

DEVELOPING MOBILE APPLICATION WITH
VUE.JS FRAMEWORK

Case: Osmi application and SuperApp Oy

LAHTI UNIVERSITY OF APPLIED
SCIENCES LTD
Bachelor of Business Administration
Degree Programme in Business
Information Technology
Autumn 2019

Hoang An Pham

 Abstract

Author

Pham, Hoang An

Type of publication

Bachelor’s thesis

Published

Autumn 2019

Number of pages

54

Title of publication

Developing mobile application with Vue.js framework

Case: Osmi application and SuperApp Oy

Name of Degree

Bachelor’s Thesis in Business Information Technology

Abstract

Over the past few years there has been a rising number of mobile development
frameworks and Vue.js is one of the most popular choices among those.

This thesis discusses and examine how Vue.js framework could benefit tech compa-
nies in developing mobile application and how choosing Vue.js can enhance the per-
formance of different development roles in the same project. The principal purpose of
this study is to provide knowledge about Vue.js‘ advantages especially in emphasiz-
ing individual’s strength while working on a project simultaneously.

The theoretical sections of this thesis present background theory of different tasks
commonly needed in mobile development process as well as knowledge about Vue.js
along with some other frameworks such as React and Angular. The thesis also
demonstrates a case study of the same application created by two developer teams.
The goal of this case study was to illustrate the benefits of Vue.js in separating work-
load. For this, the author adopted qualitative research method and used inductive ap-
proach to answer research questions.

By applying Vue.js framework, the author was able to identify the benefits gained in
time productivity and efficiency in development collaboration. The thesis also sug-
gests that Vue.js framework can optimize the benefits of website programming lan-
guages and make the coding process more flexible.

Keywords: JavaScript frameworks, Vue.js, front-end development, back-end development,
Osmi

CONTENTS

1 INTRODUCTION ... 1

1.1 Background .. 2

1.2 Thesis motivation .. 3

1.3 Thesis structure .. 3

2 RESEARCH DESIGN .. 6

2.1 Thesis objectives and research questions .. 6

2.2 Research approach .. 6

2.3 Research methods .. 7

2.4 Data collection and data analysis .. 8

3 THEORETICAL FRAMEWORK ..10

3.1 Different roles in mobile application development ..10

3.1.1 User interface designer ...10

3.1.2 Front-end developer ...11

3.1.3 Back-end developer ..12

3.2 Mobile application frameworks ...14

3.2.1 Vue.js ...14

3.2.2 Other frameworks ...17

3.2.3 Pros and cons of Vue.js compare to other frameworks18

3.2.4 How Vue.js enhance collaboration between different roles22

4 CASE DESCRIPTION...25

4.1 Introduction of Osmi application ...25

4.2 Project goal..25

4.3 Two developer teams ..28

4.4 Case study plan ...29

5 COLLECTION OF DATA ..32

5.1 Data collecting process ..32

5.1.1 Collecting data time consumption ...32

5.1.2 Collecting data on finalizing phases, difficulties and other supporting data .35

5.2 Collected data results ..36

5.2.1 Data on development time ..36

5.2.2 Data on finalizing phases and production quality ..37

5.2.3 Data on difficulty during development process ..38

5.2.4 Data on difficult levels of cooperation using Vue.js39

6 STUDY AND ANALYSIS ...41

6.1 Comparing development time of two developer team ..41

6.2 Comparing quality of production ..43

6.3 Comparing the difficulty levels of tasks ..43

6.4 Analysis on convenience level of separating workload with Vue.js45

7 CONCLUSION ..46

7.1 Answering research questions ...46

7.2 Limitations ...47

7.3 Reliability and Validation ..47

7.4 Suggestions for further study ...47

8 SUMMARY ...48

9 LIST OF REFERENCES ...49

APPENDICES..53

1

1 INTRODUCTION

The past decade has witnessed an inexorable growth of mobile applications with various

categories focusing on all aspects of our life: business, entertainment, shopping social

media, education, health & fitness…The figure below indicates the annual app downloads

in billions in 2017 and 2018 as well as the procrastination data in 2022.

Figure 1 Number of annual app downloads from 2017 to 2022 (Blair 2019)

Total app downloads in 2018 is more than 205 billion and expected to surge to 258.2 bil-

lion in 2022. These significant numbers along with 15% annual increase illustrate how rap-

idly the demand for mobile application expands.

2

1.1 Background

Since the number of mobile application users is growing day by day, a company would

prefer to take advantage of this by having their mobile app alongside a website. Nowa-

days there are a lot of enterprises and businesses focusing on launching mobile apps for

their customers. Figure 2 shows the worldwide mobile app revenues in billion US dollars.

Figure 2 Global mobile app revenues in 2015, 2016 and 2020 (Martin 2019)

As displayed in the figure above, worldwide mobile application revenue are estimated to

produce an income of $188.9 billion via app stores and in-app advertising in 2020. This

trend open up a huge opportunity for IT companies to yield profits in a promising industry:

mobile application development.

According to Margaret Rouse (2019), a manager of TechTarget’s IT encyclopedia and

learning center, mobile application development is the set of procedures involved in creat-

ing software that run on small, wireless computing devices. One fundamental distinguish-

ing factor of mobile apps when compared to other software development, for example web

3

development, is that it is often written precisely to optimize of the unique features availa-

ble on particular mobile device. For instance, a business app can be written to take ad-

vantage of mobile calendar’s adding event feature to remind important dates. Moreover, a

network and Internet connection is usually utilized in an application to communicate with

remote computing resources. Hence, the mobile development process includes generat-

ing installable software bundles (code, binaries, assets, etc.), employing backend services

such as data handling with APIs, and testing the application on several target devices

(AWS 2019)

1.2 Thesis motivation

Nowadays Vue.js, React and Angular are three most popular mobile framework based on

GitHub frontend-end frameworks usage statistics which replicates developers’ tendency

on each frameworks and libraries (Xing, Huang, Lai 2019, 3). When creating apps, all tech

companies must start with choosing a base framework and library. Because there are

usually different developers working on the same project at the same time, reducing diffi-

culty in coding, maximizing flexibility in programming and enhancing closer collaboration

between programmers are the most fundamental priorities (Nikula 2019). Among those

framework mention above, Vue.js is not only one of the fastest growing Javascript frame-

work (Kaluža, Troskot, Vukelić 2018) but also has the capability of fulfilling that require-

ment. Developing mobile apps with Vue.js can produce time efficiency, diminish training

time and resources as well as promote productivity by teamwork.

In the book “State of Vue.js 2019” (Monterail 2019, 9-10), a survey conducted over a five-

week period in November and December of 2018 with 1,553 responses indicated that

“92% respondents would use Vue.js again” and “more than a half of the respondents de-

scribes Vue.js as easy to start with”. In this thesis, the author will analyze and examine

how Vue.js framework can bring advantages to IT company.

1.3 Thesis structure

The author draws the diagram below to describe and outline main sections of this thesis.

4

Figure 3 Thesis structure

As displayed in the above diagram, the thesis consists of 4 main parts divided into eight

chapters. The first section is “Introduction”, in which Chapter 1 introduces about the back-

ground situation and motivation why this study is composed. In chapter 2, the author

demonstrates how it is experimented through research questions, research methods and

research approach. Next, “Theory” section provides reader with a theoretical background

of the study. Particularly, technical knowledge about related mobile development frame-

works (Vue.js, React and Angular) as well as different roles in mobile application develop-

ment (UI designer, Front-end developer, Back-end developer) is discussed in terms of

definition and concept. These information is eventually form the theory of how choosing

Vue.js is a deliberate decision outstanding the others when it comes to enforcing collabo-

ration between different roles. The third part, “Practice”, presents 3 chapter: “Case de-

scription”, “Collection of data” and “Study and analysis”. To begin with, Chapter 4 intro-

duces the application used as case study, two developer teams, development phases and

schedule along with study plan of how it is implemented. After that, Chapter 5 describes

5

the collected data results regarding development time, app performance, number of ob-

stacles in tasks and difficulty level of team 1 which have two developer collaborating by

Vue.js. These information is analyzed in Chapter 6 to prove that team 1 work smoothly

with Vue.js and has better productivity in development time and production quality. Finally,

“Conclusion” section consisted of Chapter 7 and 8 states the conclusion and summary re-

spectively. This final section answers research questions as well as presenting limitations,

reliability and validation of this research and suggestions for further study.

6

2 RESEARCH DESIGN

2.1 Thesis objectives and research questions

The thesis aims to determine and testify the advantages of utilizing Vue.js framework in

mobile application development. Coupled with the theoretical background of Vue.js‘s dif-

ferent characteristics compared to other JavaScript frameworks, a case study of two de-

veloper teams is also presented to illustrate the benefits of it in dividing workload and en-

couraging individual’s productivity. In other words, the author will research and examine

the capability of Vue.js in allowing developers with different strength and preferences to

cooperate in a same project simultaneously thanks to its framework architecture.

Consequently, this thesis is targeted to answer two main research questions:

 How the advantages of Vue.js can be optimized in developing mobile application in

general?

 How choosing Vue.js can benefit IT company by enhancing the efficiency of differ-

ent development roles in the same project?

2.2 Research approach

There are three most common research approaches: abductive, deductive and inductive.

With deductive reasoning, researchers apply a theory into a set of data and progress to

the application of the theory. This way they can examine that theory or make predictions.

With inductive approach, in contrast, a theory is generalized by presenting specific obser-

vations, researches or case study. (Prince, Felder, 2006, 123.) Creswell and Plano Clark

(2007, 23) defined the elementary difference between these two approaches is that de-

ductive researcher “works from the ‘top down’, from a theory to hypotheses to data to add

to or contradict the theory” while inductive researcher goes from the “bottom-up, using the

participants’ views to build broader themes and generate a theory interconnecting the

themes”. Figure 4 describes the distinction of these two research approaches.

7

Figure 4 The difference between deduction and induction research approach

This paper studies an already existing solution for the demands and requirements stated

in “Thesis motivation” section then applies it to the case study to compare two develop-

ment processes. In addition, the data and observation collected from the case study is an-

alyzed to testify and guarantee the outstanding advantages of Vue.js regarding cooperate

programming. For those reasons, deductive approach will be employed in this research.

2.3 Research methods

Design science research is usually applied in technical and procedural aspects such as

engineering, architect or information technology. This method focuses on the creation

serving one or several particular purposes or in other words: an artifact. (Simon 1996).

Hevner, March, Park and Ram (2004) state that design science research should investi-

gate an unsolved problems in an innovative way or suggest a new solution to raise effec-

tiveness.

Quantitative and qualitative are two types of design science research method. According

to Creswell (2003, 18), a quantitative approach proves a theory by the numeric infor-

mation, which is easy to handle in large quantities such as “experiments and surveys, and

collects data on predetermined instruments that yield statistical data”. Alternatively, he be-

lieved qualitative method as an approach in which the researcher use “the multiple mean-

ings of individuals experiences” such as “grounded theory studies, or case studies” which

8

allow readers to understand better where the numbers come from. To put it another way,

qualitative research method implicates one-to-one interview, research on focus groups,

ethnographic research, case study research, record keeping and process of observation.

In some cases, a mixed methodology can be utilized which gathers both numeric infor-

mation and specific findings. The differences between Qualitative Research and Quantita-

tive Research are summarized in the table below.

Table 1 Comparison between Qualitative Research and Quantitative Research (Fernan-

dez, 2019)

Applying case study and personal interview, the author adopts design science method

with qualitative approach.

2.4 Data collection and data analysis

Hevner (2004, 17-18) summarized 5 evaluation methodologies in design sciences:

 Observational: Using case study (to research about artifact in specific case) or

field study (to perceive use of artifact in manifold projects)

 Analytical: Applying static analysis, architecture analysis, optimization or dynamic

analysis.

 Experimental: Utilizing controlled experiment or simulator.

 Testing: Executing functional (black box) testing or structural (white box) testing.

9

 Descriptive: Implementing informed argument or scenarios.

Because this thesis presents a case study of two developer team to examine the perfor-

mance of Vue.js and the author herself was one of the developers, participant observa-

tional evaluation method will be applied. This method involves “active looking, improving

memory, informal interviewing, writing detailed field notes” (DeWALT & DeWALT 2002,

p.vii).

The case study collected data from 2 developer teams utilized Vue.js with a same project

in order to emphasize the effectiveness of Vue.js in maximizing different role’s perfor-

mance while working on a project simultaneously. Team 1 had one senior developer who

was good at back-end and one junior developer who was good at front-end (the author)

while Team 2 was one senior developer who could do both front-end and back-end. The

statistics were gathered for the comparative purpose, concerning development time and

number of obstacles in each phases, number of bugs after the apps have finished, difficult

point of tasks and app quality in general. The author recorded data by an organization

management tool called Trello, time recording systems and developer’s personal notes

and reports through the whole project. All data and analysis will be presented and illus-

trated in Chapter 5 and 6 of this thesis.

10

3 THEORETICAL FRAMEWORK

3.1 Different roles in mobile application development

A core development team for building a fully implemented mobile application typically in-

cludes the flowing roles: UI Designer, Front-end Developer and Back-end developer. In

many cases, one developer can be in charge of both front-end and back-end which

brands him a Full-stack Developer. The author performed a Front-end Developer role in

the case study of this thesis.

3.1.1 User interface designer

“A mobile user interface (mobile UI) is the graphical and usually touch-sensitive display on

a mobile device, such as a smartphone or tablet, that allows the user to interact with the

device’s apps, features, content and functions” (Rouse 2015). Figure 5 introduces 4 main

stages of designing an application.

Figure 5 App design process (Mroczkowska 2018)

User interface (UI) designer is the one tailoring user experience by the understanding of

user’s goals, desires, common preferences and behaviors pattern. Designer’s responsibil-

ity is to compose graphical user interfaces that is logical in function, visually beautiful and

convenient for user. Usually the working instrument of UI designer is Adobe Illustrator

which assists them in drawing sketches as well as creating all view’s layouts and app pro-

totype. (Rybachuk 2016.) This role is required to have expertise in graphic editor tools

such as Adobe Photoshop, Adobe Illustrator, MockFlow, Elementor… In some cases, UI

designer also has some basic skills in HTML and CSS.

11

3.1.2 Front-end developer

The front-end of an application is everything that user sees and interact with (Pluralsight

2015). Also referred to as the client-side of the application, it is in essense all the attrib-

utes related to visual aspect: text, images, sliders, buttons, selectors, navigation menus,

pages, input fields of all types… (Ferguson 2018). To this point, a front-end developer is

sound very similar to UI designer. Nevertheless, he is the person who actually bringing a

designer’s concept to life through programming. The figure below demonstrates distin-

guishes between UI designer and front-end developer.

Figure 6 The characteristics of UI designer and front-end developer (Rybachuk 2016)

Front-end developer is the person that responsible for constructing the front-end base of

an application or in other words, forming the basis of what users can touch and experi-

ence on their devices. The main purposes of this role is to guarantee the application is ac-

cessible to all type of users and deliver a responsive app in all views and devices. In other

words, front-end developer generates dynamic conversions to the appearance and layout

of the app depending on various screen sizes of the devices (Schade 2014).

12

In his book “Front-end Developer Handbook 2019”, Cody Lindley (2019, 16-17) summa-

rized that the most common front-end job titles can be mentioned are: Front-End Devel-

oper, Front-End Engineer (aka JavaScript Developer or Full-stack JavaScript Developer),

CSS/HTML Developer, UI (User Interface) Developer/Engineer and Mobile/Tablet Front-

End Developer. There are several bare-bones and fundamental technologies employed by

front-end developers:

 Hyper Text Markup Language (aka HTML)

 Cascading Style Sheets (aka CSS)

 Uniform Resource Locators (aka URLs)

 Hypertext Transfer Protocol (aka HTTP)

 JavaScript Programming Language (aka ECMAScript 262)

 JavaScript Object Notation (aka JSON)

 Document Object Model (aka DOM)

 Web APIs (aka HTML5 and friends or Browser APIs)

 Web Content Accessibility Guidelines (aka WCAG) & Accessible Rich Internet Ap-

plications (aka ARIA)

(Lindley 2019, 19.)

3.1.3 Back-end developer

Pluralsight, an online programming education company, referred back-end as the “server-

side” which includes everything not directly displayed in app for user to see, for examples:

databases and servers. The figure below indicates how the front-end part of a site (or a

mobile application) connects and retrieves data from the back-end.

13

Figure 7 The connection between Front-end and Back-end development (Wodehouse

2019)

As can be observed from Figure 7, the client-side scripts receive user’s interaction and

send request to server to obtain and gather information from database which will be han-

dled to response the action. These actions is delivered and transferred through Internet

connection.

Back-end developer is responsible for various fully implemented functionalities as well as

all the application’s logic which runs across devices. To be more specific, the focused

tasks of this role are managing APIs resources, storing data to displayed on the applica-

tion, constructing and establishing algorithms in order to solve system related require-

ments as well as implementing additional services such as payment and purchase, in-app

advertisement, chat function, taking pictures, adding events to device’s calendar, QR code

scanning… To accomplish these duties, essential skill set of a back-end developer con-

tains server-side programming languages (PHP, Java, Python, Ruby, .Net…), database

design and implementation, knowledge about server and API. (Guru99 2019)

From the characteristics and workload of the two roles declared above, the author inter-

prets that front-end developer and back-end developer have a closely association yet still

are two different roles in nature. The table below summarizes their discrepancies.

14

Table 2 Differences between Front-end and Back-end development

Front-End Back-End

Refers to client-side of the application,

user can observe

Refers to server-side of the application,

user cannot observe

Determines how the elements look Determines how the elements works

Receives user’s interaction and actions Handles user’s interaction and actions

Displays data on screen Loads data from app database

Usually uses HTML, CSS and JavaS-

cript…

Usually uses PHP, Ruby, Python, Java,

.Net…

3.2 Mobile application frameworks

This section introduces three most popular JavaScript frameworks for mobile develop-

ment: Vue.js, React and Angular. The analysis on Vue.js’s pros and cons compared to the

others is also illustrated to explain why Vue.js is an adequate choice for this specific re-

search objective.

3.2.1 Vue.js

Background information

Vue.js is introduced by Evan You, who had worked in various AngularJS projects while

working at Google. Evan You shared his story with Vue on GitHub:” I started Vue as a

personal project when I was working at Google Creative Labs in 2013”. After the experi-

ence of building UI prototypes with Vanilla JavaScript and Angular 1, he flourished an idea

of capturing the nature of Angular in something simpler, more lightweight and approacha-

ble (GitHub 2019). Therefore, the first version of Vue.js 1.0.0 was released in October

2015 (Wohlgethan 2018, 41).

On Vue.js‘s official website, the organization define their own product as “a progressive

framework for building user interfaces”. As a consequence, its utility is diverse and mani-

fold. For instance, if there is already an existing server-side application, the developer can

plug Vue into just one part of the application that needs a richer and more interactive ex-

perience. Likewise, if a company wants to build more business logic from the baseline,

https://vuejs.org/

15

Vue.js has the core libraries and the ecosystems which includes VueX and Vue-Router for

developer to scale and utilize. (Vue.js 2019a.)

Framework structure

Vue.js is a component based framework. Reusable components can be compiled as a

small full functional piece of code and embed into different pages of the application. The

basic structure of a Vue component is presented below.

Figure 8 Structure of Vue component

As can be seen in Figure 8, each Vue.js component contains 3 separate segment: <tem-

plate> (HTML), <script> (JavaScript) and <style> (CSS). Vue uses an HTML-based tem-

plate syntax that enables developer to bind the rendered DOM (Document Object Model)

to the declared Vue instance’s data. These templates are plain HTML that can be parsed

and understood by all browsers, operation systems and HTML parsers. (Template Syntax

2019.) All the back-end functions including API calls, event handling, database communi-

cations, server-side methods… are handled in the <script> section. Last but not least, in

<style> segment, the styling of component is generated with CSS or any preprocessor

which allows developer to use features that aren’t a part of the wider CSS standard.

16

There are several core features of Vue.js framework to support the connection between

<template> and <script> while still performing as separate sections:

 Declarative Rendering: Mustache syntax empowers us to declaratively render data

to the DOM. The figure below illustrates how the data “product” is interpreted in

current component’s template.

Figure 9 The use of declarative rendering in template syntax of Vue.js (Template Syn-

tax 2019)

 Directives: A directive is “some special token in the markup that tells the library to

do something to a DOM element”, starting with the prefix “v-” (Directives 2019).

 Most popular and powerful Vue directives can be mentioned are “v-model” for

binding data which will be explained more precisely in next feature, “v-on” to han-

dle event, “v-for” to run through a loop, “v-if” and “v-else” to render conditions…

 Data binding: Vue enables us to bind any data received in <script> through back-

end functions to the data displayed in <template>. Figure 10 shows how the value

of user’s input field can be connected to the “message” data.

17

Figure 10 Code example of Vue.js

3.2.2 Other frameworks

Angular

Wohlgethan (2018, 14) stated that “Angular was originally created by Google employees

Misko Hevery and Adam Abrons in 2008”. However, it was not until 2012 that Google offi-

cially announced the first version of Angular which back then is called AngularJS (Aldwin

2019).

In summer 2014, Angular 2 was released, introducing a brand-new transformation in

framework’s core concepts. Angular 2 is in essence formulated and constructed com-

pletely on a hierarchy of components as many of other JavaScript frameworks. This ver-

sion is associated with another innovative novelty: TypeScript. (Wohlgethan 2018, 15.)

This is the ES6 version of JavaScript added several customized features for Angular to

work (Asim 2019).

As presented in the last section, Evan You – the creator of Vue.js is inspired by Angular.

Therefore, Angular shares a lots of similarities to Vue.js when it comes to framework

structure and features including routing, component interaction and aforementioned capa-

bilities of declarative rendering and two-way data binding. (Wohlgethan 2018, 17-21.)

18

React

Jordan Walke, a software engineer of Facebook, created React in 2011 and utilized this

library internally for Facebook’s newsfeed as the first use case. Two year later, having re-

alized about React’s potentials, Facebook decided to make it open source in May 2013 at

JSConf US. (React.js history 2019.)

The core of React is also constructed by components. However, unlike Vue.js and Angu-

lar, React’s component is not written in template principle but with two approaches in-

stead: “Components as Functions” which return one ReactElement or “Components as

ES6 Classes” returning one root element in a “render()” method (Wohlgethan 2018, 30-

31). Furthermore, React does not apply a specific template language to build component’s

layout but an extension called JSX is used instead. This is a syntax extension which en-

riched HTML with the full power of JavaScript so that the logical handling can be operated

inside UI tags. (React 2019.)The figure below demonstrate how JSX is used to build an

<h1> element.

Figure 11 Code example of JSX (Introducing JSX 2019)

3.2.3 Pros and cons of Vue.js compare to other frameworks

Advantages

Firstly, easy learning curve is an outstanding advantage of Vue.js. According to The State

of JavaScript Survey (2018) participated by 20,268 developers in 153 different countries,

19

this privilege was the most valued aspect among 13 categories of Vue’s strength. This

was rooted in the fact that Vue.js empowers HTML which make it much more favorable for

designers, beginners and experienced developers who are familiar with basic web tech-

nologies. On the other hand, Angular has TypeScript-based structure so the HTML tem-

plate is full of additional syntax and the larger component is, the higher complexity the

code gets. The figure below shows an example of input and submit button elements in An-

gular.

Figure 12 Simple form elements (Wohlgethan 2018)

In the example above there are several special syntaxes from Angular such as

“[(ngModel)]” for two-way data-binding, “*ngIf” for controlling conditional value, “(click)” for

event handler. Consequently, learning all these exclusive syntaxes without any formula

(Vue.js has the prefix “v-” for all syntaxes) is compulsory if you want to use Angular.

(Wohlgethan 2018, 24-25.) The learning curve is even steeper when it comes to React as

JSX is a bone of contention. JSX intermixes the JavaScript logic and UI styling related

part of the application making it complicated and difficult for designer or front-end devel-

oper to modify app layout. Figure 13 illustrates how React binds the “message” data which

undoubtedly is more obscure than the code example in Figure 10 showing Vue doing the

same function.

20

Figure 13 Code example of React (Malhotra 2019)

Another benefit of Vue.js compared to the other frameworks is high flexibility. Vue.js is in

essence an approachable and versatile framework that helps developer to create main-

tainable and testable code base (Vue.js 2019a). With the principal target to emphasize

progressive factor, Vue provides developer with plenty of internal features: Vuex for data

management (state management) which will be described more precisely in the next sec-

tion of this thesis, Vue Router for in-app link (URL) management, Vue Server-Side Ren-

derer for server-side rendering. All these core modules are built-in and developed by

Vue.js team. On the contrary, React utilizes Redux for state management, but more offi-

cial advanced features for organizing data managing router is not offered. React uses a

lot of third party package which makes the official framework itself moderately limited in

implementation. (Ahuvia 2018.) Angular shares the same concern of restraint.

As Angular is a complete framework it provides a full set of homogeneous APIs. It

takes time to gain an overview of all possibilities that are offered. The framework

predetermines many decisions for the developer on how to handle certain situations.

(Wohlgethan 2018, 26)

Last but not least, adaptability is also a considerable advantage of Vue.js. In term of pro-

gramming skill, the switching period from other JavaScript framework to Vue is fairly short.

This is because of the resemblance and similarity with React and Angular regarding struc-

tural design and architecture. (TechMagic 2018.) Moreover, Vue also has high adaptability

in integration as developer is able to integrate Vue into existing project. In other words,

21

Vue proposes the capability of customizing the application according to developer’s pref-

erences and requirements. The book “State of Vue.js 2019” (2019, 12) reported that

“Ease of integration” is the biggest advantage of Vue with 76% votes.

Figure 14 Statistic of responses for the biggest advantage of Vue.js (Monterail 2018, 12)

Disadvantages

Despite of all the benefits that Vue.js may bring, it also has several downsides compared

to other frameworks. A relatively small developer community is one aspect to consider

when IT companies deliberate whether to utilize Vue or not. Speaking about popularity, at

the time this paper is written, React is the leading competitor with a significant number of

69,831 public repositories on GitHub. Vue is far behind with only 20,662 projects related

to this framework, followed by Angular which has 19,314 repositories. (GitHub 2019.) The

small size of Vue community narrows the available resources (plugins, add-on, ready-

made scripts…) and possibility of supports when needed. This means that if a developer

experiences an obstacle during his project, it may take time to seek an adequate solution.

Furthermore, in some cases over-flexibility can be one of Vue.js’s disadvantage. In large-

scale projects with many developers involved, the flexibility of Vue can be exploited in an

22

excessive and inappropriate way since there are various ways of programming. This gen-

erates inconsistency in the code base as well as increasing complexity and raising pro-

ject’s budget. To avoid this, a mutual guidance with comprehensible instructions about

coding style should be composed and shared among developers in the same organiza-

tion.

In summary, all the basic characteristics and aspects of comparison of Vue.js, Angular

and React are outlined in the table below.

Table 3 Summary of comparisons between Vue.js, React and Angular

 Vue.js React Angular

Architecture Component based Component based Component based

Template HTML + JavaScript JSX + JavaScript HTML + TypeScript

Learning curve Easy Moderate Steep

Flexibility High (Can be over-

flexible)

Low Low

Adaptability High Moderate Moderate

Community Small but growing

fast

Large Medium

3.2.4 How Vue.js enhance collaboration between different roles

As explained in the section 3.1.1, Vue has the component-based architecture which al-

lows developer to partition the application into reusable and self-contained components.

This can transform a complex project into small and reasonable pieces with a shared

workload for several people in the development team. Moreover, each Vue template and

Vue component has its own HTML, JavaScript and style sections needed to render that

subordinate segment of the app so these parts can be easily developed independently. By

this mean, Vue allows not only two but three roles of developer to work on the same pro-

ject simultaneously:

 An UI designer with a basic coding knowledge of HTML, CSS can make the lay-

outs and styles of different app views.

23

 A junior developer can also do the front-end of application, add some complex

handler for template (for example conditional handling), write some simple func-

tions in <script> section as well as connect front-end to back-end end points.

 A senior developer can do the back-end, for example, PHP and Vuex functions to

manage data and handle user requests.

In this way, different roles of developer are able to concentrate on what they are confident

with and perform in the aspect of their expertise. (Nikula 2019.)

In order to support the connection between these roles, Vue.js offers Vuex, a state man-

agement system and library for Vue.js applications. Vuex assists as a centralized and

general store for sharing information and data between components. (What is Vuex?

2019.) The figure below presents the basic structure of Vuex.

Figure 15 Basic structure of Vuex

“State” represents the actual data stored and can be accessed in all components at any

points. The state tree is modified by mutations. However, mutations are synchronous and

directly change the store so “actions” are needed to employ more sophisticated demands

such as API calls and user interaction. Actions are asynchronous and modify the state ob-

ject by committing mutations. (Ball 2018). With the phenomenal support of Vuex, all the

back-end handlers and API can be implemented and called in “actions” through “axios” re-

quests, while “state” provides information for front-end developer to use in component’s

24

template and data. An action can be dispatched in <script> of a component on event han-

dlers (for example when clicking on a button). Figure 15 illustrates the connection be-

tween Vue’s components and Vuex.

Figure 16 Concept of Vuex with one-way data flow (What is Vuex? 2019)

25

4 CASE DESCRIPTION

4.1 Introduction of Osmi application

SuperApp Oy is a Finnish company based in Lahti which focuses on selling web and mo-

bile applications. The author has been working here since April 2019. Osmi is one of

SuperApp’s clients whose case is assigned for the author and one other developer. The

development process is in the final check stage and about to be delivered to customer by

the time this thesis is written. The author analyzed Osmi application as a case study of her

research.

Osmi application is an idea of a newly startup founded by two Finnish man. They have an

ambition to transform the traditional way of renting apartment by creating a platform for

landlord and tenant. All the information and interaction related to renting process can be

accessed through the app.

4.2 Project goal

Osmi was a cross-platform application that could run on both Android and iOS with two

target user roles: landlord and tenant. The project goal was to build a platform for these

two user roles to communicate and manage housing rental information. In other words,

the whole application was a digital progress of renting an apartment in which all data was

stored and could easily be observed and modified. The figure below demonstrates how

Osmi app worked and the logical flow.

Figure 17 Logical flow of Osmi application.

26

After registration, a property owner could add multiple apartments as his possessions.

Each available house could be linked to one tenant user account with a unique auto-gen-

erated connection code. Figure 18 and 19 respectively presents the landlord’s view which

listed all apartments of that specific user and single apartment view appeared when click-

ing on one of those cards. Once connected to a house, a renter could view all data as well

as interacting with the landlord of that particular apartment.

Figure 18 Landlord’s view: All apartments listing page

27

Figure 19 Both tenant and landlord’s view: Single apartment

As can be observed from Figure 19, there were five tabs on the bottom navigation menu:

“Asunto” (Apartment), “Vuokralainen” (Tenant), “Viestit” (Messages), “Sopimukset” (Con-

tract), “Kuvat” (Images). The structure of a single apartment is summarized in Figure 20.

28

Figure 20 Application structure

The purpose of Osmi project was developing a fully functional application that meets the

client’s targets and requirements. The core features in five sections mentioned above as-

sociated with general functions of the app were:

 Asunto: Adding, editing and displaying avatar, data about address, location on

map, apartment type and landlord’s contacts of the apartment. In addition, the ten-

ant could view information and guidance about rental the landlord added.

 Vuokralainen: Generating connection code, adding, modifying and presenting ava-

tar, data about name and contact information of the renter.

 Viestit: Implementing chat function and notification of termination and returning

key.

 Sopimukset: Adding contract information and PDF file, terminating contract

(choosing date of termination and declaring reason) and returning key confirmation

(including digital signature).

 Kuvat: The landlord and tenant could add photos of the apartment in two separate

picture folders.

 General features: Login, registration, push notification.

4.3 Two developer teams

To testify the advantages and convenience of Vue.js in enhancing the performance of dif-

ferent roles of people in the same project, the author compared her own cooperating de-

velopment process with another team. Team 1 included Jason, a senior developer who

was interested in back-end and the author, a junior developer who was good at front-end.

29

The author (An Pham) performed as a front-end developer in this project while Jason was

responsible for all the back-end features and functionalities. Team 2 was a senior devel-

oper, Phan, who was capable of doing both front-end and back-end. He executed the

whole project by himself. Both team developed Osmi application to experiment the utility

of Vue.js in Team 1 which had two different developer roles.

4.4 Case study plan

Two developer teams used Trello for task management and project organizing. Trello is a

platform allowing user to generate boards, lists and cards for all events, duties and as-

signments contained in a project. These cards can be moved between lists, assigned to

one or several user and marked with special colors for different purposes. (Trello 2019.)

For both teams, an application layout was already created by an UX designer of Super-

App, therefore the designing phase was not included. As a result, the development of

Osmi project was divided into four sprints: Planning, implementing basic role data, deploy-

ing detailed core features, testing and fixing bugs. Two teams created four sprints check-

lists with subordinate tasks. Each phase had precise agenda and due date which would

be checked when completed. Smaller and more explicit features were displayed by cards

in “To do” list which could be moved to “Done” once accomplished. Developers used four

colors orange, blue, yellow and grey respectively to classify cards belongs to sprint 1, 2, 3

and 4. The Trello boards of Team 1 is presented in the two figures below.

30

Figure 21 Four sprint checklists and “To do” list (Team 1)

Figure 22 Example of a single sprint checklist (Team 1)

31

For Team 1, sprint 1 was a preparation stage in which developers had a start meeting to

study about the layouts design, followed by setting up the coding environment (arranging

development server and creating GitLab project to share code between two developers).

The smaller tasks were then determined and assigned for team members and listed in “To

do” list. Because the back-end functionalities were expected to be more time-consuming

than building front-end layouts, Team 1 targeted that in the print 2 Jason would implement

basic role data such as information of landlord, apartment and tenant while the author

would completed all views of the application. Consequently, phase 3 fully concentrated

on deploying other cores features. Testing and fixing bugs were the missions of the final

stage.

Team 2 shared a quite similar schedule with four phases: planning, implementing basic

role feature, executing detailed functionalities, testing and fixing bugs. However, the fact

that front-end and back-end development were mixed in sprint 2 and sprint 3 differentiated

the performance of two teams.

32

5 COLLECTION OF DATA

5.1 Data collecting process

The data on developing mobile application by Vue.js of two developer teams was col-

lected in two stages: during and after the projects. The data on time consumption of each

tasks was recorded during the development while evaluation results about difficulty levels

was gathered after two teams had accomplished all development phases.

5.1.1 Collecting data time consumption

For time recording purpose, Team 1 took advantage of SuperProject, the time-manage-

ment system of SuperApp. This platform saved all the working records of developer in-

cluding developer name, project name, task type, milestone, date, task description and

duration in hours. The figure below shows how a new work record could be established.

Figure 23 Creating a new work record on SuperProject

Every time each member of Team 1 started with a new task, he or she created an entry to

keep track on the time consumption and date of implementation by clicking on the “Start

timer” button. SuperProject also allowed developers to inspect all the hourly records, see

the total hour and search for particular tasks of an individual. Figure 24 and 25 illustrate

how those data could be observed in SuperProject’s dashboard.

33

Figure 24 List of all members in Osmi project and links to see hourly records of them.

(Two developers of Team 1 is marked with red boxes)

Figure 25 Hourly records of the author

Developers could easily start and stop the timer by the button with “play” symbol located

at the end right of each entry row. Time duration could also be added and modified manu-

ally.

In the case of Team 2, because developer Phan built Osmi application specifically for the

researching purpose of this thesis and it was not a real project of SuperApp, SuperProject

was not used. Instead, he used Clockify, an online time tracker and timesheet that

worked utterly similar to SuperProject. At the beginning of each task, Phan input in the

task and project name and activated the stopwatch. Once he stopped the timer, the cur-

34

rent entry was automatically added to his record dashboard. After the project accom-

plished, Team 2 exported the summary report displaying the sum hour of all development

process as well as total working hour on separate feature as different PDF files for analy-

sis. Two figures below present examples of the time tracker and the summary report

ready-made for exporting.

Figure 26 Clockify’s time tracker dashboard of Team 2

Figure 27 Clockify’s summary report for “Implement apartment information” feature of

Team 2

35

5.1.2 Collecting data on finalizing phases, difficulties and other supporting data

As previously stated, Team 1 and Team 2 both used Trello as the task management sys-

tem and supervised the coding progress by moving cards from “To do” to “Done” list. In

Team 1 there were two members so each developers was tagged in the card that he or

she was responsible for. An example of marking duties is presented below.

Figure 28 Example of managing task’s duties in Team 1

In Figure 28, the author (An Pham) was tagged in the first card (Creating login view lay-

out) and her colleague (Jason) was responsible for the second one (Implementing apart-

ment details). By this way, managing front-end and back-end workload was straightfor-

ward and transparent which made it more convenient to collect data of different developer

roles.

Regarding final phases of development process, in sprint 4, all the bugs and fixes found

were listed in “Bugs and fixes” list so the data on production quality was also gathered

through Trello. Reports related to bug fixing time duration were collected by the two afore-

mentioned time record methods, SuperProject and Clockify.

In both team, personal notes and developer dairies were maintained throughout the pro-

gramming process to document all noticeable bottlenecks or privileges. At the very end of

development process, the author gathered the most significant reviews of all developers

through survey form. By this mean, all members of Team 1 and Team 2 committed a

questionnaire regarding difficulties and obstacles of the projects. An additional survey on

36

the convenience level of separating workload with Vue.js was conducted only for two de-

velopers in Team 1.

5.2 Collected data results

This chapter present all the data of two teams gathered and summarized after entire de-

velopment process accomplished.

5.2.1 Data on development time

After Team 1 and Team 2 successfully completed their projects, the author assembled

data on Trello board, SuperProject and Clockify concerning the start and end date of four

sprints mentioned in chapter 4.4 and hourly development time of both teams. Firstly, on

the subject of sprint durations, all the activity logs on Trello board such as moving cards

between “To do” and “Done” lists and marking subordinate tasks in sprint checklists as

“Completed” were noted and considered as a contribution of time report. The durations of

each development stages are demonstrated in the diagram below with four colors blue,

orange, purple and red symbolizes sprint 1, 2, 3 and 4 respectively. The upper row is de-

velopment time periods of Team 1 while the line under timeline represents durations of

Team 2.

Figure 29 Development time periods of two teams in four sprints

Both developer teams conducted their projects from June 2019 to August 2019 started on

June 15. However, Team 1 accomplished the Osmi application on the 5th of August while

it was not until 25th that Team 2 successfully finished the development.

Furthermore, the hourly records that two team spent exclusively for programming with

Vue.js in the second and third stage (regardless of time consumption for planning and fix-

37

ing bugs in the first and final phases) were also summarized. These statistics were illus-

trated in Table 4. There were nine main tasks to build all required features listed in the

previous chapter. A special note was that because two members of Team 1 developed

Osmi application concurrently, the development time of this team was not the sum of indi-

vidual records but rather the actual time that a single task consumed.

Table 4 Programming time records of two developer team

No. Task Team 1 Team 2

1 General features (login, registra-

tion, setting)

15 hours 24.5 hours

2 Implementing apartment infor-

mation

38 hours 51 hours

3 Implementing tenant information 33.5 hours 45.5 hours

4 Connecting apartment to tenant ac-

count by auto-generated code

16.5 hours 28 hours

5 Deploying maintenance and rental

documents

29 hours 47.5 hours

6 Deploying contract functions 27 hours 39.5 hours

7 Adding chat function 46 hours 53 hours

8 Creating apartment's photo folders 23 hours 36.5 hours

9 Push notification 7.5 hours 6.5 hours

The total programming time of the first team not including bug fixing time was 235.5 hours,

while the same data of the second team was 332 hours.

5.2.2 Data on finalizing phases and production quality

After developed all essential features and functions of Osmi application, two teams spent

the fourth sprint for testing the app and fixing bugs. The author gathered information about

these finalizing phases to study about production quality and how smooth and favorable

38

the bug fixing processes were. In this case, bugs were all the front-end and back-end ele-

ments that did not work appropriately as well as necessary fixes required in order to im-

prove and perfect the app performance. At the end of the development procedure, there

were 12 errors detected in the app version that Team 1 delivered. Two members of this

team spent four days to solve these bugs. On the other hand, the application of Team 2

had 21 bugs resulted in nine days of bug fixing and retesting in sprint 4. In total, the first

team consumed 22.5 hours on the last sprint while 58 hours was required for Team 2 to

finish the same task. Some of the most noticeable bugs found in Team’s 2 app is pre-

sented below.

Figure 30 Examples of Team 2’s bugs

5.2.3 Data on difficulty during development process

At the end of the fourth sprint, the data on obstructions regarding both front-end and back-

end were collected by questionnaires. Any step that was challenging or caused a devel-

oper more time and effort than expected was considered as a bottleneck. The table below

displays information about number obstacles interpreted through developer’s responses.

The amount of obstacles of Team 1 was a total number of both developer An Pham and

Jason.

39

Table 5 Number of obstacles during development process

No. Task Team 1 Team 2

1 General features (login, registra-

tion, setting)

2 3

2 Implementing apartment infor-

mation

3 5

3 Implementing tenant information 0 0

4 Connecting apartment to tenant

account by auto-generated code

1 2

5 Deploying maintenance and

rental documents

2 3

6 Deploying contract functions 3 6

7 Adding chat functions 3 5

8 Creating apartment's photo fold-

ers

2 4

9 Push notification 1 0

5.2.4 Data on difficult levels of cooperation using Vue.js

Two members of Team 1 participated in a special survey together to clarify the conven-

ience of cooperation between front-end and back-end developers utilizing Vue.js frame-

work. There were five scales to evaluate difficulty level with the following characteristics:

1 – Very easy, can be executed smoothly without any obstruction

2 – Quite simple, may take a few effort to employ but doesn’t cause much downtime

3 – Slightly complicated, require more time and attempt to resolve

4 – Challenging and possibly demands supports from other developer(s) to be overcome

5 – Substantially serious obstacle that really time-consuming to achieve adequate solution

The results is revealed in the table below.

40

Table 6 Difficulty levels of different aspects when working simultaneously with Vue.js

No. Evaluation aspect Difficulty level given

by Team 1

1 Merging code to programming at the same time 1

2 Developing front-end without back-end (Build <tem-

plate> layout)

1

3 Developing back-end without front-end (Employ

<script> section and handling request by PHP

back-end)

2

4 Connecting front-end to back-end using Vuex 2

5 Synchronization between front-end and back-end 2

41

6 STUDY AND ANALYSIS

In this section, all data collected in the previous chapter is analyzed to compare the devel-

opment processes of two developer teams.

6.1 Comparing development time of two developer team

The figure below is the durations of the entire projects conducted by Team 1 and Team 2

with specific period of each sprint calculated in days. The duration was interpreted through

the interval between start and end dates of a single stage mentioned in chapter 5.2.1.

Figure 31 The durations of four sprints of Team 1 and Team 2

In total, Team 1 successfully delivered Osmi application after 52 days while it took Team 2

73 days to accomplish the development. This discrepancy did not exist from the beginning

of the project timeline. As demonstrated in the figure, in the first sprint in which develop-

ers planned the workload and set up the coding environment, Team 2 was actually one

day faster than Team 1. This was because Team 2 consisted of two developers doing

separate jobs. Therefore, the planning phase consumed more time to dividing tasks and

setting up common repository of code on GitLab. Developer Phan worked alone with the

project so those preparations were slightly faster. When it came to sprint 2, Team 2 was

3

2

24

22

21

40

4

9

0 10 20 30 40 50 60 70 80

Team 1

Team 2

DAYS

Sprint 1 Sprint 2 Sprint 3 Sprint 4

42

still in the lead regarding time with 22 days of development while the data of Team 1 was

24 days. This is rooted in the fact that although the milestone of this phase is to complete

general features, apartment and tenant information, Team 2 targeted to complete all the

front-end views at this point. Two days in difference was a part of the required time for de-

veloper An Pham to finish all the app views for future back-end implementations. Never-

theless, a substantial distinguish was recorded in two last sprints of the development pro-

cesses. Team 2 spent approximately double the time period of team 1 in both sprint 3 and

4. The significant gap in the third stage was because developer Phan had to work on both

front-end and back-end at the same time. This blend in workload demanded extra effort as

well as generating distraction during development process that prevented developer from

concentrating thoroughly on neither roles. By contrast, developer Jason of Team 1 already

had the finished layouts implemented in the previous sprint so he only needed to focus

comprehensively on deploying back-end handlings and connect them to front-end. Figure

32 describes the detailed comparisons of development time that nine main features men-

tioned in Table 4 consumed.

Figure 32 Comparisons of developing nine main features

1
5

3
8

3
3
.5

1
6
.5

2
9

2
7

4
6

2
3

7
.5

2
4
.5

5
1

4
5
.5

2
8

4
7
.5

3
9
.5

5
3

3
6
.5

6
.5

H
O

U
R
S

Team 1 Team 2

43

6.2 Comparing quality of production

The table below demonstrates the differences between two teams in the finalizing phases.

Table 7 Comparisons about production quality

 Team 1 Team 2

Number of bugs 12 bugs 21 bugs

Bug fixing hours 22.5 hours 58 hours

The number of bugs detected in the app version that Team 2 delivered was nearly double

that data of Team 1. In addition, the application of the first team preformed remarkably

smoother than the second one’s without delays and crashes. The reason behind this was

because Team 1 had two members working closely in a supportive manner so a devel-

oper could check the app performance during programming process and inform his/her

colleague if there was something performing improperly. The manifold points of view in-

creased the possibility that bugs were found instantly in the time they were implementing.

Furthermore, separating duties reduced workload for developers and therefore provided

retrospective time in the end of each sprints for them to evaluate their work. Conse-

quently, the time required for Team 1 to fix bugs was just roughly half of Team 2. Another

factor that made modifying phase of An Pham and Jason faster was pair debugging in

which front-end and back-end bugs were fixed by separate developers. On the contrary,

developer Phan could only fix one bug at a time.

6.3 Comparing the difficulty levels of tasks

When evaluating difficulty level based on number of obstacles, the development process

of Team 1 was apparently more pleasure than Team 2’s. The number of obstacles in each

tasks are compared in the figure below.

44

Figure 33 Comparing number of obstacles in each tasks

As can be observed from the graph, there are more obstacles that confronted the second

team than the first one in almost every tasks. The most noticeable gaps were witnessed in

the implementation of apartment information, contract functions, chat functions, deploying

photo folders and debugging. This difference was because although developer Phan of

Team 2 was a full-stack developer with high expertise, the skillsets and personal prefer-

ences of individual developer of Team 1 were more specific and centralized. To put it an-

other way, members of Team 1 were able to focus on the particular aspect that they are

good at and did not need to work on the field they were not confident of. Moreover, there

was a higher chance that An Pham and Jason experienced the similar tasks when they

were working with front-end or back-end of other projects because it was their focused

proficiency. Therefore, it was easier for Team 1 to contemplate their problems. However,

there were two tasks that the data of Team 1 did not lead: implementing tenant infor-

mation and push notification. Taking the first one into account, because apartment infor-

mation and tenant information were quite similar feature in both front-end and backend so

after finished the pervious feature, there was no bottleneck for both team in implementing

the next one. With push notification, developer Phan deployed this in several projects so

he did not meet any obstacle while Jason who were responsibility of this feature in Team

1 had done this only once, resulted in one obstacle in Osmi project.

0

1

2

3

4

5

6

7

Team 1 Team 2

45

6.4 Analysis on convenience level of separating workload with Vue.js

Based on Team 2’s responses presented in Table 6, there was no difficulty in setting up a

common coding environment. Git was a powerful and convenient tool that allow develop-

ers to create their own branches for version controlling and merge other’s code by just

one simple command line. There were also many available Git tutorial sources online that

coders could seek for help. Vue.js itself was very supportive in separating development

roles. The author easily constructed the front-end without back-end because she only

work with <template> part and styling which was merely HTML and CSS combined with

several prefixed syntaxes of Vue.

Developing back-end without front, however, was slightly more complex because at some

points creating back-end requests without working with app layouts limited the vision. This

resulted in the problem that sometimes developers needed to modify the call-back func-

tions to meet the layout’s demands because some required variables was missing. Con-

necting front-end to back-end and synchronization between these two parts were occa-

sional confusing because two developers had the different ways of implementing some

features in the perspective of their duties. For examples, An Pham intended to use a

common template for all pages that shows same styled input fields but Jason suggested

that separating these pages guaranteed the transparency and simplicity of <script> func-

tions rather than mixing them. The team agreed to continue with the second solution. Nev-

ertheless, connecting and synchronizing the front-end and back-end were overall simple

tasks because the <script> section of Vue allowed developers to assign information re-

ceived through back-end requests into local “data”. Therefore, when the back-end of one

feature was completed, Team 1 just needed to replace the hardcoded placeholder value

in <template> (which An Pham had written when constructing app layout) with the official

data. By this mean, two developer could work simultaneously without difficulties and com-

bine their work later.

46

7 CONCLUSION

This chapter concludes answers for the research questions summarized after theoretical

research and case study’s outcome. The limitation, reliability and validation of the re-

search are also discussed to give a decent and complete point of view to the results. The

final section suggest ideas for further studies in the future.

7.1 Answering research questions

The main purpose of this research was to identify and examine the benefits of Vue.js in

developing mobile application in general and more specific, in separating workload be-

tween different development roles. The theoretical background part provided fundamental

concepts of three Javascript frameworks for comparisons as well as introducing technical

knowledge base and methodologies related to Vue.js. A case study’s process, results and

analysis were then presented to compose a thorough reply to two research questions

mentioned in chapter 2.1:

 How the advantages of Vue.js can be optimized in developing mobile application in

general?

 How choosing Vue.js can benefit IT companies by enhancing the efficiency of dif-

ferent development roles in the same project?

Regarding the first question, Vue.js framework brings plenty of advantages to companies

and programmers. The most beneficial characteristic of Vue is its small learning curve be-

cause of simple structure and syntaxes which are principally based on HTML, CSS and

JavaScript. This saves a lots of learning time for developers as well as training resources

for companies. Moreover, Vue.js is highly flexible that it allows developing in diverse way

by providing many internal features to serve different coding purposes, for examples

Vuex, Vue Router and Vue Server-Side Renderer. Last but not least, high adaptability is

also a superiority of Vue because a developer can easily integrate Vue into an existing

project thanks to its progressive nature. In addition, the developer himself can switch to

use another JavaScript framework from Vue.

When it comes to encouraging different development roles’ performances in the same

project, the benefits of Vue.js is even more impressive. It allows not only two but three

roles to work simultaneously: back-end developer, front-end developer and UI designer.

These role can cooperate smoothly without big problems because of the clear and sepa-

rate structure of Vue and the help of Vuex. This increases time efficiency, production qual-

47

ity and allow easier debugging. Moreover, utilizing Vue.js to divide workload reduces diffi-

culties for individuals because each developer can focus on the aspect that they are confi-

dent of. Consequently, IT companies can accomplish more cases in a certain period with

higher effectiveness.

7.2 Limitations

In the case study, despite the difference regarding development roles, both Team 1 and

Team 2 used Vue.js. It would be more distinctive and persuasive of Team 2 also have

front-end and back-end developers and use another framework, for example Angular or

React. If so, the research could have compared the supportiveness of Vue with other the

other one. The second limitation of the thesis is although the original theory stated that a

project could has up to three developer roles, Team 1 did not involve UI designer in the

programming process, but only front-end developer and back-end developer.

7.3 Reliability and Validation

The concept and methodologies of Vue.js presented in theoretical part were based on re-

searches from both official and well-known sources as well as author’s own knowledge.

The author herself has certain understanding of Vue.js because she had done four appli-

cations with this framework. Proper research methods and tools such as stopwatch, pro-

gramming journal and questionnaire were used to collect the data in case study. The data

analyzed was from the observation of two developer teams’ projects so the reliability and

validation of this are determined by development process’s results. The technologies

used, coding styles and developers’ expertise could affect the research results.

7.4 Suggestions for further study

Some of the potential topic to continue after or related to this research can be:

 The benefits that Vue.js brings to IT companies compared to Angular

 The benefits that Vue.js brings to IT companies compared to React

 The advantages of Vue.js in enhancing different development roles in the same

project compared to other JavaScript frameworks

 Utilizing Vue.js in building cross platform mobile applications.

48

8 SUMMARY

Along with a surging number of mobile applications in the past few year, many frame-

works are established to serve the application development industry. Choosing an ade-

quate framework for implementation is an essential decision for tech companies. This pa-

per is conducted to suggest and testify the advantages of Vue.js, one of the most popular

JavaScript framework nowadays.

With theoretical base and case study providing practical evidence and analysis, the author

archived the goal of this research and was able to answer two main research questions.

The privileges that Vue.js brings to development process in general associated with its

outstanding advantages in promoting the productivities of different developer roles were

explained and examined. C, key benefits found included small learning curve, high flexibil-

ity and adaptability, great time efficiency and production quality, faster debugging and de-

creasing obstacles during development process. From these finding, it can be concluded

that choosing Vue.js is a deliberate decision for IT companies, especially fast-growing

startups that have restricted resources. Limitations, reliability, validations and suggestions

for further study was also involved.

49

9 LIST OF REFERENCES

Written References

Creswell, J.W 2003 Research Design Qualitative, Quantitative, and Mixed Methods Ap-

proaches. 2nd Edition. Thousand Oaks: Sage Publications, Inc.

Creswell, J.W. & Plano Clark, V.L. 2003. Designing and conducting mixed methods re-

search. Thousand Oaks, CA: Sage Publications.

DeWalt, K. M. & DeWalt, B. R. 2002. Participant observation: a guide for fieldworkers.

Walnut Creek, CA: AltaMira Press.

Hevner, A., 2004. Design Science in Information Systems Research. Minneapolis: MIS

Quarterly.

Prince, M. & Felder M. 2006. Inductive Teaching and Learning Methods: Definitions, Com-

parisons, and Research Bases.) United States: American Society for Engineering Educa-

tion.

Simon, H.A. 1996. The Sciences of the Artificial. London: MIT Press.

Electronic Sources

Ahuvia, Y. 2019. React vs. Vue (vs. Angular). Medium [accessed 29 September 2019].

Available at: https://medium.com/fundbox-engineering/react-vs-vue-vs-angular-

163f1ae7be56

Aldwin, N. 2019. What is Angular? – A Beginner’s Guide. Hostinger [accessed 27 Sep-

tember 2019]. Available at: https://www.hostinger.com/tutorials/what-is-angular

AWS, 2019. What is Mobile Application Development?. Amazon [accessed 8 September

2019]. Available at: https://aws.amazon.com/mobile/mobile-application-development/

Ball, K. 2018. Why VueX Is The Perfect Interface Between Frontend and API [accessed 2

October 2019]. Available at: https://zendev.com/2018/05/21/vuex-perfect-interface-

frontend-backend.html?fbclid=IwAR3ZhN3HvUCrMTDquVP9jx5lUs5okMIXQhtK8trv-

qprIfQgINw_MCMb6hiQ

Blair, I. 2019. Mobile App Download and Usage Statistics (2019) [accessed 8 September

2019]. Available at: https://buildfire.com/app-statistics/

Bojanowska, I. 2018. Pros and Cons of the Vue.js Framework [accessed 17 October

2019]. Available at: https://naturaily.com/blog/pros-cons-vue-js

https://medium.com/fundbox-engineering/react-vs-vue-vs-angular-163f1ae7be56
https://medium.com/fundbox-engineering/react-vs-vue-vs-angular-163f1ae7be56
https://www.hostinger.com/tutorials/what-is-angular
https://aws.amazon.com/mobile/mobile-application-development/
https://zendev.com/2018/05/21/vuex-perfect-interface-frontend-backend.html?fbclid=IwAR3ZhN3HvUCrMTDquVP9jx5lUs5okMIXQhtK8trvqprIfQgINw_MCMb6hiQ
https://zendev.com/2018/05/21/vuex-perfect-interface-frontend-backend.html?fbclid=IwAR3ZhN3HvUCrMTDquVP9jx5lUs5okMIXQhtK8trvqprIfQgINw_MCMb6hiQ
https://zendev.com/2018/05/21/vuex-perfect-interface-frontend-backend.html?fbclid=IwAR3ZhN3HvUCrMTDquVP9jx5lUs5okMIXQhtK8trvqprIfQgINw_MCMb6hiQ
https://buildfire.com/app-statistics/

50

Education Ecosystem. 2019. Introduction to ReactJS JavaScript Library [accessed 27

September 2019]. Available at: https://www.education-ecosystem.com/guides/program-

ming/react-js/history

Evan You, 2019. GitHub Customer story [accessed 20 September 2019]. Available at:

https://github.com/customer-stories/yyx990803

Ferguson, N. 2019. What's The Difference Between Frontend And Backend Web Devel-

opment? [accessed 25 September 2019]. Available at: https://career-

foundry.com/en/blog/web-development/whats-the-difference-between-frontend-and-

backend/

Fernandez, M. 2019. 7 Qualitative Research Methods for High-Impact Marketing [ac-

cessed 15 September 2019]. Available at: https://optinmonster.com/qualitative-research-

methods-for-understanding-your-user/

Guru99, 2019. What is Backend Developer? Skills to become a Web Developer [accessed

21 September 2019]. Available at: https://vuejs.org/v2/guide/syntax.html

Hussain, A. 2019. Intro to TypeScript [accessed 27 September 2019]. Available at:

https://codecraft.tv/courses/angular/quickstart/typescript-intro/

Lindley, C. 2019. Front-end Developer Handbook 2019 [accessed 25 September 2019].

Available at: https://frontendmasters.com/books/front-end-handbook/2019/

Malhotra, M. 2019. Vue.js is good, but is it better than Angular or React? [accessed 29

September 2019]. Available at: https://www.valuecoders.com/blog/technology-and-

apps/vue-js-comparison-angular-react/

Martin, S. 2019. Top Mobile App Development Trends of the Year 2019 [accessed 9 Sep-

tember 2019]. Available at: https://hackernoon.com/top-mobile-application-development-

trends-in-2019-5bc1ba19188

Mroczkowska, A. 2018. Stage 3. Designing UX & UI – Mobile & Web App Development

Process [accessed 21 September 2019]. Available at: https://www.the-

droidsonroids.com/blog/stage-3-designing-ux-ui-mobile-web-app-development-pro-

cess#ux-ui

Pluralsight. 2015. What's the Difference Between the Front-End and Back-End? [ac-

cessed 25 September 2019]. Available at: https://www.pluralsight.com/blog/film-

games/whats-difference-front-end-back-end

https://www.education-ecosystem.com/guides/programming/react-js/history
https://www.education-ecosystem.com/guides/programming/react-js/history
https://github.com/customer-stories/yyx990803
https://careerfoundry.com/en/blog/web-development/whats-the-difference-between-frontend-and-backend/
https://careerfoundry.com/en/blog/web-development/whats-the-difference-between-frontend-and-backend/
https://careerfoundry.com/en/blog/web-development/whats-the-difference-between-frontend-and-backend/
https://optinmonster.com/qualitative-research-methods-for-understanding-your-user/
https://optinmonster.com/qualitative-research-methods-for-understanding-your-user/
https://vuejs.org/v2/guide/syntax.html
https://codecraft.tv/courses/angular/quickstart/typescript-intro/
https://frontendmasters.com/books/front-end-handbook/2019/
https://www.valuecoders.com/blog/technology-and-apps/vue-js-comparison-angular-react/
https://www.valuecoders.com/blog/technology-and-apps/vue-js-comparison-angular-react/
https://hackernoon.com/top-mobile-application-development-trends-in-2019-5bc1ba19188
https://hackernoon.com/top-mobile-application-development-trends-in-2019-5bc1ba19188
https://www.thedroidsonroids.com/blog/stage-3-designing-ux-ui-mobile-web-app-development-process#ux-ui
https://www.thedroidsonroids.com/blog/stage-3-designing-ux-ui-mobile-web-app-development-process#ux-ui
https://www.thedroidsonroids.com/blog/stage-3-designing-ux-ui-mobile-web-app-development-process#ux-ui
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end
https://www.pluralsight.com/blog/film-games/whats-difference-front-end-back-end

51

React. 2019. Introducing JSX [accessed 28 September 2019]. Available at: https://re-

actjs.org/docs/introducing-jsx.html

Rouse, M. 2015. Mobile UI (mobile user interface) definition [accessed 21 September

2019]. Available at: https://searchmobilecomputing.techtarget.com/definition/mobile-UI-

mobile-user-interface

Rouse, M. 2019. Mobile application development definition [accessed 10 September

2019]. Available at: https://searchapparchitecture.techtarget.com/definition/mobile-applica-

tion-development

Rybachuk, T. 2016. Front-End Developer vs UI Developer – Who Is Who? [accessed 23

September 2019]. Available at: https://vintage.agency/blog/front-end-developer-vs-ui-de-

veloper-who-is-who/

Schade, A. 2014. Responsive Web Design (RWD) and User Experience [accessed 26

September 2019]. Available at: https://www.nngroup.com/articles/responsive-web-design-

definition/

Sidorenko, I. 2019. What Are The Pros And Cons Of Using Vue.js [accessed 30 Septem-

ber 2019]. Available at: https://towardsdatascience.com/what-are-the-pros-and-cons-of-

using-vue-js-3689d00d87b0

Soiferman, K. 2010. Compare and Contrast Inductive and Deductive Research Ap-

proaches [accessed 15 September 2019]. Available at:

https://files.eric.ed.gov/fulltext/ED542066.pdf

TechMagic. 2018. React vs Angular vs Vue.js — What to choose in 2019? [accessed 30

September 2019]. Available at: https://medium.com/@TechMagic/reactjs-vs-angular5-vs-

vue-js-what-to-choose-in-2018-b91e028fa91d

The State of JavaScript Survey, 2018. Vue.js [accessed 29 September 2019]. Available

at: https://2018.stateofjs.com/front-end-frameworks/vuejs/

Topics. GitHub 2019 [accessed 17 October 2019]. Available at: https://github.com/topics

Trello. 2019 [accessed 26 September 2019]. Available at: https://trello.com/en

Vue.js. 2019a. Introduction [accessed 26 September 2019]. Available at:

https://vuejs.org/v2/guide/

Vue.js. 2019b. Directives [accessed 26 September 2019]. Available at:

https://012.vuejs.org/guide/directives.html

https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://searchmobilecomputing.techtarget.com/definition/mobile-UI-mobile-user-interface
https://searchmobilecomputing.techtarget.com/definition/mobile-UI-mobile-user-interface
https://searchapparchitecture.techtarget.com/definition/mobile-application-development
https://searchapparchitecture.techtarget.com/definition/mobile-application-development
https://vintage.agency/blog/front-end-developer-vs-ui-developer-who-is-who/
https://vintage.agency/blog/front-end-developer-vs-ui-developer-who-is-who/
https://www.nngroup.com/articles/responsive-web-design-definition/
https://www.nngroup.com/articles/responsive-web-design-definition/
https://towardsdatascience.com/what-are-the-pros-and-cons-of-using-vue-js-3689d00d87b0
https://towardsdatascience.com/what-are-the-pros-and-cons-of-using-vue-js-3689d00d87b0
https://files.eric.ed.gov/fulltext/ED542066.pdf
https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://medium.com/@TechMagic/reactjs-vs-angular5-vs-vue-js-what-to-choose-in-2018-b91e028fa91d
https://2018.stateofjs.com/front-end-frameworks/vuejs/
https://github.com/topics
https://trello.com/en
https://012.vuejs.org/guide/directives.html

52

Vue.js. 2019c. Template Syntax [accessed 21 September 2019]. Available at:

https://vuejs.org/v2/guide/syntax.html

Vuex. 2019. What is Vuex? [Accessed 30 September 2019]. Available at:

https://vuex.vuejs.org/

Wodehouse, C. 2019. The Role of a Front-End Web Developer: Creating User Experience

& Interactivity. Upwork [accessed 25 September 2019]. Available at: https://www.up-

work.com/hiring/development/front-end-developer/

Wohlgethan, E. 2018. Supporting Web Development Decisions by Comparing Three Ma-

jor JavaScript Frameworks: Angular, React and Vue.js [accessed 20 September 2019].

Available at: http://edoc.sub.uni-hamburg.de/haw/volltexte/2018/4350/pdf/BA_Wohlge-

than_2176410.pdf?fbclid=IwAR0R8hVyOnVEx-

qGvoJtJ2wp46FHyuiDaamcWkJovBnSsK4MuYmMf1WaDPAc

Xing, Y., Huang, J. & Lai, Y. 2019. Research and Analysis of the Front-end Frameworks

and Libraries in E-Business Development [accessed 12 September 2019]. Available at:

https://www.researchgate.net/publication/332456776_Research_and_Analy-

sis_of_the_Front-end_Frameworks_and_Libraries_in_E-Business_Development

Oral References

Nikula, J. 2019. CTO. SuperApp Oy. Interview 10th September 2019

https://vuejs.org/v2/guide/syntax.html
https://vuex.vuejs.org/
https://www.upwork.com/hiring/development/front-end-developer/
https://www.upwork.com/hiring/development/front-end-developer/
http://edoc.sub.uni-hamburg.de/haw/volltexte/2018/4350/pdf/BA_Wohlgethan_2176410.pdf?fbclid=IwAR0R8hVyOnVExqGvoJtJ2wp46FHyuiDaamcWkJovBnSsK4MuYmMf1WaDPAc
http://edoc.sub.uni-hamburg.de/haw/volltexte/2018/4350/pdf/BA_Wohlgethan_2176410.pdf?fbclid=IwAR0R8hVyOnVExqGvoJtJ2wp46FHyuiDaamcWkJovBnSsK4MuYmMf1WaDPAc
http://edoc.sub.uni-hamburg.de/haw/volltexte/2018/4350/pdf/BA_Wohlgethan_2176410.pdf?fbclid=IwAR0R8hVyOnVExqGvoJtJ2wp46FHyuiDaamcWkJovBnSsK4MuYmMf1WaDPAc
https://www.researchgate.net/publication/332456776_Research_and_Analysis_of_the_Front-end_Frameworks_and_Libraries_in_E-Business_Development
https://www.researchgate.net/publication/332456776_Research_and_Analysis_of_the_Front-end_Frameworks_and_Libraries_in_E-Business_Development

53

APPENDICES

Appendix 1 GitLab branch of An Pham

54

Appendix 2 GitLab branch of Jason

