

Narendra Lama

Providing Native Experiences in Mo-
bile with PWA

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

20 November 2019

 Abstract

Author
Title

Number of Pages
Date

Narendra Lama
Providing Native Experiences in Mobile with PWA

34 pages + 3 appendices
20 November 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Janne Salonen, Head of School (School of ICT)

The thesis aimed was to gain a deeper understanding of progressive web apps (PWAs) and
how the knowledge obtained could be used to develop a functional PWA that provides the
look and feel of a native mobile app while utilizing the power of the web. This is to explore
the idea of breaking away from mobile apps ecosystem from development perspective which
is expensive and time-consuming.

A bus booking web app was developed as a full-stack app using MERN stack. Since the
communication between backend and frontend occurred through the REST APIs, it enabled
for the development of frontend independently and enhance it with the use of modern web
technologies to create PWA.

For a web developer with a fair share of knowledge of web technologies, it is relatively easier
to implement PWA traits into the existing web app. From the user’s perspective, the PWA
experience is no different from a native mobile app with added accessibility of the web. Thus,
the development of PWA is sure to remarkably benefit developers, businesses and users all
over the world.

Keywords PWA, native experiences with web

Contents

List of Abbreviations

1 Introduction 1

2 Background 2

2.1 Web Application 2

2.2 Mobile Application 3

2.2.1 Native App 4

2.2.2 Hybrid App 5

3 Progressive Web Apps 7

3.1 Advantages 8

3.1.1 Availability Regardless of Connection 8

3.1.2 Fast Load 9

3.1.3 Re-engagement 9

3.1.4 Home Screen Shortcut 10

3.1.5 Look of Native App 11

3.2 Core Tech of PWA 11

3.2.1 App Shell 11

3.2.2 Service Workers 12

3.2.3 Web App Manifest 16

3.3 Browser Support 18

4 Design and Modelling 20

4.1 Use Case Diagram 20

4.2 UI Design 22

5 Tools and Technologies 23

5.1 Database 23

5.1.1 MongoDB 23

5.2 Backend 24

5.2.1 Node.js 24

5.2.2 Express.js 24

5.3 Frontend 25

5.3.1 ReactJS 25

5.3.2 Redux 26

5.3.3 React-router 27

5.3.4 Bootstrap 27

6 Application Architecture and Development 27

7 Result and Discussion 30

8 Conclusion 31

References 32

Appendices

Appendix 1. Lighthouse Report for Desktop with Emulated Runtime Settings

Appendix 2. Search Result Page

Appendix 3: BookBus launched from the user’s home screen

List of Abbreviations

API Application Programming Interface

BSON Binary JSON

CRA Create React App

CSS Cascading Style Sheet

CORS Cross-origin Resource Sharing

DOM Document Object Model

HTML HyperText Mark-up Language

HTTP HyperText Transfer Protocol

HTTPS Secured HyperText Transfer Protocol

JSON JavaScript Object Notation

MERN MongoDB, Express, React and Node.js

ODM Object Document Mapper

PWA Progressive Web Application

UI User Interface

URL Uniform Resource Locator

UX User Experience

1

1 Introduction

Internet usage has come a long way since its advent in the 1980s [1] providing virtually

every service with the click of button or tap on the screen. With the introduction of iPhone

in 2007 [2], mobile internet has seen unprecedented growth within a decade, and it ac-

counts for 51.65 per cent of global website traffic as of August 2019 [3]. This exhibits the

importance of mobile internet users and how their consumption mode can affect busi-

ness.

Building a mobile application which is platform and device agnostic has always been a

challenge with an added burden of cost and resources. Likewise, developing a web app,

considering the audiences from various geography mainly focusing on the internet avail-

ability and speed factor, has posed another grave headache for companies and devel-

opers. But with the advent of the idea of progressive web apps (PWAs), it is no longer

such a feat. PWA combines the concept of a mobile app with web app thus providing a

single solution for the growing number of mobile users including 2.71 billion smartphone

users worldwide [4]. With the motto of offline first, developers can deliver the web app

even for people having a weak internet connection and use the service without much

distress. Even further, the PWAs can be installed on the user’s home screen offering a

native app-like experience for users across devices and platforms enhancing their expe-

riences while minimizing the development cost for the organization [5,22]. The later part

plays a vital role given that more and more people around the world are relying exclu-

sively on mobile devices to browse the internet [3].

To explore the idea of the thesis, ’BookBus’ was created which is a PWA implementing

offline capability and ability to install on the home screen of the device. It is a full-stack

application created with MongoDB, Express.js, React.js and Node.js (MERN) stack. The

frontend is bootstrapped with Create React App (CRA) for easier and faster development

instantiation.

The thesis is split into 8 sections for an effective elaboration of the topic. The first section

talks about the background of PWA and the reasons for choosing this application devel-

opment method. The second section explores the types of web application development

2

and the third section dives deeper into PWA; its building blocks and working mechanism.

The fourth section illustrates application modelling and design in an extended manner.

The fifth section explains the tools and technologies used for application development

while application architecture and development are detailed extensively in the sixth sec-

tion. The outcome of the project and the thesis is articulated, and the future develop-

ments investigated and planned out in the following section. Finally, the thesis is con-

cluded with the final thoughts, possibilities and what the future holds for PWA.

2 Background

A user of a mobile device has two options of accessing any application; through use of

web app and mobile app which are introduced below.

2.1 Web Application

Web application (web app) is a computer program which runs in a web browser perform-

ing a specific function. A login form, newsletter signup form, simple survey in a webpage

or a shopping cart are examples of the web app. This has been around since before the

world wide web achieved conventional recognition. Since it runs in a web browser, the

user can be in any platform or device to access it if s/he has a web browser. The content

of the web app rendered depends on the browser, but it generally stays the same across

platforms. Most web apps have a client-server architecture with client capturing the in-

formation and server storing and retrieving information for further use. The client-side is

made up of HTML, CSS and often JavaScript while the server-side being built with a

multitude of options such as CMS and servlets.

Websites used to be simple and static in past essentially allowing users to perform limited

activities. But with the advancement of technology and availability of vast array develop-

ment options, websites have transcended and can perform myriad activities competing

with native applications. For example, photo editing, word processing, etc. which used

to have specific software to perform such tasks are possible to do inside the web app.

Web apps have come a long way from its same design across all devices to responsive

web design, a word devised by Ethan Marcotte in his article in 2010 [6]. Two concepts

3

were put forward before responsive design; graceful degradation and progressive ad-

vancement [7].

Graceful degradation starts with developing a website for larger screen devices such as

desktops and building a full-fledged version with loads of functionality and trimming down

those functionalities as the size of the screen goes down. While on the other hand, in

progressive advancement, the website is designed for smaller screen first with basic

features implemented; adding more interactions and effects to enhance the user experi-

ences as the screen size increases. [7.] In 2010 mobile world congress event, Eric

Schmidt, the CEO of Google encouraged designers to adopt the ‘mobile-first’ rule in

product design which is a doctrine of progressive advancement approach addressing the

continued growth of smartphone usage [8]. Since then, the mobile-first design has taken

a huge leap and now almost every web application is mobile-centric or moving towards

that goal.

2.2 Mobile Application

A mobile application is a type of software developed to work on devices such as phone,

tablet or watch. It is generally only stated as the app as well. Such an app is a small unit

and carries out a specific task only. The original purpose of apps was for productive and

informative activities for instance calendar, email client, contact and weather information,

nonetheless the exploding popularity of such apps and swift extension into additional

sectors like mobile games, buying music and other media contents, factory automation,

location-based services and shopping, prompted to have millions of apps to exists in the

market. The mobile operating system owners operate application distribution platforms

from where users frequently download the apps, for example, the Google Play or Apple

Store (iOS). There are few independent app distribution platforms as well, such as Ap-

toide, F-droid and Cydia.

As of the third quarter of 2019, Google Play hosted 2.47 million apps with Apple’s App

Store following the race with 1.8 million available apps [9]. Majority of the apps available

on those stores are free while apps with price accounts for the remaining portion. The

revenue generated from these paid apps is divided between the app developer and the

distribution platform. With advancing technology, smartphones are being equipped with

4

better capabilities along with growth in the number of apps available in app stores, users

are installing an increased number of applications to their devices. According to the sta-

tistics of 2019, an average user spent 4 hours and 33 minutes in mobile of which 2 hours

and 51 minutes is spent in smartphones and the remaining 1 hour and 43 minutes on

tablets [10]. The latter is in decline, with mobile time continuing to unabatedly increase.

What is more intriguing is that almost 90% of the mobile time is spent in apps [11]. Mobile

apps provide some advanced features which enable them to be engaging and far more

popular than web apps:

• The ability to send push notifications drive users back to the application
even when the user is not using the app.

• Even though internet connectivity is required to accomplish most of the
tasks in mobile apps, they can still offer basic content and functionality to
users in offline mode.

• They can access device features such as camera, compass, accelerome-
ter which can enhance user experience.

• Mobile apps can use advanced gestures such as pinch, tap, hold, drag and
so on offering advanced functionality enabling users to execute a task
gracefully.

• These apps store data locally on devices allowing quick data retrieval and
thus performing actions much faster.

2.2.1 Native App

These types of applications are developed for a specific platform which means they are

incompatible across platforms. In other words, an app meant for an Android device can-

not operate on iOS devices. Consequently, these apps need to be developed for multiple

platforms. Native Android apps are developed with Java, native iOS apps with Swift or

Objective-C whereas Windows Phone apps are written with C#. The main purpose of

developing such an app is to guarantee the best performance for a specific mobile oper-

ating system while encompassing consistency and better user experiences. Native apps

also have easier access to the native features and hardware of the device such as com-

pass and proximity sensor which enables to develop a more robust application.

Native apps act in tandem with the mobile device they are created for, so they work

swiftly and with proficient, nonetheless, they are expensive to develop and time-

5

consuming since different codebases are needed for the different platforms that the de-

veloper chooses to build in.

2.2.2 Hybrid App

Hybrid apps are a combination of the idea of native app and web apps. They are cross-

platform and developed with web technologies, for instance, CSS, HTML and JavaScript.

They are, in fact, a web app which runs in something called WebView or container usu-

ally provided by frameworks. Similar to native apps, they are circulated via the native

app store and can access certain device features such as storage and compass. Since

the same code base is used to develop the application, this essentially results in faster

and cost-effective development in comparison to developing two native apps with half

the numbers of developers. Or to put it another way, the development of the same appli-

cation can be achieved in half the time by the same number of developers.

The main disadvantage of hybrid apps is exhibiting lower performance than their native

counterpart. Since hybrid apps work inside WebView which is a browser-like component

and is responsible for presenting the UI and executing the JavaScript, they completely

depend on the performance of WebView. Due to this, apps fail to attain the same look-

and-feel in different mobile operating systems. Apps developed using Sencha Touch,

Apache Cordova and Framework7 fall into this category.

There is another category of application development which transcendence hybrid apps

in the sense that even though being developed through web technology, which is JavaS-

cript, these kinds of apps are converted into native modules rather than just outputting

into WebView. Thus, without forfeiting the user experience or access to native APIs, they

can obtain the advantages of cross-platform development. React Native, Titanium, Flut-

ter and Xamarin are such frameworks that enable cross-platform native app develop-

ment.

Even though mobile apps provide ease of use and better performance, there are many

factors to discourage the development of such apps:

6

• Discoverability is the main issue with mobile apps. With over 2.47 million
of apps in Google Play Store along with 1.8 million apps in App Store [9],
that creating one that will be found by enough users to generate a return of
interest (ROI) requires significant marketing spend. This spending is often
twice/thrice the app development cost as mentioned by Brian Cardarella,
chief executive officer (CEO) and co-founder of DockYard [5,22].

• Native apps that gobble up storage and require connectivity have long been
a thorn in the side of international customers who may have limited storage
on their phone.

• With many apps being discovered infringing the privacy of users and com-
promising their security, users have become more sceptical of downloading
lesser-known apps.

Figure 1 depicts the individuals’ apps usage based on time spent.

Figure 1. Individuals’ time spent on apps copied from Statista (2017) [12]

While time spent on apps is an all-time high, the data from United States smartphone

users shows that almost 80% is spent using favourite three apps and whopping 96% of

the time is committed to their favourite ten apps as shown in Figure 1. This shows that it

is hard to penetrate the native app market.

7

3 Progressive Web Apps

Progressive web apps (PWAs) are a new variety of web apps which conjoin the best of

web app and native app providing preeminent experiences for users. They are developed

entirely as websites, however, as the user interaction increases, they evolve into a tradi-

tional, native app [13]. In other words, while developing PWAs, it is not necessary to

create an application using all their features – new features can be added when it feels

that the user might benefit from it and provide them with enhanced experiences. Thus,

PWAs enable developers with the ability to develop faster, resilient, and more engaging

websites that can be accessed by billions of people around the world and enact faith with

users and attain new capabilities as required. [14.] Mobile app features such as the ability

to work offline, push notifications and accessing device hardware acknowledges PWAs

to secure a spot in the user’s home screen. Additionally, a strong focus on performance

with the utilization of modern web tech means that PWAs are fast for everyone [15].

Google has put forward a checklist to ensure a baseline PWA is created with best pos-

sible experiences which can be further enhanced into model PWA with delivering of ad-

ditional eloquent offline experience, attaining interactive swifter in addition to taking con-

sideration of many more essential factors. The baseline PWA should ensure these re-

quirements:

• Hypertext Transfer Protocol Secure (HTTPS) protocol to be implemented
while serving the site. This prevents unwanted invaders from altering the
connections amongst the websites and their users’ browsers. It also pre-
vents intruders from being able to passively listen to communications be-
tween websites and their users.

• Responsive pages for different device sizes which provide users with
smoother and enhanced experiences.

• The user should be able to view at least minimum content in case of net-
work unavailability but never an error page.

• Declaration of web app manifest file which contents all the information
about the app and its behaviour to enable Add to Home screen function.

• Fast initial load even in slower internet connection to ensure that the app is
performant irrespective of network status. This is to prevent abandonment

8

of web app as a 2016 Google study found that 53% of mobile sites are
discarded when the site requires three seconds or more to load and addi-
tional 10% with each additional second of load time, according to BBC [16].

• Cross-browser operability of site so that the app feels the same on every
browser.

• Transitions should feel swift while navigating around the app, even on a
slow network. And in case there is a delay in the response from the net-
work, the app should provide with the loading indicator.

• Individual pages should have URLs ensuring for deep linkable. This ena-
bles the shareability across social media platforms and each page to be
launched and directly opened through a new browser window. [17.]

For checking these requirements, Google has also created a tool called Lighthouse

which can evaluate the comprehensiveness of a web app in percentages [18]. With the

implementation of numerous features, an app can be made progressive further, conse-

quently leading to a better Lighthouse score. Nevertheless, it can only be used as an

approximate indicator.

3.1 Advantages

PWAs, being loaded with the superpower of the web, also fulfil many expectations native

apps deliver sometimes exceeding them as well.

3.1.1 Availability Regardless of Connection

PWAs are independent of the user’s internet connectivity, unlike conventional websites.

As the user navigates to the site, the browser registers the service worker which can

identify and respond to the user’s network status. This enables the user to have the same

experience on the site whether s/he is online, offline or experiencing unstable connec-

tion. The users travelling in an area without a network can perform certain tasks in the

PWA with confidence as those activities will be completed as they get back internet con-

nection irrespective of whether the app is still open or closed. This level of reliability and

trust was so far only received by native apps.

9

3.1.2 Fast Load

With the help of service workers, sites can be launched instantly irrespective of the user’s

network connection similar to mobile apps downloaded from the app store. This is pos-

sible with the downloading of necessary assets, called caching and occurs during the

first visit of the website by the user. Then, when the user reopens the application, instead

of downloading the files again over the internet, they are simply retrieved from the user's

device. However, this only works when the user revisits the application. For the initial

visit, everything must still be downloaded. This situation is particularly precarious be-

cause when the user first visits the site, they are not yet sold on its value, and so, are

likely to leave if the loading takes too long.

It needs to be ensured that the assets are as optimized as possible and that as little as

possible is downloaded on that first visit so that the user stays around. In short, fast

loading for the first visit, near-instant loading for every subsequent visit.

3.1.3 Re-engagement

Although users spend most of their time on mobile apps, the reach is significantly higher

for web apps. A study by ComScore on top 500 sites versus top 500 apps shows that

mobile web enjoys more than 2 times the number of visitors than on mobile apps. [19.]

One of the significant advantages of mobile apps is the effortlessness with which the

users re-engage with the app about updates and new contents, even when they are not

using the app or looking at their phone. Combining the reach of the web and native app

feature such as push notification can drive users for re-engagement in PWA significantly.

With the help of service workers and various web APIs such as Push API for sending

updates from the server to the app and Notification API for generating system notifica-

tions can aid user engagement when they are not using the browser. In 2016, Jumia, the

leading e-commerce in Africa, started their PWA journey and by 2017 saw their traffic on

PWA eclipse that of their native apps by more than 12 folds, 33% higher conversion rate

and 50% decrease in bounce rate [20]. With the help of push notification, Lancôme, a

luxury cosmetics brand witnessed a boost by 12% in conversion rates on recovered carts

[21].

10

3.1.4 Home Screen Shortcut

Enabling users to access the app via app icons on their home screen and starting the

apps in their environment which is effectively integrated with the core platform is an es-

sential part of the app experience. But making a user download an app from the app

store is a huge challenge. More than half of smartphone users in the United States down-

loaded zero new apps per month as per the report published in the first quarter of 2017

[22]. Gartner’s research director Charles S. Golvin claims PWAs can address the com-

mitment challenges that companies face with skittish customers. "The depth of connec-

tion to the brand does not have to be as much with a PWA; they do not have to commit

to downloading an app when they are not quite ready for that connection," he adds. [5,

23.] Another reason for hesitation for users to download mobile apps is large storage

required to download such apps. This might not be an issue with high-end devices, but

a large fraction of smartphone users is faced with limited storage on their phone. A well-

functioning PWA may make that connection more likely in the long term. Once a user

has interacted sufficiently with the progressive web app, the browser will automatically

suggest him for installation of the web app shortcut on his home screen whose experi-

ence is identical to any native app. PWA added this way has minimal storage footprint in

comparison to mobile apps installed from the app store. Figure 2 illustrates the data

gathered from PWA case studies by Google.

Figure 2. Data gathered from PWA case studies by Google (2017) [23]

11

Before the introduction of PWA app by OLA, a leading cab aggregator in India, their

Android app needed 60MB storage space while iOS app needed much more at 100MB

as shown in Figure 2. This resulted in users to be less apt to download their mobile apps.

After building their PWA version which is at least 300 times tinier than their Android

counterpart furthermore 500 times tinier than the iOS app, they saw their traffic grow by

68% in their Tier 2 and Tier 3 cities [23]. Similarly, George, a leading clothing brand in

the UK, used a “Add to Home Screen” prompt that revealed consumer interactions

across the site has surged by 28 per cent, completely providing a native app-like feel on

the web [24].

3.1.5 Look of Native App

Progressive web apps opened from the home screen can attain a complete native app-

like appearance. They can display a splash screen as they are starting up and gets

loaded instantly. With the right configuration, they can launch in full-screen mode like a

native app, which does not contain the browser or any phone UI around them. They can

even lock themselves to a particular screen positioning. They also provide similar fea-

tures as native apps such as app drawer, display icon on the home screen, push notifi-

cation and integration with the system.

3.2 Core Tech of PWA

PWAs consists of three components: an app shell which is the nominal user interface

that can be cached so it is available offline for successive visits; service workers that

provide background sync and offline usage capability and an app manifest file which

makes it possible to install the app from browser into the home screen of the device.

[5,21.]

3.2.1 App Shell

The App shell theory is involved with loading a nominal user interface when the PWA is

launched followed by caching the content, so it is available offline for successive visits.

This ensures the loading of the UI from the cache immediately when a user visits the app

12

next time from the same device and request of new contents from the server afterwards.

This structure is fast and makes a user feel the app is fast as s/he sees something in-

stantaneously, rather than a blank page or a loading icon. It enables the website to be

offline reachable as well. With a service worker, it is possible to control what is requested

from the server and what to retrieve from the cache.

This architecture enables a website to take advantage of most of the PWA features — it

caches the app and requests the dynamic content which increases the performance.

Besides, features like push notifications or Add to home screen can also be implemented

if the user’s browser supports them. This is possible with a progressive enhancement

method of web app development.

3.2.2 Service Workers

Service workers are the main building block of PWA unlocking much of the functions that

make PWA special. They make features such as offline access, periodic background

sync and push notifications achievable on the web which normally require a native ap-

plication. A service worker is a JavaScript code which the browser executes on a sepa-

rate thread from the main JavaScript code of the webpage in the background and hence,

does not have any access to the DOM. Thus, it does not block the working of the main

JavaScript of the website while communicating between multiple settings. [25.]

Service worker, being a programmable network proxy, interposes the request that the

application sends to the server to fetch any file. It then analyses the local cache to see if

the file is already available. If it does not find the requested file, then allows the network

to proceed the request to the server and when the file is received, saves in the cache for

future use. [15.]

Because it is a powerful tool, a service worker can only be executed in secure environ-

ments using HTTPS. Following the progressive enhancement principle, features pro-

vided by service worker are only utilized if the browser supports them. For example, a

service worker caches the app shell and relevant data of the app prompting them to be

available even in the absence of the network connection. In case service workers are

not supported, the files cached are not executed resulting in basic experience of the

13

website. With the use of feature detection, it is possible to deliver progressive enhance-

ment to the users and the features will not break in non-supported browsers.

The service worker life cycle

The service worker lifecycle starts when a user navigates to the website. If the service

worker file is detected by the browser, the browser downloads and parses the file and

then commences the execution. In case the execution fails, the registration gets declined

which in turn ends the service worker registration procedure. While on the other hand, if

the registration succeeds and the service worker gets resolved, its status changes into

installed as shown in Figure 3. With installation, the static assets are cached and are

ready to be served. Installation only occurs for the first time after registration. With the

successful installation, the service worker gets activated and has full control of the web-

site under its scope. [26]

14

Figure 3. Service worker lifecycle modified from Hajian (2019) [26]

The scope refers to the contents that a specific service worker control. For example, the

service worker file located in the origin of the app controls all the pages of the web app.

On the other hand, ‘/offline/’ means only access to pages under this scope. The service

worker will get effective after the install and activate event completes without errors.

Once the service worker gets activated, it will exist in one of the two states: the first one

is to be in terminated state to free memory used by the application and another is to

handle fetch and message events which take place once a message or network request

event occurs from the web app [27].

A website without a service worker works normally as there is no service worker to han-

dle the requests. As it gets installed and activated, it takes control of all the requests

15

under its scope. But for the service worker to initiate its function, either the user needs

to navigate to another page, or the page requires refreshing. [26.]

Finally, when the registered and activated service worker gets updated, the browser fol-

lows all the phases, as mentioned earlier. As the service worker is already in activated

phase, the new service worker will only get installed. It will enter waiting state until all

tabs with old service worker running are closed. This enables the outdated service

worker to be terminated. When the webpage is reopened, the new service worker will

take control of the site and the whole process repeats for subsequent service workers.

Caching

Caching is the process of storing web app information in the browser for a temporary

state. It helps to reduce network requests and in case of PWA, support the web app for

offline use. Since service worker resides between network and application, caching can

be performed as part of service worker lifecycle as it intercepts network request and

responds with the requested file, grabbing it from the cache instead of the server; thus,

saving time and the user’s bandwidth. An app shell cached during the install event of

service worker lifecycle is a powerful pattern as this offers significant performance boost

in the form of instant loading for repeat visits of the web app and during offline as well.

An example of caching mechanism during the install phase of service worker can be

seen in Listing 1.

const cachedName = 'assets';

const allFilesToCache = [

 '/css/styles.css',

 '/js/script.js',

 '/imgs/logo.svg',

 '/',

 '/offlined.html',

];

self.addEventListener('install', evs => {

 evs.waitUntil(

 caches.open(cachedName)

 .then(c => {

 c.addAll(allFilesToCache);

 });

);

});

Listing 1. Caching contents with a service worker modified from Google Developers [28]

16

Since the cache storage has a hard limit in each browser for a given origin, it may simply

delete all data from that origin if it gets full, so it is best to store the bare minimum. Objects

in a Cache needs to be explicitly requested to update and to delete as they do not expire.

So, it is the developer’s responsibility for maintaining cache entries periodically.

Re-engageable PWA with Notifications and Push APIs

The ability of the app to work offline with cached contents is a huge success as a web

app. But this is not enough to provide users with elevated experiences of using PWA.

Implementation of push notifications drive towards re-engagement and providing up-

dated contents when available. Service workers not only help with serving files from the

cache, but they also enable to deal with push notifications. Since Push API and Notifica-

tions API work in a synchronous manner, using them together will facilitate to provide

engaging functionality in PWA. Push API is used to receive new and updated contents

from the server to the app and this is controlled by the service worker. Afterwards, the

service worker uses Notifications API to display the new contents to the users or alert

them about updated information.

3.2.3 Web App Manifest

It follows web app manifest specification and is written in a JSON format and specifies

data about the application for example name, description, theme colour and icons as

displayed in Listing 2. This file permits a web app to be installed on the user’s home

screen, customize the theme, splash screen setup and URL that opens when the app is

launched.

{

 “name”: “MyPWA”,

 “short_name”: “MyPWA”,

 “description”: “My first PWA!”,

 “start_url”: “/”,

 “scope”: “.”,

 “theme_color”: “#453343”,

 “background_color”: “#453343”,

 “display”: “standalone”,

 “icons”: [{

 “src”: “/imgs/icon512x512.png”,

 “sizes”: “512x512”,

 “type”: “image/png”

 }]

}

17

Listing 2. A sample manifest.json file

Every property in the manifest file serve a definitive purpose which informs the browser

data concerning the app’s impression and appearance.

Adding to Home Screen

A reliable way for users to engage with mobile apps is with the app icon installed on the

user’s device. Integrating this functionality on web apps helps with user engagement and

to do so users are able to install the web app to their home screen, which will appear like

a regular app, with its icon. This feature is available in modern mobile browsers labelled

as Add to Home Screen (A2HS) or web app install banner as displayed in Figure 4. It

shows a prompt and when the user agrees to it, the app will be installed on the user’s

device app drawer. Once the user clicks on the app icon, it will start with a splash screen

and run in full-screen mode, so it looks and feels like a regular app.

Figure 4. Add to home screen banner for BookBus

18

There are some criteria for the web app that needs to be met for the A2HS prompt to be

shown to the users:

• It should be served over HTTPS.

• It has a web app manifest file with correct fields, linked from HTML head.

• It has icon available of applicable size to display on the app drawer or home
screen.

• An appropriate user engagement heuristic.

• It is not already installed.

• It has a registered service worker in case of Chrome. [29.]

When these criteria are met, the beforeinstallprompt event will be fired that can be used

to prompt the user to add the Progressive Web App (PWA) and may show a mini-info

bar. Listing 3 shows an intercepted beforeinstallprompt event and invoking a custom

function to trigger the event for later use.

let delayedPrompt;

window.addEventListener('beforeinstallprompt', (e) => {

 delayedPrompt = e;

 showInstallPrompt();

});

Listing 3. Code for listening beforeinstallprompt and storing the information for later use to notify
the user that the app can be installed [29]

Many different patterns can be used to notify the user about the app that can be installed

thus promoting the installation, for instance, an element in the navigation, a button in the

header or an element among the content section. These prompts must not interrupt users

from what they are doing.

3.3 Browser Support

Developing PWA can only be obtained with the use of multiple technologies which en-

sure the delivery of the best web experiences. The main element necessary for PWAs is

service worker support. Fortunately, it is supported by almost all browsers on mobile and

desktop except Internet Explorer and Opera Mini which doesn’t support service worker

yet as shown in Figure 5. Support for features like web app manifest, notification API,

19

push API and web app install banner can also be found widely. At the time, the support

for web app manifest and web app install banner are restricted in Safari while web push

notifications have no support. So, the users need to install the web app manually by

selecting the share button. It can be seen how about 93% of global browser users have

access to service worker feature whereas the total stands at 83% for web app manifest

file as stated in Figure 5 and 6 correspondingly.

Figure 5. Browser support for service workers and its global reach copied from caniuse.com [30]

Figure 6. Browser support for manifest.json and its global reach copied from caniuse.com [31]

Some of the APIs for PWA is still in the experimental stage, with the documentation being

in the draft but considering the achievement of many companies such as MakeMyTrip

and Jumia should convince to apply some of the PWA traits in the web app already.

20

4 Design and Modelling

With such numerous advantages and benefits discussed previously about PWA, the aim

of the study was to develop a bus booking system which allows users to search buses,

book the ticket and receive the confirmation through email.

A good designing enables to develop the application smoothly, helps in following the

schedule and minimizing the risks being able to foresee them. To understand how the

application will be used, the use case diagram was designed first. This allows for devel-

oping a user-centric app.

4.1 Use Case Diagram

Figure 7 shows a use case diagram of the web app from the perspective of a user.

21

Figure 7. Use Case Diagram for BookBus system

The use case diagrams as presented in Figure 7 can be described by user stories. User

stories provide a non-technical way of describing the outcome of the assignment thus

enabling developers to better understand the feature in a user-friendly approach.

• As a user of the bus booking system, one would want to search for the
buses available for the journey.

• As a user of the bus booking system, one would want to browse through
the list of available buses before deciding.

• As a user of the bus booking system, one would want to choose the number
of seats they would like to book.

• As a user of the bus booking system, one would want to enter details about
them so that there is no problem when travelling.

22

• As a user of the bus booking system, one would want to make sure the
information about the journey is correct by reviewing it.

• As a user of the bus booking system, one would want to confirm that they
want to book the ticket for the journey.

• As a user of the bus booking system, one would want to receive an email
confirming the booking.

With above-described user stories, it is clear what a user wants to achieve using the web

app.

4.2 UI Design

To further simplify the development process, an outline of the user interface design was

implemented. This helps in figuring out what kind of design is worthwhile from user inter-

face/user experience (UI/UX) perspective resulting in significantly reduced development

time. A wireframe of the search result page of the web app was created with draw.io as

shown in Figure 8. This helps to figure out important aspects of the page and efficiently

develop them.

Figure 8. Wireframe of buses search result

23

In Figure 8, it can be seen that the search result page can be divided into two distinct

sections with search fields filling the initial section of the page while search results getting

displayed on another one. Search results include individual result component which can

be developed separately. Overall, all these sections can be developed independently

promoting a component-based architecture that ReactJS broadly advocates which is

used for the development of front-end code.

5 Tools and Technologies

To develop BookBus as a full-stack web application, the tools and technologies de-

scribed below were considered.

5.1 Database

Developing a full-stack application requires storing and accessing the information as the

users interact with the app.

5.1.1 MongoDB

MongoDB is a document-oriented cross-platform database engine. It uses JSON-like

documents called BSON to store data in key-value pair which classifies it as a NoSQL

database program. SQL databases store data in tables and the schema definition is strict

while NoSQL databases have flexible schema definition. This allows for lenient and

faster data storage and retrieval mechanism which in turn provide the simplicity of de-

sign, finer control over availability and limiting object-relational impedance mismatch.

Mongoose

Mongoose is an object document mapper (ODM) for MongoDB database providing a

clear-cut, schema-based answer for modelling the app records. It consists of validation,

type casting, business logic hooks, query building and other features built-in to help in-

teract with MongoDB.

24

5.2 Backend

The data access layer known as backend handles the business logic of the application

and provides a safe spot for integration with the database.

5.2.1 Node.js

Node.js is a JavaScript runtime environment developed over Google’s V8 engine which

accelerates the development process since the developer can use JavaScript knowledge

to develop backend service. Thus, it combines web app development over a single pro-

gramming language, instead of multiple programming languages for the development of

client-side and server-side. Also, being event-driven, asynchronous and highly scalable,

Node.js can handle a large quantity of input/output operations. With the comparative

simplicity of installation and development across platforms, availability of abundant pack-

ages through node package modules (npm) registry Node.js was selected for BookBus

application.

5.2.2 Express.js

Express.js is a lightweight web application framework for Node.js designed to build ap-

plication programming interfaces (APIs). Due to its wide use, it is considered as the de-

facto server framework to developing Node.js applications. It provides myriad sets of

features for HTTP utilities and middleware. External middleware can also be integrated

with Express.js thus further allowing to boost the development process. Therefore using

Express.js, it was fast and easy to develop robust APIs for the BookBus application.

Some of the external Node.js modules and middleware used for the development of the

APIs include:

• body-parser: It parses the inbound request information in the middleware,
accessible underneath the req.body property.

• compression: This middleware attempts compressing the response data in
every request that pass across the middleware, predicated on various se-
lections. However, it will not compress responses containing a Cache-Con-
trol header with the no-transform directive, as compressing them will alter
the data.

25

• cors: This Node.js module provides an Express.js middleware which can
be utilized for authorizing CORS with multiple selections.

• dotenv: It helps to load environment variables from .env file into pro-
cess.env.

• helmet: It helps to secure the Express application by modifying various
HTTP headers which prevent external prying eyes to know about the actual
build process of the application.

• nodemailer: This module allows an easy approach to send email from the
application which makes it possible to send email to users about their con-
firmed tickets.

The use of above mentioned Node.js modules and middleware along with Express.js

enabled with building a healthy backend service that can withstand scaling and other

issues that might occur as the application grows in size.

5.3 Frontend

The frontend is an abstraction of all the client-side or presentational layer of the applica-

tion with a focus on developing a user-friendly interface.

5.3.1 ReactJS

ReactJS or simply React is a very popular JavaScript library developed by Facebook

with declarative and component-based architecture for developing single-page applica-

tions (SPAs) [32]. It utilizes virtual DOM which is a JavaScript object. It creates an in-

memory data structure cache called virtual DOM, compares the modifications between

virtual DOM and modifies the resulting browser’s DOM which is significantly faster rather

than updating the entire DOM. It uses JSX or JavaScript XML for templating instead of

regular JavaScript. It is type-safe; is significantly quicker as it carries out optimization

during code compilation to JavaScript and the errors can be captured during compilation.

And being similar in appearance to HTML, it is easier and faster to write templates in

JSX. [33.]

JSX and modern JavaScript codes are not compatible with all the browsers available.

So, to compile these codes to older JavaScript version so that current and older browsers

can understand them, a tool called Babel is used. Babel uses plugins to convert syntax

26

with a limited browser supports into a backwards-compatible version and polyfills to pro-

vide support for features that are missing entirely from target JavaScript environments.

To bundle all the modern JavaScript codes, assets, HTML and CSS files, a bundling tool

such as Webpack can be used. Webpack is highly customizable but configuring it is a

daunting and time-consuming task. Luckily, Facebook has created a tool called Create

React App (CRA) which uses Webpack, Babel, ESLint, Jest and other amazing tools and

includes pre-configured environments for development and production. It also supports

PWA out of the box with the use of Workbox. Thus, the use of CRA streamlines and

accelerates development process without the hassle and tedious task of configuring all

those build tools. [34.] BookBus was initialized using CRA reflecting all the advantages

it brings.

React is all about components. There are two techniques of creating components in Re-

act that is using class-based components (as known as stateful components) and func-

tional components (also known as stateless components). With the advent of Hooks in

React v16.8.0, it is now possible to have states in functional components [35]. BookBus

was created using Hooks which makes it easier to reuse components across the appli-

cation. Having encapsulated components with their own managed state permits to create

complex UIs. This also makes codes more predictable, readable and easier to debug.

But for complex applications, ReactJS is not enough as it requires the use of state man-

agement, routing and interaction with APIs.

5.3.2 Redux

Redux is a small JavaScript library to manage application state through limited API de-

signed to be a predictable container. It maintains the state of an entire application in a

single immutable object called state inside a single store, which cannot be changed di-

rectly. Instead of mutating the state directly, the desired mutation must be defined with

plain objects called actions. Then these actions are passed through a special function

called reducer where it is decided how the state of the entire application will be trans-

formed based on every action. [36.] The detailed working mechanism of redux is dis-

cussed in Section 6.

27

5.3.3 React-router

Routings in SPAs are handled by client-side JavaScript instead of letting the browsers

handle them. So, to obtain expected navigation features of normal web applications such

as hotlinking and the back and forward button of the browser without sacrificing the sleek-

ness of SPAs; routing should be handled correctly. React-router provides a collection of

navigational components that mimic the navigational features provided by browsers and

enables handling the routing decoratively. This approach enables managing the infor-

mation in the application gracefully.

5.3.4 Bootstrap

Bootstrap is a CSS framework focused at responsive, mobile-first front-end web devel-

opment. It uses a responsive grid system, contains massive prebuilt components and

powerful plugins built on jQuery. With the utilization of a CSS framework, the develop-

ment of frontend becomes faster and easier thus enabling developers to focus on the

business logic of the application.

6 Application Architecture and Development

To develop a robust application, the application architecture needs to be solid to with-

stand possible failures. This starts with choosing the right technologies according to the

need of the system build. Considering each tech stack has its strength and pitfalls, a

careful analysis was performed for choosing the appropriate solutions. Then architecture

of the application was constructed based on the selected tech stack as shown in Figure

9.

28

Figure 9. Application architecture overview of BookBus

As seen in Figure 9, the communication between the server and browser occurs through

REST APIs. For the development of APIs, Node.js is used as a server-side runtime en-

vironment and Express.js as web framework maintaining a close relationship between

the database and external service for mailing to users. The database used is MongoDB

and to host the data, Mongo Atlas has been used as it is a cloud-based database service

offered by MongoDB Inc so that there is no need to be concerned about database man-

agement. Mongoose acting as ODM connects the application with the database for que-

rying, saving and retrieving the data about buses and users. For every route, user inputs

have been validated and sanitized with the use of the express-validator library which

minimizes the risk of possible attacks carried out to exploit the application. Once a user

confirms the ticket booking, Nodemailer will send an email with full information regarding

the booking to the user with the use of external mailing service, SendGrid. Figure 10

illustrates an email that the user receives after confirming the tickets.

29

Figure 10. Booking confirmation email received by the user

For the frontend segment, all the application state is managed by Redux in a store called

redux store which enables using the same state in multiple React components. This

streamlines the process of data sharing between components and during routing which

is handled by react-router. Whenever a user performs certain tasks such as searching

for buses, the action creator is called. Action creator is responsible for API handling from

the frontend code as it makes a request to the server. Redux natively accepts actions as

an object only and since API calls are asynchronous and have side effects, it is neces-

sary to make redux handle them as well. Redux-thunk is used in BookBus application

which allows redux to accepts functions as actions. The API calls are wrapped inside

these functions and thus permitting for dispatching of appropriate actions based on the

response from the server. As actions contain the payload of information and how it oc-

curred and the only way to mutate state, these actions are then passed to the reducer

which is a special function that handles how the application state will be modified. Once

the reducer updates the state, the information is passed through the store and the up-

dated information is reflected in the React components.

30

After the development of the web app, steps are followed to convert it into PWA. CRA

has already provided some initial configuration for this purpose hence modifying these

files allowed jumpstarting with transitioning to PWA. Changes were made to mani-

fest.json and index.html file to make sure they hold the right definitions to reflect the app

launched from home icon. As mentioned earlier, CRA uses Workbox to cache assets

and make the web app work offline, no changes were made in the service worker file.

7 Result and Discussion

A MERN stack was used to develop a full-stack application with mobile-first design im-

plementation. It was later converted into PWA with the implementation of service workers

and manifest.json file to provide the offline capability and installation in the home screen.

The application is still in the development phase but is hosted in Heroku for general

access and testing purpose. Using Lighthouse to measure the performance and PWA

status, as per Figure 11 BookBus scores exceptionally high and thus it can be imparted

that the development of PWA was a success while being able to fully understand the

working mechanism of PWA.

Figure 11. Lighthouse audit result for BookBus (mobile version)

There is a lot of room for development and improvement of the application so that it can

be launched as a full-fledged application. For starters, authentication can be imple-

mented with enabling users to keep track of their booking for future use. Developing of

an admin panel would allow the management of buses to be handled gracefully. A

31

calendar can be added in the search section so that users can choose to book from

different dates. Integration of a payment system would enable users to experience full

online service of the application while the pdf format of the confirmed ticket would allow

them to have a more secure sensation of buying the ticket online. A notification feature

can be put into operation so the user will be notified about the travel. The UI can be

further improved to support edge cases of the peculiar screen size of some mobile de-

vices.

8 Conclusion

A detailed study of PWA was carried out analysing the positive aspects it brings to the

web development and current limitations it endures. An application ‘BookBus’ was de-

veloped to explore the ideas of PWA and how its features can be integrated into a normal

web app. Developing a PWA is an interesting approach to developing web apps. With

browsers pushing forward to support PWA functionalities, it can be said that the future

of PWA looks bright enough. All major app stores now support the submission of PWA

in their platform so that users can download them as native apps. This demonstrates the

growth of PWA and the opportunity it holds. Google, Microsoft and many others are em-

bracing PWAs to build their core applications as well. It will not be wrong to say that PWA

will revolutionize web development aspect and put it head to head with native applica-

tions.

32

References

1 Internet History One-Page Summary - How Invented, Created [Internet]. Livingin-
ternet.com. [cited 10 August 2019]. Available from: https://www.livinginter-
net.com/i/ii_summary.htm

2 Apple Reinvents the Phone with iPhone [Internet]. Apple Newsroom. January
2007 [cited 19 August 2019]. Available from: https://www.apple.com/news-
room/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/

3 Share of mobile internet traffic in global regions 2019 [Internet]. Statista. 2019
[cited 12 October 2019]. Available from: https://www.statista.com/statis-
tics/306528/share-of-mobile-internet-traffic-in-global-regions/

4 1 Billion More Phones Than People in The World! [Internet]. BankMyCell. 2019
[cited 10 October 2019]. Available from: https://www.bankmycell.com/blog/how-
many-phones-are-in-the-world

5 Kho Nancy D. Everything you need to know about Progressive Web Apps. ECon-
tent; Wilton Spring 2018;41(2):20-24.

6 Marcotte E. Responsive Web Design [Internet]. A List Apart. 2010 [cited 12 Sep-
tember 2019]. Available from: https://alistapart.com/article/responsive-web-de-
sign/

7 Gustafson A. Understanding Progressive Enhancement [Internet]. A List Apart.
2008 [cited 12 September 2019]. Available from: https://alistapart.com/article/un-
derstandingprogressiveenhancement/

8 Eric Schmidt at Mobile World Congress [Internet]. YouTube. 2010 [cited 13 Sep-
tember 2019]. Available from: https://www.youtube.com/watch?v=ClkQA2Lb_iE

9 Clement J. App stores: number of apps in leading app stores 2019 [Internet]. Sta-
tista. 2019 [cited 15 October 2019]. Available from: https://www.statista.com/sta-
tistics/276623/number-of-apps-available-in-leading-app-stores/

10 Smartphone Addiction & Cell Phone Usage Statistics in 2019 [Internet]. BankMy-
Cell. 2019 [cited 16 October 2019]. Available from: https://www.bankmy-
cell.com/blog/smartphone-addiction/

11 Chaffey D. Mobile marketing statistics compilation [Internet]. Smart Insights. 2018
[cited 3 October 2019]. Available from: https://www.smartinsights.com/mobile-
marketing/mobile-marketing-analytics/mobile-marketing-statistics/

12 Richter F. Infographic: App Users Spend 77% of Their Time on Their Top 3 Apps
[Internet]. Statista Infographics. 2017 [cited 18 September 2019]. Available from:
https://www.statista.com/chart/3835/top-10-app-usage/

13 Ater T. Building Progressive Web Apps. 1st ed. California: O’Reilly Media, Inc.;
2017.

https://www.livinginternet.com/i/ii_summary.htm
https://www.livinginternet.com/i/ii_summary.htm
https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/
https://www.apple.com/newsroom/2007/01/09Apple-Reinvents-the-Phone-with-iPhone/
https://www.statista.com/statistics/306528/share-of-mobile-internet-traffic-in-global-regions/
https://www.statista.com/statistics/306528/share-of-mobile-internet-traffic-in-global-regions/
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://www.bankmycell.com/blog/how-many-phones-are-in-the-world
https://alistapart.com/article/responsive-web-design/
https://alistapart.com/article/responsive-web-design/
https://alistapart.com/article/understandingprogressiveenhancement/
https://alistapart.com/article/understandingprogressiveenhancement/
https://www.youtube.com/watch?v=ClkQA2Lb_iE
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
https://www.bankmycell.com/blog/smartphone-addiction/
https://www.bankmycell.com/blog/smartphone-addiction/
https://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
https://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
https://www.statista.com/chart/3835/top-10-app-usage/

33

14 Hume D. Progressive Web Apps. 1st ed. New York: Manning Publications; 2017.

15 Domes S. Progressive Web Apps with React. 1st ed. Birmingham: Packt Publish-
ing Ltd.; 2017.

16 Wagner, J. Why Performance Matters. [Internet] Google Developers. [cited 7 Oc-
tober 2019] Available at: https://developers.google.com/web/fundamentals/perfor-
mance/why-performance-matters/

17 Progressive Web App Checklist [Internet]. Google Developers. [cited 15 October
2019]. Available from: https://developers.google.com/web/progressive-web-
apps/checklist

18 Lighthouse [Internet]. Google Developers. [cited 16 October 2019]. Available
from: https://developers.google.com/web/tools/lighthouse/

19 2017 U.S. Mobile App Report [Internet]. Slideshare.net. 2017 [cited 18 October
2019]. Available from: https://www.slideshare.net/comScoremarcom/2017-us-mo-
bile-app-report

20 Jumia sees 33% increase in conversion rate, 12X more users on PWA [Internet].
Google Developers. 2017 [cited 20 October 2019]. Available from: https://devel-
opers.google.com/web/showcase/2017/jumia

21 Lancôme rebuilds their mobile website as a PWA, increases conversions 17%
[Internet]. Google Developers. 2017 [cited 20 October 2019]. Available from:
https://developers.google.com/web/showcase/2017/lancome

22 Monthly app downloads of U.S. smartphone users 2017 [Internet]. Statista. 2017
[cited 20 October 2019]. Available from: https://www.statista.com/statis-
tics/325926/monthly-app-downloads-of-us-smartphone-users/

23 Ola drives mobility for a billion Indians with Progressive Web App [Internet].
Google Developers. 2017 [cited 20 October 2019]. Available from: https://devel-
opers.google.com/web/showcase/2017/ola

24 George.com enhances the mobile customer experience with new Progressive
Web App [Internet]. Google Developers. 2018 [cited 20 October 2019]. Available
from: https://developers.google.com/web/showcase/2018/asda-george

25 Making PWAs work offline with Service workers [Internet]. MDN Web Docs. 2019
[cited 22 October 2019]. Available from: https://developer.mozilla.org/en-
US/docs/Web/Progressive_web_apps/Offline_Service_workers

26 Hajian M. Progressive Web Apps with Angular: Create Responsive, Fast and Re-
liable PWAs Using Angular. 1st ed. Oslo: Apress; 2019.

27 Gaunt M. Service Workers: An Introduction [Internet]. Google Developers. [cited
23 October 2019]. Available from: https://developers.google.com/web/fundamen-
tals/primers/service-workers

https://developers.google.com/web/fundamentals/performance/why-performance-matters/
https://developers.google.com/web/fundamentals/performance/why-performance-matters/
https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/tools/lighthouse/
https://www.slideshare.net/comScoremarcom/2017-us-mobile-app-report
https://www.slideshare.net/comScoremarcom/2017-us-mobile-app-report
https://developers.google.com/web/showcase/2017/jumia
https://developers.google.com/web/showcase/2017/jumia
https://developers.google.com/web/showcase/2017/lancome
https://www.statista.com/statistics/325926/monthly-app-downloads-of-us-smartphone-users/
https://www.statista.com/statistics/325926/monthly-app-downloads-of-us-smartphone-users/
https://developers.google.com/web/showcase/2017/ola
https://developers.google.com/web/showcase/2017/ola
https://developers.google.com/web/showcase/2018/asda-george
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Offline_Service_workers
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps/Offline_Service_workers
https://developers.google.com/web/fundamentals/primers/service-workers
https://developers.google.com/web/fundamentals/primers/service-workers

34

28 Osmani A. The App Shell Model [Internet]. Google Developers. [cited 25 October
2019]. Available from: https://developers.google.com/web/fundamentals/architec-
ture/app-shell

29 LePage P. Add to Home Screen [Internet]. Google Developers. [cited 25 October
2019]. Available from: https://developers.google.com/web/fundamentals/app-in-
stall-banners

30 Can I use... Support tables for HTML5, CSS3, etc [Internet]. Caniuse.com. 2019
[cited 5 November 2019]. Available from: https://www.caniuse.com/#search=ser-
vice%20workers

31 Can I use... Support tables for HTML5, CSS3, etc [Internet]. Caniuse.com. 2019
[cited 5 November 2019]. Available from: https://www.cani-
use.com/#search=manifest

32 React – A JavaScript library for building user interfaces [Internet]. Reactjs.org.
[cited 6 November 2019]. Available from: https://reactjs.org/

33 Introducing JSX – React [Internet]. Reactjs.org. [cited 6 November 2019]. Availa-
ble from: https://reactjs.org/docs/introducing-jsx.html

34 Create React App [Internet]. Create React App. [cited 6 November 2019]. Availa-
ble from: https://create-react-app.dev/

35 Introducing Hooks [Internet]. Reactjs.org. [cited 6 November 2019]. Available
from: https://reactjs.org/docs/hooks-intro.html

36 Getting Started with Redux [Internet]. Redux.js.org. [cited 7 November 2019].
Available from: https://redux.js.org/introduction/getting-started

https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/architecture/app-shell
https://developers.google.com/web/fundamentals/app-install-banners
https://developers.google.com/web/fundamentals/app-install-banners
https://www.caniuse.com/#search=service%20workers
https://www.caniuse.com/#search=service%20workers
https://www.caniuse.com/#search=manifest
https://www.caniuse.com/#search=manifest
https://reactjs.org/
https://reactjs.org/docs/introducing-jsx.html
https://create-react-app.dev/
https://reactjs.org/docs/hooks-intro.html
https://redux.js.org/introduction/getting-started

Appendix 1

 1 (1)

Appendix 1: Lighthouse report for BookBus application with emulated

runtime settings (desktop version)

Appendix 2

 1 (1)

Appendix 2: Search Result Page for Desktop

Appendix 3

 1 (1)

Appendix 3: BookBus launched from the user’s home screen

