

Niran Manandhar

AUTOMATED COMPARATIVE REPORT GENERATION FROM

THE TEST AUTOMATION RESULT

AUTOMATED COMPARATIVE REPORT GENERATION FROM
THE TEST AUTOMATION RESULT

 Niran Manandhar
 Bachelor’s Thesis
 Autumn 2019
 Information Technology
 Oulu University of Applied Sciences

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme, Information Technology

Author: Niran Manandhar
Title of the bachelor’s thesis: Automated Comparative Report Generation from
Test Automation Result
Supervisor: Pertti Heikkilä
Term and year of completion: Autumn 2019 Number of pages: 35

This thesis was a development project commissioned by Profilence Oy for
creating a web application. The application required to show an Automated
comparative report from the company’s pre-existing software Tau.

The aim of this thesis was to get the test automation results from Tau efficiently
and make a web application from the retrieved data. The web application
needed to provide users with a dashboard that had a comparative report
generator. The application processed the analytical data from physical test
stations connected to a data server and from the devices which were already
deployed and used by a testing team.

During the thesis, many new user interfaces for the user were created. The user
interfaces and new features were added to the Tau web application. The new
features and user interface was successfully used to create automated
comparative report from test automation results.

The development was done by using Angular (version 6 and above), with UI
library: Primeng and customized charting library: Highcharts. The primary
testing browsers were Google Chrome and Firefox. Most of the data coming
from Database from Tau was managed as JSON (JavaScript Object Notation)
and protocol buffers. The application had a responsive view which could be
viewed on a larger display such as a big screen or smaller tablets and pc as
required by developers and stakeholders.

Keywords: test automation, report generation, user interface

4

TABLE OF CONTENTS

ABSTRACT 3

TABLE OF CONTENTS 4

VOCABULARY 5

1 INTRODUCTION 6

2 GENERAL THEORY 7

2.1 Test automation and its importance 7

2.2 Tau – Test automation software by Profilence 8

2.3 Overview on Angular 9

2.4 Overview on Highcharts 9

2.5 Overview on Prime ng 11

2.6 Overview on JSON and Protobuf 12

2.7 Overview on RxJS 13

2.8 Overview of Visual Studio Code 15

2.9 Overview on Postman 16

3 UI DEVELOPMENT 18

3.1 UI development for Telemetry 18

3.1.1 UI development for analytics 19

3.1.2 UI development for history 22

3.2 UI development for Test runs 23

3.2.1 UI development for Issue list 24

3.2.2 UI development for test runs 28

3.2.3 UI development for requirements 31

3.3 UI development for Devices 32

4 CONCLUSION 34

REFERENCES 35

5

VOCABULARY

ABBREVIATIONS EXPLANATION

ADB Android Debug Bridge

API Application Program Interface

HTML Hypertext Markup Language

Js Java Script

JSON JavaScript Object Notation

OEM Original Equipment Manufacturer

PC Personal Computer

Protobuf Protocol buffers

Rx Reactive Extension

RxJs Reactive Extension for Java Script

TS TypeScript

UI User Interface

VS code Visual Studio Code

6

1 INTRODUCTION

This thesis is related to Profilence Oy’s request for a web application that could

be used by developers and stakeholders to keep track of different software build

versions and their test results from the Profilence’s Tau software.

Profilence is a software company founded by veteran test automation and

profiling tool developers specializing in solutions for embedded systems.

Profilence's Tau has been designed for Android OEMs, carriers, and app

developers alike who need to make sure their product worked as expected. Tau

Tests on real devices without any modifications to source code. The entire

Android operating system was managed by the software and not bound to a

single application. Multiple devices were supported in one test case; for

example, testing of phone calls or messaging features between those devices.

Tau is a desktop application made in .NET and it mostly held massive logs of

data from the test runs that go through the devices. As Tau was being used by

developers, a need for the developers arose to get an overview of the test run.

A simplified view of the analytics of the test runs rather than rows of data was

needed; such simplified analysis could also be shared with stakeholders for

various managerial purposes.

Furthermore, having a web application opened new possibilities to use the data

in various devices ranging from a small handheld device to keep track of data to

huge display screens that are viewable by all developers in real-time in a

development or a conference room.

7

2 GENERAL THEORY

2.1 Test automation and its importance

Test automation is the automation of tasks that are repetitive but necessary

tasks in a testing process. A lot of time and resources are taken by manual

testing hence it would be inefficient and resource intensive. Test automation is

critical for a continuous delivery and continuous testing. An Android system like

any other operating system or software comes with an iterative development

process which comes with a series of updates and versions.

Android devices are manufactured by different companies and all of them have

their own Android versions that differ from the stock Android. Hence, a lot of

customized testing is involved for each of these manufacturers which is eased

with test automation.

Developing a bug-free software is often impossible; even with a series of

manual testing and an iterative development process, the delivered software

has some defects and bugs. Test Automation software is the best way to

increase the effectiveness, efficiency, and coverage of software testing to

minimize bugs.

Manual software testing is performed mostly by a human sitting in front of a

computer or a test device carefully going through application screens, trying

various usage and input combinations, comparing the results to the expected

behavior, and recording their observations.

Manual tests are often repeated during development cycles for source code

changes and other situations, e.g. multiple operating environments and

hardware configurations. More constraints are added eventually, such as

bandwidth, battery percentage and this makes data collection tedious and

massive.

An automated testing tool can playback pre-recorded and predefined actions,

compare the results to the expected behavior and report the success or failure

of these manual tests to a test engineer. Once automated tests are created,

8

they can easily be repeated, and they can be extended to perform tasks that

otherwise are impossible with manual testing.

2.2 Tau – Test automation software by Profilence

Tau was developed by Profilence Oy, Oulu Finland. Tau was purposefully

designed to be able to run tests unsupervised for days to model how software

really behaves eventually.

Real life events on a device such as recovery from device failures, connection

issues, handling pop-up events are monitored and logged as closely as possible

and hence the data collected is more accurate and usable for testing real-life

events in Tau.

Tau consists of two components – the PC side Tau client and the lightweight

Tau service inside the Android device. Once a device is connected to a PC

running the Tau client, it automatically sets up the Tau service on the device

through the ADB (Android Debug Bridge) and starts collecting data. Whereas

the devices that are already deployed to send data through the Tau service

running as a background service remotely.

The image below (FIGURE 1.) shows a basic diagram of how a device is

connected to the Tau software.

FIGURE 1. The Tau software by Profilence

9

2.3 Overview on Angular

Angular is a platform and framework for building client applications in HTML and

TS (TypeScript). Angular code is mostly written in TypeScript. It implements

core and optional functionality as a set of TypeScript libraries that can be

imported into the web app.

FIGURE 2. The Architecture of an Angular application (5).

The diagram above (FIGURE 2.) shows the architecture of an angular

application. The angular application consists of main components written in

typescript which is later converted to plain JavaScript by angular and deployed

to the client.

2.4 Overview on Highcharts

Highcharts is a library written in pure JavaScript. It was developed by Highsoft,

Norway, and is a globally used as a charting library. Highcharts is lightweight

and has a huge customer base.

Highcharts comes with a series of updates that are managed by the open-

source community. A few bugs were encountered during the development

phase of the project but they were easily resolved by communicating with the

developer’s community.

10

FIGURE 3. A Highcharts code sample

11

FIGURE 4. A generated sample chart by highcharts library

The code sample above (FIGURE 3.) shows how easily the code for generating

a chart is shown and the chart generated by the code is presented in the chart

(FIGURE 4.). The chart can be made so that the chart is responsive. The chart

also offers custom features, such as exporting and printing.

2.5 Overview on Prime ng

It is vital for web developers today to develop web applications that run

seamlessly across iOS, Android devices, Windows, and countless web

browsers they come with. This challenge requires developers to develop a user

interface that can be used across all platforms while supporting the right look

and feel. Making cross-platform UI components that work on all platforms is

difficult and resource-consuming, therefore, using a third-party UI library is

effective.

UI libraries today come with patterns that a developer can follow; these patterns

can be compared to Legos. Legos are little plastic shapes that can be

manipulated into a wide variety of forms and objects. The same little block of

Lego can be put into multiple contexts to mean something different. It can make

up part of a dinosaur or the roof of a car.

12

Prime ng is a UI library with rich UI components for Angular. All widgets are

open source and free to use under the MIT License. Prime ng is currently as of

August 2019 running on the version 8.0.2 and has other versions under

development. It has a good developer support and plenty of users and global

community support. Hence, Prime ng was used as a primary UI library for this

project.

2.6 Overview on JSON and Protobuf

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is

based on a subset of JavaScript. JSON is a text format that is completely

language independent, hence it is often used to send and receive data for

client-server communication and it is applicable for the project.

FIGURE 5. JSON data sample

The code sample (Figure 5.) shows an example of JSON. JSON defines only

two data structures: objects and arrays. An object is a set of name-value pairs

13

while an array is a list of values. JSON defines several value types: string,

number, object, array, Boolean and null.

Like JSON, Protobuf (Protocol buffers) are language-neutral and platform-

neutral data interchangers. In Protobuf the data is in a serialized structured.

Serialization is the way of translating data structures or object state into a

format that can be stored, transmitted, and reconstructed again. Google

describes Protobuf as “You define how you want your data to be structured

once, then you can use special generated source code to easily write and read

your structured data to and from a variety of data streams and using a variety of

languages.” (1)

FIGURE 6. A Protobuf data sample

The code sample above (FIGURE 6.) shows a simple code sample of a

Protobuf. The Protobuf is transferred as binary data and reconstructed again

later. Sending and receiving in binary is much faster and efficient.

2.7 Overview on RxJS

RxJS (Reactive Extensions for JavaScript) is a library for reactive programming.

Reactive programming is a programming way where the program reacts to data

changes and self-updates whenever there is a change in data or user events.

In Reactive programming, data flows emitted by one component and the

structure provided by the Rx libraries such as RxJS will propagate those

changes to another component, which receives those data changes and react

accordingly. Using RxJS, developers represent asynchronous data streams with

Observables, query asynchronous data streams using many operators, and

parameterize the concurrency in the asynchronous data streams using

Schedulers. Simply put, RxJS = Observables + Operators + Schedulers. (2)

14

Observable: represents the idea of an invoke collection of future values or

events, they listen to changes.

Observer: is a collection of callbacks that knows how to listen to values

delivered by the Observable.

Subscription: represents the execution of an Observable, is primarily useful for

canceling the execution.

Operators: are pure functions that enable a functional programming style of

dealing with collections with operations such as map, filter, etc.

Subject: is the equivalent to an Event Emitter, and the only way of multicasting

a value or event to multiple Observers.

Schedulers: are centralized dispatchers to control concurrency, allowing users

to coordinate when computation happens on, e.g. “setTimeout()” (3)

FIGURE 7. Sample code to count user clicks with plain javascript

15

FIGURE 8. Sample code to count user clicks with rxjs

The code sample (FIGURE 7.) shows a sample code to count user clicks written

in plain JavaScript and a similar functioning code sample is also written with the

RxJs library and presented in code sample (FIGURE 8.).

2.8 Overview of Visual Studio Code

Visual Studio Code is a code editor developed by Microsoft for Windows, Linux,

and macOS. VS code has a good support for debugging, embedding version

control tools, such as GitHub, and it comes with an easier syntax highlighting,

intelligent code completion, snippets, and code refactoring. It is also highly

customizable, allowing users to change the theme, keyboard shortcuts,

preferences, and install extensions that add added functionality. The source

code for VS code is free and open-source and released under the permissive

MIT License. The UI of VS code is familiar, and it is also popular with the

members of the development team in Profilence. Hence, the VS code was used

as the primary code editor for this project.

16

FIGURE 9. The Visual Studio Code UI (6)

The image above (FIGURE 9.) shows UI for visual studio code. The UI has

various user-customizable components and can be tailored to meet the

specification of a specific programming language.

2.9 Overview on Postman

Postman is a development tool used to get results from RESTful APIs. It offers

a user-friendly user interface which makes HTML requests easily, without

having to deal with the hassle of writing a bunch of code just to test the

functionality of an API.

For instance, if a GET request to get was to be made to get Twitter feeds from

twitter with all Tweets made with a hashtag #Oulu. To test a GET request

against this API without using Postman, would take a lot of time just to set the

environment and then writing code which would make the API request, but with

Postman, such a test is much more streamlined and easily done. The image

below (FIGURE 10.) shows a screenshot of the UI for Postman.

17

FIGURE 10.The Postman UI (3)

1. Set your HTTP request to GET.

2. In the request URL field, input link

3. Click Send

4. You will see 200 OK Message

5. There should be 10 user results in the body which indicates that your

(3)

18

3 UI DEVELOPMENT

The UI development in the project was focused on simplifying the data as much

as possible. Getting meaningful data with minimal information, yet having all the

necessary information was the main goal.

The best way to represent data is by graphs and charts. There is magic in

graphs. The profile of a curve reveals in a flash a whole situation -the life history

of an epidemic, a panic, or an era of prosperity. The curve informs the mind,

awakens the imagination and convinces. (4)

The UI was designed in such that results are separated into 3 main views:

Telemetry, Test runs analysis and Devices.

3.1 UI development for Telemetry

The telemetry view has the reports for the software versions of devices that

have already been deployed and are under testing by a testing team. The

devices have an Android app which collects log data running as a background

application on an Android device and it sends the crash and log data to the

remote data server.

FIGURE 11. The Telemetry view

19

The Figure 11 shows a UI for the Telemetry Analysis. Telemetry currently

contains two tabs, which contains analytics and history. The charts in this view

were made by using the Highcharts library.

The charts in the UI along with the issue list shown on the image (Figure 11.)

update as soon as there is a new issue reported and logged on the server, and

the changes are reflected in real-time. To achieve such real-time data

processing, RxJS was used. RxJS code listens to the server changes

continuously and passes the data as soon as there is a change and the

changed data triggers the highcharts to display the changes.

3.1.1 UI development for analytics

The analytics view on the telemetry view shows the analytics of the device. The

data retrieved from the backend was processed and shown as:

Issue Statistics by software version

FIGURE 12. Issue Statistics by software version

The Bar chart (Figure 12.) contains a chart that shows analytics on the issues

categorized under Open, Unassigned, Ignored and Closed. The issues are

color-coded for convenience of the viewer on the bar chart and categorized per

software version. In the figure 12. the current software version selected is

“PQ3A.190705.001” and it has only three unassigned issues. Those unassigned

issues are critical and need a further examination and need an immediate

20

examination and need to be assigned to a developer and hence color-coded as

red.

Issues list

FIGURE 13. The Issue List

The Figure 13 shows the issue list for the software version selected on the chart

(Figure 12.) the list contains details of the issue and the process with which the

issue is seen on. The list also shows whether the detected issue is a new issue

and if so, it is marked with a star. Contemporary issues signify a new bug which

was not detected in any of the previously tested versions.

The number of issue instances are also shown on the table. Issues can be

clicked and navigated further to get more details on the issues.

It was difficult to display the issue list since displaying descriptive information

about the issue without overwhelming the user with unnecessary data was

important. With further study of the data and a few meetings with the client and

refines with the Firebase Crashlytics UI, this view was optimized. The Figure 14.

shows the reference that was used for the issue list data display.

21

FIGURE 14. The Firebase Crashlytics UI (7)

Active users list

The active users list shows the area chart of the active users who are

evaluating the device for a specific version. This chart shows an easy analytical

view on whether a software version has undergone a test on a specific date.

The chart also shows how many users are actively using a specific test version

for testing.

22

FIGURE 15. The Active users’ chart

The area chart (Figure 15.) shows an area chart for the active users for the

selected device on the chart. (Figure 12.)

3.1.2 UI development for history

The History view on the telemetry analysis shows the history log for all the

selected test devices. As seen on Figure 16. below, an option for the user to

localize the date-time row is also available. This feature tackles the problem

where a test device is from a different time zone. The table is filterable, and

users can choose to focus on only a certain software version, process or device

ID.

FIGURE 16. The History View for telemetry analysis

23

3.2 UI development for Test runs

The Test runs view contains the active test runs ongoing on the test station.

One or more devices are connected to a test server and a series of test cases

are running on the device to collect logs of data. A test run can run ranging from

a few hours to a couple of hundred hours. The data collected is real-time and

this real-time data reflects on the test run view and analytics. The data coming

from the server is handed as JSON and is parsed into objects and arrays.

FIGURE 17. The Test run view

The Figure 17 shows a screenshot of a test run analysis view. This view

contains a clear view of an ongoing project. The projects may be spread across

several test stations and on a remote server. The projects are marked with a

solid box and dotted boxes to specify if a project has a categorized project

name.

24

3.2.1 UI development for Issue list

FIGURE 18. The Issue list view

The Figure 18 shows mainly two graphs, namely trends and issue statistics by

software version. The two graphs are interconnected, upon the selection of a

software version on the “Trends” chart, triggers the view to change on the other

chart. Also, it generates a table of issues on the bottom area of the page.

FIGURE 19. The Issue list UI

The Figure 19. shows the UI for the issue list view. The user can toggle

between the projects from the breadcrumb of the page. The breadcrumb works

in a native way like it does on Windows Explorer. The dropdown on the project

25

title makes it easier for the user to navigate to different projects quickly without

having to navigate to earlier views. Also, for the ease of access to the user,

each element on the page comes with tooltips to help users to access the UI

elements easily.

FIGURE 20. Trends chart dropdown combo box

The trends chart on the Figure 18 and Figure 19 shows the trend of device on

how one particular device is doing comparatively with other software versions.

The dropdown combo box comes with various metrics to compare the software

version statistics as shown on Figure 20.

The issue table contains details of the issues generated by the software

version. This issue list is like the issue list on the telemetry analytics. The issue

list can be further studied by selecting an issue on the table.

26

FIGURE 21. Details of a particular issue

The FIGURE 21 above shows details of the memory leak that happened in the

selected process, The chart on the image shows the bar chart which clearly

shows when the memory leak peaked. The user can further navigate and drill

down to the individual bars and get further details. The drill-down view after the

user clicks on a data point is shown on FIGURE 22.

FIGURE 22. Details of an issue

27

FIGURE 23. Logs of particular timestamp of an issue

The Figure 23 above shows the UI for the logs of crash issues. The issues are

highlighted to show the user which issue is being observed.

FIGURE 24. Log and video recording pointed to the particular

The Figure 24 above shows a side by side view of the recorded video and the

crash log list. The user can pinpoint the crash log and see what occurred during

that crash log timestamp in the video on the right. The video and the crash logs

are synchronized together. Clicking on the time frame of the video or the crash

log row will automatically update the timestamp of the other view.

28

3.2.2 UI development for test runs

The test run view contains the test runs of the devices selected, Test runs are

listed so that the user can get a quick glimpse of the stability score. This score

is the rating of device test run based on how stable or unstable the device was

during the test run. For instance, a device can have a score of 100 at an 80-

hour period of time if there were no issues during that period of hours but as

time progresses, the stability score decreases as new issues are detected.

FIGURE 25. The Test run view

FIGURE 26. The Stability score view in test run view

29

The Figure 26 shows the test run stability score a glimpse of the test run shown

on the FIGURE 25 above. The stability score can also be further inspected with

a tooltip. The tooltip also allows the user to navigate deeper into the reason

which shows why the stability score dropped showing what changed during

those time periods.

FIGURE 27. The Mockup for approximation of crash point

FIGURE 28. The Approximation of crash point

30

FIGURE 29. Source code for approximation of crash point

The Figure 28 shows an area chart where the approximation of the crash point

is carried out. Approximation of crash point is vital to figure out when exactly the

crash occurred in the test run. The mockup designed for this UI is also

presented in the FIGURE 27 above. Source code (Figure 29.) shows a code

snippet of the approximation of the crash point.

31

The FIGURE 30 below shows a screenshot of a test run view that has an easy

access link to the project's view.

FIGURE 30. The Detailed Test run report

3.2.3 UI development for requirements

The Requirements tab contains the list of requirements for the test run. The

requirements are the test that a device must go through to make sure that a

specific feature is tested well. In this view, the result of such test is displayed.

For easy access to the data, the results are color-coded and displayed along

with the icons.

There is a huge amount of data for the requirements view and it needs a lot of

processing before data is presented hence data is received as Protobuf which

makes data retrieval and processing a bit faster.

32

FIGURE 31. The Requirement view

The Figure 31 shows a result for the requirement list. The requirements are

marked as “Not tested”, “Incomplete”, “passed “and “failed”. The user can see

specifically how a requirement passed, failed or incomplete. If the requirement

is still incomplete, then it means further tests need to be performed.

3.3 UI development for Devices

Devices view is a dashboard for the user to see how many devices are currently

undergoing a test run or are ready to start a test run. From this view, a user can

start or stop a test run. A brief information to a device is also available to

distinguish a device for one another.

The FIGURE 32 below shows the dashboard view for available devices. The

dashboard is currently showing that there are only one device undergoing tests

and it shows all the necessary details of the device.

33

FIGURE 32. The Devices UI

FIGURE 33 Test run starter UI

The Figure 33 shows a UI for starting a test run, A user can simply click the

easily accessible buttons to start a test run which contains pre-complete the

form with necessary information already filled in.

34

4 CONCLUSION

During this development, different technology and tools were evaluated and

used to reach the aim of the thesis project. The UI of the web application was

developed and described in the chapter 3, which describes all the UI parts of

the application.

In the chapter 2, different tools and libraries used were defined and reasons

why these libraries were used were also elaborated. The web application for

automated comparative report generation from test automation results was

created for Profilence Oy.

New web technologies, such as Angular and RxJS were used for development.

The reports generated by the application were analytical and supplied a

dashboard view to the report reviewer. The users can now view the reports

without having to go through millions of rows of data and just simply view the

graphs and get an overview of the test results.

Switching to the developed web application from this project not only saves a lot

of time for test automation but also reduces the stress to go through the data.

Automated report generation also allows the developers to worry only about

development and not about the complexities of having to set up the test

environment every time for new test cases.

Getting an overview of the test run makes it easier to track and fix the new and

existing bugs. By completion of the web application, Profilence Oy has already

deployed the web application to the clients. The clients’ process to deploy a

latest version with minimized bugs has been utterly improved due to the new

web application. The client is now able to get the report in a presentable format

in which stakeholders who are unaware of the logs and their meaning can now

understand the result by the help of graphs and make decisions based on these

results.

35

REFERENCES

1. Buffers, G. P. (2019). Protocol Buffers. Date of retrieval 5 July 2019, from

developers.google.com: https://developers.google.com/protocol-buffers/

2. Extensions-Reactive. (2017). About the Reactive Extensions. Date of

retrieval 15 July 2019, from Reactive Extensions:

https://github.com/Reactive-Extensions/RxJS

3. guru99.com. (2018). Postman Tutorial. Date of retrieval 12 August 2019,

from Guru 99: https://www.guru99.com/postman-tutorial.html

4. Hubbard, H. D. (1939). Graphic Presentation. In H. D. Hubbard, Graphic

Presentation.

5. Inc, G. (2019). Angular - Architecture Overview. Date of retrieval 14

August 2019, from Angular: https://angular.io/guide/architecture

6. Microsoft. (2019). Visual Studio Code UI. Date of retrieval July 2019,

from https://code.visualstudio.com/docs/getstarted/userinterface

7. Pierre, J. S. (2018, August 22). The Firebase Blog: Exporting Crashlytics

data to BigQuery. Date of retrieval 15 August 2019, from

firebase.googleblog.com:

https://firebase.googleblog.com/2018/08/exporting-crashlytics-data-to-

bigquery.html?utm_source=feedburner&utm_medium=feed&utm_campai

gn=Feed%3A+FirebaseBlog+%28The+Firebase+Blog%29

https://developers.google.com/protocol-buffers/
https://github.com/Reactive-Extensions/RxJS
https://www.guru99.com/postman-tutorial.html
https://angular.io/guide/architecture
https://code.visualstudio.com/docs/getstarted/userinterface
https://firebase.googleblog.com/2018/08/exporting-crashlytics-data-to-bigquery.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+FirebaseBlog+%28The+Firebase+Blog%29
https://firebase.googleblog.com/2018/08/exporting-crashlytics-data-to-bigquery.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+FirebaseBlog+%28The+Firebase+Blog%29
https://firebase.googleblog.com/2018/08/exporting-crashlytics-data-to-bigquery.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+FirebaseBlog+%28The+Firebase+Blog%29

	abstract
	TABLE OF contents
	VOCABULARY
	1 introduction
	2 General Theory
	2.1 Test automation and its importance
	2.2 Tau – Test automation software by Profilence
	2.3 Overview on Angular
	2.4 Overview on Highcharts
	2.5 Overview on Prime ng
	2.6 Overview on JSON and Protobuf
	2.7 Overview on RxJS
	2.8 Overview of Visual Studio Code
	2.9 Overview on Postman

	3 UI development
	3.1 UI development for Telemetry
	3.1.1 UI development for analytics
	3.1.2 UI development for history

	3.2 UI development for Test runs
	3.2.1 UI development for Issue list
	3.2.2 UI development for test runs
	3.2.3 UI development for requirements

	3.3 UI development for Devices

	4 Conclusion
	References

