

Train passenger information system load simulation
Ossi Nuutero

 OPINNÄYTETYÖ Toukokuu 2019 Tieto- ja viestintätekniikka Tietoliikenne

TIIVISTELMÄ
Tampereen ammattikorkeakoulu Tieto – ja viestintätekniikka Tietoliikenne NUUTERO OSSI Matkustajainformattiojärjestelmän kuormitustestaus Opinnäytetyö 30 sivua, joista liitteitä 1 sivua Toukokuu 2019
Matkustajainformaatio – ja kuulutusjärjestelmä koostuu monista eri laitteista ja ohjelmistokomponenteistä. Koska Testijärjestelmään ei voida kiinnittää kaikkia laitteita, joita oikeaan junaan kiinnitettäisiin, on osa laitteiden dataliikenteestä simuloitava. Ilman tätä on mahdoton tietää, pystyvätkö laitteet ja ohjelmistot suoriutumaat siitä kuormasta, joka niillä tulee oikeassa toimintaympäristössä olemaan. Opinnäytetyössä simuloitiin dynaamisten reittinäyttöjen kuorma, sekä testattiin kuinka täynnä IP äänivahvistimen kaista voi olla, jotta kuulutuksia pystytään vielä tekemään ilman, että niihin syntyy merkittäviä tai havaittavia häiriöitä. Kohdelaitteden resurssien käyttöä piti tutkia simuloinnin ja kuormituksen aikana. Resurssien käyttöä tutkittiin lähettämällä SSH yhteyden kautta kohdelaitteille komentorivikyselyitä. Kyselyistä saadut tulokset esitetään kuvaajissa Dynaamisten reittinäyttöjen näkymä tulee järjestelmän keskusyksiköllä (TPC) olevalta web-palvelulta. Opinnäytetyössä tallennettiin yhden näytön web palvelulle lähettämät HTTP kyselyt ja sitten kyselyt simuloitiin Jmeter ohjelmalla lähetettäväksi saman aikaisesti niin monta kertaa, kuin näyttöjä olisi oikeassa toimintaympäristössä. Simuloinnin perusteella TPC suoriutui kuormituksesta hyvin, eikä sen resurssien käyttö juuri noussut simuloinnin aikana. IP äänivahvistimien kaistan tukkiminen testattiin lähettämällä sille satunnaista binääri dataa UDP paketteina. Jos Paketteja lähetettiin rajoittamattomasti, alkoi automaattikuulutuksista hävitä osia ja manuaalikuulutuksissa oli paljon viivettä. Rajoittamalla pakettien lähettämistä oli mahdollista haarukoida raja, jonka alapuolella IP äänivahvistin pystyy vielä toimimaan ilman, että kuulutusten taso kärsii. Jmeter ohjelmalla olisi myös mahdollista simuloida paljon erilaisia kyselyitä ja protokollia, esimerkiksi SQL kyselyt olisi mahdollista simuloida. Tähän ei kuitenkaan ollut tarvetta tässä projektissa.

Asiasanat: kuormitustestaus, kuorman simulointi

ABSTRACT
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Information and communication technology Telecommunications NUUTERO OSSI Train passenger information system load simulation Bachelor's thesis 30 pages, appendices 1 pages May 2019
Passenger information – and announcement system contains many different
devices and software components. A normal test bench can’t contain all the de-vices that would be attached in the real train environment. This is why it is im-portant to be able to simulate the load of those devices that are not included in the test bench. Without load simulation it is impossible to know if the devices are capable to handling the load of a full system. In this project the load of dynamic route maps was simulated and the maximum bandwidth use of the IP amplifier without any errors or suppressions to an-nouncements was tested. When simulating a load to the test system, it is important to observe the metrics of resource usage from the target devices. This was done by opening a SSH connection to devices and sending command-line queries to target devices. From the replies it was possible to draw different graphs about the using of re-sources. Dynamic route map displays receive their visual information from the web ser-vice that is running on the TPC. At first the HTTP-requests send by one DRM display were recorded and then simulated with JMeter to be sent at the same time as many times as there are displays in the real train. After simulation test it was possible to come in conclusion that there were not any problems for TPC to handle the load of all displays in a real train. IP amplifier bandwidth was tested by sending random binary UDP packages to the IP amplifiers. Without any limitations the announcements started to get sup-pressed and they had huge delays. With limiting the amount of UDP packages sent, it was possible to find the maximum point where the IP amplifier is still able to provide high quality announcements without any errors. It is of course possible to simulate also other protocols and requests with JMeter, for example SQL queries but it was not necessary in this project.

Key words: load simulation, observing the metrics

4

TABLE OF CONTENTS

1 INTRODUCTION .. 6

2 TRAIN PASSENGER INFORMATION SYSTEM 7

2.1 Display Sub-System ... 7

2.2 Announcement Sub-System .. 8

2.3 Telephony Sub-System .. 8

3 PROTOCOLS ... 9

3.1 TCP .. 9

3.2 HTTP .. 9

3.3 UDP ... 10

4 JMETER ... 11

4.1 Samplers .. 11

4.2 Listeners .. 12

5 COLLECTING METRICS .. 13

5.1 CPU usage ... 13

5.2 Memory consumption ... 14

5.3 Network usage ... 15

6 LOAD SIMULATION ... 17

6.1 Idle state .. 17

6.2 Simulating HTTP requests ... 19

6.3 Stressing the system with UDP data .. 21

6.4 UDP to IPAMP ... 25

7 DELIBERATION ... 28

SOURCES ... 29

APPENDICES .. 30

Attachment 1. Train passenger information system network 30

5

Abbreviations and acronyms

CIP Common Industrial Protocol
DRM Dynamic Route-Map
HTTP Hyper Text Transfer Protocol
IP Internet Protocol
IPAMP IP Amplifier
LED Light Emitting Diode
OCC Operational Control Center
PACIS Passenger Announcement, Communication and Infor-

mation system
PCU Passenger Communication Unit
PIS Passenger Information System
RTP Real-time Transmit Protocol
SIP Session initiation protocol
TFT Thin-Film Transistor (flat screen display)
TPC Train PC
UDP User Datagram Protocol
VoIP Voice over IP

6

1 INTRODUCTION

In this thesis I investigate different ways to perform load tests to train passenger
information system with open source JMeter load testing tool. The goal is to be
able to simulate the load of a full information system at the test bench and
measure its effects to the system performance and its devices. This is an im-
portant aspect of the testing and too often forgotten. The load has to be simu-
lated because it is impossible to fit all the devises from the train to a test labora-
tory environment which contains multiple different test systems.
The functional part of this theses was implemented in Teleste Information Sys-
tems test-laboratory environment. All real usernames, passwords, IP addresses
and customer names are withheld from this document for confidentiality rea-
sons.

7

2 TRAIN PASSENGER INFORMATION SYSTEM

To understand the context and the environment where and what for this project
was done it is required to be familiar with the basics how the train passenger in-
formation system works.
The content and functionality of the passenger information systems varies a lot
between different projects and customers. The information system contains at
least a few sub-systems. The test system that was used while developing
JMeter tests contains display-, announcement- and telephony sub-systems.
Each sub-system can contain multiple devices and software components. Com-
munication between the devices is transmitted through the train industrial stand-
ard IP network. The network implementation contains DHCP, DNS, and NTP
services.

2.1 Display Sub-System

The test system contains four different displays from which two are LED-dis-
plays and other tow are TFT-displays. Both lateral- and frontal LED displays will
be positioned outside of the train and both of them are presenting the last sta-
tion name of the current driving mission. Presented content is provided by the
train main computing unit; train PC (TPC).
TFT-displays will be positioned inside of the train. Wider TFT-displays (36.6
inch) are called DRM (Dynamic route map) displays and they are dynamically
presenting route, next station, door opening side and other information. Smaller
TFT-displays (13.3 inch) function as infotainment-displays. They present adver-
tisements and useful information for passengers. The contents for all TFT-dis-
plays are provided by the TPC.

8

2.2 Announcement Sub-System

Automatic and pre-defined announcement are played by the TPC. Automatic
announcements are stored in the database and triggered automatically from the
ground operational center through CIP protocol. Announcements are sent to IP
amplifiers (IPAMP) via train network using VoIP SIP protocol and the announce-
ments are carried out by the IPAMPs to the loudspeakers. It is also possible to
make manual announcements using driver’s microphone.

2.3 Telephony Sub-System

The train contains Passenger communication units (PCU). PCUs can be used
by passengers to communicate with a driver in case of an accident or an emer-
gency. Driver answers the calls from the driver’s cabin or ground operation con-
trol center (OCC). The system is informed which PCU made the call via CIP
(Common industrial protocol) and the voice is transmitted using VoIP SIP proto-
col.

9

3 PROTOCOLS

In this chapter the protocols used in the JMeter load testing will be shortly de-
scribed.

3.1 TCP

TCP (Transmission Control Protocol) is a very common internet protocol. It pro-
vides a reliable and error checked transmission between applications. When
transferring data via TCP the connection has to be established first. To initiate a
connection, the TCP uses a three way handshake process. First the device that
wants to create a connection sends a SYN (synchronization) packet to target de-
vice. The target Answers with a SYN/ACK (acknowledgement) packet to tell that
SYN packed was received. At last the first device send his own ACK packet to
the target device to tell that SYN/ACK packet was received correctly. After this
last packet is received by the target, transmission connection is established.
Many protocols like HTTP, FTP and SSH are built on the TCP.

3.2 HTTP

HTTP (Hyper Text Transfer protocol) is a commonly used protocol in a web en-
vironment. It is an application layer protocol and is used to transfer information
between web server and a client. HTTP protocol supports nine different methods
but it depends on the web server configuration which of them are applicable. The
most commonly used methods are GET and HEAD requests. When using the
Get method a client opens a TCP (Transmission control protocol) connection to
the web server and requests specified information from the web server. The web
server answer to the request with the information. Nowadays the HTTP is mostly
used only in local web services. Public web services mostly use HTTPS (Hyper
Text Transfer Protocol Secure) because the data transmitted through HTTP is
not secured.

10

3.3 UDP

UDP (User Datagram Protocol) is a connectionless communication protocol and
does not require a packed transfer confirmation from the receiver. The UDP func-
tions on the transport layer. It is lighter protocol than TPC but is less reliable be-
cause the success of transmit is not confirmed or error checked. It is often used
in real time systems and when the same data needs to be transferred to multiple
targets for example streaming media or voice over IP applications. Also the DNS
(Domain Name System) uses UDP.

Sender ReceiverSender Receiver Sender ReceiverSender Receiver

TCP UDP

Request

Response

Response

Response

Picture 1 TCP vs. UDP

11

4 JMETER

Apache JMeter is an open source Java application. Originally it was created to
test web applications but since it was born it has expanded a lot. JMeter works
on a protocol level. It can be used to simulate the load of numerous protocols and
also to measure the causations of the load tests. For example a test could be
sending a HTTP request to a web page and then measure how long it took for
web server to answer the request.
A basic way to run tests in JMeter is to create a test plan and a thread group. For
better understanding the thread group can be thought like a one test. One test
can be executed as many times and with as many users as wanted. Under a
thread group a sampler can be added and results inspected with a listener. Of
course there are also other elements that can be added to test like pre and post
processors, config elements, timers and many others.

Picture 2 Thread Group

4.1 Samplers

Samplers are the ones that causes the load in the tests. There are many different
sampler by default and many more can be easily added with a plugin manager.
A sampler can be for example a UDP packet sender. The user defines the ad-

12

dress, port and the message to be send to the target system. Thread group de-
fines how many times the UDP sampler is executed and how many of them are
executed at the same time.

Picture 3 UDP Request Sampler

4.2 Listeners

Listeners are used to inspect the effects caused by samplers. With listeners it is
possible to create different graphs and tables about the test results.

13

5 COLLECTING METRICS

Before executing tests there has to be a way figured out to inspect the causations
of the load tests to the system. In this project the SSHMonitor was used to collect
metrics from the target test system. SSHMonitor is not installed in the basic ver-
sion of the JMeter. It has to be installed via Plugins Manager. The SSHMonitor
was chosen because it does not require any agents or software to be installed or
copied to the target system.

SSHMonitor is used to send command-line commands via SSH to the target sys-
tem. It creates a SSH connection to the target system, executes a specified com-
mand and returns the value to JMeter. The commands executed in the target
system have to return a numeric value because the JMeter uses these replies to
draw a line graph.

SSHMonitor is not very user friendly. The user has to know exactly what values
to inspect at the target system and how to get these values via command-line
commands. In this project the target system was a Linux based so basic
knowledge of Linux commands was required.

In this project the systems overall health needed to be inspected while performing
load simulation tests. Following metrics were selected to be collected for inspect-
ing the overall health of the system:

- CPU usage
- RAM consumption
- Network usage

5.1 CPU usage

For the CPU usage, three different values were collected from the system.
1min, 5min and 15min average usage. By default the Linux tracks the average
CPU usage in the file “/proc/loadavg”.

14

Picture 4 Loadavg

The file loadavg shows the CPU load as combined value for all the cores. As
the load value of one core ranges between 0 -1, and in our system there are
four cores in the CPU, the range of the load value is 0 – 4. So being in our case
0 equals 0% load and 4 equals 100% load to the CPU. To receive only the val-
ues by one SSH command the values have to be extracted from the file with fol-
lowing command:

 cat /proc/loadavg | cut -d' ' –f1

Where “cat” opens the file “/proc/loadavg”, “cut –d’ ’” defines the space to be a
separator between the fields and “-f1” selects the column one. By using same
command and only changing the number after “-f” all 1min, 5min and 15min

CPU average loads can be collected.

5.2 Memory consumption

Here the word memory stands for a random access memory (RAM). In the Linux
system information about memory consumption can be shown by writing “free” to

the command-line.

Picture 5 free - command

From there the interesting columns are free memory and cached memory. Both
are actually free memory but cached memory is “borrowed” by the hard drive disk

for faster accessing and more responsive usage. The Linux system caches part
of the memory that applications do not currently need. Cached memory will be
freed if the applications run on the system need it.

15

To scrape the required information, in this case free memory, the following com-
mand is used:

 free | grep Mem | awk '{print $4}'

Where first “free” is opened, line where Mem is written is selected with “grep
Mem” and from that line the column 4 is printed with “awk '{print $4}'”.
Same goes for the cached memory only by changing column number to 7.

5.3 Network usage

When doing load simulation it is interesting to see how much network traffic the
load causes at the exact moment. As for the default Linux do not calculate the
network usage in or between specific time period, this was by far the most difficult
to scrape with a one SSH command.
By default Linux logs how many bytes have been transmitted and received for
each network interface since it was turned on. Linux system tracks that infor-
mation in the file /proc/net/dev. From there it is possible to calculate the bytes
going through.

Picture 6 /proc/net/dev

At first a one value has to be scraped and saved to a variable, then wait a period
of time and scrape the value again. Then calculate the subtraction of those values
and divide it by the chosen time period. In order to complete the task in one line
command, multiple commands had to be executed after another. Command sep-
arations in Linux command-line can be done with a semicolon (;).

 i=$(cat /proc/net/dev |grep eth0 |awk '{print$10}'); sleep 5; a=$(cat
/proc/net/dev |grep eth0 |awk '{print$10}'); echo "$(((($a - $i) / 5) / 1000))"

16

Where at first a variable “i” is created and a value from “/proc/net/dev” is
scraped by selecting a line where is eth0 with “grep eth0” and from that line a

column 10 with “awk ‘{print$10}’”. After that the command waits five seconds;
“sleep 5”. Then the command does the same thing again but this time saving
the value to variable “a”. After both “i” and “a” variables are saved the command

prints the result of a final calculation. In the calculation the variables are first
subtracted by each other “($a - $i)” and the divided by 5. At last the result is di-
vided by 1000 because it makes more sense to track transmitted kilobytes than
bytes. As a result of this calculation, the last five second average of kilobytes
transmitted in a one second is returned. Other averages could be easily calcu-
lated as well but in this case five second average is good enough.
For the received network traffic the command stays same except the values are
scraped from a column 2.

17

6 LOAD SIMULATION

This chapter presents how the actual load simulation and stress tests were done.

6.1 Idle state

Before initiating any kind of stress test to the system it has to be know how the
system functions on an idle state so the stress test results can be compared to
system default metrics. For collecting these metrics the system was left in the idle
state on an off-route mode and everything else than SSHMonitor was disabled
from the JMeter test plan. To have a better look at the specific metrics other lines
can be hidden from the SSHMon graph.

Picture 7 SSHMonitor rows

SSHMonitor graphs can be reviewed at the JMeter user interface or they can be
saved as .csv file. Following screenshots will present the collected metrics when
the system is in the idle state. Metrics show that there are no memory leaking
(picture 9) and that CPU usage is quite low, about 25% of the maximum (picture
8). Received network traffic stays stable at 10kB/s and the transmitted network
traffic varies between 30 and 150 kB/s (picture 7).

18

Picture 8 Network usage – idle state

Picture 9 CPU load average - idle state

Picture 10 Free and cached memory - idle state

19

6.2 Simulating HTTP requests

Since the JMeter was originally created for web application testing, was the
HTTP load simulation the most convenient way to start. In JMeter the HTTP
load can be caused through HTTP request sampler. It can be made manually
by creating a HTTP request with a GET method to request a single web site but
more realistic way is to record a browser while it is requesting the web site. By
setting a localhost with a port defined for JMeter as a proxy to a browser,
JMeter can automatically record the HTTP requests that the browser is sending.
Those requests recorded with the browser can be re-used in the JMeter test
plan.

Picture 11 HTTP request

Web server can be given as a domain name or an IP address. Path defines
what content will be requested under given web server. If it is left blank, the in-
dex page will be requested.
In the project this test was executed, there will be 12 TFT-displays requesting a
page from one web server. That for the number of thread groups was set to 12.
HTTP requests for the test plan were created by recording the requests made
with a browser. To inspect the amount of data and time that different HTTP re-
quest required, an aggregate graph listener was added to the test plan. When
the HTTP request test plan was ready, the train information system was set to
on-route state with a driving simulator and then the JMeter test build was
started.

20

From the aggregate listeners results it can be seen that server’s average re-

sponding time is quite long, over 400 milliseconds for some requests. Still re-
gardless of the response time the functionality stayed good and there were no
errors in any requests.

Picture 12 Aggregate graph listener table

Visual presentation of the request response times:

Picture 13 Aggregate graph listener - visual presentation

When inspecting the metrics of the target devise whit the SSHMonitor, the only
big difference in the idle state happened in the network transmission. Other dif-
ferences were only marginal. The conclusion is that the web server is not using
too much resources even in the real train environment where all the displays are
connected to the system.

21

Picture 14 Network usage while HTTP request simulation

6.3 Stressing the system with UDP data

UDP does not require any kind of session initiation between the sender and the
receiver. It can be used to send additional traffic to target system and then in-
spect how much data the system can handle before its purposed functionalities
start to be affected. In JMeter this can be done by using a UDP request sam-
pler. It could be used to send also real data and set to wait for responses from
the target system but in this project the UDP request sampler was simply used
to send random binaries to system to fill its bandwidth.

Picture 15 UDP request sampler

22

Hostname: IP or a hostname of a target system where the UDP packets will be
sent.
UDP Port: Port of the target system that will be used.
Wait for Response: If this is selected the sampler will wait for responses from
the target system and give an error if the response is not received.
Close UDP Socket: If this is selected the connection socket will be closed and
a new socked will be opened for each sample.
Response Timeout: This is does not matter if Wait for Response bullet is not
selected.
Data Encode/Decode class: Java class that will encode/decode the data sent
to a target system. For example if request data is given in a plain text, the en-
code/decode class can be used to translate the data to binaries.
Request Data: Data can be given in any format depending which kind of en-
code/decode class is used. Data can also be read from a file.
Bind local address: Sender’s local area network IP
Bind local port: If a specific port is wanted to be used to send out the UDP traf-
fic it is given here.

At first the TPC was tested how it handles the UDP disturbance without any
other stressing at the same time. In the train information system the TPC has to
be able to handle a lot of data at the same time because it handles most of op-
erations in the system. In the next graph it is shown how the network metrics
look like while one thread of UDP binaries were sent to the TPC. The amount of
the UDP data was not limited in this point so on thread sent as many samples
as it could. The amount of samples sent is also dependent about the host PC
that is sending the samples.

Picture 16 UDP samples to the TPC

23

In the graph the network transmit line makes two spikes in the beginning. Those
spikes represents driving a short mission. First one is without the UDP disturb-
ance and the second one with the UDP stressing. Network received- line shown
clearly when the UDP sampler was set on. Driving a mission went perfectly fine
even when the UDP sampling was on and any weird misbehaviors were not ob-
served. Network received- line decreases gradually when the time goes further.
This happens because the host PC can’t keep up the amount of samples sent.
Also the free memory was gradually decreasing but in the opposite hand the
cached memory which is also “free” memory was gradually increasing. In the

graph the change seems bigger than it really is. In the 20 minute test the varia-
tion range was about 60 megabytes which is about 3% of the free memory.

Picture 17 TPC free memory while receiving UDP data

Next it was time to add the full train http request simulation to the game. In this
test the TPC had to be able to handle high amount data to both ways. Both
HTTP – request test and the UDP tests were enabled from the test plan, test
system was set to drive a mission and the test plan was set on. While driving a
mission all automatic announcements, route information and other parts of the
system were still functioning correctly and any weird behaviors were not ob-
served. Also CPU usage and free/cached memory stayed stable during the
short test.

24

Picture 18 Network usage during HTTP+UDP test

Picture 19 Free and Cached Memory during HTTP+UDP test

It is possible that in this test the limitations of the JMeter graphical version were
reached. The host PC reached almost 100% CPU usage during the test. In the
following graphs it can be seen how much data the host PC transmitted and re-
ceived and how high CPU usage was during the test.

25

Picture 20 JMeter host PC received/transmitted

Picture 21 JMeter host PC CPU usage

6.4 UDP to IPAMP

The TPC is not an only device in the train information system that has to be able
to deal with high amounts of data. IPAMP is responsible of streaming the audio
to loud speaker. If there is a problem in the IPAMP the train passengers may not

26

receive important information announcements regarding to their journey. IPAMP
uses SIP (Session Initiation Protocol) protocol and RTP (Real-time Transport Pro-
tocol) protocols for emergency- and cabin to cabin calls and UDP for announce-
ments to stream the audio. Since it is not possible to send RTP data with JMeter
the load to IPAMP bandwidth was simulated as random binary UDP.
At first the train was set on a mission and then the UDP sampler was set on with
one unlimited thread. When the UDP sampler was set on, the automatic route
announcements started to become suppressed from the end and the manual
public announcement had a huge delay. Also the frequency of responses re-
ceived by SSHMonitor decreased so the metrics collecting became unreliable.

Picture 22 IPAMP UDP received

At this point it was clear that IPAMP can’t handle the same amount of data than

the TPC can. Of course this is understandable, IPAMP has less powerful hard-
ware and is does not have to be able to handle the same amount of data. To
get something out from the UDP testing with IPAMP, some limitations needed to
be added to the test. Constant throughput timer was a choice to go and it was
added to test plan.

Picture 23 Constant Throughput Timer

27

The constant throughput timer allows the threads in the test plan to send only
specific amount of samples per minute. With limited amount of samples it was
possible to clarify the bandwidth boundaries of IPAMP when it is still capable of
streaming high quality audio without any suppressions or delays. Next graph
shows the network usage when there were first 500k samples per minute sent
and then the amount was decreased to 400k samples per minute.

Picture 24 Samples 500k to 400k

While sending 500k samples per minute there could be still a little noise observed
but when the samples were reduced to 400k samples per minute, the quality of
announcements was very good.

28

7 DELIBERATION

This thesis presents only a scratch what it is possible to do, test and simulate
with the JMeter. The field of performance testing is wide and the JMeter is not
an only tool that would the trick. However it is one of the best that is free to use
and widely documented. It gets regular software updates and new plugins for
use appear all the time. But still it is not very user friendly and in the varying en-
vironment it takes some time to configure and implement the test plans to new
or other current projects.

There results from this project are good and quite reliable but to be even more
reliable the tests should have been let running for longer times. Maybe some
excel graphs could have been added as attachments for better visualization.
Metrics collecting was a huge success as far as the devices were able to an-
swer the SSH queries. Graphs got from the SSH monitor are clear and reliable.

For more intense stress testing the graphical user interface of the JMeter should
not be used. Running the Java program requires quite a lot resources from the
host computer. Decentralized stress testing is also possible with JMeter and
maybe the best and only option for real stress testing with JMeter.

When this thesis project was planned, also simulating of JMS (Java Message
Service) messages was included. This turned out not to be so simple because
of Teleste’s in-house railcomm service that differs a lot from a regular JMS ser-
vice. This could have been a whole new topic for another thesis.

To encapsulate the topic, I would say that JMeter will be great help in the future
to observe the overall functionality and metrics of our passenger information
systems with or without added load or stressing.

29

SOURCES

What is cached memory? https://www.linuxatemyram.com/ SSH Monitor https://github.com/tilln/jmeter-sshmon How to use JMeter https://jmeter.apache.org/ UDP request https://jmeter-plugins.org/wiki/dns_test_using_jmeter/ UDP and TCP protocols https://www.howtogeek.com/190014/htg-explains-what-is-the-difference-be-tween-tcp-and-udp/ What is HTTP? https://www.w3schools.com/whatis/whatis_http.asp Linux commands https://www.geeksforgeeks.org/linux-commands/

30

APPENDICES

Attachment 1. Train passenger information system network

TPC

Dynamic route map display

LED display

IPAMP

LED
Lamps

Buttons

Microphone

Speakers

Emergency
Phone

Network
Switch

