

Backend designing with Entity Framework Core
Database access for web application

Veikko Lintujärvi

BACHELOR’S THESIS December 2019 Information and communication technology Software engineering

ABSTRACT
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Information and communication technology Software engineering VEIKKO LINTUJÄRVI Backend designing with Entity Framework Core Database access for web application Bachelor's thesis 29 pages, appendices 4 pages December 2019
This bachelor’s thesis reviews Entity Framework Core when used as an Object-Relational Mapper in a backend application. Study will go into detail describing the capabilities of the framework and raises discussion over the features, usability and maturity of it. Preview and discussion is connected by examples to a project called Shop Man-agement Tool. Shop Management Tool is a web application used in a general store and café for monitoring and recording money flow and warehouse balances as well as presenting data in understandable format. Technical capabilities of the framework is compared to the requirements of the problem at hand. The thesis will go through how different features were used to carry out the needed tasks and what impact the possible flaws in them caused for the development of the end product itself. By the course of the thesis Entity Framework Core proved to be useful part of the
backend application. Even though some of the minor functionalities weren’t fully complete, it contained sufficient set of tools needed to perform the task of design-ing data structure and accessing to database. Overall the user experience was pleasant.

Key words: ORM, Entity Framework Core, .NET Core, ASP.NET Core, backend

TIIVISTELMÄ
Tampereen ammattikorkeakoulu Tampere University of Applied Sciences Tieto- ja viestintätekniikka Ohjelmistokehitys VEIKKO LINTUJÄRVI Backend designing with Entity Framework Core Database access for web application Opinnäytetyö 29 sivua, liitteet 4 sivua Joulukuu 2019

Tämä opinnäytetyö käsittelee Entity Framework Corea käytettynä Object-Relati-onal Mapperinä backend-sovelluksessa. Tutkielma esittelee yksityiskohtaisesti Entity Framework Coren kyvykkyyksiä ja pohtii sen ominaisuuksia, käytettävyyttä ja kypsyyttä projektina. Esittely ja pohdinta yhdistyvät esimerkein projektiin nimeltä Shop Management Tool. Shop Management Tool on verkossa julkaistava sovellus, jota käytetään sekä päivittäistavarakaupan ja kahvilan rahavirran ja varastosaldojen monitoroin-tiin ja tallentamiseen että kerätyn datan esittämiseen asiakkaalle ymmärrettä-vässä muodossa. Tutkielman mittaan Entity Framework Coren teknisiä kyvykkyyksiä verrataan tar-peisiin, joihin sen tulisi vastata. Opinnäytetyössä käydään lävitse, miten eri omi-naisuuksia käytettiin vaadittavissa tehtävissä ja mikä vaikutus niissä mahdolli-sesti esiintyvillä puutteilla oli itse lopputuotteen kehittämisprosessiin. Opinnäytetyön mittaan Entity Framework Core osoittautui hyödylliseksi osaksi backend-sovellusta. Vaikkakin osa vähäisemistä toiminnallisuuksista olikin vielä kesken, piti se kuitenkin sisällään riittävän valikoiman työkaluja, jotta voitiin tuot-taa ohjelman tietorakenne sekä yhteys tietokantaan. Kaiken kaikkiaan kokemus Entity Framework Coren käytöstä oli positivinen.

Asiasanat: ORM, Entity Framework Core, .NET Core, ASP.NET Core, backend

4

CONTENTS

1 INTRODUCTION .. 6
2 BACKGROUND.. 7
3 ENTITY FRAMEWORK CORE ... 8

3.1. Project... 8
3.1.1 Comparison with Entity Framework 6.. 8
3.1.2 Aim ... 9

3.2. Basic concepts .. 10
3.2.1 CRUD ... 10
3.2.2 Entities .. 11
3.2.3 DbContext .. 13
3.2.4 Code-first approach .. 14
3.2.5 Scaffolding .. 14

3.3. Advanced concepts ... 15
3.3.1 Dependency injection ... 15
3.3.2 Loading related data ... 18
3.3.3 Migrations ... 19

4 STRUCTURE ... 22
4.1. Model-Controller-View ... 22

4.1.1 Model.. 22
4.1.2 Controller .. 22
4.1.3 View.. 23

4.2. Application Programming Interface ... 23
4.3. Object-Relational Mapper.. 24

5 APPLICATION ... 26
5.1. Architecture decisions ... 26

5.1.1 Handling complexity .. 26
5.1.2 Level of abstraction ... 27
5.1.3 Repository pattern .. 28

5.2. Programming .. 30
5.2.1 Programming environment .. 30
5.2.2 Compiler ... 31
5.2.3 Testing .. 32
5.2.4 Customer communication ... 33

6 DISCUSSION ... 35
REFERENCES .. 36
APPENDICES.. 39

Appendix 1. Entity Framework and Entity Framework Core comparison chart .. 39

5

GLOSSARY

ORM Object relational mapper.
EF Core Entity Framework Core.
IDE Integrated Development Environment.
Code Snippet Template of code applied by command in
 IDE.
Business logic Part of program that encodes the real-world business
 rules that determine how data can be created, stored,
 and changed.
Orthogonal Adjective of modularity. When orthogonal part changes,
 no other part is affected.
Database engine Underlying software component that a database man-

agement system uses to create, read, update and delete
data from a database.

Mocking To simulate parts of program in order to create functio-
 nal test environment.
SQL Structured Query Language. Widely used querying da-

tabases.
de facto Widely used or expected choice of method or technol-

ogy to a given task.
CRUD Create, Read, Update, Delete. Basic functions of per-
 sistent storage.
POCO Plain old CLR object.
HTTP Hypertext Transfer Protocol.
VS Code Visual Studio Code.
LINQ Language Integrated Query
UI User interface

6

1 INTRODUCTION

Entity Framework Core is an open source, modern Object-Relational Mapper
made to work with ASP.NET Core framework offering a full set of functionalities
to interact with database without writing a single line of SQL code. One could say
that ORMs have become a de facto way to communicate between backend ap-
plication and database in recent years and many options for various programming
languages and frameworks have been developed with great popularity.

In my thesis I am going to go through the backend design as well as EF Core’s

nuances as a part of backend application and programming project producing
management tool for a general store and café. Thesis is sectioned in three parts.
First is about EF Core itself going through the technical capabilities and the main
concepts introduced in the framework. In the second one I dive into the backend
project including some decisions I made during the course of the development
and why. The third one wraps itself around more abstract concepts used not only
by EF Core but other modern backend applications as well. Understanding these
concepts is as crucial as understanding the technology if you want to create well-
formed software.

On the next page I’ll go through the reasons why this backend application was

created in the first place. In my opinion the most important thing in the program-
ming project is the motivation. When you are working for something you believe
in everything feels a little bit lighter.

7

2 BACKGROUND

Livonsaaren Osuuskauppa is a general store, café and meeting place for locals,
cottage owners as well as random passer-bys. It was a collaborative effort to get
much needed marketplace for the local people and thus crowd funding proved to
be very successful way to finance the affair. The whole product storage is main-
tained with the shares of the shop cooperative members. Currently (11.8.2019)
there is 40 of those.

Even though many people have been very generous by putting their money into
the product storage and property, there wasn’t much excess capital to put on the

cashier system software or such. Since I also wanted to contribute to the common
effort, I offered my helping hand and by promising functional digital solution to
handle the cash flow and data for accounting purposes. The task itself wasn’t

impossible but the time schedule made it harder than I thought.

At the beginning all this seemed quite over-whelming but then I got lucky. I was
talking about this new project with one of my colleagues and he offered to help. I
gladly took him in. So we made this separation of duties: I will be responsible for
the backend and he will handle the front-end. Pretty straightforward. This is also
the reason why I will be going through backend side of the solution in this thesis.

Now in retrospective I couldn’t have made it without him. We had roughly one

and a half months of time and we needed to build fully functional web application
from the scratch, implement it to the production (meaning not only software but
also cashier accessories like bar code scanners and receipt printers) and adding
needed product information into the database. And it was just the technical side
of it. We also needed to build up some level of project management and customer
service structure as well.

But I wouldn’t be writing this report if the project didn’t succeed. Though succeed-

ing is relative on this era of agile development and never ending DevOps projects.
Also this project doesn’t seem to be ending any time soon. I pushed my latest

commit to GitHub repository just yesterday evening.

8

3 ENTITY FRAMEWORK CORE

This section is purely dedicated to go through the essential parts of the Entity
Framework Core.

3.1. Project

Entity Framework Core is an open source project made to imitate proprietary En-
tity Framework project. Where Entity Framework was made for Windows
and .NET Framework, EF Core is its cross-platform equivalent for .NET Core
(Should I use EF6 or EF Core).

3.1.1 Comparison with Entity Framework 6

Even though the goals of the Entity Framework 6 and Entity Framework Core are
similar, the latter includes many features specific only to it. On the other hand EF
6’s features are not and never will be included to its open source counterpart.
Comparing these two feature by feature is out of the scope of this thesis but you
can find a high-level list in Appendix 1. for further reading.

9

GRAPH 3.1 Place of Entity Framework in the web application (What is Entity
Framework? Internet article.)

For the most parts the differences between these projects are pretty trivial. Both
of them does the trick if you need basic ORM for your .NET project (graph 3.1.).
I recommend to favor EF Core if you have a possibility to choose. There is a
couple of reason for this. Firstly EF Core is more flexible when it comes to plat-
forms. You can move your EF Core application from Windows based server to a
Linux without any additional configurations. Secondly EF Core has now the mo-
mentum and new versions are pushed out frequently. Microsoft team even an-
nounced that .NET Core is going to be the future .NET Framework (.NET Core is
the future of .NET) and EF Core is the ORM-of-choice for .NET Core. Lastly I find
EF Core just more intuitive to use.

3.1.2 Aim

EF Core contains the basic functionalities of an ORM. Here is a list and short
introduction of those:
 Context as a structured object-orientated representation of the database

(3.2.3 DbContext).

10

 Mapping between objects and rows in database table (3.2.2 Entities).
 Possibility to manipulate database schema, data it contains and add calcula-

tion without explicit SQL-queries (3.2.1 CRUD).
 Database schema engineering (3.2.4 Code-first approach) and reverse-engi-

neering (3.2.5 Scaffolding) from or to source code.

In addition to the above EF Core contains set of more advanced techniques like
lazy-loading (3.3.2 Loading related data) and migrations (3.3.3). I will go through
those and couple of other concepts in the section 3.3. Often these advanced
techniques are offered as a stand-alone projects but in EF Core they are included
natively.

3.2. Basic concepts

Entity Framework Core has mostly the same concepts included into it as all the
other ORMs: POCO classes mapping to the database tables, ready-made func-
tions to communicate with the database and model generation from the database
schema (Object Relational Mapping Concepts). In the next chapter I’ll go through

these concepts.

3.2.1 CRUD

CRUD is an abbreviation of the basic actions to interact with the database: CRE-
ATE, READ, UPDATE and DELETE. These are the functions which web applica-
tions backend should be able to carry out or else you cannot call it such (What is
CRUD).

Let’s go through these functionalities shortly on a very general level. Create

means for the backend of the application to receive needed information from the
frontend via API and with that form and push a new row into database under a
correct table or tables. Read means to access any data inside the database in
orderly manner. Update overrides old data with the new one and delete removes
rows.

11

In EF Core as in all of the modern ORMs these basic actions are in the center of
the functionality design. All of these are done via Context (3.2.3 DbContext). They
are just functions under that instance and thus can be only applied to the entities
under it.

In many cases the whole purpose of the web application’s backend is to offer

these abilities via API to the frontend. The other capabilities such as data valida-
tion or calculation are added later on if at all.

3.2.2 Entities

Entity is a atomic part of EF Core’s model. You can think entity as a one row in
the database. Entities are data carriers between the backend application and da-
tabase.

From the MVC (4.1. Model-Controller-View) point of view entities are located in
the model (4.1.1 Model) and are the essential part of it. You could say that the
entities in the model are to the backend application what schema is for the data-
base: modular representation of the data structure (The Entity Framework Core
Model).

There’s three ways to configure these entities: convention, data annotations and
Fluent API. In the center of this are Context (3.2.3 DbContext) and POCOs (Code
3.1). Abbreviation POCO derives from plain old CLR object meaning object con-
taining only properties.

class Sales {

public int SellingPrice;

public string Name { get; set; }

public bool IsRegistered { get; }

}
CODE 3.1 Plain old CLR object (POCO Classes in Entity FrameWork).

To make this POCO any use for the EF Core it needs to be configured properly.

12

Conventions are prefined usage of the C# functionalities as they are (Conven-
tions in Entity Framework Core). You just need to know which part of the appli-
cation EF Core will take as a convention. Data annotations are like keywords but
inside square brackets. They add extra meaning to the data by adding attribute
tags (Basic Introduction to Data Annotation in .Net Framework). Also the location
of data annotation is significant. Lastly there is Fluent API which in EF Core is an
object called ModelBuilder. It configures the context with LINQ sequences.

In the graph 3.1 you can see a summary of these three ways of configuration.

GRAPH 3.1 Configuring an entity (Entity Framework Core in Action, page 148,
Figure 6.1).

A good example of these would be a configuration of a primary key column to a
table since you can do it with any of the techniques above. There is in Fluent API
a HasKey method that can handle it (The Fluent API HasKey Method). With an-
notation you get same results with Key Attribute and finally EF Core conventions
read int ClassId and int Id as a primary key as well.

13

One important thing in these three ways of configuring is that they can all exists
alongside with each other and many times they have to since some things which
you can do with Fluent API cannot be done with the convention. This in my opin-
ion is very unfortunate since it spreads the configurations around the source code
needlessly.

3.2.3 DbContext

Context is a link or session between API and the database. The functionalities of
the context are brought to the solution with object deriving from DbContext class
exclusively offered by the EF Core. It provides many different functionalities to
model building, data mapping, object caching, transaction management, data-
base connections and various data operations (The Entity Framework Core
DbContext. Internet article).

From the point of the backend design Context is the place where you configure
the way you want the interactions with the database to be formed. If everything
goes right you’ll never need to write a single query to the database directly but to

use your context configuration to design it the way you want and add changes via
migrations (3.3.3 Migrations).

DbContext is configured with three types of elements those being DbSet and
DbQuery properties and OnModelCreating method. Context maps the POCO
classes (3.2.2 Entities) from the model as DbSet types of object and those are
further mapped to database as tables. DbQueries are just like DbSets but instead
of tables they represent plain SQL-queries.

OnModelCreating method is trickier. It is run after the Context is created the first
time and loaded then to the memory. This initializes the model and mappings
configured there. Fluent API discussed earlier in section 3.2.2 means in EF Core
the chained statements inside the OnModelCreating method keeping the config-
uration code easier to read and understand while reducing the amount of lines of
code (Fluent API Configuration).

14

3.2.4 Code-first approach

EF Core offers tools to engineer both a backend application model out of data-
base schema or vice versa from source code a database schema. Code-first ap-
proach is the latter of those. If you are about to start a project with EF Core from
the scratch, code-first takes away all the need of build database yourself. In the
best case scenario you don’t ever need to write single line of SQL.

In order to make code-first engineering work your Entity classes needs to be spe-
cifically structured according to the requirements of EF Core. These classes need
to meet some configuration requirements explained in Entities section 3.2.2 in
order to map correctly into tables in database.

3.2.5 Scaffolding

Scaffolding, also known as Reverse-Engineering, is the opposite of the code-first
(Reverse Engineering). Scaffolding is a tools-of-choice in case you have already
a database and you need to build ORM. This might become the very handy in the
situation when old ORM needs to be updated to EF Core. I found scaffolding
utmost useful when generating the entity POCOs. Without scaffolding autogen-
eration functionality I would have needed to code all of the classes one by one
manually for each and every table there was in the database.

Scaffolding also includes Fluent API (4.2. Application Programming Interface)
and other model configurations the way that after scaffolding it should be possible
to access a database with EF Core methods.

Scaffolding also offers some modification possibilities. User can specify the
names of the tables and DbContext as well as the output directory and
namespace.

This part of the EF Core is still far from finished and it contains some limitations
still. Scaffolding is using database schema as a basis for the entity classes it
generates. Problem is that not everything is presented in the schema and thus all
the configuration outside it will not be passed to the EF Core model. Also some

15

column types are not supported which means that they are not processed at all .
Scaffolding also supports only one concurrency token type, row version, so the
other won’t be passed to the model (Reverse Engineering).

Overall this part of EF Core is still in its development level and making a good
code generator is pretty hard after all. Still it’s very easy to use and saves a lot of

time even though you would need to manually customize the model afterwards.

3.3. Advanced concepts

EF Core offers a variety advanced tools when it comes to improving the perfor-
mance of the application, control over the database behavior or structuring the
software. In addition to this ASP.NET Core is offering full support on dependency
injection which is the topic in the next chapter.

3.3.1 Dependency injection

Dependency injection (DI) is doing exactly the thing it is saying: injecting depend-
ency. This is especially helpful when some parts of the program require some
other parts to be accessible by them in order to work. Normally you would need
to build complicated, hard-to-maintain and easy-to-break jungle of dependencies
in order to make this happen but with dependency injection only a single passing
of parameter to a function is enough (Why does one use dependency injection).

As shown in graph 3.2 dependency injection structures between three parts: Cli-
ent, Service and Injector classes. While client needs functionalities located in ser-
vice in order to work, injector is created implementing service and passed to client
and thus providing it with everything inside the service class.

16

 GRAPH 3.2 Relationships between the classes in dependency injection (Inver-
sion of control - Dependency injection)

Client can be imagined as a business logic of the application while service is a
class that contains some extra functionalities needed by the client but which are
not part of business logic. Injector works as a helper class to link these two to-
gether in orthogonal manner.

DI can be configured in three different ways: in constructor, method or property.
Constructor injection means that the class or interface desired to be injected is
passed into an instance as a parameter of a constructor. Method injection means
that dependency is injected in a dedicated method instead of straight to construc-
tor. And finally Property injection means that dependency is in public property
from which it can be used all around the class. In Shop Management Tool con-
structor injection used widely

17

public class CustomerBusinessLogic

{

 ICustomerDataAccess _dataAccess;

 public CustomerBusinessLogic(ICustomerDataAccess

custDataAccess)

 {

 _dataAccess = custDataAccess;

 }

 public CustomerBusinessLogic()

 {

 _dataAccess = new CustomerDataAccess();

 }

 public string ProcessCustomerData(int id)

 {

 return _dataAccess.GetCustomerName(id);

 }

}

public interface ICustomerDataAccess

{

 string GetCustomerData(int id);

}

public class CustomerDataAccess: ICustomerDataAccess

{

 public CustomerDataAccess()

 {

 }

 public string GetCustomerName(int id)

 {

 return "Dummy Customer Name";

 }

}

 CODE 3.2 Constructor injection (Inversion of control - Dependency injection)

Use case for dependency injection would be when controller needs an instance
of context (3.2.3) to it to establish connection to the database. The only way to
make sure the context is instantiated is to inject a dependency to the controller
class. In Shop Management Tool this was made via constructor injection.

18

3.3.2 Loading related data

There’s three ways to include external tables to the query with EF Core: eager

loading, explicit loading and lazy loading (Loading related data). Eager loading is
the simplest of these by loading every time all the relations included into the query
(code 3.3.).

using (var context = new BloggingContext())

{

 var blogs = context.Blogs

 .Include(blog => blog.Posts)

 .ThenInclude(post => post.Author)

 .ToList();

} CODE 3.3. Eager loading multiple levels: Blogs -> Posts -> Author (Loading re-
lated data. Microsoft documentation).

Explicit loading is more precise in what is loaded. EF Core offers property Entry
which can be given the exact row or rows from the database. Then only under
that row the related data is loaded. Loaded data can be even after the fetching
be filtered further with LINQ as shown in code 3.3.

using (var context = new BloggingContext())

{

 var blog = context.Blogs

 .Single(b => b.BlogId == 1);

 var goodPosts = context.Entry(blog)

 .Collection(b => b.Posts)

 .Query()

 .Where(p => p.Rating > 3)

 .ToList();

} CODE 3.4. With explicit loading you can specify exactly what to save into memory
(Loading related data. Microsoft documentation).

Last and the most sophisticated way of loading data is lazy loading. While other
ways of loading uses some EF Core methods or middle part objects like Entry,
lazy loading is done by configuring it’s own proxy system which handles loading

only when it is needed (Lazy loading with EF Core). EF Core makes this easy by
offering Microsoft.EntityFrameworkCore.Proxies package. With that lazy loading

19

proxies needs to be configured in at the startup of the application using method
UseLazyLoadingProxies (code 3.5.) or with dependency injection passing La-
zyLoader object to the entity class.

private ServiceProvider GetServiceProvider() =>

 new ServiceCollection()

 .AddLogging(config =>

 {

 config.AddConsole()

 .AddDebug()

 .AddFilter(level => level > LogLevel.Debug);

 })

 .AddTransient<BooksService>()

 .AddDbContext<BooksContext>(options =>

 {

 options.UseLazyLoadingProxies()

 .UseSqlServer(Configuration

 .GetConnec-

tionString(BooksConnection));

 })

 .BuildServiceProvider(); CODE 3.5 Configuring lazy loading proxies in the startup of application (Lazy
loading with EF Core)

There is no one and the best way to load related data. All the the above types are
good in different situation. For example if most of the time you need all of the
columns from the external table the best choice is eager loading. Explicit loading
on the other hand is the loading-type-of-choice when only one column is needed
from the external table.

To specify now the relations between tables this can be done in the Fluent API
(4.2. Application Programming Interface) or in the domain classes by adding the
entity types desired to be loaded as an virtual property under that class.

3.3.3 Migrations

Migration is a collection of changes. In source code it consists of couple of con-
figuration files and in database a one row in a specific migration history table.
When developing Shop Management Tool I noticed that each migration is identi-
fied by name and timestamp. When migration is referred to in a command it iden-
tifies to its name but the order in which migrations are run is sorted by timestamp.

20

For this reason it is important to make sure that the adjacent migrations are cre-
ated chronologically in correct order as well.

Migration configuration in source code is separated to a main migration file and
designer file (Migration in Entity Framework Core). The main file contains logic
necessary to apply the changes. These are formed to Up and Down methods the
way that Up contains logic which synchronizes the database with the new migra-
tion. Down is used for the reverting changes. In code 3.2 there is a example of
this.

protected override void Up(MigrationBuilder migra-

tionBuilder)

{

migrationBuilder.AddColumn<int>(

name: "Product",

table: "Products");

}

protected override void Down(MigrationBuilder migra-

tionBuilder)

{

migrationBuilder.DropColumn(

name: "Product",

table: "Products");

}

 CODE 3.2 Migration to add and remove Product column (from Shop Management
Tool source code)

Designer file is more like a metadata file for EF Core. It presents the whole model
configuration in the form of Fluent API (4.2. Application Programming Interface)
in opposition to the user made configuration which can be all around the domain
classes or context file.

There is one more configuration file connected to the migrations which is not mi-
gration specific but more like keeps the information about the latest model. If the
latest migration was done only with the EF Core migration handler script thus
without any manual changes, snapshot and the latest migration’s designer file

are identical (Entity Framework Core Snapshot).

21

In addition to these various configurations in the source code EF Core creates
also _EFMigrationsHistory table into the database by default. The purpose of this
is to keep track which migrations are applied to the database currently adding
one extra mean of reassurance for keeping the coherence between backend ap-
plication and database.

22

4 STRUCTURE

Architecture choices and the universal ”best practices” which form the structure

of application are as important as the technical side of the framework or library
you are using. Especially when it comes to the maintainability and refactoring.
More about that in this chapter.

4.1. Model-Controller-View

Model-Controller-View or more commonly just MVC is way to structure applica-
tion. Its main idea is to divide program into three sections and separate their func-
tionalities (MVC Architecture). The separation is following: view takes care of the
user interface, controller is responsible of providing view with needed data as well
as collecting data from UI and model takes care of data structure. Each one of
these are responsible of their own part of the overall data flow.

4.1.1 Model

Model is the data structure of the application. Model’s purpose is to make data

available for the rest of the application regardless of where and how it is stored.
Whenever data needs to be stored or read from the database the direct calls and
queries are done via model (ASP.NET MVC - Model).

In Shop Management Tool model is the place where Entities, Context and their
configurations are located. Also DTOs and enumerations are stored in the model.

4.1.2 Controller

Controller controls the data. It is the first point that the HTTP requests will end up
to. Controller will handle orderly processing of the external requests whether it
needs to change, add or modify the database assets (ASP.NET MVC - Control-
lers).

In Shop Management Tool controller part can be considered to be the API Server
(4.2. Application Programming Interface). In EF Core controller designing has

23

been made fairly easy since every HTTP endpoint is handled via method property
under controller class and HTTP request type can be specified by data annotation
(Controller methods and views in ASP.NET Core). Actual logic can be written in
C#.

4.1.3 View

Almost every application has dedicated user interface. In MVC structure this part
is reserved for the View. View is responsible of representing the data and collect-
ing input from the user and funneling it further into the backend (View (MVC)).
Unfortunately I cannot go into any further detail because the View, being in part
of front-end, is out of the scope of this thesis.

4.2. Application Programming Interface

Application Programing Interface or API for shorter handles communication be-
tween two applications. It is the layer that is designed to set the rules how an
application is supposed to interact with other applications (What is an API).

One quite handy way to handle application’s client-server communication is to
set up RESTful API (RESTful API). It is specifically made to handle HTTP-calls.
These would be GET, PUT, POST and DELETE. In ASP.NET RESTful API is
formed from separated methods which all handle one type of HTTP-call. For ex-
ample GET-call to http://domain.com/products/1234 will be directed to a method
which returns a product with identifier ”1234” while DELETE-call with same URL
goes to another method which deletes the same product.

Another important API used in Shop Management Tool is Fluent API (Fluent API
in Entity Framework Core). Fluent API’s concept of chaining configuration is in

the heart of EF Core since it is one way to configure the access to the database.
In Code 5.1. is introduced a example of Fluent API configuration for ProductInfo-
entity.

24

b.Entity<ProductInfo>(x => {

x.Property<bool>("IsDeleted").HasDefaultValue(false);

x.Property<DateTime>("DateAdded")

.ValueGeneratedOnAdd()

.HasDefaultValueSql("CURRENT_TIMESTAMP");

x.Property<DateTime>("LastModified")

.ValueGeneratedOnAddOrUpdate()

.HasDefaultValueSql("CURRENT_TIMESTAMP");

});

 CODE 6.1 Configurations for ProductInfo entity made in Fluent API (source code
from Shop Management Tool)

This way the configurations are chained and the one property can be attached to
multiple methods so that the whole configuration can be done in single one-liner.
This obviously reduces amount of code but might make it harder to read.

4.3. Object-Relational Mapper

Object-Relational Mapper or ORM for shorter is meant to offer way to interact
with the database via program code. Traditionally this was reserved for SQL que-
ries (code 6.2.) but ORM made it possible to write queries potentially in every
language. Find an ORM example in code 6.3. Nowadays there is ORM for most
of the popular programming languages. This means that developers do not need
to be masters in SQL anymore in order to write working application with database
(What is an ORM and Why You Should Use it).

String sql = "SELECT id, name, price, quantity FROM products

WHERE id = 10";

Result res = db.execSql(sql);

String price = res["price"]; CODE 4.2 Query returning firstname of person with id 10 with database engine
(pseudo code)

In application structure ORM could be thought as a virtualization of the database
in the given language (What is Object/Relational Mapping) thus it is somewhere
between business logic and database. The main job of ORM is to map the appli-
cation’s objects to structure that the database can understand. In a way it works

as translator between SQL and other programming languages. In the code 4.2.

25

and 4.3. you can see the difference between query made with ORM and the one
with database engine.

Product p = this.repository.GetProduct(10);

int Price = p.GetPrice(); CODE 4.3. Same as in code 4.2. but done with an ORM (pseudo code)

Even though backend contains a lot more than just CRUD functionalities (3.2.1.
CRUD) EF Core is in itself just an ORM. Concepts like repository pattern and
MVC are essential to backend application but are mostly carried out without EF
Core.

26

5 APPLICATION

The idea of backend is to provide frontend with a possibility to access database
(I Don’t Speak Your Language: Frontend vs. Backend) to oversimplify it. In reality

there is many decisions to be made in backend designing to assure to the seam-
less data flow and implementation of needed business logic. In the following
chapter I’ll go through the decisions I made when creating backend application

with EF Core.

5.1. Architecture decisions

Architecture is the frame on which the whole project relies on. All the parts that
have some prefined process or structure are included into it. In this section I will
go through three topics: Complexity, abstraction and one widely used standard
for software architecture in modern web applications. After those there is somet-
hing about testing.

5.1.1 Handling complexity

Computer software is inherently complex. As one wise man once said: ”The art
of programming is the skill of controlling complexity” (Eloquent JavaScript, page

3). Even the smallest programs contain a lot of tiny parts that need to be made
play together in the way that the programmer still has some idea what’s going on.

Choosing the right amount of abstraction and sticking to good formatting practices
this can be achieved. Making complex software simple to understand is a value
in itself since it reduces time spent on thinking what goes and where. It’s also

easier to make a mistake in complex than in simple implementation. Big systems
tend to be more prone to have bugs than smaller ones. This doesn’t need to be

so and that’s why there is many good ways to tame the complexity.

One good principle to make you software easier to approach is called separation
of concerns (Separation of concerns). It means that all the parts of software carry
out tasks as independently as possible. For example there’s one part to handle

the connection to database and another for business logic. This way the business

27

logic developer doesn’t need to think about data accessing logic and data ac-

cessing developer doesn’t need to think about business logic.
Separation of concerns shows in Shop Management Tool by separating the busi-
ness logic of different entities behind different methods and classes the way that
Product entity has ProductController and Sale entity SaleController. Thus the
code is more readable and maintainability higher when you don’t need to worry

about the entities that are already there.

Coherent naming convention is another crucial part to simplify your program’s

source code. Every coding language and framework has certain universally
agreed naming conventions which state how you should name your components
like types and variables. When it comes to EF Core naming convention of .NET
Framework is applied (Naming Guidelines). Furthermore one good practice is to
have one class in one file while naming the file with the class name. This makes
finding classes easier in IDE’s project explorer.

When it comes to a project folder it is a good idea to introduce some kind of folder
structure. In Shop Management Tool this was carried out by separating model
into one folder containing the entity classes and the API server as the other folder
consisting actual functionalities like REST interface implementations and appli-
cation startup configurations.

5.1.2 Level of abstraction

There is many good things in abstraction. With higher level of abstraction soft-
ware is easier to reuse for different purposes. This will increase much valued
scalability. The same high level logic could be used in different parts of the soft-
ware when formed properly.

Place where this abstraction comes handy is when you are handling almost the
same kind of data but not quite enough. In EF Core abstraction is used when
adding basic CRUD (3.2.1 CRUD) functionalities to the application. This is done
with DbSet called generic class and by instantiating it with entity class. That way
all the methods under DbSet are passed for the use of the entity and thus not

28

needed to be included in the entity-specific implementation. In other words ab-
straction is there to save you from writing or using the same code twice.

5.1.3 Repository pattern

Discussion around repository pattern with EF Core have been vivid since the first
versions of it. Some say it’s totally must have (Is the Repository pattern useful

with Entity Framework) some it doesn’t offer anything what EF Core wouldn’t al-

ready have (Repositories On Top UnitOfWork Are Not a Good Idea). But what is
this repository pattern in the first place?

Repository pattern is a way of structuring your application into layers which hide
parts of functionality behind dedicated repository class or classes (graph 3.1). In
the repository is located needed methods to access database for example:
GetProductByName(string name) will return the product entity which name
matches to the given string-type parameter. This way when designing something
else than database connection developer doesn’t need to worry about how the

data is moving.

 GRAPH 3.1 Simplified diagram about repository pattern (Design the infrastruc-
ture persistence layer. Documentation page)

This makes all perfectly sense when ORM configuration is complicated. But what
if ORM is not that complicated anymore. Or more like: how complicated the ORM
needs to be to require repository pattern applied. Many say that EF Core is
enough simple to make it obsolete and that repository pattern even hides some
important parts of EF Core.

29

I must agree with that. Firstly because I hate all the excess complexity in the
software architecture. Repository pattern tends to make you needlessly spend
time trying to find where the actual logic is happening. If this is not absolutely
necessary I would advise to avoid it. Secondly creating these repositories takes
time. Sometimes abstraction is worth it (5.1.2 Level of abstraction) but it’s also

possible to over-engineer your application. Over-engineering leads to confusion
and thus increases the likelihood of bugs. Thirdly layered code is horrible to read.
You might have some idea where everything is if the source code follows some
naming standard but you still need to jump from file to file to find the important
parts. As an alternative to this you could have everything in one layer or even in
one file. To me the latter seems like a better option in most of the cases.

EF Core is made to tackle this excess jumping. What needed to be handled with
older ORMs by the developer is now taken care by the EF Core under the hood.
Also LINQ is a huge help in this since you can with quite a little amount of read-
able code create logical queries. This paired with EF Core’s CRUD functions cre-

ates powerful tool to access database without need of some excess layers in
between (code 3.1).

var products = this.Context.Products

 .Where(p => !p.IsDeleted)

 .Join(

this.Context.ProductInfo,

 p => p.Barcode,

 i => i.Code,

(product, info) => new {

Barcode = product.Barcode,

Price = product.Price,

VatPercentage = product.VatPercentage,

Name = info.Name,

Unit = info.Unit,

IsMeasured = info.IsMeasured,

Exclude = info.IsDeleted

}

)

.Where(x => !x.Exclude);

 CODE 3.1 Example query with LINQ and EF Core combined (from Shop Man-
agement Tool source code)

30

In my opinion as good as repository pattern is EF Core has made it obsolete. I
would advice to let it go in order to fully harness the possibilities of EF Core.

5.2. Programming

Programming is the ground work of software development. For the end product it
matters a lot how the projects programming has been carried out. In this chapter
I will go through some of the main parts of it.

5.2.1 Programming environment

Programming environment means the developing tools that is needed to deploy
a working software up from the source code. These are minimally text editor, build
automation tools and debugger. The most common way to form the environment
is to use IDE which have all or most of these in the same software. When it comes
to Shop Management Tool for me the IDE-of-choice was Visual Studio Code.

Visual Studio Code is one of the most popular development tools in the world
currently (Top IDE Index) due to its simplicity and adaptability. Where other IDEs
are inherently made for one programming language or even framework VS Code
aims to be modified by extensions offered by the community. If you want to code
for example in PHP you just need to download extension for PHP intellisense,
color formatting and debugger and you are good to go. The only down side is that
the extensions really need to be there and someone needs to support and update
them. Some languages (like Java for example) lacks decent extensions in VS
Code and thus you still need to pick some other IDE if you want to develop with
it.

For me VS Code suited utmost excellently. There was the best tools offered by
the .NET Core team itself and I could just choose the ones I needed. This is also
one my favorite things in VS Code. For example I didn’t need any test automation

added to the IDE so I left it out. There’s also a lot of extra things like code snippets

or color themes that might make coding a little bit faster or more pleasant.

31

One more amazing thing in VS Code is that it works in most of the operating
systems including Windows, iOS and most of Linux distributions. A straightfor-
ward plugin for terminal proved to be handy especially on Linux since I didn’t need

keep terminal in separated window as usual but I could run commands in the
same window with the source code editor and version control plugin. What’s more

you can be sure that even if you are need to use some other operating system
than the one you are used to, you don’t need to change the IDE. VS Code is
platform-agnostic.

5.2.2 Compiler

.NET Core is a implementation of Common Language Infrastructure (CLI). CLI
contains set of rules and specifications that give a frame for what programming
languages need to adhere in order to be fit for the runtime environment (Graph
5.1). In addition to CLI there is a specification called Common Language Specifi-
cation (CLS) to offer standard for programming languages. The beauty in CLS is
that it allows different languages to be compiled to run in the same environment
as long as they follow this CLS standard (Common Language Infrastructure
(CLI)).

32

 GRAPH 5.1 Place of Common Language Infrastructure in the program code han-
dling process (Overview Of Common Language Infrastructure. Internet article)

Near to CLS fares another standard called Common Type System (CTS). This
makes the communication between the different languages (under CLS standard)
possible. CTS makes sure that the data types written in different languages can
to interact with each other (Common Language Infrastructure (CLI)).

5.2.3 Testing

Testing wasn’t high on my priority at the beginning especially when it came to unit

tests. Many people are trying give professional impression by unit testing every-
thing but in my opinion it is just non-sense. Unit tests should be used only in very
special places such as when some complicated logic is applied and only when
you are writing it yourself. There is no use to test functions offered by gigantic IT
companies like Microsoft since they have been most certainly unit tested already
by not only the creators but many other developers already. But make no mistake,
writing unit tests can be a good idea. You just need to know what you are doing.

33

Shop Management Tool wasn’t created without unit tests. At some point there

was fully functional testing structure with mocked repositories xUnit-library to offer
some handy functions. Firstly that proved to be a lot of work to set up. Secondly
it was quite useless. There just wasn’t that many functionalities that unit tests

would really benefit since the sole purpose of the backend application was to
handle data with methods introduced by EF Core. After a while I ceased writing
these useless tests and concentrated on something useful.

At some point I thought the repositories were essential to keep up the unit test
structure but actually mocking DbSets (3.2.3 DbContext) is totally enough and
thus that’s just another reason why EF Core users should not use repository pat-

tern (5.1.3 repository pattern).

Unit tests aren’t the only tests there is. For this project the more significant thing
was to have a testing side which to use before pushing a new version or feature
to production. The basic idea was to have a test database with test live application
to play with instead of testing in production but I won’t go into any further details
on the technical side of it now since it is out of the scope of this thesis.

Anyhow having a test environment is a good idea for many reasons: firstly you
can test your application even when the production application is in use and sec-
ondly when you test with production environment something can go wrong and in
worst case you can break something. And tester should never be afraid of break-
ing the software when testing. There was many some cases that I introduced
some feature to the customer on the test side before actually pushing it to pro-
duction. This was handy tool to make sure the feature was really the one they
wanted.

5.2.4 Customer communication

Very few software projects have too much of customer communication. Same
goes with Shop Management Tool. The beginning of the development process
was very busy. It was for the customer as well as for me. Neither of us really had
the time to arrange decent meetings. The overall situation at the beginning of the
project was somewhat chaotic.

34

Once the most pressing requirements had been deployed and worst bugs solved
we had finally some time to organize well-thought meetings. Every meeting had
to have some preset agenda and it needed to produce an idea what to do and
when. This helped all sides to get bigger picture of the project and thus better
understanding what the current status of project is. This way customer has better
control on the project and developers end up less frequently in situations where
they are creating something that is not needed.

Some notable progress was happening in the course of the project not only the
developer side but in the customer as well. Big part of the customer communica-
tion is to know how much and with what language to describe the software spec-
ifications to the customer who in most of the cases has very little experience on
the software development itself. I was quite fortunate to have quick learning and
analytically capable representative on the customer’s side so that during these

several months of communication and discussion the specifications got better
and better.

Something I would advise everyone to aim at is constant learning together with
the customer. Achieving this is easier said than done. In my case it took many
months to arrive in the point that we could speak about concepts like database.
It also saves a lot of time when customer learns what tasks are easy to do soft-
ware-wise and which ones takes more effort. Same goes the other way around.
For programmer it is crucial to understand the business you are optimizing.

35

6 DISCUSSION

For the purpose of average sized web application Entity Framework Core is more
than sufficient. It offered a lot of well-thought out-of-box functionalities needed to
build seamless communication between database and API server. Model was
easy to create and maintain via migrations and DbContext while LINQ integrated
CRUD abilities made it seamless to query database without writing a line of SQL.

Even though Entity Framework Core left me mostly satisfied, some of the features
weren’t still complete. Code-generation in scaffolding and migrations were seem-
ingly unfinished and needed after all some manual refining to make them work
as intended. One minor inconvenient thing also was a wide variety in types how
to configure the model. Instead of just choosing one type and use it throughout
the configuration they were configuration specific. This made the code a little bit
messy to read and maintain.

Overall my experience is still positive. Setting up the initial application was mostly
automated, online documentation was very good and cross-platform support
made it flexible to deploy. I would recommend Entity Framework Core to any-one
trying to achieve the same goals as I did in this thesis.

36

REFERENCES

Smith, Jon P., Manning Publications Co., 2018. Entity Framework Core in Action.
Haverbeke, Marijn, No Starch Press Inc., 2019. Eloquent JavaScript, 3rd Edition.
What is Entity Framework? Internet article. Read 10.11.2019. https://www.enti-tyframeworktutorial.net/what-is-entityframework.aspx
.NET Core is the future of .NET. Blog post. Read 12.11.2019. https://devblogs.microsoft.com/dotnet/net-core-is-the-future-of-net/
Loading related data. Documentation page. Read 13.11.2019. https://docs.mi-crosoft.com/en-us/ef/core/querying/related-data
Lazy loading with EF Core. Internet article. Read 9.11.2019. https://csharp.chris-tiannagel.com/2019/01/30/lazyloading/
POCO Classes in Entity FrameWork. Internet article. Read 5.10.2019. https://www.c-sharpcorner.com/UploadFile/5d065a/poco-classes-in-entity-framework/
Is the Repository pattern useful with Entity Framework? Blog Post. Read 23.10.2019. https://www.thereformedprogrammer.net/is-the-repository-pattern-useful-with-entity-framework/
Is the Repository pattern useful with Entity Framework? – part 2. Blog post. Read 23.10.2019. https://www.thereformedprogrammer.net/is-the-repository-pattern-useful-with-entity-framework-part-2/
Repositories On Top UnitOfWork Are Not a Good Idea. Blog post. Read 24.10.2019. https://rob.conery.io/2014/03/03/repositories-and-unitofwork-are-not-a-good-idea/
Overview of the .NET Framework. Documentation page. Read 2.11.2019. https://docs.microsoft.com/en-us/dotnet/framework/get-started/overview?redi-rectedfrom=MSDN
Inversion of control - Dependency injection. Internet article. Read 5.11.2019. https://www.tutorialsteacher.com/ioc/dependency-injection
What is an ORM and Why You Should Use it. Internet article. Read 12.11.2019. https://blog.bitsrc.io/what-is-an-orm-and-why-you-should-use-it-b2b6f75f5e2a
What is Object/Relational Mapping? Internet article. Read 12.11.2019. http://hi-bernate.org/orm/what-is-an-orm/

37

Why does one use dependency injection? Internet forum post. Read 6.11.2019. https://stackoverflow.com/a/14301496/12304870
Compare EF Core & EF6. Documentation page. Read 14.10.2019. https://docs.microsoft.com/en-us/ef/efcore-and-ef6/
Should I use EF6 or EF Core? Documentation page. Read 16.10.2019. https://docs.microsoft.com/en-us/ef/ef6/#should-i-use-ef6-or-ef-core
Object Relational Mapping Concepts. Internet article. Read 4.11.2019. https://medium.com/@codeshifu/object-relational-mapping-concepts-e2ff0838590c
What is CRUD? Internet article. Internet article. Read 15.10.2019. https://www.codecademy.com/articles/what-is-crud
Basic Introduction to Data Annotation in .Net Framework. Internet article. Read 18.10.2019. https://code.msdn.microsoft.com/Basic-Introduction-to-Data-244734a4
The Entity Framework Core Model. Internet article. Read 18.10.2019. https://docs.microsoft.com/en-us/ef/ef6/#should-i-use-ef6-or-ef-core
The Fluent API HasKey Method. Internet article. Read 11.11.2019. https://docs.microsoft.com/en-us/ef/ef6/#should-i-use-ef6-or-ef-core
The Entity Framework Core DbContext. Internet article. Read 10.11.2019. https://www.learnentityframeworkcore.com/dbcontext
Fluent API Configuration. Internet article. Read 7.11.2019. https://www.learnenti-tyframeworkcore.com/configuration/fluent-api
Reverse Engineering. Documentation page. Read 3.11.2019. https://docs.micro-soft.com/en-us/ef/core/managing-schemas/scaffolding
Migration in Entity Framework Core. Internet article. Read 19.10.2019. https://www.entityframeworktutorial.net/efcore/entity-framework-core-migra-tion.aspx
Entity Framework Core Snapshot. Internet article. Read 19.10.2019. https://softdevpractice.com/blog/entity-framework-core-snapshot/
Naming Guidelines. Documentation page. Read 11.10.2019. https://docs.micro-soft.com/en-us/dotnet/standard/design-guidelines/naming-guidelines
Overview Of Common Language Infrastructure. Internet article. Read 14.11.2019. https://www.c-sharpcorner.com/blogs/overview-of-common-lan-guage-infrastructure

38

Common Language Infrastructure (CLI). Internet article. Read 30.10.2019. https://searchapparchitecture.techtarget.com/definition/Common-Language-In-frastructure-CLI
MVC Architecture. Internet article. Read 29.10.2019. https://www.tutori-alsteacher.com/mvc/mvc-architecture
ASP.NET MVC - Model. Internet article. Read 12.10.2019. https://www.tutori-alsteacher.com/mvc/mvc-model
ASP.NET MVC - Controllers Internet article. Read 16.10.2019. https://www.tuto-rialspoint.com/asp.net_mvc/asp.net_mvc_controllers.htm
Controller methods and views in ASP.NET Core. Documentation page. Read 21.10.2019. https://docs.microsoft.com/en-us/aspnet/core/tutorials/first-mvc-app/controller-methods-views?view=aspnetcore-3.0
View (MVC). Internet article. https://www.techopedia.com/definition/27453/view-mvc-aspnet
Fluent API in Entity Framework Core. Internet article. Read 24.10.2019. https://www.entityframeworktutorial.net/efcore/fluent-api-in-entity-framework-core.aspx
What is an API? Internet article. Read 1.11.2019. https://apifriends.com/api-man-agement/what-is-an-api/
RESTful API. Internet article. Read 18.10.2019. https://searchapparchitec-ture.techtarget.com/definition/RESTful-API
I Don’t Speak Your Language: Frontend vs. Backend. Internet article. Read 7.10.2019. https://blog.teamtreehouse.com/i-dont-speak-your-language-frontend-vs-backend
Separation of concerns. Internet article. Read 3.10.2019. https://deviq.com/sep-aration-of-concerns/
Design the infrastructure persistence layer. Documentation page. Read 20.11. 2019. https://docs.microsoft.com/en-us/dotnet/architecture/microservices/mic-roservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
Top IDE Index. Internet article. Read 4.11.2019. https://pypl.github.io/IDE.html
Conventions in Entity Framework Core. Internet article. Read 28.11.2019. https://www.learnentityframeworkcore.com/conventions

39

APPENDICES

Appendix 1. Entity Framework and Entity Framework Core comparison chart
This chart is comparing versions up to Entity Framework 6.2.0 and Entity Frame-
work Core 3.0.0. (Compare EF Core & EF6. Microsoft documentation.)

Creating a model

Feature EF 6 EF Core
Basic class mapping Yes 1
Constructors with parameters 2.1
Property value conversions 2.1
Mapped types with no keys 2.1
Conventions Yes 1
Custom conventions Yes 1.0 (partial)
Data annotations Yes 1
Fluent API Yes 1
Inheritance: Table per hierarchy (TPH) Yes 1
Inheritance: Table per type (TPT) Yes
Inheritance: Table per concrete class (TPC) Yes
Shadow state properties 1
Alternate keys 1
Many-to-many without join entity Yes
Key generation: Database Yes 1
Key generation: Client 1
Complex/owned types Yes 2
Spatial data Yes 2.2
Graphical visualization of model Yes
Graphical model editor Yes
Model format: Code Yes 1
Model format: EDMX (XML) Yes
Create model from database: Command line Yes 1

40

Create model from database: VS wizard Yes
Update model from database Partial
Global query filters 2
Table splitting Yes 2
Entity splitting Yes
Database scalar function mapping Poor 2
Field mapping 1.1
Nullable reference types (C# 8.0) 3

Querying Data

LINQ queries Yes 1.0 (in-progress for
complex queries)

Readable generated SQL Poor 1
GroupBy translation Yes 2.1
Loading related data: Eager Yes 1
Loading related data: Eager loading for de-
rived types 2.1
Loading related data: Lazy Yes 2.1
Loading related data: Explicit Yes 1.1
Raw SQL queries: Entity types Yes 1
Raw SQL queries: Keyless entity types Yes 2.1
Raw SQL queries: Composing with LINQ 1
Explicitly compiled queries Poor 2
Text-based query language (Entity SQL) Yes
await foreach (C# 8.0) 3

Saving data
Change tracking: Snapshot Yes 1

41

Change tracking: Notification Yes 1
Change tracking: Proxies Yes
Accessing tracked state Yes 1
Optimistic concurrency Yes 1
Transactions Yes 1
Batching of statements 1
Stored procedure mapping Yes
Disconnected graph low-level APIs Poor 1
Disconnected graph End-to-end 1.0 (partial)
Other features
Migrations Yes 1
Database creation/dele-
tion APIs Yes 1
Seed data Yes 2.1
Connection resiliency Yes 1.1
Lifecycle hooks (events,
interception) Yes
Simple Logging (Data-
base.Log) Yes
DbContext pooling 2

Database providers
SQL Server Yes 1
MySQL Yes 1
PostgreSQL Yes 1
Oracle Yes 1
SQLite Yes 1
SQL Server Compact Yes 1.0
DB2 Yes 1

42

Firebird Yes 2
Jet (Microsoft Access) 2.0
Cosmos DB 3
In-memory (for testing) 1

