

Peter Virtanen

ACCESSIBILITY SIMULATOR IN VR-ENVIRONMENT

Master’s degree in Welfare Technology

2019

ACCESSIBILITY SIMULATOR IN VR-ENVIRONMENT

Virtanen, Peter
Satakunnan ammattikorkeakoulu, Satakunta University of Applied Sciences
Degree Programme in Welfare Technology
September 2019
Number of pages: 55
Appendices: 0

Keywords: virtual reality, augmented reality, Unity, Unreal, serious games
__

Accessibility requirements are often met on paper but in practice, some problems
may still occur. The purpose of this thesis was to create a simulator, that allows test-
ing different environments accessibility issues in virtual reality. The simulator is in-
tended to work as a testing tool that can help to test buildings and its accessibility be-
fore the building is constructed. This thesis goes through subjects like human re-
sources, hardware and technical requirements, that are needed to create this simula-
tor.

Testing is done in a virtual reality environment with a wheelchair. Virtual wheelchair
reacts to the environment like a real wheelchair. Environments that are used for this
simulator must be placed precisely. Every threshold, door and doorknob must be in
right place to make test results of this simulator valid. The thesis also discusses the
problems and demands that are faced when modelling extensive environments like
shopping centers or school buildings.

Virtual reality can be very immersive, and this thesis undergoes what factors make
the virtual reality experience immersive. The simulator is required to be immersive to
make the test experience memorable. A memorable experience is much more per-
sonal than a simple test report.

This accessibility simulator was a big enthusiastic project that gathered a lot of infor-
mation about how to create such a simulator. With the background work done, it is
now easy to continue the development towards the essential production stage. Demos
that were made for this project can work as a proof of the concept but should not be
used as a base for the production version of the accessibility simulator.

Next phase of the development is to make a working prototype and test it in a collab-
oration with accessibility professionals. Prototype of an accessibility simulator needs
to be tested with a real-world counterpart of an environment like a shopping center.
According to test results with the prototype, it may be developed further towards the
first public release.

SISÄLLYS
1 INTRODUCTION ... 4

1.1 Guaranteeing accessibility of every building ... 4
1.2 Accessibility in Finland .. 5
1.3 Equality in work life ... 6
1.4 A better place .. 6

2 IDEATION ... 8

2.1 Why this project and planning was so important? .. 8
2.2 Vision about the final product .. 9
2.3 Basic issues ... 10
2.4 ADA standards and Finnish ESKEH .. 11
2.5 Implementation to a real world ... 12
2.6 Where and how simulation can be used ... 13

3 PLANNING THE SIMULATOR .. 14

3.1 Foreseen and known challenges ... 14
3.2 Overcoming the challenges .. 15
3.3 How fast brain is? ... 16
3.4 Selecting tools ... 17
3.5 About Unity and Unreal ... 17
3.6 References made with Unity and Unreal .. 18
3.7 Serious games that run on Unity ... 19
3.8 Why I chose Unreal? .. 20
3.9 How game world differs from a real world and how it affects development

 22
3.10 Node based coding .. 24
3.11 VR / Virtual Reality and Serious VR-games .. 26
3.12 VR motion sickness .. 28
3.13 Moving the wheelchair ... 29
3.14 Scanning the environment to get testable 3D-model 31

4 PRODUCTION AND TESTING ... 34

4.1 Creating tutorial environments ... 34
4.2 Coding the functionality ... 38
4.3 Accessibility cases in this project ... 41

4.3.1 Sound design 44
4.4 Haptic response and implementation .. 45

4.4.1 Haptic response in VR .. 46
5 CONCLUSION .. 47

5.1 What was accomplished ... 47

5.2 Human Resources ... 48
5.3 Faced problems ... 49
5.4 Finalizing the product ... 49
5.5 Future development .. 50
5.6 Marketing the final product .. 50

REFERENCE LIST .. 52

1 INTRODUCTION

1.1 Guaranteeing accessibility of every building

Technology has evolved fast in last twenty years. Today we have lot of technological

innovations in use. Often, we do not even realize how well we have adapted technol-

ogy in our lives and how much technology eases out lives. Smartphones, computers,

the internet, wearable technology and many more innovations are all making our

lives easier. We often take these granted and that is why modern people does not pay

a lot of attention to these technological marvels.

Virtual Reality, VR for short is one technological marvel. According to Statista vir-

tual reality and augmented reality had a 18,9 billion U.S. dollar market globally on

2019. Forecast for 2023 is that global market for VR increases to 160 billion U.S.

dollars (Statista, 2019). If the forecast is to believe VR and AR are here to stay.

Among consumers VR is little controversial. Almost everyone sees the possibilities

of VR and enjoy the technological demos that has been shown to them but often see

that VR is unreachable technology because of its high price tag. Experiencing a high-

quality VR-game by major publisher at home means a big investment for powerful

PC and VR kit like HTC Vive or Oculus Rift (Thinknum Alternative Data, 2018).

Although VR is costly it does not mean that it is unreachable technology for compa-

nies. Companies usually have a bigger investment budgets towards technology than

an average consumer does. This thesis is a research to create a testing tool for acces-

sibility testing. Main focus group for this kind of product are companies that design

and construct building and public areas. In following chapters need for this kind of

testing tool or product is explained better. In short accessibility is a requirement not

just nice to have feature. This is why a next generations accessibility testing tool for

professionals is so important to be researched. This thesis tells about planning, ana-

lyzing requirements, programming and human resources that are needed for this kind

of system. This simulation is not aimed for consumer markets, but it has also its sep-

arate gamified simulation part that is purely designed for consumers. More about

why this product should meet consumer markets in chapter two.

Simulation like this could change the accessibility testing of the future. A one more

technology innovation that makes our lives better, but we do not even notice that we

are using it or enjoying the outcome of it.

1.2 Accessibility in Finland

It is clear that accessibility is on a different level than it was 80 years ago. Back then

there was not many standards for accessibility and especially there was no technol-

ogy like VR to test the accessibility issues with. Many older buildings were and still

are inaccessible. These buildings don’t have elevators or ramps for disabled people.

It certainly doesn’t mean that back then there were no disabled people. Second world

war had just ended. This unfortunate era left many veterans and civilians disabled. At

the end of the 1940s Sotainvalidien Veljesliitto, a union for war invalids had 50 000

members (Kadettikunta Ry, 2014). That means that a need for accessibility solutions

is not a new thing, there has been a deed for a long time.

Though accessibility had a big need back then things didn’t change too quickly. Es-

pecially in 1960 to 1980 built districts apartment buildings were built without includ-

ing an elevator. At 2014 in those same apartment buildings lives over 100 000 over

65 years old people. In Finland at 2014 still every second apartment building didn’t

have an elevator (ARA, 2014).

At the 21th century things have started to turn better. At 2008 a model house for ac-

cessible workplace finished. It is called Esteetön toimitalo and it was built in Hel-

sinki. At 2010s Invalidiliitto has a plan to have equal and accessible Finland. Among

accessible development it also aims to change attitude and communication limita-

tions (Invalidi Liitto RY 2019c).

1.3 Equality in work life

Whether a person has or hasn’t a disability one has a right to be treated equally. This

is backed with Non-discrimination Act that was entered into force on 1 January

2015.

In short, this act requires that employer needs to promote equality among employees

and job applicants. Employer also has special requirements towards disabled people.

Employer must treat disabled applicants equal to non-disabled applicants. Also, em-

ployer must make sure that the disabled employees can overcome their work tasks

equally compared to non-disabled (Occupational Safety and Health authority in Fin-

land, 2019).

1.4 A better place

This thesis and the simulation are trying to create a better world. It is shocking, that

how little, common people know about the accessibility or pay attention to it. Idea is

to generate two different products or serious games. One is for making accessibility

easier to understand with a gamified fun to play game and other is a testing tool for

professionals.

Construction of buildings is costly and construction companies do not create accessi-

bility issues on purpose. It is understandable that although construction companies

have good blueprints and guideline sometimes plan have flaws. As an example, little

miscalculation by an architect or designer in design program or unstable soil may

create huge threshold between two parts inside of a building. This could be tested

with a simulation tool like described in this thesis. Even scenarios of unstable soil

and consequence of that could all be seen on simulated environment. Caused accessi-

bility issues could then be seen before constructing and also make a plan or plans

how to fix this foreseen accessibility issue. In this example maybe a ramp would fix

the issue if it is caused by unstable soil or if it is just a miscalculation it can be seen

before constructing this error.

2 IDEATION

2.1 Why this project and planning was so important?

What comes to accessibility, today situation is visible in our daily life. In public

buildings and business spaces path to front entrance needs to be accessible. Usually

this means some kind of ramp that has to be hard, flat surface that is non-slipping

even if it is wet (Invalidi Liitto RY 2019b).

The national building code of Finland got new requirements in 2005. There are many

rules and requirements for accessibility. New building code wraps up movement re-

quirements for car parks, joining building, elevators, ramps, accommodation, gather-

ing spaces and hygiene premises (Finlex, 2004). New requirements of course force

constructor to meet these requirements. Unfortunately, that does not always mean

that all buildings would get as easy access with wheelchair as a people with no disa-

bilities.

Image 1. Accessibility by regulations.

Image 1. exhibits an entrance ramp that fails to comply regulation or common sense.

Ramp to this recreational space was at least more than 12 meters long. It most cer-

tainly fills requirement of 8% declination as requirement requires. Requirement also

requires that this declination can continue only for 6 meters. This ramps declination

to one way is more than 6 meters. By eye inspection image 1. ramp does not fill that

requirement. Also, noticeable accessibility issue is that snow piles up on the start of

the ramp and that makes it also slippery. One may ask why this kind of ramp was

created in the first place. On paper all this may have looked good. Reality and the fi-

nalized building shows that ramp is poorly designed, and it does not totally fill its

purpose of being accessibility aid as intended.

Ramps like shown in Image 1. inspired this thesis. Although there are many require-

ments, laws and rules for accessibility it is hard to test building before it is built. This

thesis and its final product, accessibility simulator is a tool to test buildings before

those are even built. Good ideas on paper may be noticed to be bad just using the

simulator. There is also possibility to create more imperceptible accessibility solu-

tions than before and test those in practice. Even Image 1. ramp could have been

tested and seen as too long in practice. Maybe an elevator would have solved this

better or some other accessibility solution.

2.2 Vision about the final product

This thesis is about generation of a product that is used to test accessibility issues. It

is a simulator that helps to test environments like offices and shopping centers for

any accessibility issues. This is a tool but not only for professional use. Simulation is

also an eye opener for general public. This simulator has many gamified features

which should give an easy approach for understanding accessibility in general. While

“playing” the game, aim is to provide a player with better understanding of accessi-

bility issues. This product has also more serious game part that is aimed purely to test

environment accessibility issues without any gamified parts. This more serious part

is aimed for professionals and more gamified part is for general public.

Gamified levels or environments contain simple tasks like “Go to bathroom”. These

simple missions will very fast make clear if environment has any accessibility issues.

As an easy example accessibility issue like closed door or very high threshold be-

comes noticeable for player, because it prevents player for using certain route. After

an accessibility issue has been found it can be marked as an issue within the simula-

tion or points can be gained from overcoming that obstacle.

2.3 Basic issues

Healthy regular person, that has no disabilities things in this world are almost always

easier. Though, when normally functioning person notices that something is hard to

use in some way, we could think how hard it is to use with disabilities. Bathroom is a

good solid example, because we all use one. It is the basic necessity in any building

or apartment. When it functions well nobody notices it. When it just does not func-

tion, everybody notices problems although they are not professionals on this matter.

This thesis was inspired by few recently constructed buildings. At that time when I

started to plan this thesis, I did not pay too much attention to accessibility issues.

Now it is all different and I spot every threshold, rail and staircase that are wrong in

some way, accessibility wise. Bathroom or toilet rooms are one clear place to start

observation whether the room or environment is easy-to-use or accessible.

Many new buildings have some recurring faults. It does not matter if building is built

by a different constructor, this one thing almost always recurs. Toilet rooms main ac-

cessory is toilet paper dispenser. It is very often placed so it is really hard to use. As

often it is also filled with hair thin paper that cuts in half with each pull. Accessing

paper inside the paper dispenser, user often has to bend hand in weird positions.

Usual mistakes are that toilet paper dispenser is placed too low or behind the water

closet. Every time this same thing is very annoying but still it repeats in almost every

public building.

Toilet paper dispenser’s placement would be an easy fix. Person that mounts it in the

wall just would have to sit on the water closet, then think how the toilet paper

dispenser is easily accessible and then attach it to the wall. Very often public build-

ings have many separate toilet rooms or booths. These booths are very often narrow,

so narrow that it would be impossible to even think that wheelchair or rollator would

fit in that booth. That of course creates difficulty to fit chunky size toilet dispenser to

small toilet room. It makes no sense that architect would want to fit four tight toilet

room booths to space that can take only three. Those faults are most certainly done

because there is a requirement to fit certain number of toilets in the building. The

cost is then the functionality of that room.

In web this kind of design has gone the other around. Nowadays websites are de-

signed to serve user the best possible way. That way website achieves more visitors

and at the same time respecting company gets more revenue. About twenty years ago

everything was done by rules by the system and users then just had to adapt to that.

Today quality software, apps and websites are designed to serve rules by user not the

systems. Maybe design of new buildings should look into this more. Good design

makes all the difference. If good experience on a website will create more sales,

good design inside of a building should do the same. In the end, place like toilet

room is created for a person that is visiting that building and that is why it should al-

ways offer the best experience as possible.

2.4 ADA standards and Finnish ESKEH

To offer better user experience, design and accessibility, designer and architects must

follow strict accessibility standards. Simulator is based on ADA and ESKEH stand-

ards. Simulation turns standards into tasks. Tasks contains environment testing like

can toilet paper be accessed easily or can the toilet room itself be accessed at all.

Simulation is like a gamified quiz form that asks questions like, how toilet paper dis-

penser should be placed to be accessible or how wide the toilet room should be. In-

stead of a quiz form simulation makes user to test the environment and see the faults

clearly like, in a real life.

ADA bathroom guidelines for dummies is a good read. It shows simplified principles

what to look for to inspect environments accessibility (Mobility.com, 2019).

A good starting point for accessibility testing is a simple rectangular room. This test

room has no real-world counterpart, but it presents easily a starting point for accessi-

bility testing in simulation. In game words this first simplified room is a tutorial that

shows user the whole idea of the simulation and its testing features. Test room has a

motorized door that opens with a button. Door controllers and placement of the doors

are based on ESKEH standards.

Image 2. Motorized door placement according to ESKE standards (Invalidi Liitto RY
2019d)

Making an environment based on Image 2 is a great starting point. It is simple to

model in game environment and also the mission is just to get behind that motorized

door.

Second tutorial is to use bathroom behind this motorized door. This is the main ac-

cessibility task trough out the whole simulation. Tutorial will teach user to spot dif-

ferent accessibility issues. These tutorials also will contain correct ESKEH based

measurements that can be seen AR or augmented reality way in the virtual world.

More about creating these tutorial environments to the game world in section 4.3.

2.5 Implementation to a real world

To test environment that exists in a real world it has to be first 3d-modeled in some

way to turn it into a playable level. Currently there is no way to just start testing any

environment. Buildings are built according blueprints. According to these same

blueprints even 3D-models can be created. With precise measurements that blueprint

contain it is easy but time-consuming process to create a 3d model.

This should be automatized. This simulation realistically cannot lie on 3d-modeling

that is made with human hours. That is too costly and inefficient. Later in this thesis

there is more ideation on section 3.14 of what kind of tools could be used to scan ex-

isting environments.

2.6 Where and how simulation can be used

Any healthy person with no epilepsy can use simulation to test environments. Re-

quirements are to have VR-capable computer and VR-kit. Currently mobile is not

supported or lighter assemblies are not supported.

Anyone can download and use final product. Its source code will be also available on

open source code sharing service the Github. Simulation is intended to give possibil-

ity test environments by anyone and share their thoughts and suggestions. Shared en-

vironments and comments do not bind people to just test their own local buildings,

but they can also test shared environment on another side of the world. Shared feed-

back is one important part of this product. If the feedback of one particular accessi-

bility issue is hot or more discussed it can be taken more seriously than one’s word.

Social pressure is one way to push accessibility issues further. This simulation prod-

uct needs a website, forum and social media as a support. Social media can easily

promote issues to be taken seriously. As an example, if some public building would

be missing an elevator it can be marked as an issue on a forum and social media.

Hopefully, that would create a pressure to make that issue fixed. Forum and social

media could work as a spokesman for people with disabilities. Forum and social me-

dia are a standalone feature among simulator, that gives anyone a change to partici-

pate in a work of making a world more accessible.

Creating a vivid community around accessibility testing-based simulation will be

hard but plausible. Today’s possibility to influence is much higher than in the past.

Today a single person’s voice can shout louder than ever, with a power of social me-

dia. That is why it is so important to harness that power for a use of this product.

3 PLANNING THE SIMULATOR

3.1 Foreseen and known challenges

When starting this project, it was clear that it will not be easy to create all real life

like features to this simulation. Starting from the natural movement of hand. Hand

movement will not be like in a real world, but still it should feel natural or at least it

should feel like it makes sense to just move hands in the air and move in the game

while doing so. In the simulation wheelchair will move by waving hands in the air.

Waiving simulates push of the rim of wheelchair. Careful planning of the movement

is also crucial due to its effects to user’s physical experience. VR is known to easily

cause motion sickness. Motion sickness is a sea sickness like symptom (UX Planet,

2018). Overcoming motion sickness is the most important part in this project. If sim-

ulation causes motion sickness easily it is of course unusable at least for professional

use. Motion sickness is also very user related problem and some people experience

VR and its motion sickness effect stronger than the others. A study of University of

Minnesota indicates that women more likely feel nausea when using VR than men.

From the test group of women almost 80 percent felt sick after using VR glasses for

15 minutes. In the same study the general result was, that 56 percent men and women

felt sick after 15 minutes use. (Bright Developers, 2017).

VR motion sickness is something that has to be taken seriously. Especially when in

this projects case movement is made by waving hands rather than moving feet. Simu-

lation’s motion sickness effects can only be tested with test group in real life.

3.2 Overcoming the challenges

Good planning and testing are the most important things to overcome the challenge

of VR motion sickness. It is impossible to tackle the whole problem for good. When

I started to plan this thesis there were two main competitors on the market HTC Vive

and Oculus Rift. Motion sickness is much caused by the equipment itself. VR kits

like Vive and Rift contain some latency in the picture that they produce (Kjetil

Raaen, Ivar Kjellmo. 2015). Latency means the time difference between the move-

ment of the head and the time when movement appears inside the VR glasses

screens. To understand latency better here are few examples what latency means. In

multiplayer first person shooter (FPS) games latency has been a problem for a long

time. Latency can make game unplayable. Especially latency is a problem in multi-

player games, game servers often even refuse player to join if the latency is too high.

It is about the fairness against other players. Latency is created when player pushes a

button on a keyboard or some other gaming device and the information then runs

through cords to computer and via the internet to a server that can be hundreds of kil-

ometers away. Player that pushed this button sees the movement almost instantly, but

co-players do not. Other players will see the movement after the server has given that

information to their computers and after their computer has processed that infor-

mation. Latency is called lag in gaming world. Lots of lag can sometimes give unfair

advantage or more often it just makes game unplayable. Lag in some games can be

seen as game character jumping from one spot to another. In gaming world this is

called warping and it is most often caused by a bad internet connection that causes

lag. Warping in shooter games is an unfair advantage. It makes a character harder to

aim or shoot at.

In VR kits latency is little bit different. It does not give any advantage to anyone, but

it does create other problems. Latency in VR is created like follows. When players

head moves the sensor on VR headset registers this movement. Movement info is

then sent through cords to a computer and the computer creates or repositions image

according to that movement. This little moment that the info is moving through cords

to powerful computer and then after computer has processed that information and

sent it to VR headset creates latency. Though that all happens literally on a blink of

an eye, players eyes and brain are faster. Brain registers this movement faster than

sensors on a VR headset and at the same time presumes that image on the before

eyes changes accordingly. This little moment though confuses brain and that’s why

latency is so bad thing when combined to VR.

VR kit also causes eye strain which is often felt soon after the VR glasses are put in

the head. (Bright Developers, 2017). Devices like smartphones and computer screens

can cause digital eye strain. Set of VR equipment is no exception although what

causes digital eye strain with VR headset is little different than with smartphone’s

case. Staring smartphone screen for a long period of time can cause eye strain. How

smartphones screen differs with VR is that there are two separate screens for each

eye in VR headset. Smartphone screen is watched with both eyes focused to one

screen. As a comparison eyes in VR headset are focused on two screens at the same

time. This two-screen setup will create an illusion of stereoscopic image. The prob-

lem that causes eye strain is that unlike in real life, eyes watch almost the same spot

whole time when using VR headset. VR headset create illusion of objects going to

the distance and getting closer, but the reality is that eyes are staring two screens that

only illustrate this change of distance. (EyeLux Optometry, 2019).

3.3 How fast brain is?

As a conclusion, tricking brain and eyes to think something that is not real is much

harder than one may think. Brain is so fast that it spots singularities easily. To realize

how fast brain really is it could be playfully compared to a computer. VR system is

often attached to a powerful computer. To get a picture from a computer to a popular

VR system like Oculus Rift HDMI cable is used as a connector. In Oculus Rift

among a HDMI cable runs at least one USB cable. USB does not have anything to do

with getting the picture from computer to VR headset. HDMI is what transfers the

image data to those two separate screens on the VR headset. Continuing this playful

comparison, one must know HDMI cables maximum data transfer rate. As in Oculus

Rift’s case its HDMI cable is version 1.3 or 1.4 that has a maximum data rate of 8.16

Gbits/s (Wikipedia 2019c). Brain is a lot faster. Brain transfers 2328306,44 Gbits of

information every second (Quora, 2017). As said, this is just a playful comparison

and it is nothing too scientific. It still shows that we have a super-fast computer in

our head. This may be one reason why it is so hard to fool and when fooled it causes

nausea and other symptoms.

3.4 Selecting tools

In planning stage there were two potential game engines to choose from. One was

Unreal Engine and the other was Unity. I chose Unreal Engine to do this simulation

with. Other choice was to choose from two quite similar systems HTC Vive and Oc-

ulus Rift. Somehow, the Oculus Rift is a system that I like more, it is bit easier to set

up. Also, the Rift’s controllers are better for my hand. Both VR systems have full

support in Unreal Engine and Unity so that did not affect to a decision of choosing

Oculus Rift for being the test tool. Notable is that if a game is made and tested with

Oculus Rift it is almost certainly compatible to be run also on HTC Vive. Controller

configuration is the only thing that in this case may need some adjusting. Adjustment

can be as simple as question in-game, that asks what VR system you are using.

Choice will then affect to controller configuration.

3.5 About Unity and Unreal

Unity and Unreal are both game engines that have built-in features like physics en-

gine, 2d- and 3d-game support and potential to publish games for smartphone and

tablet platforms like Android and iOS. Unity was first published on year 2005 and

Unreal Engine was created for game named Unreal in 1998. Unity was originally

created to be an exclusive game engine for Mac OS X. At the time of writing this

Unity supports already 25 different platforms not just Mac OS X.

There are some factors that affect to which game engine to choose. Both game en-

gines are free to use and downloadable. At the stage of publishing both engines start

to require some kind of payment. Unity has a proprietary license and has free and

paid versions. Unreal on the other hand does not have paid version at all. Cost of

Unity depends on how much company creates money in a year. Small companies that

generate less than 100.000 dollars per year can use Unity for free. Same goes for per-

sonal use (Wikipedia 2019d).

Four is the current version of Unreal Engine. Originally on 2014 when Unreal En-

gine 4 was published, developers had to pay monthly fee to be able to use this soft-

ware. Fee was reasonable 19 dollars per month per subscription. The plan was to get

more developers to develop with Unreal Engine instead of Unity. After one year at

2015 Unreal was made available for free with all its features (Pc Gamer, 2015). At

this stage Unity had still the Pro version. Pro version contained more features that the

free version. Soon after Unreal announced that it will make all subscriptions free

Unity made all features available for free version also.

Using and developing are different than publishing the final product. Publishing a

game with either game engine has a cost if game sells enough. If a game made with

Unreal engine makes more than 3000 dollars per quarter, company responsible has to

pay 5 percent royalty of the revenue that game has generated. Unity in the other hand

is much cheaper to use when game is published depending on how big the develop-

ment team is. Unity costs 125 dollars per user per month and it does not have finan-

cial eligibility like Unreal Engines royalty system does. (Unity Store, 2019)

3.6 References made with Unity and Unreal

Rust is a survival game / shooter made with Unity. Rust is available for PC, Linux

and Mac. Rust is a good example of a game that is made with Unity and looks just

astonishing. In some circles Unity is known to be a game engine for mobile gaming

or games that are little lightweight. Rust is nothing like that. Rust has huge environ-

ment to explore and is a multiplayer game, also as already mentioned graphics are

very good (Rock Paper Shotgun, 2014).

Wasteland 2 is RPG that is based on 1988 published game Wasteland. Game was

back in the 1988 highly popular and praised. Game sets in post-apocalyptic era.

Game is point and click based game and camera perspective is two and a half dimen-

sional. Games idea is to survive and accomplish missions (Pc Games N, 2015).

From mobile side there are many games made with Unity like Deus Ex: The Fall,

Assassin’s Greed: Identity (Soomla. 2015)

3.7 Serious games that run on Unity

Serious games are not as popular as games that have been created for entertaining

purposes. It is quite hard to check what game engine specific game engine is made

with. With block buster games it is much easier to check the technology behind those

games. Big popular games most often have Wikipedia page where the technology

specifications can be checked.

Satakunnan ammattikorkeakoulu Oy (SAMK) has made few serious games using

Unity. One of those games is ski jumping game. Game has three different stages and

it is controlled with a chair. Chair has pressure sensors that are used in the game to

steer and for jumping. Chair has 9 sensors and Arduino Mega as a brain of the chair.

Data is transferred via Bluetooth to the game. Game can be played with a normal tab-

let or smart phone, but it has been designed to be used with 65-inch Android mega-

tablet Yeti. Game makes player to jump up from the chair to jump in ski jump level,

lift each side of bottom to steer in snowboarding level and throw balls towards the

tablet in the last level. Game is for rehabilitation, exercise and for fun. Main focus

group was elderly people, but game is suitable and fun for anyone.

At the time of writing this thesis, one more serious game is under development at

SAMK. Team of researchers are creating a game for Yeti-tablet that is aimed to be

playable even with most demanding users. Test group is from Paloaho school at

Kuopio. Test group contains lots of different disabilities and one of those is autism.

Some of pupils do not communicate at all and some communicate with sign lan-

guage. Test group also has a majority of pupils that can’t read.

All this creates a lot of demands for a serious game that is produced to that group.

The game is developed with Unity. Game is very simple and does not contain any tu-

torials. Game starts with blank canvas that player can draw on by tapping certain spot

on the screen or by drawing with hand or some other pointing device. An airplane

then flies to that spot and leaves a steam like trail behind it. If there is a cloud on that

path planes trail turns in to the same color as that cloud is. Idea is that player figures

out color change while playing the game and then starts to use it to create patterns or

other artistic features. Game also teaches colors in sign language. There is a sign lan-

guage sign as a picture that means some color name. There is also that same color as

respective colored figure under that sign language picture. In-game that active color

must be flown trough to get next color. This is also learned by just playing the game.

The game is easy to create and publish with Unity for mobile platforms like Yeti-tab-

let. Game can also be played with lighter VR system like Oculus Go or Google card-

board. VR gives advantage to make game more accessible and makes game to be

playable even without hands. VR version of this game works just by looking certain

spot instead of touching a screen. From rehabilitation perspective the VR version of

this game rehabilitates neck spasms.

3.8 Why I chose Unreal?

Unreal 4 engine is used by big companies like Bluehole that developed very popular

multiplayer game PlayerUnknown’s Battlegrounds (PUBG) (PUBG Corporation.

2019). Another one very popular multiplayer game named Fortnite Battle Royale is

also developed using Unreal 4 engine (Epic Games.2019).

Unreal and Epic Games have very good documentation and lot of videos in Youtube.

Videos and tutorials can be found from channels like Tesla Dev, Ben Ormstad and

Unreal Engine. Those create an easy access to start game development. My own

opinion is that Unreal looks a lot better than Unity. At least when the starting point of

a game has been created Unreal looks just astonishing. User interface of unreal is

much more appealing than Unity’s.

Image 3. Side by side comparison of Unity’s (left hand side) and Unreal’s user inter-

face when empty project is established.

Unreal has icons that will gives some idea of what type of object can be used in the

game. Plain game objects like sphere can also be added to game environment by

dragging them. In Unity adding a plain game object is added from a dropdown menu.

Both works great when one gets familiar with the system. For a starter who has no

idea about game objects, Unreal is maybe somewhat easier to start with compared to

Unity. Unreal Engines user interface sort of suggests objects or at least they are visi-

ble when Unity will not give any hints about how one starts building the game envi-

ronment.

Another factor is that Unity requires a lot of plugins to work like Unreal. Unreal has

many built-in features. At the time of creating the game for this thesis, effect called

particle effect was one feature that was missing from Unity, or at least it was not too

extensive. Particle effect is not important for this game but at the time I developed a

first person shooter (FPS) game as a separate project and that required all kinds of ef-

fects like particle effect.

Depending on the usage, plugins are Unity’s advantage. Features like Bluetooth com-

patibility was totally missing from Unreal when this project started. Bluetooth is not

important for this game, but it clearly demonstrates that these both engines have their

own advantages. At the time of writing this thesis Unreal has gotten its own

Bluetooth plugin made by TahaHISHRI. Unfortunately, this plugin is targeted only

for Android platform, so Apple and other devices are out of question. Plugin is free

though.

As a conclusion Unity is much better choice for demoing. There is a lot of free

plugins that support all kinds of platforms. Unreal Engines plugins are slowly evolv-

ing, but at this time Unity is better option.

Last reason why I selected Unreal was node based coding system that is built-in to

Unreal. Unity also has node based coding systems, but the difference is that those are

not built-in. Unity requires a plugin like Playmaker to be installed before any visual

scripting can be made. At the time of writing this Playmaker plugins normal price

was 65€. More about Node based coding in section 3.10.

3.9 How game world differs from a real world and how it affects development

Unlike real world, in game world every object can defy physics. Every object can

float in the air without any support. Any structure or level can hold any amount of

weight. In game world almost anything is possible. Image 4. illustrates Unreal En-

gines levels starting point. Everything in the image 4. is on a platform that is floating

in the air. Although it is unrealistic, the platform can hold any number of chairs, ta-

bles or anything else despite it is floating in the air without any support. That just is,

how game engines work before developer tells objects to work differently.

Game-character can throw an object that weights a ton in the air without any effort.

That object can then travel as long it wants to direction it was thrown at. That would

be totally unrealistic in real world. The harder part in game world would be to get

that object to hit ground as realistically as possible.

In game world every object needs guidelines or rules to function like the objects they

were intended. Game objects need information what those objects are. Object like a

normal drinking glass needs physics, weight and even rules how it will break in the

pieces if it hits the ground. Ground itself also needs rules that how it will behave

when something touches it or hits it. Ground could have rules like how soft or hard it

is and what kind of sound it will make when glass hits it or how it will alter the

glasses hitting sound.

There are so many things that must be considered before getting a simple real-world

action to feel like it is real. Fortunately, algorithms like physics do not have to be

coded by the developer anymore. Game engines like Unity and Unreal have very

powerful built-in physics engines.

As mentioned, every object can float in the air without any support. Normally how

building a game world starts is that there is a platform that is floating in space. Then

other objects can be piled up on top of it. In Unity and Unreal objects like ground

need rules to make object interact correctly with collision. Collision means moment

when object hits another object. If collision rules are not applied correctly other ob-

jects will just go through other object like ground.

Image 4. Illustration of starting view of empty project in Unreal Engine 4

3.10 Node based coding

Lego robots use Mindstorm EV3 software. EV3 is a node-based coding software. It

uses blocks to achieve certain tasks. Basically, each block is predefined to do some-

thing like for example run motor forward or backward (Joe Olayvar & Evelyn Lind-

berg. 2015).

How to use these blocks is up to user. Blocks usually are chained to each other. In

block chain the first block can have a rule like, how long does it take robot to start

using motor to move forward. Second block could be that robot moves forward as

long as it detects color like green on the ground. Legos Mindstorm sets have great

features and parts like optical sensors. Lego Mindstorm optical sensors can be used

as wanted. Parts have predefined coding counterparts as a block in the coding side

that make using parts really easy.

To understand better blocks and node-based coding one must understand a little bit

of how coding works. IF-statement is fundamental piece of coding. Coding is

roughly asking question whether something is or is not and according to that do

something. Below three different ways are exhibited to do an IF statement. Every

sample is from a different program but still they all do the same thing (Image 5.).

The difference of these three ways in different programs is obvious. But for a person

that is familiar with coding can see the similarities. These three do exactly the same

thing. In this case all examples below use or may use boolean type variable in com-

parison.

Image 5. If statement in three different programming softwares. Starting from left
Mindstorm EV3, Unreal Engine 4 and Javascript. (Source: docs.unrealengine.com,
lego.com)

The original reason to choose Unreal as game engine is the native node-based coding

system. I was little familiar with C++, but not enough to start coding with it. C++ is

the language that Unreal Engine uses on the background even though visually coding

can be made with node-based system called Blueprint. Above in Image 5. there is a

simple boolean comparison with three different systems or languages. Nodes in Un-

real Engine are objects that contain everything that is needed for coding. Every node

has its own functionality, but they are used commonly. Nodes then can be used in

graphs to make almost anything without writing a single line of code.

Unreal Engine has system called Blueprint. Every object in the game can have its

single or most usual case multiple Blueprints. Blueprints are also capable to com-

municate with each other. Communication between Blueprints makes it easy to cre-

ate custom code for some objects if needed and makes code more organized. Build-

ing a game’s functionality with nodes in Unreal Engines Blueprints is pretty much

drag and drop based building.

Blueprints are very intelligent and powerful. When combining nodes system is ac-

tively checking compatibility of nodes. System won’t usually give user a chance to

combine wrong nodes together (Image 6.). System will warn about the problem with

an error message that tells the reason why two nodes can’t be combined. (Epic

Games, 2019.) This is also one advantage of Blueprints or node-based coding against

pure coding. Notable though is that also programs like Microsoft’s Visual Studio will

also warn, if some variable is in compatible. Warnings are much like in Unreal En-

gine, but those often will not count the whole case like Unreal Engine’s Blueprint

does and due to that will give much more room to errors.

Image 6. Illustration of two incompatible nodes in Unreal Engine (Epic Games 2019)

It is clear that node-based coding has helped a lot producing this product to demo

stage. Youtube has very good tutorials about making components and functionality

for almost any game. Epic Games is providing lots of support also. They also have

their own Youtube channel that has very good and extensive tutorials. These tutorials

make starting the development with Unreal Engine easy.

3.11 VR / Virtual Reality and Serious VR-games

At the time of writing this thesis VR-systems like HTC Vive and Oculus Rift have

been on the market for quite some time. There is a lot of games, solutions and serious

games to choose from. From educational perspective one free game is a great exam-

ple why VR is so important for this project. This case is all about the visual learning

that is the most powerful way to learn (eLearning Industry, 2017).

The best serious VR-game that I have come across with so far is Sharecare VR and it

is available at Oculus store for free. Game allows user to explore human body

closely. Sharecare VR has human organs modeled very precisely and user can even

dive into a modeled heart to see how blood flows in practice. It is quite incredible

how an engineer now knows how the valves of heart work and how these valves get

stressed from atherosclerosis. The best thing is that not only I know how the heart

valves work in theory, but VR experience has also left me a visual mark to my brain

that is like video about how those valves work and block up. It is totally new

effective way to learn things. Below there is a comment about Sharecare VR from a

nurse and midwife who wraps the point of why to implement VR to educational soft-

ware.

Image 7. A screenshot from Oculus stores Sharecare VR page. (Oculus.com. 2019.)

Implementing user to environment is really important. Hands on experience is im-

portant when intending to teach more than just a theory (Education Week Teacher,

2009).

Although, VR is not a real “hands on” experience it is perception of being physically

in non-real world. When we experience things like changing heart rate or atheroscle-

rosis building up in front of our eyes leaves users neurons with a feeling of height-

ened sensation (Wikipedia 2019f).

For other purposes VR’s possibilities are endless. Interesting study was made in

2012. Study was about body representation where an illusion of having a virtual

body was studied to understand how brain processes this non-real body. Results were

that with virtual reality body stimulates both skeletal muscles and brain computer in-

terface (BCI). (Llobera, González-Franco, Perez-Marcos, Valls-Solé, Slater &

Sanchez-Vives, 2012.)

These above mentioned discoveries show that serious games will benefit over VR a

lot. Impressiveness is very important to make non-real as close to a real-world case

as possible. This is why this thesis’s product has a VR capability. Instead of playing

or using simulator through a normal PC-monitor it helps user to feel and implement

to non-real environment before it even exists. All inaccessible faults can be tested be-

forehand. When testing with enough deep immersion, experience should leave

memory stamp to a user’s mind. Noticeable part is that user will test environment

from wheelchair. This setup of testing a building, street or other environment is im-

possible to create with any other way, than virtual reality. With a help of neurons of

human brain and their experience, creating more accessible buildings and environ-

ments may be easier in the future from designers and architects view of point

(Llobera et al. 2012).

3.12 VR motion sickness

It may sound somewhat funny to have motion sickness with VR-glasses. After the

first use of VR set it is easy to understand how easy it is to get almost seasickness-

like feeling. Roller coaster is quite easy understood example, because almost every-

one knows what roller coaster feels like in the real-world. In virtual reality roller

coaster feels real almost like it would be happening before user’s eyes. Brain will

think that user’s body is in motion although user is sitting still on a chair. It does not

matter if graphics or environment in the game world are not photorealistic, brain still

feels that movement is happening. On roller coaster game it is easy to get that freefall

feeling that one would experience on a real roller coaster when the roller coaster train

is going suddenly downwards.

As it is great advantage from developer’s perspective to be able to give physical feel-

ings to player, there also a big downside. Feeling of that funny freefall feeling means

that brain has interpreted visual feedback of VR-glasses as a sudden drop. That hap-

pens on a stand still chair without any movement.

Small test groups in SAMK have tested some of roller coaster games with Oculus

and HTC Vive equipment. These test groups have not complaint about motion sick-

ness feeling although they are moving very fast in virtual environment while in

SAMK’s test lab they are in reality sitting still. This may be because we have prior

expectations of how roller coaster works.

Simulator’s wheelchair and roller coaster train are very similar in a VR-world. Simu-

lator’s wheelchair like also roller coaster train move in the game-world although

user’s chair is not physically moving. This makes a conflict between what brain ex-

pects and what is actually happening. Brain interprets visual feedback from VR-

glasses as motion, but at the same time body does not feel like it is physically mov-

ing (Wikipedia 2019g). This creates illusion of self-motion, that may lead to seasick-

ness like feeling or even physical response (National Center for Biotechnology Infor-

mation, U.S. National Library of Medicine. 2019).

3.13 Moving the wheelchair

To overcome virtual reality sickness, natural movement needs to be added to the

equation. Simulation of course could be used with VR-glasses and keyboard, but that

combination would produce exact problem that is described before. Simulation is

used with controllers that comes with HTC Vive and Oculus. As simulation is about

testing an environment with a wheelchair the controllers are used to mimic the mo-

tion of pushing the rims of wheelchair. Pushing is not intended to be totally realistic

because it would create some foreseen difficulties from usability point of view.

The image 8. shows how movement is planned to be produced in the simulation. Left

hand side picture with red arrows describes how a real wheel could be pushed for-

ward. Although it is a realistic way it means that VR-controller should follow this

path to accomplish movement. This though is not the most optimal way to produce

motion.

Right hand side picture describes how the movement is produced in the simulation.

Blue arrows present the path that controller has to follow. Green angle mark means

that the angle of this path can be changed in the simulation’s settings to get it suited

for anyone. Purple gradient color presents offset. Offset is also adjustable from the

settings. Offset will help to achieve the mimicked rim push feedback to the system.

Widen or in game world heighten touchable area in 3d-environment will be easier to

follow than narrow one. Adjustability makes it easy to adjust it to anyone’s needs.

These arrow paths and offset can be also seen inside the simulation to help to see the

path that is needed to be touched.

Image 8. Illustration of plan how to create movement path for the simulation

When controller enters the push area it will make a small haptic feedback to notify

the player that player’s hand has entered the area that interacts with the environment.

When the rim is virtually pushed haptic feedback is little more tense. More about

haptic feedback in section 4.

To push the rim few things has to happen. In this case HTC Vive controller is the ex-

ample controller because it has a grip button. In Oculus Rift’s case instead of grip

button, the button under forefinger can be used. Pressing the grip button mimics a

squeeze of the rim. When controller is inside of the purple area and grip button is

squeezed player can see the movement in the game. By moving hands forward and

letting the grip go in the end point makes wheelchair to move in the game-world.

Turning is rather similar to moving back or forward. By entering the purple area and

by griping left- or right-side player can then turn the wheelchair. Turning may also

be done by pulling left and right side to different ways.

3.14 Scanning the environment to get testable 3D-model

There are few 3d-scanning apps for smartphones. One is Trnio. Trnio uses

smartphones camera to scan object front of it. Any object can be scanned by moving

around the object. Object may even be human. Trnio also texturizes the object with

the image that was pictured during the scan. Unfortunate feature of Trnio is that it is

only for iOS platform. Other rather same kind of app is Qlone. Qlone has almost ex-

act features compared to Trnio. Qlone is available for both Android and iOS plat-

forms. Both are very useful and powerful tools to catch 3d-modeled image from an

object (Image 9.).

Image 9. Qlone scan in progress (from https://www.qlone.pro/ Youtube embed)

This all may seem like a dream case considering how easy it is to turn real-world ob-

ject to 3d-modeled objects in just few seconds. All real-world objects can now be

scanned with a smartphone and then transferred into a game world. This is partially

right but far from the reality.

These apps produce 3d-models that are super realistic looking. From game point of

view super realistic is more often bad thing than good one. Computer to render real-

istic objects requires a lot more power than rendering simple objects, like cubes or

planes.

It all is about polygons or complexity of polygon mesh particularly. Polygon mesh

normally is like a solid object that is created from small triangles. These triangles are

called polygons. Note that polygons are not always necessarily triangles (Wikipedia

2019h). Blender is very popular 3d-modeling software that is totally free to use.

Blender uses polygons to render objects. Polygons one side or line is called edge and

flat area is called face. Polygons corners can be considered as dots and those are

called vertices (Wikipedia 2019i). Maybe the simplest object in 3d-modeling is a

cube. Although it has only six sides polygons can make it more complex than that.

Polygons may divide simple cube to many different faces. Below there is an illustra-

tion from Blender that shows how simple cubes polygons form objects.

Complexity of an object is important to understand in this matter. The more complex

the object, the more it requires resources from a rendering computer. Comparison

(Image 10.) shows that the same looking object can be lot different from polygon

perspective. The first cube has only 12 polygons in it. In comparison, the last one

with most squares has 768 polygons in it. As mentioned more polygons more power

hungry the object is.

Image 10. Comparison of simple cubes polygon count in Blender.

Comparison like this may seem insignificant and useless when only one object is ex-

amined. In game world there are thousands of game objects and in that case polygon

counts start to matter. Nowadays computers have huge calculating powers. With a

good hardware it may not matter much how dense the polygon mesh is at start. When

game-environment and the game itself turn complex enough, the performance issues

start to arise. This is why it is so important to keep low polygon counts as high in a

priority list as possible. Especially in mobile devices, performance issues will be

clear in very early stage. In mobile it is crucial to optimize objects that are used in

the game or solution. Why mobile has to be considered in matter is that Oculus Go is

comparable to a smartphone and therefore has limited performance. At time of writ-

ing this thesis, Oculus Go does not have traction of hand movement but in the future,

there might be controllers for both hand in Oculus Go. Oculus Go in that case would

be perfect platform for this simulation to run on.

Now that polygons are explained, 3d-scanned models can be understood better. It is

almost certain that every object that is scanned will be a power-hungry object. There-

fore, without optimization those objects cannot be used straight from the app.

Another problem with these scanning apps like Trnio and Qlone is that they are de-

signed to scan objects, not environments. Without that feature those apps cannot

solve the issue where 3d-environments should be easily scanned and transferred into

a testable game level.

Currently, there is no cost-effective way to scan environments. Laser 3d-scanner at-

tached to a drone could work. Although it would have exact same issues as those pre-

viously mentioned smartphone apps. By scanning environment with laser would defi-

nitely be effective, but it is almost certain that doors and small closures like toilet

rooms can’t be scanned accurately enough. Scanner would not make a difference be-

tween a wall and a closed door. Making environment work with this technique would

not work without postproduction. All the doors and badly scanned areas and objects

need to be modeled by hand. Objects like soap or toilet paper dispensers and door

handles would have to be modeled into the level no matter how well the environment

is scanned. It may be even faster to just model the whole environment manually than

to fixing 3d-scanned model to work.

There is no solution that would just transfer an existing real-world environment into

a testable simulation level. That is very unfortunate because it means that simulations

like this will require some or lots of money and work hours to make real-world envi-

ronments accurate. Hopefully future would and probably will bring solution to this

problem. For now, the most cost-efficient way to 3d-model environments for this

kind of simulation is to follow closely blueprints and possibly existing 3d-models of

the real-world environment.

4 PRODUCTION AND TESTING

4.1 Creating tutorial environments

In this section, creation of environments is shown as pictures. Created environments

are very simple and created mainly for illustration purposes. Unity game-engine was

used as a tool to create a fictional environment. Unity was driven with Macbook Air

that had latest MacOS installed. Running Unity with Macbook Air that has relatively

low hardware specification is a great example, that how little performance Unity re-

quires to be run on and used for developing purposes. For a comparison Unreal En-

gine can be installed on same device but it is unusable. Macbook Air that was used to

create these demo environments had 1,8 Ghz Intel Core i5, 8gb of DDR3 random ac-

cess memory (RAM) and built-in graphics card Intel HD Graphics 6000. As a devel-

oper I personally would never suggest anyone to purchase a computer with this low

hardware specifications. In some point computer like this will have performance is-

sues, especially when publishing demos, test versions or the final product.

All objects are created inside Unity and those objects are very simplified. At this

point there is no need to use modeling software’s like Blender to create complex

models of buttons and doors. Models like realistic looking buttons or door can be

placed afterwards after environment is ready and tested. This section covers only

modeling but not the functionality coding of the objects.

Modeling in this case started from a simple rectangular room. Room has one door

that is motorized. Below there are illustrations that show how the modeling of this

room could be done. Tutorial room should have at least list of objects as follows.

Floor and ceiling are planes. Walls are cubes and for this purpose 5 cubes are needed.

One more cube is to present a door and in model it has a pink color (image 11.)

Plane is an object that is two dimensional and does not have any thickness. Cube on

the other hand is an object that has also depth. Plane is a good object to be used as

wall, roof or floor that are not intended to be looked from behind or side. Plane is

much more cost efficient on performance view of point compared to a cube because

it consists of 4 vertices instead of 8 vertices. (Wikipedia 2019b)

Model’s two walls are shaped as too long on purpose. This same model can be also

used to present a hallway. Only one wall in a middle need to be moved farther and

model turns into a hallway instead presenting only a room (image 11.).

Image 11. Presentation if a simple room in Unity

Next room needs a door opening buttons to present wrong placement and correct

placement of the door controller. Wrong and correct placement of the door controller

knobs are based on ESKEH standards.

Image 12. Correct and wrong placement of door controller knobs with legend of cor-
rect measurements.

Tutorial’s part one is now modeled. Now a simple toilet room can be added behind

this motorized door. Room needs water closet, sink and foldable arm rests and those

are placed according to ESKEH standards. Simple cubes present these toilet rooms

accessories.

Image 13. Toilet room is added behind the motorized room.

Image 14. ESKEH toilet room standards (Invalidiliitto Ry. 2019)

Image 14 is created as a mirror. Measurements to be met are as follows. 800mm free

space on both sides of water closet and it has to extend from wall to water closets

back line by 200 – 300mm to make sure that foldable arm rests are not on the way

when stepping from wheelchair on to water closet. As standard recommends water

closet could be installed 200 – 300mm from the wall to enable this.

Arm rests should be installed 600mm apart from each other’s center point. In case

that arm rest are not foldable their installation height should be 750 – 800mm. In this

tutorial model height of those arm rest is 800mm and they are foldable.

There has to be 1500mm area of free space on front of sink and water closet. (Inva-

lidi Liitto RY 2019a)

Image 15. Final toilet room model according to ESKEH standards.

Game has augmented reality mode or AR-mode, that may be enabled in-game. AR-

mode can be turned on or off from the settings. AR-mode is intended to guide user

towards understanding the correct measurements of accessible design better. AR-

mode measurements can be found on image 13, 14 and 15.

4.2 Coding the functionality

Environment is fully static before it has some built-in functionalities. Door opening

buttons will not do anything before some coding is done first. Although there is

wrongly and correctly placed door buttons those all can still have the same function-

ality. Functionality is easily transferred to all objects that need push-like feature. In

real-life, button usually is pushed in before it does its functions that it is intended to

perform. 3d-modeled button does not understand pushing neither it does not move in

wall when touched. These all features need to be coded before those can be used in

the game or simulation.

Buttons in this test environment are very simple. Buttons need feature to know when

they are touched and make some small movement when touched. Life-like move-

ment of the button is extra feature that is not priority. On priority order, touch is the

number one feature that button need to have. Interaction may be done in test environ-

ment easier than in real-life. Button may understand touch before it is even physi-

cally touched in VR-world. This is done by adding collision box over the button.

Collision box is special object that is intended to use to detect if object goes through

it, this is called touching in-game. In Unity square collision box is called Box Col-

lider.

Image 16. Box collider in Unity

Box collider is three times bigger than the button to make it easily touchable. Code

part for touch is quite simple. Button object needs code, that may be called touch.cs.

In touch.cs file touch is triggered with code below.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class touch : MonoBehaviour
{
 public GameObject DoorToOpen;
 // Start is called before the first frame update
 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 if (Input.GetMouseButtonDown(0))
 {
 RaycastHit hit;
 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);

 if (Physics.Raycast(ray, out hit, 100.0f))
 {
 print(hit.transform.gameObject.tag);
 if (hit.transform.gameObject.tag == "nappi")
 {
 DoorToOpen.GetComponent<opening>().open = true;
 }

 }
 }
 }

}
Image 17. Touch.cs script

Code above uses mouse click as a trigger. Raycast gives object that was touched with

mouse and stores that in “hit” variable. The most inner if-statement then checks if

“hitted” game object contains tag “nappi”. If it does code then changes doors boolean

variable that contains info if door should be closed or open. DoorToOpen game ob-

ject must be set in Unity to match the door that is wanted to be triggered by this but-

ton.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class opening : MonoBehaviour
{
 float openTime = 0;
 public float doorOpenAngle = 90.0f;
 public bool open = false;
 float defaultRotationAngle;
 float currentRotationAngle;

 public float openSpeed = 1.1f;

 void Start()
 {

 }

 // Update is called once per frame
 void Update()
 {
 if (openTime < 1)
 {
 openTime += Time.deltaTime * openSpeed;
 }
 transform.localEulerAngles = new Vector3(
 transform.localEulerAngles.x,
 Mathf.LerpAngle(
 currentRotationAngle,
 defaultRotationAngle + (open ? doorOpenAngle : 0),
 openTime
),
 transform.localEulerAngles.z
);
 }
}
Image 18. Opening.cs script

Script in image 18. illustrates code that is attached to door that is opened. Boolean

“open” is that variable that previous script touch.cs did change. Basically, the door

just waits for open-variable to change and when it changes it gives code permission

to start turning the door towards the angle that is stored in variable named

“doorOpenAngle” that has a default value of 90.

Above exhibited codes are examples of Unity-made codes. Those two scripts are just

a small piece of the whole system that lies under the bonnet of big simulation project.

Example codes and scene were made with Unity because scripts of the Unity game

engine are much easier to be explained than complex Blueprints that Unreal uses.

Blueprints also would have been screenshots instead of a real code and that way little

harder to be explained on detailed level.

4.3 Accessibility cases in this project

In games usually when tutorial part is over game itself begins. Like a normal game,

this product will contain missions that are accessibility cases. Missions are tasks that

user needs to do to complete the level. Level in this case may be place like small cof-

fee shop. Below there is description of a simple mission with submissions and what it

takes to make mission work from logical and coding view of point.

How to go inside a building where the front door is closed but not locked?

Getting into a building could be the first mission. In this case there are few things

that have to be considered in gamifying. Open doors would be too easy so there must

be some obstacles instead of easy access into the building. Obstacles like doors will

prevent user from entering the building. User needs to pull the door to get it open.

Door way may have double doors, that means both doors need to be open at the

same to fit a wheelchair. In demo scene doors were coded to be self-closing doors.

That meant that it is not enough to pull just one door open and enter. First user must

pull one door open and then jam it with wheelchairs corner. Then second door may

be opened, and user can pull the wheelchair in.

This simple task is somewhat demanding to create. It requires good collision detec-

tion from doors and wheelchair. Also, collision detections should not be able to be

overridden. This may easily happen if self-closing script does not understand that

door is touching some object that should jam the door like in a real world. If these

two objects and their scripts do not communicate well between each other, door may

go through the wheelchair. This kind of bugs need to be evaded. Bugs destroy the re-

alism of the simulation (Image 19.).

Image 19. Illustration of child object not having its own collision detection (Bohemia
Interactive. 2018)

How to get into a toilet room?

This second mission contains few submissions that are crucial or optional to com-

plete. The first submission is to find the toilet room door from the building. As gami-

fied features there could be non-playing character (NPC) that can be used as a

guide. NPC could give directions to toilet room if asked. Asking help from NPC

would give a score to user. As games today are not so strict, other possibility would

be that user just goes and finds the toilet room without guidance. On the way player

can notice and point guides towards toilet room if there is any. User will gain score

from all found guide texts.

Opening the toilet room door

The first mission was to access the building trough a double door. Level could con-

tain toilet room that has a normal door and a toilet room that has a door that can be

opened from a button on a wall. Either can be used to complete the mission. Using

non-accessible toilet room has the same problems that the front door had. To open

the door it needs to be pulled at the same time as trying to enter it. This particular

task needs coordination of both hands. Other VR-controller needs to be attached to a

handle of the door and other hand has to ably some reversing motion for the wheel-

chair or otherwise the wheelchair would block the way of the moving door. This

demonstrates well the real-world situation of this same event and its accessibility is-

sues.

How to get on to a toilet seat

To get on to a toilet seat user must be able to drive wheelchair somewhere beside the

toilet seat. If that is not possible it can be marked as an accessibility issue. At the

same time user will gain score for spotting a problem in a building. Illustration im-

age 18. below shows the space requirement for the wheelchair. Correct measure-

ments according ADA-standards can be seen on image 20. If the toilet seat is inac-

cessible, user can still try to access it from another angle.

Image 20. Illustration of the space needed beside the toilet seat to fit a wheelchair

Other missions

After getting on to the toilet seat, it is time to test how easy it is to get paper out of

the toilet paper dispenser, if it is even in reach. Here is a list of other missions that

could be found on this same building: Washing hands, using soap dispenser, using

hand towel dispenser, getting out of the toilet room.

Simulation should contain several simple and normal real-world tasks that will test

how hard it is to move inside a building that is not accessible. As comparison the

simulation should also contain levels or buildings that are fully designed to be acces-

sible. Simulation’s gamified features are all about gaining points out of ordinary

things like washing hands. Gaining points is aimed to give user a stronger gamified

feeling like games normally do. Although tasks are easy and points are gained easily,

success and achievements are not the point of this game. Game will give points for

spotting accessibility issues although it may seem that points were gained from com-

pleting a task, like hand wash. In the end of every mission the player will get a full

report of all accessibility issues. Report will contain spotted issues and the issues

that were overtaken by the user although those were accessibility issues.

4.3.1 Sound design

Sound is very important factor in games. Quiet environment just does not feel like it

would be alive. This is why it is very important to add sound and sound effects in to

game world. Places like shopping center should have that hustle and bustle like am-

bient noise on a background to get immediate feeling of a live environment. Even if

eyes closed that environment feels like a shopping center. Sound is crucial part of the

experience that player will gain from playing games (Amplifon, 2019).

Doors and knobs do have to make some kind of sound when used. Elevators, radios

floor under wheelchair and lamps on a roof all should make some kind of real-world

like sounds to implement user deeply into a game-world. Different surfaces like

wooden or concrete floor should create different sounds when player moves on them.

Rugs on a floor should alter floor’s original sound depending on what surface it is

on. Creating realistic gentle sound while rolling with wheelchair creates much more

immersive feeling of movement. Sound is important factor in immersion or at least it

is often considered as one factor. Still there is no theory that would proof that immer-

sion and sound have a strong connection. This is because it is hard to proof what

makes a game immersive. Immersion happens unconsciously and it is hard to point

out which factors are most important and what are less important (Sander Huiberts,

2010).

As one example, Zombies, Run! is a mobile game that is little unconventional when

compared to any other zombie or survival game. It uses only audio to tell its story.

Zombies are created in players mind and not on smartphones screen. Idea of the

game is that, player is always on the move and doing missions. Missions are quite

simple ones. Usually, player just has to run somewhere and pickup something from

some place. In between missions the game now and then alerts about zombies, after

that player simply must run to escape. There are no zombies behind the player in the

real world but when running in a dark forest it certainly starts to feel like zombies are

close. This all is created with sounds and sounds only. At least with good imagina-

tion serious game like Zombies, Run! feels very immersive.

4.4 Haptic response and implementation

Before getting into a matter of why haptic response is so important for this simulator,

one must first understand what haptic response is. Haptic response is basically

some kind of response from virtual environment to a real world. Haptic technology is

also called as kinesthetic communication and comes from Greek word haptikos. Hap-

ticos(ἁπτικός) means “pertaining to the sense of touch”.

In smartphones there is usually haptic response option as default. Cellular phones

have existed for quite some time, and vibrations feature is almost as, old feature as,

cellular phone itself. Although vibration feature has existed for quite some time, the

smartphone era created a new need for vibration feature in smartphones. Haptic re-

sponse in smartphones helps to write text with virtual keyboard. When virtual key

of a virtual keyboard is pressed, it gives a tangible small vibrating feedback that can

be interpreted as, key press. What usually gives that sense of vibration is a small mo-

tor or motors that inside the device. One example of this kind of motor is inside

of LG Optimus L7 II (Wikipedia 2019a).

Very common solution of haptic response in games is a force feedback system in rac-

ing games. It requires a dedicated steering wheel and pedals to get this response. In

racing games, haptic response is not as saddle as feedback when virtual key is

pressed. Gaming steering wheel with force feedback feature will give really strong

resistance when driving car to corners. This on its own tries to give player a feeling

of being behind a steering wheel in race car (Orozco, Silva, El Saddik, Petriu. 2012).

It would be great to have steering-wheel-like feedback when trying to push wheel-

chair forward. This though would require two wheels on both sides, that are size of

wheelchair rims. These two steering wheels then would have to be customized for

this particular use. This would require lots of coding and testing to get wheels re-

sistance and feedback perfect. One considerable thing is that those steering wheels

are not intended for this use. It may be even impossible to adapt this kind of product

to this purpose.

Using customized equipment would not fill one purpose of this simulator. Simulator

is intended to be used with any VR-equipment or desktop computer that is powerful

enough. Any customized peripherals will decrease markets and add costs to the end

product. The easier the implementation to clients existing equipment, the more mar-

ket it has.

4.4.1 Haptic response in VR

Touch is the most primitive sense that we humans have. We are able to understand

the world around us just with the sense of touch. Hands belong to more sensitive

parts in the human body (Roope Raisamo & Jukka Raisamo, 2011). Haptic response

is an important part of bringing the sense of touch from virtual world to real world.

Of course, it is nothing compared to real touch but currently at least on widely avail-

able commercial products like HTC Vive and Oculus Rift, it is the only way to create

the sense of touch.

Virtual reality devices, like HTC Vive and Oculus rift, both have haptic response fea-

ture. HTC Vive and Oculus rift both have one haptic motor inside of each control-

ler. This motor spreads the haptic feedback to whole controller (iFixit, 2016). These

motors can then be programmed to do certain tasks. As described above this motoric

response is important when interacting virtual objects such as virtual keyboards. In

virtual world these controller’s haptic motors can be controlled trough a code. Nor-

mal and most common application is to add haptic feedback when a controller

touches a virtual object. It is totally up to a developer innovativeness that how haptic

response is used. One case could be instead of touching of an object, player could

feel a vibration when entering to forbidden area inside the game such as radioac-

tive area. It is totally up to a solution how haptic response is used (NotionThe-

ory/Medium.com, 2017).

In this simulator the haptic response will give a feeling of a touch of an object. Im-

portant feedbacks are touching the wheelchairs rim and touching an object to interact

inside the simulation. In this simulator, lack of haptic response can be used to guide

user to understand that certain game object does not interact, or at least it is not in-

tended to interact. To make clearer that certain objects are un-interactable, a sound

and/or visual response can be added to object. Objects that are interactable can make

clear major key sound and un-interactable objects minor-key sound. Using simple

major (happy) and minor key (sad) sounds should give a user a feeling that some-

thing is forbidden, or something is allowed (NME, 2013). More about importance of

sound in Sound design section 4.3.1.

5 CONCLUSION

5.1 What was accomplished

Simulation did not get completed during this thesis. Lots of theory and good prac-

tices have now been gathered. During the long time period of making this thesis has

also given some advantages. Technology has evolved again few steps. Resolution in

VR-devices has improved; controllers and base stations have evolved and mobile

standalone devices like Oculus Go, have entered the market. As mentioned previ-

ously, in this thesis Oculus Go may be very suitable device to run this kind of simu-

lations. The only downside currently is that it does not track players movement ex-

cept the head.

This thesis can be considered as a preliminary requirement analysis for an accessibil-

ity simulator. Over the thesis process, a bunch of demos has been generated to test

the parts of the simulation in practice. Most of programming was made with Unreal

but some code was made also with Unity. Codes and worlds of these two competing

game engines can’t be combined but both have proven to be valid tools for develop-

ing this kind of a simulation. The Unreal version of the uncompleted demo simula-

tion is available for anyone on Github.

From hardware point of view both HTC Vive and Oculus Rift are good choices to

run this kind of a simulation. The final product must support at least these two plat-

forms.

5.2 Human Resources

Almost from the beginning, it was clear that this is a huge project. It simply is not

one man’s job. It would be plausible if one would do this full time. That was simply

not the case. While digging deeper into this thesis, it was also very important to do

the research right rather than just start developing. Development of a simulation got

really far. It has huge environment with some interactive features, like doors and a

door man that player can act with (Image 21.). Wheelchair was also programmed in

the way that it could be used in the future. Wheelchair still needs to be programmed

to be used with VR kit, currently it only works with a keyboard. Reason for this is

that it is much easier to test functions and features of the environment with regular

keyboard and mouse setup. The simulation has some finished gamified features like

scores and animations.

Image 20. Gamified features of the game.

Making these features that are lower on the priority list at the middle of the develop-

ment process was a clear mistake. Development should have been planned better.

During the development, I created a task list, but while one task was completed many

others had been added after that. Developing this simulator just for the thesis pur-

poses was overwhelming. Thesis itself should be created also. At this point I started

to pay attention more to theory side of this project. Theory and studies behind this

project are very interesting. At this point it is clear that when this simulator is finally

created, it is much better than it would have been in the beginning. I now have much

more theory, studies and understanding for accessibility to back up the simulator.

5.3 Faced problems

The biggest problem was that the project was simply too big for one developer.

Among normal working hours plus development at home it was soon clear that time

and motivation are the biggest issues for development. For this big project it is now

clear that planning, designing and development simply take lot of time. Especially

development is huge time consumer. For a simple collision detection development

time can be 4 to 8 hours. To make much more complicated collision detection that

detects collision from at least 4 points will add more hours to that. The challenge is

to make those collision point to work together. As simple case what collision detec-

tion should do, is to detect collision from one point, and if another point is also col-

lided the code should prevent character from moving to that direction. Otherwise

character will move through a wall. Collision detection is explained better on produc-

tion and testing part.

5.4 Finalizing the product

To make this product complete, it should have one realistic finalized level like shop-

ping center that has gamified interactive features. To get it as real as possible the

shopping center should be based on a real shopping center like Kauppakeskus Puu-

villa or Isokarhu that are located in the city of Pori. Model needs precise copy of

doors, stairs and thresholds. Modeling is not enough because doors, stairs, knobs and

lifts also need programmed functions. Shopping center does not need to be photoreal-

istic. Main purpose of the model is to test accessibility issues. If this tool is used as a

test tool time, effort and money for gaining photorealistic experience is not its main

purpose. As explained earlier, it is very important to have these test sessions as real-

istic experiences as possible. Graphics, sounds and implementation are important

things, but they do not have to be exact. Main thing is to have convincing experience

that is memorable.

5.5 Future development

At Samk there is a big demand for this kind of a product. I have already gained a lot

of interest for this kind of a product inside Samk. Producing simulator like this need

its own funded project. With a team of skilled programmer’s simulations first demo

should not take more than half a year to get finished.

Demo would solely concentrate on the testing tool part. As previously mentioned, an

idea is to have two separate products, a gamified product for common people and a

professional testing tool for architects and designers.

5.6 Marketing the final product

Social media id widely used today. Still, I personally do not think that it is right the

channel to market the test tool part of this product. This simulation is much more

than just a game. It is a tool and probably not too interesting for a regular person to

spot on Instagram or Facebook feed. Regular consumer is not the target market for

this simulation. This is more for corporations that are involved in accessibility design

and development. To get word out, maybe traditional press like, medical press-re-

leases would be good place to promote this product.

Main goal would be to test environments before they are built. Also testing different

renovation scenarios can be tested before big investments so the real estate press re-

leases should be good place to promote this product. It may be far-fetched but I

would hope that this simulation would be available for everyone for free. Main idea

of the whole product is to make accessibility and its issues known better. Secondly

that professionals can test the buildings to make them more accessible. Although the

product would be free, it would still need constant investments. The final product, of

course, is not ready when it is released. It will contain bugs and systems like HTC

Vive will change and upgrade in the future and will create incompatibility issues. To

fix these issues and make any updates, product needs a team of programmers also in

the future. Invaliidiliitto Ry or other similar of organization would be a great sup-

porter of this product. With an existing network that they already have the marketing

would be much easier than the starting of the whole marketing process from the be-

ginning.

REFERENCE LIST

Amplifon. 2019.The psychology of sound in video games.
Referred: 10.3.2019
http://www.amplifon.ie/resources/playing-with-your-mind/

ARA. 2014. Asutko sinä hissittömässä kerrostalossa?.
Referred: 16.3.2019
https://www.ara.fi/fi-FI/Ohjelmat/Hissiinfi

Bright Developers. 2017. Why Motion Sickness Happens in Virtual Reality.
Referred: 27.7.2019
https://www.brightdevelopers.com/motion-sickness-happens-virtual-reality/

Education Week Teacher. 2009. Teaching Secrets: How to Maximize Hands-On
Learning.
Referred: 24.3.2019
https://www.edweek.org/tm/articles/2009/09/02/tln_cody.html

eLearning Industry. 2017. Visual Learning: 6 Reasons Why Visuals Are The Most
Powerful Aspect Of eLearning.
Referred: 24.3.2019
https://elearningindustry.com/visual-learning-6-reasons-visuals-powerful-aspect-
elearning

Epic Games. 2019a. Nodes.
Referred: 24.3.2019
https://docs.unrealengine.com/en-us/Engine/Blueprints/UserGuide/Nodes

Epic Games. 2019b. Fortnite Battle Royale.
Referred: 21.9.2019
https://www.epicgames.com/fortnite/en-US/play-now/battle-royale

EyeLux Optometry. 2019. Virtual Reality and Digital Eye Strain.
Referred: 29.7.2019
https://www.eyeluxoptometry.com/news/virtual-reality-digital-eye-strain/

Finlex. 2004. Ympäristöministeriön asetus esteettömästä rakennuksesta.
Referred: 10.7.2019
https://www.finlex.fi/data/normit/28203-F1su2005.pdf

Harbor City Supply. 2019. Small or Single Public Restrooms | ADA Guidelines.
Referred: 23.4.2019
https://www.harborcitysupply.com/blog/small-or-single-public-restrooms-ada-guide-
lines/

iFixit. 2016. Oculus Touch Teardown.
Referred: 17.3.2019
https://www.ifixit.com/Teardown/Oculus+Touch+Teardown/75109

Invalidi Liitto RY 2019a. ESKE kartoitusopas.
Referred: 27.6.2019
https://drive.google.com/file/d/1498DMnSPbcBhVXk4LJUbP7qwsu59kITW/view

Invalidi Liitto RY 2019b. Kulkuväylä.
Referred: 10.7.2019
https://www.invalidiliitto.fi/esteettomyys/julkinen-rakennus/kulkuvayla

Invalidi Liitto RY 2019c. Historia.
Referred: 16.3.2019
https://www.invalidiliitto.fi/invalidiliitto/organisaatio/historia

Invalidiliitto RY 2019d. Esteettömyyskartoitusopas 2019.
Referred: 15.8.2019
https://drive.google.com/file/d/1498DMnSPbcBhVXk4LJUbP7qwsu59kITW/view

Joe Olayvar & Evelyn Lindberg. 2016. LEGO Mindstorms EV3 Programming Ba-
sics.
Referred: 22.9.2019
https://www.sos.wa.gov/_assets/library/libraries/projects/youthservices/legomind-
stormsev3programmingbasics.pdf

Kadettikunta Ry. 2014. Veteraanien perintö – itsenäinen isänmaa, Sotainvalidit.
Referred: 16.3.2019
http://www.veteraanienperinto.fi/vepe/index.php/fi/ryhmia/sotainvalidit/index.html

Kjetil Raaen, Ivar Kjellmo. 2015. Measuring Latency in Virtual Reality Systems.
Referred: 20.9.2019
https://hal.inria.fr/hal-01758473/document

Llobera, González-Franco, Perez-Marcos, Valls-Solé, Slater & Sanchez-Vives. 2012.
Virtual reality for assessment of patients suffering chronic pain: a case study.
Referred: 26.9.2019
https://doi.org/10.1007/s00221-012-3352-9

National Center for Biotechnology Information, U.S. National Library of Medicine.
2015. More than a cool illusion? Functional significance of self-motion illusion (cir-
cular vection) for perspective switches.
Referred: 14.4.2019
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531211/

NME. 2013. The Science Of Music – Why Do Songs In A Minor Key Sound Sad?
Referred: 17.3.2019
https://www.nme.com/blogs/nme-blogs/the-science-of-music-why-do-songs-in-a-mi-
nor-key-sound-sad-760215

NotionTheory/Medium.com. 2019. Inside of a Vive Controller.
Referred: 17.3.2019
https://medium.com/@notiontheory/inside-of-a-vive-controller-7c9de18ac9d3

Occupational Safety and Health authority in Finland. 2019. Non-discrimination.
Referred: 16.3.2019
https://www.tyosuojelu.fi/web/en/employment-relationship/non-discrimination

Oculus.com. 2019. Sharecare VR.
Referred: 27.3.2019
https://www.oculus.com/experiences/rift/1656800021020362/

Orozco, Silva, El Saddik, Petriu. 2012. The Role of Haptics in Games.
Referred: 17.3.2019
https://www.researchgate.net/publication/221923248_The_Role_of_Hap-
tics_in_Games

Pc Gamer. 2019. Unreal Engine 4 is now free.
Referred: 29.7.2019
https://www.pcgamer.com/unreal-engine-4-is-now-free/

Pc Games N. 2015. InXile to give Wasteland 2 a graphical overhaul with Unity 5 en-
gine.
Referred: 21.9.2019
https://www.pcgamesn.com/wasteland-2/inxile-to-give-wasteland-2-a-graphical-
overhaul-with-unity-5-engine

PUBG Corporation. 2019
Referred: 21.9.2019
https://www.pubg.com/

Quora. 2017. How fast does the brain think?.
Referred: 29.7.2019
https://www.quora.com/How-fast-does-the-brain-think

Rock Paper Shotgun. 2014. Impressions: Rust's New Version.
Referred: 21.9.2019
https://www.rockpapershotgun.com/2014/11/26/rust-new-version-review/

Sander Huiberts. 2010. Captivating Sound,
Referred: 15.9.2019
https://download.captivatingsound.com/Sander_Huiberts_CaptivatingSound.pdf

Soomla. 2015. Top 10 Unity Games Ever Made.
Referred: 21.9.2019
https://blog.soomla.com/2015/01/top-10-unity-games-ever-made.html

Statista. 2019. Virtual Reality (VR) - Statistics & Facts.
Referred: 19.9.2019
https://www.statista.com/topics/2532/virtual-reality-vr/

Thinknum Alternative Data. 2018. Consumer interest in VR is declining according to
sales data trends.

Referred: 19.9.2019
https://media.thinknum.com/articles/sales-data-shows-that-consumer-interest-in-vr-
is-waning/

Unity Store. 2019
Referred: 29.7.2019
https://store.unity.com/

UX Planet. 2018. Motion sickness in VR.
Referred: 27.7.2019
https://uxplanet.org/motion-sickness-in-vr-3fa8a78216e2

Wikipedia 2019a. Haptic Technology.
Referred: 17.3.2019
https://en.wikipedia.org/wiki/Haptic_technology

Wikipedia 2019b. 3D-projection.
Referred: 15.8.2019
https://en.wikipedia.org/wiki/3D_projection

Wikipedia 2019c. HDMI.
Referred: 29.7.2019
https://en.wikipedia.org/wiki/HDMI

Wikipedia 2019d. Unity (game engine).
Referred: 29.7.2019
https://en.wikipedia.org/wiki/Unity_(game_engine)

Wikipedia 2019e. Unreal Engine.
Referred: 29.7.2019
https://en.wikipedia.org/wiki/Unreal_Engine

Wikipedia 2019f. Immersion (virtual reality).
Referred: 24.3.2019
https://en.wikipedia.org/wiki/Immersion_(virtual_reality)

Wikipedia 2019g. Virtual reality sickness.
Referred: 14.4.2019
https://en.wikipedia.org/wiki/Virtual_reality_sickness

Wikipedia 2019h. Polygon (Computer Graphics).
Referred: 14.4.2019
https://en.wikipedia.org/wiki/Polygon_(computer_graphics)

Wikipedia 2019i. Polygon Mesh. 2019
Referred: 14.4.2019
https://en.wikipedia.org/wiki/Polygon_mesh

