

Joonas Ryynänen

Relational Database Clustering with MariaDB

Galera

Bachelor of Business
Administration

Business Information
Technology

Autumn 2019

Abstract

Author(s): Ryynänen Joonas

Title of the Publication: Relational Database Clustering with MariaDB Galera

Degree Title: Bachelor of Business Administration, Business Information Technology

Keywords: database, replication, mariadb

The objective of this Bachelor’s thesis goal was to build a highly available relational database system that
is geographically distributed and can automatically handle failures.

The theory part of this thesis describes relational databases, basics of database replication, and an overview
of different replication techniques used by relational database systems.

The practical part of this thesis describes building a geographically distributed relational database system
and practical considerations of such a process.

Abstrakti

Tekijä(t): Ryynänen Joonas

Työn nimi: Relaatiotietokannan klusterointi MariaDB Galeralla

Tutkintonimike: Tradenomi, Tietojenkäsittely

Asiasanat: tietokanta, replikointi, mariadb

Tämän opinnäytetyön tavoitteena oli rakentaa korkean saatavuuden relaatiotietokanta järjestelmä, joka
on maantieteellisesti hajautettu ja pystyy toimimaan, vaikka tietyissä osissa esiintyisi vikatilanteita.

Työn teoria osa antaa perustiedot relaatiotietokannoista, tietokantojen replikoinnista, ja miten erilaisia
replikaatiotekniikoita käytetään relaatiotietokanta järjestelmissä.

Työn käytännön osuus kertoo maantieteellisesti hajautetun tietokanta järjestelmän rakentamisesta ja sen
aikana syntyneistä havainnoista.

Contents

1 Introduction ... 2

2 Relational Database Systems .. 3

3 Replication in Relational Database Systems .. 4

3.1 CAP Theorem ... 4

3.2 Replication models ... 5

3.2.1 Asynchronous single primary replication ... 5

3.2.2 Synchronous single primary replication ... 5

3.2.3 Multi-primary replication .. 6

4 Replication Techniques in Relational Database Systems ... 7

4.1 Statement logs ... 7

4.2 Write ahead logs .. 7

4.3 Shared storage ... 7

4.4 Challenges .. 8

5 Building a cluster .. 9

5.1 Setup .. 10

5.1.1 Configuration .. 10

5.2 Replication ... 12

5.3 Monitoring ... 12

6 Conclusion ... 14

Sources .. 15

2

1 Introduction

The goal of this Bachelor’s thesis is to build a highly available relational database cluster that is

geographically distributed to multiple datacenters. High availability means that the system is fault

tolerant. This is done by running multiple database servers in a cluster and replicating data

between them.

To achieve this goal, it is required to know about the basics of relational database systems. They

are one of the most used database types in the world and trusted for business-critical data for

their data integrity. Database replication, in simplified terms, means copying data between

database servers. This is used to increase system availability or to scale them to handle higher

loads. Replication is done either synchronously or asynchronously, and a solution is selected

based on objectives that need to be archived. The most common technical solutions for

replication are log or shared storage solutions.

To demonstrate real world applications for database replication a geographically distributed

cluster for a web application is built. It is not meant to be production ready, so some required

features are not implemented as a cost saving method.

3

2 Relational Database Systems

Databases are organized collections of data. They are managed by Database management

systems that consist of a database engine that is responsible for creating, reading, updating, and

deleting data in databases, schema model that is used for storing data and ensures data integrity,

provides logging, auditing and other security features, networking, and interfaces for

programming and users. Relational databases are based on a theory developed by E.F. Codd in

the 1960s. Data in relational databases is stored is series of relations and identified by unique

keys. Consistency in the databases is done with constraints.[1.][2.][3.]

MySQL is one of the world’s most used relational database management systems. It is currently

developed by Oracle, but it is open source and licensed under GNU General Public License.

Originally it was developed to handle larger databases than alternatives and utilize CPU, RAM,

and IO resources more efficiently. Oracle provides commercial support with MySQL Enterprise

Edition, which also includes more advanced features and management tools. It is also available

as a cloud service from Oracle Cloud. Customers include Google, Facebook, and Netflix. MySQL

has been criticized for only implementing support for old structured query language standard.

However, with a recent release of version 8.0 newer version of the standard is

implemented.[4.][5.][6.]

In a ranking done by db-engines.com (February 2019) at top ten there were seven relational

database systems (see table 1). The most popular ones were Oracle, MySQL (Open Source system

developed by Oracle), and Microsoft SQL Server.[7.]

Rank System Model

1. Oracle Relational

2. MySQL Relational

3. Microsoft SQL Server Relational

4. PostgreSQL Relational

5. MongoDB Document

6. IBM DB2 Relational

7. Redis Key-Value

8. Elasticsearch Search

9. Microsoft Access Relational

10. SQLite Relational

Table 1: Most popular database systems in February 2019 ranked by db-engines.com

4

3 Replication in Relational Database Systems

Replication means actively synchronizing changes between database servers, leading them to

contain the same data. It is a required feature in modern database systems and is often utilized

to increase system availability, by decreasing recovery time in a case of failure. Combined with

query routing in software, a proxy, or client-side load balancing solution it can be used to scale

database systems to handle more load (see picture 1). The most used replication model with

relational databases is the single primary replication were all writes go to one specific node and

are replicated from it to others. The node that handles writes is known as primary and the other

as replicas. MySQL uses a statement-based log replication technique and has support for both

asynchronous and synchronous single primary replication models.[3.]

Picture 1: Database system scaled to multiple servers

3.1 CAP Theorem

CAP theorem was published by Eric Brewer in 2000. It states in that distributed systems you can

have two of the following features: consistency, availability, or partition tolerance. Consistency

means that data is same between all servers. Availability means that all operations always

succeed. Partition tolerance means that the system will work when servers can’t communicate.

In most cases the trade will be done between consistency and availability. In consistent systems,

data that is read from multiple servers at the same time will return the same answer. In available

systems, reads and writes always succeed even if replication to other servers is not possible. This

can lead to inconsistencies between the servers when writing or that one might not receive most

recent data when reading.[8.]

5

3.2 Replication models

3.2.1 Asynchronous single primary replication

Asynchronous replication, sometimes shortened as async replication, is done by writing to

primary database and to replica database in a different process (see picture 2). This means that

there is no extra latency when writing compared to no replication, but it can lead inconsistencies

between primary and replica databases. If the primary database would fail that could lead to

permanent data loss.[3.]

Picture 2: Asynchronous replication process

3.2.2 Synchronous single primary replication

Synchronous replication, sometimes shortened to sync replication, is done by writing to primary

and replica databases in one process (see picture 3). This means that writing will take longer

compared to system a with no or asynchronous replication. However, it guarantees consistency

between primary and replica databases, and no data would be lost if the primary database would

fail.[3.]

6

Picture 3: Synchronous replication process

3.2.3 Multi-primary replication

In multi-primary replication model, all nodes in the system can accept write statements, which

are then synchronously replicated to other nodes. This model can be used to increase system

availability, but it introduces a performance hit to write statements and requires more technical

knowledge to architecture and administrate. Multi-primary replication usually requires a quorum

between primary nodes to accept write statements, but other techniques are also available.[3.]

7

4 Replication Techniques in Relational Database Systems

4.1 Statement logs

In statement log-based replication all write statements are written to a log, the log is transported

to other servers, and the write statements are executed there. It doesn’t require much network

resources and is often used to replicate between different datacenters. But some statements, for

example those using random function, don’t work with it. Statement log-based replication is used

by MySQL. Statement logs can be used with logical backups to restore databases to a specific

point in time (see picture 4). [3.]

Picture 4: Combining data from a logical backup and statement log to recover database to spe-
cific point int time

4.2 Write ahead logs

In write ahead log based replication data of write statements is written to a log. The log is shipped

to other servers. Data is then applied from the log to disks. This is faster than statement log-based

replication which consumes more network resources. Write ahead log based replication is used

by PostgreSQL.[3.]

4.3 Shared storage

In shared storage replication multiple database servers share the same data storage. It can be a

block device or a software designed storage solution. Block level replication is always

synchronous. However only one of the database servers can be active at the time. This limits the

8

shared storage-based replication only for high availability systems. Microsoft SQL Server Failover

Cluster uses shared storage-based replication solution.[3.]

4.4 Challenges

Replication increases complexity of database systems and with it come some challenges. With

large databases, the time for building new database replicas increases and this increases the time

required to recover after failure. Building a new replica can also increase the system load on

primary servers. When using asynchronous replication there might be some delay on the

replication. This could lead to loss of data in a case of failure. In a case of primary database

systems failing, one of the primary servers needs to be promoted to the primary database server

role. This failover process can be automated but can cause some issue.[3.]

Automatic failover process can lead to non-operational system or cause data loss. This happened

to GitHub in October 2018. When network partition between datacenters lead to automatic re

configuration of complex database replication setup.[9.]

9

5 Building a cluster

For the practical part of this thesis, a highly available database system was built using MariaDB

and Galera Cluster.

MariaDB is one of the world’s most used relational database systems, it is used in everything from

a simple website to a critical banking system. It was developed by original MySQL developers as

drop-in replacement after Oracle purchased it with Sun Microsystems. Galera Cluster is multi

primary replication solution for MariaDB and MySQL. Galera can be used to scale read intensive

systems or increase system availability by replicating databases.[10.][11.]

The system uses Galera’s multi-primary replication technique and is geographically distributed to

three datacenters in London, New York, and San Francisco (see picture 5). All these sites are

completely similar, and the design of the system allows anyone of these locations to become

unavailable and the services to be provided from the remaining online. This system is not

designed to be production ready and some non-database related features that would be

necessary on a production system weren’t implemented as a cost saving method. These included

anycast dns solution for routing traffic to the system, health check backend required for the

anycast dns, and backups. The system was tested by randomly disconnecting a node from the

cluster and it remained operational, fulfilling the requirements for the highly available system.

Picture 5: Architecture of the system

10

5.1 Setup

Instances for the system were deployed from DigitalOceans web panel to datacenters in New

York, San Francisco, and London using latest CentOS 7 image. To the instances MariaDB version

10.4 was installed using their official repository, which makes upgrading to newer versions easier

compared to installing all required packages by hand. Database connections between the

instances are encrypted. Inbound and Outbound connections are filtered with a firewall and

access to ports used by MariaDB is limited to instances in the system (see picture 6).

Picture 6: Firewall rules for outbound connections

5.1.1 Configuration

MariaDB configuration is specific to galera replication(see picture 7). The location of the config-
uration file varies between operating systems.

[galera]

Enable Galera write set replication

wsrep_on = ON

Address of cluster nodes to which connect during startup

Best practice is to list all cluster nodes

If leaved empty new cluster will be bootstrapped

wsrep_cluster_address = gcomm://

Location of write set replication library

11

On Ubuntu default location is /usr/lib/libgalera_smm.so

On Red Hat default location is /usr/lib64/libgalera_smm.so

wsrep_provider = /usr/lib64/libgalera_smm.so

List of options passed to write set replication provider

This is used to fine tune replication

And configure ssl encryption for connections

wsrep_provider_options = "

socket.ssl_ca=/etc/my.cnf.d/certificates/ca.pem;

socket.ssl_cert=/etc/my.cnf.d/certificates/server-cert.pem;

socket.ssl_key=/etc/my.cnf.d/certificates/server-key.pem"

Method used to transfer database state snapshots in the cluster

Can be utilized in backupping the cluster

wsrep_sst_method = mysqldump

Authentication for selected write set replication method

wsrep_sst_auth = <user>:<password>

Online Schema Upgrade Method

TOI = total order isolation

Data definition language is processed globally in the cluster

Guarantees data consistency, but causes databases to be locked

RSU = Rolling Schema Upgrade

Data definition language is processed in local node

Requires running schema changes separately at all nodes

wsrep_OSU_method = TOI

Number of threats used to apply write sets

wsrep_slave_threads = 1

Command that is called each time their changes to cluster mem-

bership

Useful for monitoring and dynamic configuration of a cluster

wsrep_notify_cmd = /usr/bin/wsrep_notify

Replication format

Galera requires row as a format

binlog_format = row

Lock mode for generating auto increment values

Galera requires consecutive lock mode

innodb_autoinc_lock_mode = 2

Flush InnoDB redo log to disk once a second, not on commit

Used to increase performance in Galera system

Fault tolerance and consistency is handled on cluster not local

level

innodb_flush_log_at_trx_commit = 0

Picture 7: MariaDB Configuration

12

5.2 Replication

Galera’s replication technique is very similar to a synchronous single primary replication, but extra

steps are added to the process to coordinate write statement execution between nodes(see

picture 8). This enables ordering write statements globally across the cluster, enabling all the

nodes in the cluster accepting them. Replication connections are encrypted with TLS versions 1.2

or 1.3 and nodes are authenticated when connecting to each other.[12]

Picture 8: Galera replication technique

As the replication is done synchronously and has required coordination between nodes when

executing write statements, there is more latency than in the non-clustered system. It amounts

roughly to double of network round trip time between server with longest round trip. In the case

longest latency was between nodes in London and San Francisco(See picture 9).

Picture 9: Latencies between datacenters

5.3 Monitoring

DigitalOcean provides free monitoring services for servers on its compute platform. It works by

collecting data with an agent installed to the server and sending the data to DigitalOceans service.

13

This data is available in graph to inspect the server's performance metrics (see picture 10) and

can be used to create monitoring alert policies.

Picture 10: Graph of performance data

The alert policies can send notifications to an email box or Slack channel when they are triggered

(see picture 11) and when the issue is resolved by metrics decreasing below the alert policy

threshold.

Picture 11: Notification from monitoring alert policy

14

6 Conclusion

To develop the system for production usage some changes should be made. To automate

configuration changes and ease administration of the system configuration management and

automation tool like ansible or puppet should be deployed. Ansible supports automating instance

deployment on DigitalOcean making it easier to expand the system if needed. MariaDB supports

encrypting data-at-rest, so it should be used to prevent access to data contained in databases via

vulnerability in the server or storage platforms. Backups should be made either of the servers to

DigitalOcean’s backup service or logically from databases on the system. DigitalOcean has object

storage service which could be utilized to store logical backups. Security-Enhanced Linux should

be used to enhance systems security and suitable audit policies should be developed.

Relational databases have been used for almost fifty years and are still the most used type of

database. Their availability or performance can be increased with replication but it increases the

level of knowledge required to architecture and administrate these systems.

15

Sources

1. Hugh Darwen. An Introduction to Relational Database Theory. Ventus Publishing ApS.

2012

2. What is database management system (DBMS)? Referenced 24.12.2018. Available from

https://searchsqlserver.techtarget.com/definition/database-management-system

3. Laine Campell, Charity Majors. Database Reliability Engineering. O’Reilly. 2017

4. What is MySQL? Referenced 21.01.2019, available from

https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html

5. One Giant Leap For SQL: MySQL 8.0 Released. Referenced 21.01.2019. Available from

https://modern-sql.com/blog/2018-04/mysql-8.0

6. MySQL. Referenced 04.02.2019. Available from https://www.mysql.com/

7. DB-Engines Ranking. Referenced 04.02.2019. Available from https://db-

engines.com/en/ranking

8. A Primer on Database Replication. Referenced 08.01.2019. Available from

https://www.brianstorti.com/replication/

9. October 21 post-incident analysis. Referenced 28.01.2019. Available from

https://blog.github.com/2018-10-30-oct21-post-incident-analysis/

10. About MariaDB. Referenced 28.01.2019. Available from https://mariadb.org/about/

11. What is MariaDB Galera Cluster? Referenced 12.08.2019. Available from

https://mariadb.com/kb/en/library/what-is-mariadb-galera-cluster/

12. Certification-Based Replication. Referenced 18.08.2019. Available from

https://galeracluster.com/library/documentation/certification-based-replication.html

https://dev.mysql.com/doc/refman/8.0/en/what-is-mysql.html
https://modern-sql.com/blog/2018-04/mysql-8.0
https://www.mysql.com/
https://db-engines.com/en/ranking
https://db-engines.com/en/ranking

