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Abstract. Increasing amount of attacks and intrusions against net-
worked systems and data networks requires sensor capability. Data in
modern networks, including the Internet, is often encrypted, making clas-
sical traffic analysis complicated. In this study, we detect anomalies from
encrypted network traffic by developing an anomaly based network intru-
sion detection system applying neural networks based on the WaveNet
architecture. Implementation was tested using dataset collected from a
large annual national cyber security exercise. Dataset included both le-
gitimate and malicious traffic containing modern, complex attacks and
intrusions. The performance results indicated that our model is suitable
for detecting encrypted malicious traffic from the datasets.

Keywords: Intrusion Detection · Anomaly Detection ·WaveNet · Con-
volutional Neural Networks

1 Introduction

Intrusion detection systems (IDS) are divided into two categories: anomaly-based
detection (anomaly detection) and signature-based detection (misuse detection).
Anomaly-based-detection can be applied without pre-recorded signatures for un-
known attack patterns and even for encrypted network traffic, however the weak-
ness for anomaly detection is the high amount of false positive detections [3, 13].

Machine learning techniques have recently been applied successfully to net-
work anomaly detection and classification [6]. Bitton and Shabtai in [1] have
studied machine learning based IDS for Remote Desktop Protocols (RPD). Dif-
ferent machine learning techniques have been applied, e.g. Wiewel and Yang used
Variational Autoencoder in their study [28], Chen et al. used Convolutional Au-
toencoder [2] while Long Short-Term Memory (LSTM) and Gated Recurrent
Unit methods are used in the paper [6]. Paper [23] presents technique for in-
creasing detection accuracy with feedback.

In our earlier study [19], we used Haar wavelet transforms and Adversarial
Autoencoders (AA) [10] for implementing unsupervised network anomaly de-
tection based IDS. Our earlier model, described in [19], had reasonable good
operational characteristics; in this study we strived to improve it using alterna-
tive modeling approach. As argument of efficiency, numerical results are com-
pared with the earlier results using the same dataset from Finland’s National
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Cyber Security Exercise [12]. Performance characteristics are also accomplished
using publicly available reference intrusion detection evaluation dataset (CI-
CIDS2017) [27].

Our study presents state-of-the-art network anomaly detection based intru-
sion detection system that exploits deep learning method WaveNet [15]. First, in
section 2, this paper describes implemented anomaly detection method includ-
ing feature extraction and analysis method. Then, in section 3, we introduce
experimental results for the performance characteristics of our model and finally
there are conclusions with found future research topics.

2 Anomaly Detection Method

2.1 Dataset

According to Nevavuori and Kokkonen [14], a network anomaly detection data
set must (i) include network traffic data and (ii) host activity data, (iii) multiple
scenarios, (iv) be representative of real-world circumstances, and (v) the format
of the data must be usable.

Since many publicly available datasets already exist [20], we decided to utilize
them in this research. Although notable public datasets, such as the KDD99 [25]
and DARPA datasets [7–9] exist and are used in many existing network intrusion
detection research, they are very old, and many researches have directed a lot of
criticism against them [11, 24]. The main problem is that datasets do not include
modern threat and attack patterns with required statistical characteristics nor
sophisticated and modern architectures [14, 26, 4, 22]. In many datasets the raw
data is already processed into network flows losing the information of individual
packet timings. Fortunately, in addition to the processed flow data, some datasets
include the raw packet captures.

The Intrusion Detection Evaluation Dataset (CICIDS2017) by the Canadian
Institute for Cybersecurity [27] is one of the more modern publicly available
datasets. Although the dataset was created with a traffic generator, it was mod-
eled after modern real-world network traffic. It includes benign HTTPS network
traffic and therefore is suitable for research concerning encrypted communica-
tion. Unfortunately, the dataset does not include many TLS based attacks, which
form a sizable amount of modern malware control channels.

We decided to use the benign traffic from the CICIDS2017 dataset as clean
traffic during the model development and testing, but because the anomalous
traffic in the dataset was not large enough, more anomalous traffic was required.
We generated additional anomalous traffic in our own environment using Empire
PowerShell post-exploitation agent 1 and Cobalt Strike 2; both are adversary sim-
ulation frameworks that use real-world malware characteristics. A small amount
of benign traffic was also generated in the environment. The benign traffic was

1 https://www.powershellempire.com/
2 https://www.cobaltstrike.com/
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generated by controlling Windows virtual machine using a scripted bot that op-
erated normal GUI software with virtual mouse and keyboard aided by computer
vision. This data was used in the evaluation to make sure that the environments
are compatible enough so that our generated benign traffic is not classified as
anomalous with the model that is trained with the CICIDS2017 benign data.

In addition to the CICIDS2017 dataset and the self-generated dataset, the
final model was also tested with the Finland’s National Cyber Security Exercise
dataset (FNCSE2018), also used in our previous publication [19]. This dataset
was used to get comparable results to our previous research. RGCE Cyber Range
(Realistic Global Cyber Environment) is used for research and development or
training and exercises. In the RGCE Cyber Range main structures and services
of the real Internet are modeled with the realistic user traffic patterns of users.
RGCE offers tailored organization environments with real assets [5]. Finland’s
National Cyber Security Exercise is conducted annually in the RGCE Cyber
Range. Network data from the real Cyber Security Exercise conducted in the
RGCE Cyber Range includes realistic complex environment and legitimate net-
work traffic mixed with modern attack patterns for testing the capabilities of
Intrusion Detection System capability. [12] In this study we were authorized to
use the traffic captures from Finland’s National Cyber Security Exercise of 2018.

2.2 Feature Extraction

Our research focused on finding the anomalies based on packet timing patterns.
This choice was made to accommodate encrypted command and control chan-
nels modern malware use. Traditional deep inspection techniques and statistical
analyses that utilize payloads are incompatible with modern security landscape,
made e.g. decrypting proxies obsolete due to various certificate pinning features.
In this project we used a modified version of Suricata IDS software [18] to pro-
cess the raw packet capture files into parsed network data. The modification in
the software allowed the packet timings information to be extracted from packet
capture files along with the parsed data.

The CICIDS2017 dataset includes the raw packet captures in addition to la-
beled processed flow data. Since the processed flow data does not include packet
timings, the raw data had to be reprocessed to flow data with the modified
Suricata software. The processed flows were then labeled by joining the flows to
the CICIDS2017 flow labels by matching flow timestamps, IP addresses and net-
work ports. The result was labeled flows from the CICIDS2017 dataset including
packet timings. Because our system used different software for packet capture to
network flow conversion from the one used in CICDS2017, the resulting flows did
not match exactly, resulting in lost flows. Only the flows that matched correctly
between Suricata processed flows and CICDS2017 labeled flows were retained
in the dataset. Based on the flow label, the dataset was then split to anomaly
and benign flows. All the flows that did not have benign label were treated as
anomalies. The final processed CICDS2017 dataset included 1,425,742 flows, of
which 1,107,695 were labeled as benign flows, and 318,047 flows were labeled as
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non-benign flows. From the 1,107,695 benign flows, 307,771 were TLS flows. Orig-
inally the Suricata processed CICIDS2017 packet capture files included 1,956,363
flows, so 530,621 flows did not find matching flow in the CICIDS2017 flow label
files. This can be almost certainly accounted on the poor quality of the flow
label files in CICIDS2017 dataset. The files include a duplicate entry for most
of the flows and the flow timestamps are recorded in a minute accuracy with an
ambiguous 12-hour clock format.

The FNCSE2018 dataset and our self generated datasets were processed in
the same way. The labels were assigned by hand based on known origin and
destination addresses of the attacks. The FNCSE2018 dataset included 715,158
benign TLS flows, and 653 non-benign TLS flows. The self generated dataset
included 15,124 benign flows and 7,991 non benign flows.

The resulting flows were then further processed by calculating timing differ-
ences between packets. The final features for one packet in a flow were: packet
direction, time difference to next received packet, time difference to next trans-
mitted packet and packet size. The timing differences varied from microseconds
to minutes with most of the differences being very small. Because our model
required quantization of the input data, the timing differences were scaled with
the common logarithm to better utilize the reduced quantization precision. The
packet sizes were scaled in similar way for the same reason. This choice is war-
ranted, because in network traffic large delays are often the result of an unrelated
problem, and not an inherent feature of the protocol in question. Although many
protocols, including malware command channels, may use delays and timers,
there usually is no reason to keep using the same flow. Packet sizes follow the
same scaling principle, the maximum size being the MTU of the path. Small
packet sizes and the variation therein are are likely to be indicative of the in-
trinsic properties of the protocol, unlike the variation near the MTU. This is
especially apparent in many malware communication protocols, which often use
fixed size binary messages. The aforementioned adversary simulation frameworks
also exhibit this phenomenon.

2.3 Multi-feature WaveNet

The network traffic was analyzed with a deep neural network model based on the
WaveNet [15] architecture, illustrated in the Figure 2. WaveNet was chosen as
a basis for our model for its capability to directly interface with variable length
sequential data. This enables us to feed complete and unreduced sequences to
the model. We utilized this trait to predict network traffic connections of varying
length packet by packet.

The primary task of the model is to predict the next sample by using prior
samples. The core network structure consists of a variation of the WaveNet ar-
chitecture configured for multiple features. The modified WaveNet is extended
to utilize two-dimensional dilated causal convolutions; input data is arranged
into a two-dimensional lattice, discrete time steps forming the first dimension
and individual sample features along the other dimension. Dilated convolutions
expand the receptive field of the network exponentially [29], giving the model a
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potential to observe long term temporal dependencies. Dilation of convolutions
is only performed along the time axis of the data, as the receptive fields are ex-
ceedingly large and thus not optimal for the relatively small fixed length feature
axis. The causality aspect of the convolutions is used to assert an ordered time-
dependency on the input data: predicted samples may only depend on preceding
input samples. We implemented the causality by padding the beginning of the
sequence by the filter size in the first layer and by (filter size−1)×dilation rate in
the subsequent layers, effectively shifting the convolution operations. The causal
layer stack is visualized in Figure 1.

Fig. 1: Visualization of the models two-dimensional dilated causal layers and the
first causal layer.

The input variables are quantized to n bins, continuous and discrete variables
alike, matching the practice used in WaveNet [15] as well as PixelRNN [16]. As
the length of the input data varies with each example, a special end of sequence
value is used to represent sequence termination. The network utilizes a dis-
cretized mixture of logistic distributions, as described in PixelCNN++ [21] and
Parallel WaveNet [17]. We found this to perform slightly better when compared
to a more classical soft-max layer.

The individual residual layers follow closely the structure present in WaveNet.
Unlike the WaveNet architecture, we included a dropout layer before each dilated
convolution layer as shown in Figure 2. Applying dropout inside each residual
layer has been previously explored in PixelCNN++ [21] and Wide Residual
Networks [30].

To distinguish anomalous data from benign data, an anomaly score is quan-
tified from the network outputs with a single forward pass, effectively avoiding
the downside of slow sampling of the WaveNet model. In our approach, we com-
puted the training loss contributions for each sample in the input sequence. The
overall anomaly score of the whole sequence was the mean of these loss values,
with samples past the end of sequence marker masked out to account for different
length of sequences.
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Fig. 2: The architecture is similar to the original WaveNet [15], with the exception
of a dropout layer between all dilation layers and exclusive weights between
residual and skip connections.

3 Experimental Results

For the numerical results, we created receiver operating characteristic (ROC)
curves by plotting the true positive rate (TPR) to y-axis and false positive rate
(FPR) to x-axis. As a comparable score we also calculated the area under curve
(AUC) from the ROC.

Training Dataset Evaluation Dataset AUC

CICIDS2017 CICIDS2017 97.11%
CICIDS2017 Our TLS anomalies 99.48%
CICIDS2017 CICIDS2017 + Our TLS anomalies 96.81%
FNCSE2018 FNCSE2018 91.61%

Table 1: Area under curve scores for four different evaluation dataset combina-
tions.

In order to model an anomaly detector we split the clean data from CI-
CIDS2017 and FNCSE2018 datasets into training and evaluation parts using
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80/20 ratio. We took 256 first packets from each flow and trained a model with
9 dilation layers (receptive field of 256), vertical filter size of 3 and horizontal
2, 128 filters each layer for ∼ 15 epochs while evaluating the model using the
evaluation part of the dataset to keep the model from over-fitting. During and
after the training we ran an evaluation where we included the anomaly data to
validate the anomaly detection capability of the model. Since the CICIDS2017
dataset lacks TLS anomalies we ran the evaluation three times to validate the
model against the included CICIDS2017 anomalies, our TLS anomalies and a
mixture of both. The resulting AUC scores are listed in Table 1. The FNCSE2018
training and evaluation datasets include only TLS encrypted connections.

(a) CICIDS2017 Anomalies (b) Our TLS Anomalies

(c) CICIDS2017 and TLS Anomalies (d) FNCSE2018

Fig. 3: Receiver operating characteristic curves on the four datasets we used to
evaluate the model.

From the results in Figure 3 we concluded that the model is capable of detect-
ing anomalies in both datasets, while also retaining the capability of detecting
anomalous connection with TLS encryption. The model also performs signifi-
cantly better than our earlier model [19], which had 80% AUC whereas the new
model got 91.61% AUC on the same dataset.
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4 Conclusion

In this study we applied the WaveNet and PixelCNN models for constructing an
IDS based on anomaly detection. For the feature extraction and data process-
ing, an open source software -based data pipeline was constructed. We utilized
network data from Finland’s National Cyber Security Exercise as well as public
reference dataset CICIDS2017. The combined dataset was relatively extensive,
although further efforts should be made to include a more diverse selection of
applications and web browsing activities.

Results suggest that the machine learning model is suitable for detecting
malicious command and control channels from TLS encrypted connections. The
model is able to circumvent issues arising from samples of various lengths, and
quantize timing and packet size differences into ranges suitable for neural net-
works.

Future work includes a conditioned WaveNet, variational or adversarial en-
coder to self-condition the WaveNet, and further testing on possible anomaly
scores. Furthermore, visualization methods of found network anomalies should
be studied for achieving better situational awareness in operative environments.
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