VAASAN AMMATTIKORKEAKOULU
VASA YRKESHOGSKOLA
UNIVERSITY OF APPLIED SCIENCES

® 0
R
%°

Junbo Cai

Improvement of Java-based NS-2
Visualizer

Information Technology

2011

VAASAN AMMATTIKOREAKOULU
UNIVERSITY OF APPLIED SCIENCES
Degree Programme of Information Technology

ABSTRACT

Author Junbo Cai

Title Improvement of Java-based NS-2 Visualizer
Year 2010

Language English

Pages 53

Supervisor Gao Chao

NS-2 (Network Simulator version 2) is the most popular open-source network
simulation program. NS-2 kernel is made in C++ but simulation scenario design
is done in TCL (Tool Command Language). TCL is not a popular language for
most networking researchers and engineers; therefore a user-graphic interface
program is highly appreciated. We are aimed to design this software and denote

it as NSSV (NS-2 Scenario Setup Visualizer).

In this project, my work is to continue the leading work done by Miss Huang
Cheng to improve the functions (mobile network simulation) of such a program.
The program was designed using Java language so that it is compatible in
different operating systems. Due to the limit of time and workload, Huang
Cheng did not implement the function of mobile network simulation setting. By
carefully reviewing the source code, as well as based on my deep understanding
of wireless network communications. | have implemented mobile network
simulation scenario design by enabling traffic generating function and node

mobility generating function.

In the new version of this program a user is able to set up a mobile network
simulation easily, and the TCL scripts and scenarios can be generated with the

NSSV program.

CONTENT

ABSTRACT

ABBREVIATIONS
1. INTRODUCTION. .. .ciitiiitie ittt sttt sttt re e e 1
1.1 Rationale of this ProjECt........cccviiiiiee e 2
2. BACKGROUND OF NS-2... oottt 3
2.1 NS-2 WOIKING FIOWcooviiiiiiece s 3
2.2 NS-2 SEUCIUIES.. ...ttt 4
2.3 NS contains OTcl and C++ [anQUAgEScccveieiieiieeie e 5
2.4 Simulation of Wired NEetWOIK..........ccccviiiiiiiiiiiiiseseeeee e 5
241 INOUES ...ttt 6
2.4.2 LINKS. ..ottt 6
24,3 AGBNES. .etie ittt 7
2.4.4 TraffiC GENEIALONSoviiiiiiiiiieieeeee et 9
2.5 Simulation of Wireless NetWOrk...........ccocooeiiiiineiiineceesceeee 11
2.5.1 PACKET HEAUES ..ot 12
2.5.2 MODIIE NOUES......ceiiiiieiiiee s 13
2.5.2. 1 LINK LAYET ..ottt 14
2.5.2.2 INterface QUEBUE.........cocuvee ittt 14
2.5. 2.3 MAGC LAYET ..ottt 14
2.5.2.4 Network INtErfacescccvereiiiiiiiciieseeesesees e 14
2.5.2.5 Radio Propagation Model...........cccooiiiiiiiniiiceec e 15
2.5.2.6 ANTENNAoiiiiiiiiii e 15
2.5.3 WIreless Channel..........cooiiiiiiiiieeee e 15
2.5.4 Forwarding and rOULING.........ccoueveeiieiieeie e 15
3. APPLICATION DESRIPTION ..ottt e 17

3.1 ReqUIremMENt ANAIYSIS......cciiiiiieiieie et 17

3.2 AccesSiNg the TUNCLIONScoiieiiiie e 18

3.3 USEIS INEITACE ... 18
3.4 ANalysis and DESIONecoviiieiieie et 19
3.4.1 UML (Unified Modeling Language) Diagramsccccecerererenenennnns 19
3.4.1.1 Main COMPONENTS.....cceeireireiierie e seesre e seeste e sreesre e e nre e anas 19
3.4.1.2 Application Main Modules ... 20
3.4.1.3 Class DIAgramsS.........cccueireeireiieiieeieseesieseesteesieeeesreesresseesre e e snnesnas 20

3.5 A wireless example of Simulation file...........ccociiiiiiiiiiie, 24
4. IMPLEMENTATIONttt 27
4.1 COUING .ttt b bbbttt n bbb bt 27
i B =1 o1 U o o 1T PSSP 34
A3 RESUILS ...t 35
5. CONCLUSION ...ttt 43
B. SUMMALRY ..ottt ettt b e 45

REFERENCES

LIST of ABBREVIATIONS

AODV
API
CBQ
CBR
DSDV
DSR
FTP
IDE
IQT
ISI
GUI
NS-2
NSSV
PUMA
TCL
TCP
TORA
UDP
VBR
WLAN

Ad-hoc On-demand Distance Vector
Application Programming Interface
Class Based Queuing

Constant Bit Rate

Destination Sequenced Distance Vector
Dynamic Source Routing

File Transfer Protocol

Integrated Development Environment
Interface Queue Type

Information Sciences Institute
Graphical User Interface

Network Simulator ver.2

NS-2 Scenario Setup Visualizer
Protocol for Unified Multicasting through Announcements
Tool Command Language
Transmission Control Protocol
Temporally-Ordered Routing Algorithm
User Datagram Protocol

Variable Bit Rate

Wireless Local Area Network

1. INTRODUCTION

Network Simulator (Version 2), is widely known as NS-2, which provides
support for simulation of wired as well as wireless network functions and
protocols (e.g., routing algorithms, TCP (Transmission Control Protocol), UDP

(User Datagram Protocol)).

NS2 is an object-oriented network simulator, which is essentially a discrete
event simulator. NS2 has a virtual clock, all the simulation by the discrete
event-driven. Nowadays, NS2 simulation can be used for a variety of
communication networks. NS-2 has the strong functions and great modules, has
achieved some of the simulation modules: Network Transfer Protocol module,
e.g. TCP and UDP; Business Source Flow Generator module, e.g. FTP (File
Transfer Protocol), Telnet, CBR (Constant Bite Rate) and VBR (Variable Bit
Rate); Routing Queue Management module, e.g. Droptail, Red and CBQ (Class
Based Queuing); Routing Arithmetic module, e.g. Dijkstra, WLAN (Wireless
Local Area Network), Ad hoc Router, Mobile IP Wireless Network and Satellite
Communication Network. NS-2 also has achieved multicast and some MAC

sub-layer protocol for local network simulation.

However, NS2 was developed by C++ and OTCL languages. But OTCL

language is not popular for most users.

This application was to design a Graphical User Interface to generating the NS
codes for network simulation. We use Java as the platform for this software, so

that the users can use this program on different operating systems.

1/51

1.1 Rationale of this project

NS-2 is the most popular open-source network simulation program, but
simulation scenario design is done in TCL. TCL is not a popular language for
most networking researchers and engineers. Therefore the existing program
mentioned above is also made for most networking researchers and engineers as
a user-graphic interface, but a program made in Java can work on any operating

system that supports Java.

The purpose of the project is to develop a GUI (Graphical User Interface) that is
used to generate the TCL scripts. Simple use friendly interface will allow user to
generate the TCL scripts easily. My work is to continue the previous project
done by Huang Cheng. And my task is to improve the connection pattern and
node movement for the mobile/wireless simulation and to make an automatic

traffic generation.

My thesis structure is started from the introduction of my work; see what is my
work, why this work has to be done and how did I do it. The rest of the thesis is
arranged as follows: In Chapter 2 | briefly introduce NS-2 background, explain
how wireless network simulation works. In Chapter 3 | detailed describe what
the function of this project is. In Chapter 4 | analyze and design the project by
together software. In Chapter 5 | focus on implementation by codes and results.

Finally in Chapter 6 I conclude my work.

2/51

2. BACKGROUND of NS-2

2.1 NS-2 working flow

A Simulation program in NS-2 is designed by OTcl script, using the NS
simulator library (Event scheduler objects, Network component objects and
Network setup helping modules) to compile and simulate by OTcl interpreter.
NS2 outputs either text-based or animation-based simulation results. To analyze
a particular behavior of the network, uses can extract a relevant record of
simulation results to generate the network topology picture, or data visualization

charts. Figure 1 shows the basic architecture of NS-2.

0Tcl Script

Simulation

OTcl: Tel interpreter . . Q
with 00 externtion Simulation '
Frogram

Resulis
Analysis

WS simulator Library

¢ Event Scheduler Objects
¢ Network Component Objects

* Network Setup Helping

Wodules (Plumbing Modules) \

NAM
Metwork
Armimator

Figurel: Basic architecture of NS-2 41

3/51

2.2 NS-2 Structures

Network Components
NS-2

TelCL

OTecl

Tl

Event Scheduler

ClC++

Figure 2: NS-2 Structure 4

OTecl is the object-oriented extension which is established over the part of Tcl.
Event scheduler and Network component these tow parts are written by C++.
And C++ in the lowest layer means C++ is the core of NS2. TclCl is linkage
between OTcl and C++. And TcICl is “Tcl with classes” which is an interface

between C++ and Tcl.

In a word, when we simulate a new protocol, firstly we need to describe the
protocol by C++ language. This includes deciding for protocol specification and
processing for protocol version. Then we establish a simulator by Tcl script, and
define the protocol for MAC layer, network layer and etc. which we need to
simulate in this simulator. Finally it is to be analyzed its characteristics by

simulating network activity.

4/51

2.3 NS contains OTcl and C++ languages

OTcl is short for Object Tcl, an extension to Tcl/Tk for object-oriented
programming, used as a front-end to setup the simulator, configure objects and

schedule events. Here is the function of OTcl code.

e Used to build the network structure and topology this is just the surface

of your simulation;
e Easily to configure your network parameters;
e Not enough for research schemes and protocol architecture adaption.

C++ is most important and kernel part of the NS2, used for the creation of

objects because of speed and efficiency. Here is the function of C++ scripts.
e To implement the kernel of the architecture of the protocol designs;
e From the packet flow view, the processes run on a single node;
e To change or “comment out” the existing protocols running in NS2;

e Details of your research scheme.

2.4 Simulation of Wired Network

Nodes and Links are demanded in wired network simulation for creating the
topologies. Agent and traffic frame can be attached to the nodes. And all the

nodes should be connected by link, the agent need to be connected as well.

5/51

2.4.1 Nodes

There are two important roles of a node in NS2. A node acts as a router and a
host. As a router, it forwards packets to the connecting link based on a
routing table. As a host, it delivers packets to the transport layer agent

attached to the port specified in the packet header.

2.4.2 Links

A link is an OTcl object which connects two nodes and carries packets from
the beginning node to the terminating node. There are three link types in
NS2 which are Simplex-Link, Duplex-Link and Duplex-Intserv-Link. And
there are some attributes of each link in the following. Tablel lists some

attributes of each link.

Bandwidth Link bandwidth in bits per second
Delay Link propagation delay in seconds
Queue Type Link uses queue types: DropTail, Fair Queuing (FQ),

Stochastic Fair Queuing (SFQ), Deficit Round Robin (DRR),
Random Early-Detection (RED)

Orientation Where the packets flow
Monitor position Where to captured the flow
Queue Limit Control the flow

Tablel.The Attributes of each link 2]

6/51

2.4.3 Agents

An agent is a program that gathers information or performs some other
service without your immediate presence and on some regular schedule. The
agent includes enough internal state to assign fields to a simulated packet
before it is sent. There are some agents supported in NS2. They show in

following. Table2 lists some agents and specifications above.

TCP a “Tahoe” TCP sender

TCP/Reno a “Reno” TCP sender

TCP/Newreno a modified Reno TCP sender

TCP/Sackl a SACK TCP sender

TCP/Fack a “forward” SACK TCP sender

TCP/FullTcp a more full-functioned TCP with 2-way traffic
TCP/Vegas a “Vegas” TCP sender

TCP/Vegas/RBP a Vegas TCP with “rate based pacing”
TCP/Vegas/RBP a Reno TCP with “rate based pacing”
TCP/Asym an experimental Tahoe TCP for asymmetric links
TCP/Reno/Asym an experimental Reno TCP for asymmetric links
TCP/Newreno/Asym an experimental Newreno TCP for asymmetric links
TCPSink a Reno or Tahoe TCP receiver

TCPSink/DelAck a TCP delayed-ACK receiver

TCPSink/Asym an experimental TCP sink for asymmetric links
TCPSink/Sack1 a SACK TCP receiver

TCPSink/Sackl/DelAck a delayed-ACK SACK TCP receiver

UDP a basic UDP agent

RTP an RTP sender and receiver

RTCP an RTCP sender and receiver
LossMonitor a packet sink which checks for losses

7/51

IVS/Source
IVS/Receiver
CtrMcast/Encap
CtrMcast/Decap
Message
Message/Prune
SRM
SRM/Adaptive
Tap

Null

rtProto/DV

an VS source

an IVS receiver

a “centralized multicast” encapsulator

a “centralized multicast” de-encapsulator

a protocol to carry textual messages
processed multicast routing prune messages
an SRM agent with non-adaptive timers

an SRM agent with adaptive timers
interfaces the simulator to a live network

a degenerate agent which discards packets

distance-vector routing protocol agent

Table2. The detail of agent [2]

Agent states for each type. All the states will be used in my project. Table3

lists the states of each agent.

Flow ID

Priority

Flag

Time to live

Class

Address

Port number
Window size
Packet size
Destination address

Destination port

the flow identifier

the ID priority field

packet flags

default is 32

the node class field

Address of the attached node
Port where the agent is attached
window size in bytes

packets size in bytes

where it is sending packets to

where it is directing packets to

Table3. The states of each agent (21

8/51

2.4.4 Traffic Generators

Sitting on top of a transport layer agent, an application informs the attached
agent of user demand. Application can be classified into traffic generators
(Traffic/CBR, Traffic/Exponential, Traffic/Pareto) and simulated

applications (FTP and Telnet).

FTP (File Transfer Protocol)

An NS2 FTP module does not need an input file. It simply informs an
attached sending transport layer agent of a file size in bytes. Upon receiving
user demand, the agent creates packets which can accommodate the file and
forwards them to a connected receiving transport layer agent through a

low-level network.

Telnet

Telnet is an interactive client-sever text-based application. Telnet is not
implemented based on a predefined schedule, since its data traffic is created
in response to user demand. NS2 models a Telnet application in the same
way as it does for traffic generators: sending a fixed size packet for every

randomized interval.

Traffic/CBR (Constant Bit Rate)

A CBR traffic generator creates a fixed size payload burst for every fixed

interval. The parameters of a CBR traffic can be seen in Table 4.

Inst_Var Default_value Description
packetSize 210 Application payload size in bytes
rate 488x10° Sending rate in bps

9/51

random 0 (false) If true, introduce a random time to the
inter-burst transmission interval.
maxpkts 16’ Maximum number of application payload

packet that CBR can send

Table4. Instruction Variables of Traffic/CBR 2]

Traffic/Exponential

An exponential on/off traffic generator acts as a CBR traffic generator
during an ON interval and does not generate any payload during an OFF
interval. ON and OFF periods are both exponentially distributed. The

parameters of a Traffic/Exponent can be seen in Table 5.

Inst_Var Default_value Description

packetSize 210 Application payload size in bytes

rate 64x10° Sending rate in bps during an ON period
burst time 0.5 Average ON period in seconds
idle_time 05 Average OFF period in seconds

Table5. Instruction Variables of Traffic/Exponential [2]

Traffic/Pareto

A pareto on/off traffic generator does the same as an exponential on/off
generator but the ON and OFF periods conforms to a Pareto distribution.

The parameters of a Traffic/Pareto can be seen in Table 6

10/51

Inst_Var Default_value Description

packsize 210 Application payload in bytes

rate 64x10° Sending rate in bps during an ON period
burst_ tme 0.5 Average ON period in seconds

idle_time 05 Average OFF period in seconds

shape 15 A“Shape” parameter of a Pareto distribution

Table6. Instruction Variables of Traffic/Pareto [21

2.5 Simulation of Wireless Network

The components of mobile networking are Packet Headers, Mobile nodes,
Wireless channels and Forwarding and routing. Simulation of wireless network

needs to configure the mobile nodes, movement path, and scenarios.

11/51

2.5.1 Packet Headers

LL
MACS02 11
“Wireless
ARF >-HE ader

Figure3. Wireless Packet Format B

From the Figure3 we can know the main variables of wireless that are LL,
MAC, Channel Type, Antenna Type and Interface Queue Type. So these
variables will be used for wireless nodes in ns and configured in my

project.

12/51

2.5.2 Mobile Nodes

pott
de
addr IP address
de
v by
defaulttarget %
uptarget # atptable
LL [*| ARP
LL: Link Layver
IFy: Interface Queue downtargety
MAC: Mac objecr F
NetlF: Network Interface 4
downtargety
tmac LA uptarget
[y
du:uumtarget‘r lptarget
Radin propagation
Propagation |« IetlE
Ilodel

Chane uptarget

Figured. Portrait of a Mobile Node [5]

Figure 4 is a mobile node processing under the CMU (Camegie Mellon

University) Monarch (the name of the project) wireless extensions to NS-2.

It shows the network components in the mobile node and the data path of

sending and receiving packets.

The mobile node needs the parameters that are location (coordinates (x,y,z))

and movement (speed, direction, starting/ending location, time, and etc.).

13/51

2.5.2.1 Link Layer

Link Layer is the protocol layer with a separate ARP (Address
Resolution Protocol) module. It handles the moving of data in and out in

a network.

2.5.2.2 Interface Queue

Interface queue is a real time packet scheduler which gives priority to

routing protocol packets.

2.5.2.3 MAC Layer

MacTdma and IEEE 802.11 Mac layer protocols are used in NS2. NS2
has used their implementation Distributed Coordination Function (DCF)

from CMU.

2.5.2.4 Network Interfaces

NS uses Phy/WirelessPhy as wireless media interface to access the
channel. Wireless media interface subject is collisions; the radio
propagation model receives packets transmitted by other node interfaces

to the channel.

14/51

2.5.2.5 Radio Propagation Model

NS-2 manual is given the math expression of these 3 models:

TwoRayGround, Shadowing and FreeSpace.

2.5.2.6 Antenna

OmniAntenna and DirAntenna are used by mobile nodes as the antenna
type. And antenna provides a good abstraction to wireless networking
simulation.

OmniAntenna in NS-2 is a virtual Omnidirectianal antenna system.

DirAntenna in NS-2 is a virtual Directional Antenna system.

2.5.3 Wireless channel

The wireless channel simulates the transmission of packets at the physical

layer. It is the receiver’s responsibility to decide if it will accept the packets.

2.5.4 Forwarding and routing

The five different ad hoc routing protocols currently implemented for mobile

networking in NS-2 are:

Destination-Sequenced Distance-Vector (DSDV)
Dynamic Source Routing (DSR)

Ad hoc On-demand Distance Vector (AODV)
Temporally-Ordered Routing Algorithm (TORA)

vV V V VY V

Protocol for Unified Multicasting Through Announcements (PUMA)

15/51

In NS2 forwarding and routing function is archived by a classifier object.
The NS nodes contain many different classifiers. Different classifiers have
different tasks. When one extends the functionality of the node, more
classifiers are added into the base node, and each of these blocks needs its
own classifiers. Multiple classifier objects, each looks at a specific portion of
the packet forward the packet through the node. The node contains the base

routing module.

16/51

3. APPLICATION DESRIPTION

The main functionality of this program is the generation of the TCL code. And

the purpose of this design is made the TCL to be used simply for the NS users.

3.1 Requirement Analysis

At this application there are two parts tasks. One was done by Huang Cheng.
Now | am going to do another one. Here is a list of functions which the

program must include in my application.

e Traffic generation has to be set manually with program Actually NS-2
contains an automatic traffic generation utility “cbrgen” which can

generate traffic randomly by the given parameters

e Another improvement is for the mobile/wireless network simulation.
NS-2 contains another utility “setdest”. With this utility, a random
movement path for all the mobile nodes in the simulation can be

randomly set up.

The program should have the following functions:

e All the implementation should cover all the parameter setting for both

of “cbrgen” and “setdest” utilities.

e The program should generate a command to be executed as TCL file.

It is nice to have these functions now.

17/51

3.2 Accessing the functions

The function should be accessed simply in the normal way in which

parameters are usually set in programs.

Firstly the program is an executable jar file, users need the java environment
in own computer. There two parts need to pay attention. One is “cbrTraffic”,
which can generate traffic randomly by “cbrgen” utility. In this case, cbrgen.tcl
file should be run firstly in Linux Operating System, and then continue the
next tcl file. On the other hand, that is “setdest” for creating a node-movement
scenario randomly. In this part, this is the “./setdest” makefile, which should
be run firstly in Linux Operating System. The rest can be generated by the

given parameters, and then executed in Linux environment.

3.3 Users interface

There should be a main window that has simulation parameters, script content,
network layout and five main tabs. Script content displays the script here.

Main tabs are Node, Link, Agent, cbrtraffic and setdest.

Normally a wired simulation TCL file needs three parts in this program; they
are Node, Link and Agent. And cbrTraffic is used optionally, it depends on
using random traffic or not. But a wireless simulation TCL file does not need

Link part.

When the script generation was done, saves as TCL file. And run it in Linux

environment.

18/51

3.4 Analysis and Design

For software applications, the first and the most important thing are to analyze
and know the logic of TCL before implementation. It is important to have the
Java Swing knowledge since it benefits any program and makes the

implementation easier.

3.4.1 UML (Unified Modeling Language) Diagrams

The UML design of this program is done with Borland Together 6.1.
3.4.1.1 Main Components

In the following diagram, it shows the main components in the main

window.

We can see there is only one actor which is user self. User is able to use
the program components setting the parameters for Link, Node, Select,
Agent, cbrtraffic, setdest, Network Layout, Simulation Parameters as well

as Script content. All of these cases apply for generating TCL code.

Frograrm

e

fflclude== [
W”w ==include==

Zihclude==
AW T Nose
==include== | ™,

Usear [\i-:extendrb [

T ST S

Simulation Parameters

-
-
-
-

Figureb. Use Case diagram

19/51

3.4.1.2 Application Main Modules

Application is divided into three main packages: MainPackage, GUI, and

NetworkComponents. DrawAction package is for selecting and drawing

node or link. MainPackage package is for the main window function and

the GUI package

is for

the entire NS frame.

NetworkComponents is for all the components of NS2.

MainPackage

+3imParameter
+TabbedPane
+HifirelessProfile
+zcript

+Main Class

N

DrawAction

+0rawClass

HetworkComponents

+Agent
+Link

+Mode
+Traffic

1]

Gul

+rhrTrafficF

+LinkFrame
+hlaintfiew

+5etdest

+AgentFrame

rame

+Drawehodel

+hModeFrame

+TraceAndSchedulerFrame

Figure6. Components diagram

3.4.1.3 Class Diagrams

The package

Here we take a more detailed look at the class and roles of each class.

Figure 7 shows the class diagram in package GUI. There are eight classes

in this package: MainView, NodeFrame,

TraceAndSchedulerFrame,

cbrTrafficFrame,

LinkFrame, AgentFrame,

Setdest,

as

well

as

20/51

DrawModel. Most of these represent a window in the graphical user

interface. The class called MainView is the window which shows the

parameter field’s layout. And the other classes NodeFrame, LinkFrame,

AgentFrame, cbrTrafficFrame, cbrTrafficFrame and Setdest show their

own component of simulation parameter. But TraceAndSchedulerFrame

and DrawModel show the window of Script Content and Network Layout.

-

ActionListener
ltermListener
MoideFrame

JFrame

+ModeFrame

+createTabbedPanevaid
+createLanPanelwaid

+addModewaid

+item StateChangedvaid

AddressFrame

nodetovernentString

LARM:String(

addressBtring:String

JFrame

ActionListenar
Hemiistener
LinkFrame

+LinkFrame

+setDocumentvaid
+remaveDacumentyaid

+initializewoid
+addMode void

+itemStateChanged:void

itern:int

JFrame l:'] JFrame
Changelistener ActionListanay
ActionListener Mainview
ltemnListener
TreeSelectionlistener -serialVersionUIilong
FocusListener -menuBarJdenuBar
ApgentFrame -toalBarJToolBar
-imanelmadgelzan
-selectJBution
+AgentFrame -node:JButton
+ereateAgentPanelvoid -I|nk:J§uﬁon
+createConnectdgentPanelvoid —agent.JBgﬂon
+createConfigTrafficPanelvoid -openitemiJMenultem
+focusGainedvoid —sa\relltem:JJnTenL:ltem
- -newlterm:JMenultem
iﬂ:ﬁéﬁ:ﬁ;ﬂimid =~ -exititerncJMenultem
+ereateTreevoid -helpltem:Menultem
+initialize:void “Mlehfenu:Jieny
+getDocumentyoid 'WPWMEM:JME”U
+removeDocumentyoid “windoiwtienuzhiend
syalueChanged-void -BackColoritern:dMenu
+itemStateChanged vaid -cu:ur;:;emzjgnectguxmenuﬁe
. i -colorZitem:JCheckBoxMenulte
+actionPerformed void -color3itermJCheckBoxMenulte
agentListVector -colordtemiJCheckBoxMenulte
trafficListyector -cantent.Caontainer
. -thekitToalkit
senderListvector e Main Class
receperlistvectar +OhbjectType:String
-nfModeFrame
-If.LinkFrame
) Draworﬁussgame -afAgentFrame
+afCreated:boalean
+ffCreated:baoalean
+File:File
+remaoveNodevaid
+addiodevaid +hlainyiew
+ramoveLinkyvoid +createMenus . JMenuBar
+addLinkvoid +createToolBarJTaolBar
+actionPerformed:vaid
nadelteratar:lterator
linklterator:terator objectType:String
nodelistVector currentFile:String
linkListVectar agentFrame:AgentFrame
nodeFrame:ModeFrame
linkFrame:LinkFrame
Figure?. Class diagram of GUI

21/51

Shown in Figure 8 is the class diagram in package MainPackage. There are
five classes in this package. The class called Main_Class starts the

program and it will launch the MainView window.

] JPanel - JPanel
Changelistener ActionListener 1 WirelessProfile
TahbedPane SimParameter
+PiralessProfile
+TabbedPane +SimParamater _
+createScriptPanelvoid +actionPerformedvoid _hlJ_I;IEMDvemem:lnt
+createScalePanelvoid _initial_pos:String _
+setDocumentyoid noModes:String _nDdeMDx_reGeneratur:lnt
+removeDocumentyoid haltTime:String —than:String
+seldyvoid endTirme:String —hrop:String
+stateChangedvaid top:String _Netif.5ting
+initPanevaoid top'String —mac:Sting
addressingType:String It String
backgroundColorColor _II:Strmg
foregroundCalor:Calor _ant:strlng
texPane:dTextPane _:g:::gg
_ifglen:String
_seed:String
- l:'] sCript _adhocRouting: String
l;':l Main Class nn:String
- -mehain_Class 1 Strin
M nf.5tring :agentTrgce:String
M ff:String _routerTrace:String
M _macTrace:String
—dm.DrawMudeI +seript _movermnentTrace: String
-itp:TabbedPane s String
-spiSimParameter header-String -

jgpdsplitFane calaurString

+wpWirelessProfile - traceFile:String
finishProc:String

+lm.a|n:§rnld wiradMode:String

+initvoid wiradLink:String
_] agent String
simParameter.SimParameter traffic:String

drawClass DrawClass
wind ow: b ainWiew
model:Drawhodel
tabhedPane TabbedPane

addressType:Btring
traceMam:string
halt:String
end:String
run:string

Figure8. Class diagram of MainPackage

NetworkComponent package has four classes. Agent class sets all the
types of agent component parameters and lists all the variables. Link is a
class which lists all the variables in link component. Node is also a class

which lists all the variables in node component and sets the position of

22/51

nodes. Traffic class initializes the traffic packages and set the parameters

of traffic component.

l:'] Agent

s

Link

e

Node

s

Traffic

+aMarme:String
+anodelD:String
+aType:String
+afl0:String
+aClass:Sting

-line:Line2D.Dauble
+starf double
+starty double
+endXdouble
+endy double

+oString:String

string:String

+aflag:String +shodeint
+aPrio:String +dModeint
+aTTL:5tring +type:String
+ahddress:String +handwidth:String
+aPort:String +delay:String
+aDstAddrass:String +gueueType:Btring
+aDstPort:String +arientation:String
+aPacketSize:String +linkMonitorPos:String
+aliindow: String +gueueLlimitString
+Agent +Link

+initializeLinkyoid
+modifyStartP ointvaid
+madifyEndPointvoid
+changeTypevaid
+changeBandwidth:void
+changeDelaywoid
+changeOrientvoid
+changefuePosvaid
+changeGuelimityaid
+changefueueTypevaid
+isEqualboalzan

shape:Shape
hounds:java.awt Rectangle

-circle:Ellipse2D.Daouble
+|Drint
+randomMavementint
+centefdouble
+centary double
+rad:double

+Mode

+Mode
+enableRandomvoid
+maveyoid
+changePositionvaid

nodeType:String
shape:Shape
hounds:java.awt Rectangle

Figure9. Class diagram of NetworkComponent

+Marme:String
+sendAgent String
+raceiveAgent String
+rafficType:String
+starTime:String
+endTime:String
+PacketSize:Sting
+tBurstTime:String
+ldleTime:String
+tRate:String
+8hape:String
+tRandom:String
Hinterval:String
+ihfaxPackethlumber: String

+Traffic
+initializeExpovaid
+initializeParetavoid
+initialize CBR:void

narme:string
string:String

23/51

3.5 A wireless example of Simulation TCL file

set val(chan)
set val(prop)
set val(netif)
set val(mac)
set val(ifq)
set val(ll)
set val(ant)
set val(x)

set val(y)

set val(nn)
set val(cp)

set val(sc)

set val(ifglen)

Part 1: Node and protocol parameter setting

Channel/WirelessChannel ;# channel type
Propagation/TwoRayGround ;# radio-propagation model
Phy/WirelessPhy ;# network interface type
Mac/802_11 ;# MAC type
Queue/DropTail/PriQueue ;# interface queue type
LL ;# link layer type
Antenna/OmniAntenna ;# antenna type
600 ;# X dimension of the topography
600 ;# Y dimension of the topography
50 ;# max packet in ifq

set val(adhocRouting) DSDV ;# Routing protocol

3 ;# how many nodes are simulated
"__./cbr-3-test" ;# connection file

. ./scen-3-test" ;# scenario file

set val(stop) 400.0 ;# simulation time

Main Program

Initialize Global Variables

create simulator instance

set ns_ [new Simulator]

setup topography object

set topo [new Topography]

create trace object for ns and nam

set tracefd [open wirelessl-out.tr w] # trace file

set namtrace [open wirelessl-out.nam w] # nam file

$ns_ trace-all $tracefd

$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

define topology
$topo load_flatgrid $val(x) $val(y)

Create God

set god_ [create-god $val(nn)]

define how node should be created

#global node setting

24/51

$ns_ node-config -adhocRouting $val (adhocRouting) \
-IType $val(ll) \
-macType $val(mac) \
-ifqType $val(ifq) \
-ifgLen $val(ifglen) \
-antType $val(ant) \
-propType $val(prop) \
-phyType $val(netif) \
-channelType $val(chan) \
-topolnstance $topo \
-agentTrace ON \
-routerTrace OFF \
-macTrace OFF
Create the specified number of nodes [$val(nn)] and "attach" them
to the channel.
Part 2
for {set i 0} {$i < $val(nn) } {incr i} {
set node_($i) [$ns_ node]
$node_($i1) random-motion O ;# disable random motion
}
Define node movement model
puts "Loading connection pattern..."

source $val(cp)

Define traffic model
puts "Loading scenario file..."

source $val(sc)

Define node initial position in nam

for {set i 0} {$i < $val(nn)} {incr i} {

20 defines the node size in nam, must adjust it according to your scenario

The function must be called after mobility model is defined
$ns_ initial_node_pos $node_($i) 20

}

Tell nodes when the simulation ends

for {set i 0} {$i < $val(nn) } {incr i} {
$ns_ at $val(stop).0 "$node_($i) reset”;

}

at $val(stop).0002 time ns will stop

$ns_ at $val(stop).0002 "puts \"NS EXITING...\" ; $ns_ halt"

Part 3

add informative header for CUM trace file

puts $tracefd "M 0.0 nn $val(nn) x $val(x) y $val(y) rp $val(adhocRouting)"

25/51

puts $tracefd "M 0.0 sc $val(sc) cp $val(cp) seed $val(seed)"
puts $tracefd "M 0.0 prop $val(prop) ant $val(ant)"

puts "Starting Simulation..."
$ns_ run
before run ns, Make sure the connection-pattern and node-movement files exist under

the directories as declared above.

Listl. TCI file sample

Firstly, we need to setup the parameters and option from the mobile nodes like
part 1 which is shown in TCL file sample. So that we can create network
topology, nodes object, trace file and namtrace file. Secondly traffic source
and movement are created in part 2. In this TCL file sample they are the
random setting by “cbrgen.tcl” and “setdest” utilities for connection and
movement. There is optional setting for the part. For connection pattern, an
agent protocol entity is attached to a mobile node; traffic source packet will be
set. For node movement, mobile nodes are initialized the position; and then
specified with the node moving destination and speed. Finally, it is processing

procedures in part 3, in order to close the output files.

26/51

4. IMPLEMENTATION

In this chapter | will show how the program gets the TCL script. After getting
the tcl script | need to check it in the Cgywin environment. During this part, |
found the variables mistake in the pervious code. Because the utility “cbrgen”
and the utility “setdest” are used in the wireless simulation. These two utilities
generate the node variable is “node(i)” [| means which number of node is

used] and “$ns_". “n(i)” and “$ns” are used in the pervious code.

4.1 Coding

On the basis of Huang Cheng’s project, | improve some functions for this
program. From the beginning, for the design of my parts | need to study the
NS2 arithmetic. Here is output of its main script for simulation a network by

TCL in the following.

public String getFinishProcQ{
String finishProc=""";
if(mc.getSimParameter() .TFselected==true&&mc.getSimParameter() .TNselected==tru

e) //select function 1

finishProc = "proc finish {3 {\n" +" "+ global ns_ tf nf\n"+
$ns_ flush-trace\n"+" close $tf\n"+
close $nf\n"+" exec nam out.nam &\n"'+

exit O\n"+"}\n";
else
if(mc.getSimParameter() .TFselected==true&&mc.getSimParameter() .TNselected==Ffal
se) //select function 2
finishProc = "proc finish {3 {\n" +" global ns_ tf\n"+
$ns_ flush-trace\n"+" close $tA\n"+"}\n";

else

if(mc.getSimParameter() .TFselected==false&&mc.getSimParameter() .TNselected==tr

ue) //select function 3

finishProc = "proc finish {3 {\n" +" global ns_ nf\n"+
$ns_ flush-trace\n"+" close $nf\n"+

exec nam out.nam &\n"'+" exit O\n"+ "F\n";

27/51

return finishProc;

Listing2. Get a “finish” procedure

Listing 2 has the “finish” procedure dialog for TCL script. When the
different parameters will be set, there are different dialogs. And it depends

on trace file or trace nam. The procedure will be selected and trace file or

trace nam is given here as parameters.

if(mc.getModel () .getLinkList().size()==0){
scriptContent=scriptContent+"\n#Create nodes\n"+
"for {set i 0} {$i <= $val(nn) } {incr i} {\n"+
set node_($i1) [$ns_ node]\n"+
$node_($i) random-motion O

;#disable random motion"+'"\n"+

"F\n"";

Listing3. Create wireless nodes

Listing 3 is the part scripts for creating the node in the action button function.

If link number is “0”, it will print out this script. Otherwise the script will

return the wired nodes which showed on Listing 3.

public String getWiredNode(){
String createNodes=""";
createNodes = "for {set i 0} {$i < $opt(nn)} {incr i} {\n"+
set node_($i1) [$ns node]\n"+
“H\n";

return createNodes;

Listing4. Create wired nodes

Listing 4 is the creating wired nodes source.

public String getWiredLink(Q{

Vector links=mc.getModel () .getLinkList();

Link linkTemp;

28/51

for(int i=0;i<links.size(Q);i++){
linkTemp=(Link)links.get(i);
createLinks = createLinks +"\n$ns_ "+linkTemp.type+
" $node_(""+linkTemp.sNode+"™) $node_(""+1inkTemp.dNode+
") "+linkTemp.bandwidth+" "+linkTemp.delay+

' "+1inkTemp.queueType+'"\n";

if(1linkTemp.orientation.equals(""))
createlLinks=createlLinks +"$ns_ "+linkTemp.type+
"-op $node_(""+linkTemp.sNode+") $node_(""+linkTemp.dNode+

') orient "+linkTemp.orientation+"\n";

iT('linkTemp. linkMonitorPos.equals('"))
createlLinks=createlLinks +"$ns_ "+linkTemp.type+
"-op $node_(""+linkTemp.sNode+") $node_(""+linkTemp.dNode+

') queuePos "+linkTemp.linkMonitorPos+"\n";

iT('linkTemp.queueLimit.equals('"))
createlLinks=createLinks +"$ns_ queue-limit $node_("
+linkTemp.sNode+"™) $node_(*"+linkTemp.dNode+"™) ™
+linkTemp.queueLimit+"\n";
}

return createlLinks; H

Listing5. Create links between the nodes

Listing 5 is loop for creating links setup and links types. This is available
when the wired simulation is used. Link amount, orientation, monitor
position and queue limit are given as parameters. If each parameter is true,

its command will be print out.

public String getString(){
String s ="\nset "+aName+" [new Agent/"+aType.replace("_", “/%)

+"J\n"+"$ns_ attach-agent $node_(‘'+anodelD+") $'+aName+'"\n";

if(aType.equals("TCP™)){
if(laWindow.equals('20'))
s=s+"$""+aName+" set window_ *‘+aWindow+'"\n";
if(laPacketSize.equals(*'1000'))

s=s+"$"+aName+" set packetSize_ "+aPacketSize+'"\n";

}else

29/51

if(aType.equals("TCPSink™)){
if(lawindow.equals(""))
s=s+"$""+aName+" set window_ "‘+aWindow+'"\n";
iT(laPacketSize.equals(40'))
s=s+"$""+aName+" set packetSize_ ''+aPacketSize+''\n";
}else
if(aType.equals("RTP™)){
if(taWindow.equals(""))
s=s+"$""+aName+" set window_ *‘+aWindow+"\n";
if(laPacketSize.equals('210™))
s=s+""$""+aName+" set packetSize_ "+aPacketSize+"\n";
}else
if(aType.equals('Message'™)){
if(lawindow.equals(""))
s=s+"$""+aName+" set window_ "‘+aWindow+'"\n";
iT(laPacketSize.equals(*'180'))
s=s+"$""+aName+" set packetSize_ '+aPacketSize+''\n";
}else
if(aType.equals('Ping™)){
if(taWindow.equals(""))
s=s+"$""+aName+" set window_ "‘+aWindow+'"\n";
if(1aPacketSize.equals(''64'))
s=s+"$""+aName+" set packetSize_ ''+aPacketSize+''\n";
}else
if(aType.equals('UDP'")){
if(tawindow.equals(""))
s=s+"$""+aName+" set window_ *‘+aWindow+"\n";
iT(laPacketSize.equals(*'1000'))
s=s+"$""+aName+" set packetSize_ '+aPacketSize+''\n";
Yelse{
if(tawindow.equals(""))
s=s+"$""+aName+" set window_ *‘+aWindow+"\n";
iTf(laPacketSize.equals('"))
s=s+"$""+aName+" set packetSize_ ''+aPacketSize+''\n";
¥
if(lafiD.equals('0™))
s=s+"$""+aName+" set fid_ "+afID+'"\n";
if(laPrio.equals('0™))
s=s+""$""+aName+" set prio_ "+aPrio+'"\n";
if(laflag.equals('0™))
s=s+"$""+aName+" set flags_ "+aflag+'"\n";
if(laTTL.equals('32™))

s=s+"$""+aName+" set ttl_ "+aTTL+"\n";

30/51

if(laClass.equals('0'™))

s=s+"$""+aName+" set class_ "+aClass+'"\n";
if(laAddress.equals(*-1"))

s=s+"$""+aName+'" set agent_addr_ ""+aAddress+''\n";
if(laPort.equals(’-1"))

s=s+"$""+aName+" set agent_port_ "+aPort+'"\n";
if(laDstAddress.equals(-1"))

s=s+"$""+aName+" set dst_addr_ '"+aDstAddress+''\n"';
if(laDstPort.equals(*-1"))

s=s+"$""+aName+" set dst_port_ '+aDstPort+'"\n";

return s;

Listing6. Creating agent

Listing6 is the creating agent function.

public String getString(){

String s=""\nset "+Name+" [new Application/" + trafficType +"]\n"+
""$"+Name+" attach-agent $" + sendAgent +'"\n"'+
"$ns_ connect $" + sendAgent + ' $"+receiveAgent+'\n"';
if(trafficType.equals("Traffic/CBR™)){
if(1tPacketSize.equals(''210))
s=s+"$"+Name+" set packetSize_ "+tPacketSize+'\n";
if(1tRandom.equals('0'))
s=s+"$"+Name+" set random_ "+tRandom+'\n"';
if(1tinterval _.equals('1.0™))
s=s+"$"+Name+" set interval_ "+tiInterval+"\n";
if(1tRate.equals(''448kb™))
s=s+"$"+Name+" set rate_ "+tRate+'"\n";
if(1tMaxPacketNumber .equals(''268435456'))
s=s+"$"+Name+" set maxpkts_"+tMaxPacketNumber+"\n";
Yelse
if(trafficType.equals("Traffic/Exponential')){
if(1tPacketSize.equals('210"))
s=s+"$"+Name+'" set packetSize_ '+tPacketSize+'"\n";
if(1tBurstTime.equals('500ms'™))
s=s+"$"+Name+" set burst_time_ "+tBurstTime+'"\n";
if(1tidleTime.equals('500ms'™))
s=s+"$"+Name+" set idle_time_ "+tldleTime+""\n";

if(1tRate.equals('64kb™))

31/51

s=s+"$"+Name+" set rate_ "+tRate+'"\n";
}else
if(trafficType.equals(“Traffic/Pareto™)){
if(1tPacketSize.equals(''210™))
s=s+"$"+Name+'" set packetSize_ "+tPacketSize+"\n";
if(1tBurstTime.equals(*'500ms™))
s=s+"$"+Name+" set burst_time_ "+tBurstTime+'"\n";
if(ltldleTime.equals('500ms™))
s=s+"$"+Name+" set idle_time_ "+tldleTime+'"\n";
if(1tRate.equals('64kb™))
s=s+"$"+Name+" set rate_ "+tRate+'"\n"";
if(1tShape.equals('1.5"))
s=s+"$"+Name+" set shape_ “"+tShape+"\n";
Yelse{
}

return s;

Listing7. Create the traffic source

Listing 7 is the traffic source.

if(source==cbrRun){

cbrTrafficTemp=""ns cbrgen.tcl -type "+jcbTrafficType.getSelectedltem()
+" -nn " + Integer.parselnt(mc.getSimParameter() .getNoNodes())
+'" -seed " + jtfSeed.getText()+" -mc " + jtfMc.getText()
+'" -rate " + jtfRate.getText();
StringBuffer sb = new StringBuffer();
try {
Process p = Runtime.getRuntime().exec(cbrTrafficTemp); //process the command
InputStreamReader ir = new InputStreamReader(p.getinputStream());
LineNumberReader input = new LineNumberReader(ir);
String getOutputdata;
while((getOutputdata = input.readLine()) !'= null){
sb.append(getOutputdata+'\n'); //get output data
¥
}catch (Java.io.lOException el) {
System.err.printIn(*"I0Exception "+el.getMessage());
} try{
FileWriter fstream = new FileWriter(JtfName.getText());

//save the file name

32/51

BufferedWriter out = new BufferedWriter(fstream);
out.write(sh.toString()); //write down all the output

out.close();

}

catch (Exception ae){
System.err.printIn(Error: " + ae.getMessage());
}

Listing8. cbrgen command output

Listing 8 is an independent component in this project. This is “cbrgen”
utility format outputting. If the RUN button pressed, this command will be

executed.

iT(source==setdestRun){
if(cbVersionType.getSelectedltem() .toString()==("2")){
SetdestTemp=""./setdest "+" -v "+jcbVersionType.getSelectedltem().toString()
+" -n "+jtfNoNode.getText()+" -P " + jtfPType.getText() + " -p "
+ JtfPTime.getText() + " -s " + jtfSType.getText()+ " -t "
+ JtfSTime.getText(+ " -m " + jtfMinS.getText() + " -M "

+

JtfMaxS.getText()+ " -x " + jtfWoSpace.getText() + " -y "

+

JtfHoSpace.getText();
¥
if(cbVersionType.getSelectedltem() .toString()==C"1")){
SetdestTemp=""./setdest "+" -v'"+jcbVersionType.getSelectedltem().toString()
+" -n " +jtfNoNode.getText()+ ™ -p " + JtfPTime.getText()
+'" -t " +jtfSTime.getText()+ " -M "+ jtfMaxS.getText()+" -x "
+jtfWoSpace.getText() + "™ -y " + jtfHoSpace.getText();

}
StringBuffer sb = new StringBuffer();

try {
Process p = Runtime.getRuntime() .exec(SetdestTemp);
InputStreamReader ir =new InputStreamReader(p.getlnputStream());
LineNumberReader input = new LineNumberReader(ir);
String getOutputdata;
while((getOutputdata = input.readLine()) != null){
sb.append(getOutputdata+'\n');

33/51

}catch (Java.io.lOException el) {
System.err._printIn(*"10Exception *"+el.getMessage());
}

try{
FileWriter fstream =new FileWriter(jtfOutputName.getText());

BufferedWriter out = new BufferedWriter(fstream);
out.write(sb.toString()); //write down all the output
out.close();

}

catch (Exception ae){

System.err.printIn("Error: " + ae.getMessage());

Listing9. setdest command output

Because Listing 9 is an alone component in this program as well as. When
button RUN pressed, the command will be printed out and executed. Version
type is given as a parameter. There are two versions command of “setdest”

utility.

4.2 Debugging

Debugging is an important part of implementation of any software. With
debugging, all possible errors in logic and function can be found. Debugging
of this program was done with two different ways. One is debugging the
program window, are there any errors in parameter fields? Another is
debugging the generation script in Cygwin environment, any there any errors

in tcl script? In this case, | tested many examples of tcl file.

34/51

4.3 Results

In the results of this project, I show you how the program working and

looking like, and | also give some personal opinions about it. In this chapter,

I try to explain how each part of this program works.

HSZ_scriptor_?Q by Junbo

File View Window

4 @ e 4 {%

No. of nodes:

l/ Network Layout |’ Script Content | Simulation Parameters

Topology: X [600 | Y [600 |

we [o] amac

Routing Protocol: I:B
Addressing Type: I:B
Halt time:

End time:

[] Trace File [] Trace Nam

| Reset | | Generate Script

Position of mouse: X | | | |

Figurel0. Main Window

Figure10 shows the main window. In the title, it has the name of the program

and version. Below there is menu, which has following items. File (Open,

Save), View (Background color) and Window (New Window, Exit Window

and ReadMe). Below the menu there are six component bars that are Select,

Node, Link as well as Agent. Below these component bars it is divided

from middle in two parts. Network Layout and Script content tabs are on the

left side and Simulation Parameters is on the right side. Network diagram is

displayed on the Network Layout, and the generated script is displayed on

Script content. Final step is getting the script by Generate Script button.

35/51

Hode Configuration Panel

Add Node LAN setting

(@ Draw manually in the canvas Basic LAN parameters Extended parameters

LAN node IDs: (Example: 0,1,2.3)
") Randomly create nodes

| ‘ Parameter name:
Humber of Nodes:
Bandwicdth:
1
o s[5 - —
- (Exarmple: 1005, 1008, 1kb)| | Parameter value:

Remove node

Delay: g
Hode ID:
(Examplie: 100ms, 100us)
| Set node addresses | | Create LAN |
| OK | | Remove | | Cancel |

Figurell. Node (wired) Configuration Window

This project is started by setting node. When Node component bar selected,
it show like Figurell. In this case, we need to choose which kind of network
will be simulated. So node type (wired or wireless) is selected. And then we
are going to set the parameters which they require. Finally when user presses
OK button, the nodes will be displayed on Network Layout. If node type

“wireless” is selected. It will be showed in Figure 12.

Hnde Configuration Panel

f Mobile Node Setting [’ Node Movement [’ Create chrtcp Traffic rsmdes‘t [’ LAN setting |

Add Node
(@) Draw manually in the canvas Link Layer: n + | Physical Layer: -
_r Randomily create nodes
Channel Type: -
Interface Queue Type:
Number of Hodes: s o v
R Agent Trace: 0N -
ode Type:
Interface Queue Length:
BEUVEE Router Trace: ON -
Mode ID: Antenna Type: -
) Mac Trace: ON -
b
(I FTEA T LEER ¥ | Movement Trace: ON -
| OK | | Remove | | Cancel |

Figurel2. Node (wireless) Configuration Window

Here shows all the parameters of wireless node configuration. There are

36/51

mobile nodes setting, node movement, cbrgen command, setdest command
as well as LAN setting. For the wireless nodes, we need to set the node
movement (specify nodes position and set pattern file), which is showed in
Figurel3. In the nodes position configuration, there are random movements
ON and OFF. When OFF is selected, we need to fill up all the parameters in
specify nodes position field for each node. For the set pattern file tab, “create
cbrltcp traffic” tab (Figurel4) and “setdest” tab (Figurel5) are used firstly to
generate a connection pattern and a scenario file. And user browses the
connection file named as Traffic Name in “create cbr|tcp traffic” tab and
scenario file named as Output file name in “setdest” tab. When all setting is

done, remember to press the confirm button.

Node Configuration Panel

Add Hode Mobile Node Setting | Node Movement r Create chritcp Traffic rSetdest r LM setting |

{® Draw manually in the camvas Node ID Fiegse hit Enter after input node 10

_r Random Movement On (@ Random Movement Off
) Randomly create nodes

Initial position |20
Number of Hodes:

pecify node position r Set pattern file D
Node Type:
w x v :
Remove node Current Pos ‘ ”D |
At Time:
Bulell: Move To: ‘ ”D |
— Speed
| Confirm | ‘ Reset |
| Ok | ‘ Remove | | Cancel |

Figurel3. Node movement of wireless nodes

Here is node movement configuration panel. The current position of node (X,

Y) moves to another position (X, Y) at X time by X speed.

37/51

B Rode Configuration Panel

(Mobile Node Setting r Node Movement {]/ Create cbritcp Trafﬁc/\,r Setdest r LAN setting |

Type name: W ‘ -

Traffic type
chr
tcp

Add Node

(@ Draw manually in the canvas

Traffic seed:
_» Randomly create nodes

Number of Hodes:
oo []

Traffic rate:

Max i H | |

HNode Type: Wireless

MNumbers of Nodes: | |

Remove node

Traffic name: | |

Node ID:

| Run the command

| OK H Remove || Cancel |

Figurel4. Cbrgen command layout

When user selects cbrtraffic from the “create cbrltcp traffic” tabs, random
traffic setting window is shown. This window is used alone to run “cbrgen”
command for generating the connection file available in wireless simulation.
This command is for creating a traffic-connection file named as Traffic name.
An automatic traffic generation utility “cbrgen” should be launch “ns cbrgen.tcl
[-type cbr]tcp] [-nn nodes] [-rate rate] [-seed seed] [-mc
connections] >file_name”. In this part, 1 can not execute the utility
“cbrgen” command directly. Because Cgywin platform is the Linux
environment for my computer. | need to input the command in Cgywin and

generate the connection file (named as file_name).

38/51

Hude Configuration Panel

O [Mobile Node Setting | Node Movement | Create chrltcp Traffic | Setdest | LAN setting |

version ID: iselect [~
@& Draw manually in the canvas
PauseTime: -pi1) Select
S 1
) Randomly create nodes SimTime: (1) s
MaxSpeed: -M{1}

Number of Hodes: MinSpeed: -m

\
PauseType: -P ‘
\

SpeedType: -

Remove node Mumber of Nodes: -n{1)
Width of Space: -(1) 600
Node ID: Height of Space: -y(1) ‘aou

Output file name:(1) \
‘ e ‘ (1) is the requred parameter of version1

| Run the command

| 0K | | Remove | | Cancel |

Figurel5. Setdest command layout

When the user needs to create node-movements for wireless scenarios,
“setdest” component tab is used. In NS2 there are two version “setdest”
commands, he or she can select one of them. There are difference required
parameters between versionl and version2. A random movement path utility

“setdest” should be launch.

“_/setdest [-v Version 1] [-p pause time] [-t sim time] [-M
max speed] [-n nodes] [-x width space] [-y height space] >

File Name” or

“_/setdest [-v Version 2] [-p pause time] [-t sim time] [-M
max speed] [-m min speed] [-P pause type] [—s speed type]
[-n nodes] [—x width space] [-Yy height space] > File Name ”
The same as utility “cbrgen”, | need to get the output of the command, and

execute the command in Cgywin for generating the scenarios file (named as

File Name).

39/51

Link Configuration Panel

Source node: || | - Pes‘t node: | | - Fink type:

Link Attrilntes

Link Type: -
Attribute Type: Bandwidth:

Crelay:
Parameter name - .

Clueue Type:

Select Parameter value: Crientation:

Manitor position:

cigeue limit{packets
number:

Or Type parameter value here:

Motice:

b=hit,B=bvte M=mega, k=kilo | |

|Sa1ure || Reset|

1

| Add | | Remove | | Edit | | Cancel

Figurel6. Link Configuration Window

When node type is wired, we need to configure the Link parameters. In this
component, it defines what kind of link we selected. When user is satisfied
for each attribute, he or she can press SAVE button to save the data on right
side. If he or she makes any mistake, it can be done easily with RESET
button, and does it again. User can click ADD button to connect two nodes
displaying on Network Layout. Removing the link can again be easily done
with ROMOVE button. EDIT button can be used, when user wants to edit
the data for the link.

40/51

Agent and traffic =zetting window

1’ Create Agent |’ Connect Agent

Agent Type Agent Setting Info

4

Type name: Agent type

Agent type
TCP

2 Randomly attach to |_UDP
TCPSink
 Specify node ID below: |Ping

Hull
{Example of input: 1,5,6,8) TCPFullTcp

Selactine fram the st ar we

L]

TCPReno ~|
Agent State
Hame: Select agent state -
Value:
| Reset || Save ‘

| Add Agent

Figurel7. Agent and Traffic setting Window

Creating agent, which can be done through Agent component tab, attaches to
the nodes. When the Add Agent button is pressed, the agent will be attached
to the nodes. For example, agent TCP and node ID O are set, when Add
Agent button pressed, the message “TCP attach node 0” will show. In
addition, we need to connect the agents and create the traffic by clicking

Connect Agent tab, which shows in Figurel8.

41/51

Agen‘t and traffic setting window

Create Agent Connect Agent

Connect agents and Create event Current Agents

send ” =3 Agent List
ender agemnt: D

[y vor

[ToPsink

Receiver agent: D Ping

[y Mul

[y TCRFUNTep
) Randomby Traffic [y TcPiRena

[»

) Trafficifpplication gener [TCRiMewreno
[y TePizack

[y TCPiFack | 4
[y TePrvenas

[TcPrvenasiRBR

[y TCPRenoiRER
Start time: D TCPIAsYM

[0y TeRRenoiasym

[y TeRiMewrenaltsym
End time: D TCP3inkiDelAck

[y TePSinkiteym

Select traffic type -

1]

Confirm || Cancel |

Figurel8. Connect Agent Tab in Agent Window

.This window shows the connect agent message and traffic generation
configuration. Here has the randomly traffic which is designed by java

program.

The user can set the traffic parameters self by selecting traffic type as well as.
And then he or she set the start time and end time. It means at S_time the
traffic starts and at E_time the traffic will be end. When all configurations

are done, remember to confirm.

When the nodes, link and agent frame configurations are done, go to the
Main Window for generating the script, and save the content as a tcl file.
Until here a tcl script is generated. Then we need to execute the tcl file under

the ns environment. A tcl file should be launch. “ns file_name.tcl”

42/51

5. CONCLUSION

This project has carried out the purpose to generate NS scenario script for most
networking researchers and engineers. The project work has almost fulfilled all
of the requirements of wired and wireless network simulation. It works well so
that all the functions are implemented and it offers user-friendliness which
makes ns commands easier for user to use Network Simulation. But there are

some attentions for wireless setup.

It will definitely help ns users to generate the scripts easily. For most of the ns
command, users can get the scripts by giving the parameters value. Take

creating nodes and links as example; in ns the command is like this below.

set n0 [$ns node]
set nl [$ns node]

$ns duplex-link $n0 $nl1 1Mb 10ms DropTail

User can access the configuration from this project. Hence, users can get the

commands directly without thinking about the key words in ns.

From my point of view, this project has been very beneficial for me. The project
has been very challenging, but it has also helped me to learn a lot more about
Java Swing and TCL language. One of the biggest challenges has been the fact
that I did not know TCL language before. When the project generates the script
and execute in ns, if there is any errors displayed in ns. | need to check it out
what problem they have. This forced me to look and practice more deeply inside

the source code of TCL, which gave me deeper knowledge of how tcl works.

Besides, | have also seen how powerful the internet search engines are.
Whenever | meet problems or challenges, | search the relevant topics from the

search engine and it always finds me pages from where | can find the way

43/51

towards the solution. In fact, sometimes | can see others having similar
questions about ns and good answers for them by experienced ns users, which is
important and beneficial for me to find out the solution of the problems or
challenges. Thus | can not only retrieve more information of NS-2, but also

understand the contents of NS-2.

In my opinion, for the future there is a field that can be improved in this
program. That is implementation directly, which user could be able to get the
network simulation results with this project. Users do not need to go to NS
environment for executing the tcl file. If we want to retrieve data from the trace
file, we have to know how the trace files are constructed and what information

we need. So we need to understand the trace format clearly.

In conclusion, the project has benefited me since it has developed my
programming skill and understood what parameters are associated with a
wireless network and how the communication in wireless networks differs from

that of the wired ones.

44/51

6. SUMMARY

The aim of my final thesis project work was to develop a program with which ns
user is able to generate the ns scenario script. Moreover, it offers simple and user
friendly interface so that the user can use this program easily. This project was
done in these phases: information gathering, analysis, design, implementation

and debugging.

I have used Java Swing technology to code my project. Besides, an open source
of ns tutorial was used for the reference of ns. | have chosen MyEclipse as the
IDE (Integrated Development Environment) to create the application. | know the

MyEclipse is a powerful tool to develop Java application.

To improve this project | need to study more about NS so that it can generate

most of ns scripts.

45/51

LIST OF REFERENCES

[1]. Final Thesis: Visualizing NS-2 configuration with Java 2, Huang Cheng, VAMK,

2007

[2]. NS official manual: Kevin Fall & Kannan Varadhan, 2008

<URL: http://www.isi.edu/nsnam/ns/doc/>

[3]. NS tutorial: Marc Greis, 2008

<URL.: http://www.isi.edu/nsnam/ns/tutorial/index.htmi>

[4]. NS by Example: Jae Chung & Mark Claypool, 2008

<URL.: http://nile.wpi.edu/NS/>

[5]. NS-2 for wireless: Wu Zhibin, 2007

<URL.: http://www.winlab.rutgers.edu/~zhibinwu/html/network simulator 2.html>

http://www.isi.edu/nsnam/ns/doc/
http://www.isi.edu/nsnam/ns/tutorial/index.html
http://nile.wpi.edu/NS/
http://www.winlab.rutgers.edu/%7Ezhibinwu/html/network_simulator_2.html

	ABSTRACT
	LIST of ABBREVIATIONS
	1. INTRODUCTION
	3. APPLICATION DESRIPTION
	5. CONCLUSION
	6. SUMMARY
	LIST OF REFERENCES

