shows the connect agent message and traffic generation

configuration. Here has the randomly traffic which is designed by java

program.

The user can set the traffic parameters self by selecting traffic type as well as.

And then he or she set the start time and end time. It means at S_time the

traffic starts and at E_time the traffic will be end. When all configurations

are done, remember to confirm.

When the nodes, link and agent frame configurations are done, go to the

Main Window for generating the script, and save the content as a tcl file.

Until here a tcl script is generated. Then we need to execute the tcl file under

the ns environment. A tcl file should be launch. “ns file_name.tcl”

43/51

5. CONCLUSION

This project has carried out the purpose to generate NS scenario script for most

networking researchers and engineers. The project work has almost fulfilled all

of the requirements of wired and wireless network simulation. It works well so

that all the functions are implemented and it offers user-friendliness which

makes ns commands easier for user to use Network Simulation. But there are

some attentions for wireless setup.

It will definitely help ns users to generate the scripts easily. For most of the ns

command, users can get the scripts by giving the parameters value. Take

creating nodes and links as example; in ns the command is like this below.

set n0 [$ns node]

set n1 [$ns node]

$ns duplex-link $n0 $n1 1Mb 10ms DropTail

User can access the configuration from this project. Hence, users can get the

commands directly without thinking about the key words in ns.

From my point of view, this project has been very beneficial for me. The project

has been very challenging, but it has also helped me to learn a lot more about

Java Swing and TCL language. One of the biggest challenges has been the fact

that I did not know TCL language before. When the project generates the script

and execute in ns, if there is any errors displayed in ns. I need to check it out

what problem they have. This forced me to look and practice more deeply inside

the source code of TCL, which gave me deeper knowledge of how tcl works.

Besides, I have also seen how powerful the internet search engines are.

Whenever I meet problems or challenges, I search the relevant topics from the

search engine and it always finds me pages from where I can find the way

44/51

towards the solution. In fact, sometimes I can see others having similar

questions about ns and good answers for them by experienced ns users, which is

important and beneficial for me to find out the solution of the problems or

challenges. Thus I can not only retrieve more information of NS-2, but also

understand the contents of NS-2.

In my opinion, for the future there is a field that can be improved in this

program. That is implementation directly, which user could be able to get the

network simulation results with this project. Users do not need to go to NS

environment for executing the tcl file. If we want to retrieve data from the trace

file, we have to know how the trace files are constructed and what information

we need. So we need to understand the trace format clearly.

In conclusion, the project has benefited me since it has developed my

programming skill and understood what parameters are associated with a

wireless network and how the communication in wireless networks differs from

that of the wired ones.

45/51

6. SUMMARY

The aim of my final thesis project work was to develop a program with which ns

user is able to generate the ns scenario script. Moreover, it offers simple and user

friendly interface so that the user can use this program easily. This project was

done in these phases: information gathering, analysis, design, implementation

and debugging.

I have used Java Swing technology to code my project. Besides, an open source

of ns tutorial was used for the reference of ns. I have chosen MyEclipse as the

IDE (Integrated Development Environment) to create the application. I know the

MyEclipse is a powerful tool to develop Java application.

To improve this project I need to study more about NS so that it can generate

most of ns scripts.

LIST OF REFERENCES

[1]. Final Thesis: Visualizing NS-2 configuration with Java 2, Huang Cheng, VAMK,

2007

[2]. NS official manual: Kevin Fall & Kannan Varadhan, 2008

 <URL: http://www.isi.edu/nsnam/ns/doc/>

[3]. NS tutorial: Marc Greis, 2008

 <URL: http://www.isi.edu/nsnam/ns/tutorial/index.html>

[4]. NS by Example: Jae Chung & Mark Claypool, 2008

<URL: http://nile.wpi.edu/NS/>

[5]. NS-2 for wireless: Wu Zhibin, 2007

<URL: http://www.winlab.rutgers.edu/~zhibinwu/html/network_simulator_2.html>

http://www.isi.edu/nsnam/ns/doc/
http://www.isi.edu/nsnam/ns/tutorial/index.html
http://nile.wpi.edu/NS/
http://www.winlab.rutgers.edu/%7Ezhibinwu/html/network_simulator_2.html

	ABSTRACT
	LIST of ABBREVIATIONS
	1. INTRODUCTION
	3. APPLICATION DESRIPTION
	5. CONCLUSION
	6. SUMMARY
	LIST OF REFERENCES

