
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Prototyping 

Touchless User Interface  

for Interacting with a Website 

Jungsoo Moon 

 

 
 
BACHELOR’S THESIS 
December 2019 
 
Degree Programme in Media and Arts 



 

 

ABSTRACT 

Tampereen ammattikorkeakoulu 
Tampere University of Applied Sciences 
Degree Programme in Media and Arts 
 
MOON, JUNGSOO:  
Prototyping Touchless User Interface for Interacting with a Website 
 
Bachelor's thesis 42 pages  
December 2019 

The objective of this thesis was to implement a touchless user interface that runs 
in the web browser for interacting with a website, using the input received through 
running face tracking and facial expression recognition on a video stream from a 
webcam. 
 
For this, a high fidelity prototype is developed as a web application, aiming to 
perform the following operations on the demo website created as a part of the 
prototype: point and click, scrolling, and paging. For point and click operations, 
two different concepts are presented: the point-pointer and the area-pointer, 
which enables performing the operations on the point and the area, respectively. 
 
The prototype that performs the aimed operations is successfully implemented, 
showing that it is feasible to create a touchless user interface that runs in the web 
browser. In this thesis, techniques used for implementing the prototype are 
documented, as well as limitations found during the development process. 

Key words: touchless user interface, prototyping, face tracking, facial expres-
sion recognition, web browser, web development 



3 

 

CONTENTS 

1 INTRODUCTION .................................................................................. 5 

1.1 Motivation ....................................................................................... 5 

1.2 Scope and goal .............................................................................. 5 

2 Touchless interaction ............................................................................ 7 

2.1 An emerging method for achieving human-computer interaction ... 7 

2.2 Characteristics of touchless interaction .......................................... 7 

2.3 Benefits of touchless interaction..................................................... 8 

2.4 Applications of touchless interaction .............................................. 9 

3 Prototyping a touchless user interface for interacting with a website .. 12 

3.1 Concept ........................................................................................ 12 

3.2 Input for controlling the prototype ................................................. 14 

3.2.1 Getting a video stream from the webcam ........................... 15 

3.2.2 Getting the position of the face for point operation ............. 15 

3.2.3 Getting signal for click operation from the facial 
expression .......................................................................... 17 

3.2.4 Preventing unwanted multiple clicks ................................... 19 

3.3 Point and click using the point-pointer .......................................... 20 

3.3.1 Creating the point-pointer ................................................... 20 

3.3.2 Mapping the position of the face to the viewport ................ 21 

3.3.3 Moving the point-pointer ..................................................... 23 

3.3.4 Detecting an element with the point-pointer ....................... 23 

3.3.5 Checking if the pointed element is clickable ....................... 24 

3.3.6 Clicking the pointed element .............................................. 25 

3.4 Point and click using the area-pointer .......................................... 26 

3.4.1 Creating the area-pointer .................................................... 26 

3.4.2 Selecting an area according to the position of the face ...... 27 

3.4.3 Detecting elements in the pointed area .............................. 28 

3.4.4 Indicating click-triggering facial expression with emojis ...... 31 

3.4.5 Clicking the element in the pointed area ............................. 32 

3.5 Scrolling and paging ..................................................................... 33 

3.5.1 Scrolling up and down ........................................................ 33 

3.5.2 Paging backward and forward ............................................ 34 

4 Discussion .......................................................................................... 37 

4.1 Results ......................................................................................... 37 

4.2 Limitations .................................................................................... 37 



4 

 

4.2.1 Lack of a native method for checking event listeners of the 
element .............................................................................. 37 

4.2.2 Limited number of detectable facial expressions ................ 37 

4.3 Development suggestions ............................................................ 38 

REFERENCES ........................................................................................ 39 

 



5 

 

1 INTRODUCTION 

 

 

1.1 Motivation 

 

While touchless user interface is growing popular as a new way of interacting with 

a computer, its usage often entails acquiring specialized software/hardware. Mo-

tivated by this circumstance, this thesis examines how the touchless user inter-

face that runs in the web browser can be implemented, only using a webcam, 

which is built-in input device on most laptops and smartphones nowadays. 

 

1.2 Scope and goal 

 

Touchless interaction is an emerging interaction technique in Human-Computer 

Interaction (HCI) field that studies the design of computer technology, focusing 

on the interaction between humans and computers [1]. This thesis studies the 

practical implementation of touchless interaction on the web. The web has a 

unique interface of links that enable changing displayed content and accessible 

links. The position of the interactive elements is not restricted to specific areas 

such as a menu bar but spread throughout the document [2]. In order to enable 

interaction in this particular environment, a touchless user interface is prototyped 

to perform the following operations: 

 

 Point and click 

 Scrolling up and down 

 Paging back and forward 

 

The prototype is implemented as a web application and made to perform the 

aimed operations on a demo website created as a part of the prototype. For this, 

web technologies such as HTML, CSS, and JavaScript are used along with Web 

API provided by the web browser. Touchless input for controlling the prototype is 

received by running face tracking and facial expression recognition on the video 

stream from the webcam, using a JavaScript library called face-api.js [3]. Face-

api.js is built on top of TensorFlow.js [4], a JavaScript-based machine learning 



6 

 

framework that helps to solve complex problems, such as computer vision and 

speech recognition, in the web browser. 

 

The thesis focuses on demonstrating concepts and techniques used for prototyp-

ing a touchless user interface that can perform the pursued operations on the 

demo website, after a brief introduction to touchless interaction. Parts related to 

a framework technology used for developing the prototype (React [5]) are kept to 

minimal to make the thesis concise. To check the entire code of the prototype, 

visit a Git repository at https://github.com/dalgrang/touchless-ui-for-a-website. 

 

 

https://github.com/dalgrang/touchless-ui-for-a-website


7 

 

2 Touchless interaction 

 

 

2.1 An emerging method for achieving human-computer interaction 

 

Touchless interaction is rising as a new interaction paradigm with the advance-

ment in voice recognition and gesture recognition that enable us to communicate 

with computers using voice or gesture [6]. Interaction can be categorized as 

touchless if it happens without physical contact between the human and the com-

puter. Therefore, devices like a Wii that requires using a wireless controller for 

interaction is not touchless [7]. 

 

Increasing demand for touchless interaction is well reflected in market research 

reports. A report from Fortune Business Insights anticipated that the global 

speech and voice recognition market to be worth USD 28.3 Billion by 2026, grow-

ing at a compound annual growth rate (CAGR) of 19.8% between 2018 and 2026 

[8]. The gesture recognition market is anticipated to grow at CARG of 29.63% 

between 2017 and 2022, reaching USD 18.98 Billion by 2022, according to a 

report from MarketsandMarkets [9]. 

 

2.2 Characteristics of touchless interaction 

 

By contrasting characteristics of touchless interaction with that of touch interac-

tion, properties of touchless interaction can be examined clearly. Table 1 below, 

which is constructed by O’Hara et al., exhibits some contrast points of touch and 

touchless interaction [10]. 

 

Touch Touchless  

co-proximate with surface  distant from surface  

transfer of matter  no transfer of matter  

pressure on surface  no pressure on surface  

momentum of object  no momentum  

attrition and wear of surface  no attrition or wear  

movement constrained by surface  freedom of movement  

haptic feedback  no haptic feedback  

Table 1. Contrasting characteristics of touch vs. touchless interaction 



8 

 

First, touchless interaction happens at a distance from a surface of a system, 

while touch interaction requires the system to be in reach for touching. Depends 

on the sensing technology used for touchless interaction, the distance from the 

surface can be varied. Second, there is no transfer of matter to or from the system 

with touchless interaction, while a transfer of matter is necessitated with touch 

interaction due to contact required for interaction. Third, it is improbable to cause 

damage to the system with touchless interaction since no pressure or momentum 

is applied to the surface of the system. Contrarily, damage can occur to the sys-

tem with touch interaction because of its nature that requires touching the surface 

of the system, applying pressure and momentum. Fourth, with touchless interac-

tion, movement is not constrained by the surface of the system, unlike movement 

with touch interaction. Finally, touchless interaction doesn’t give haptic feedback, 

while touch interaction provides one when the contact is made with the surface 

of the system. Consequently, a lack of haptic feedback in touchless interaction 

reduces resources to refine manipulations for interacting with the system [10]. 

 

2.3 Benefits of touchless interaction 

 

According to de la Barré et al., circumstances that touchless interaction is favor-

able over touch-based interaction are as follows [7]:  

 

 In places where a high hygienic condition is required, such as operating 

rooms for surgery, using touchless interaction for managing medical de-

vices can save time and resources compared to using touch interaction 

that necessitates sterilization after each surgical operation. 

 In locations such as public spaces, where vandalism could take place, us-

ing touchless interaction for interactive installations can prevent harm by 

positioning input and out devices at a distance. 

 In environments such as a classroom, where interactive systems have big 

displays at a distance for shared use by a number of people, touchless 

interaction can be useful.  

 When there is a very short time to search, hold, and understand input de-

vices, touchless interaction comes handy compared to touch interaction. 

 



9 

 

In addition, the user could possibly find a touchless interaction more interesting 

and enjoyable to use than a touch interaction even if it is more challenging to use 

and more inclined to error. While reasons for this haven’t been researched 

enough so far, one hypothesis is that feeling of gaining magical power that comes 

when controlling something remotely without needing to physically touch it plays 

as the major factor [7]. 

 

2.4 Applications of touchless interaction 

 

Each technology has suitable applications and markets according to its ecological 

niche. Thus, it is incorrect to predict that new technologies such as Microsoft Ki-

nect that enable touchless interaction would put an end to the keyboard and 

mouse, replacing touch interaction [2]. Touch and touchless interaction coexist 

and compensate each other, thriving in applications that are suitable for each. 

Below, examples of touchless interaction that found its application in automotive, 

consumer, and healthcare sectors, are introduced. 

 

 

FIGURE 1. Amazon Echo that receives voice input from the user [11] 

 

In the consumer sector, touchless interaction is adapted to a Smart home where 

advanced automation systems are integrated to enable managing heating, light-

ing, and electronic devices remotely. In particular, smart speakers that function 

as a hub of the Smart home, such as Amazon Echo and Google Home, are 



10 

 

achieving commercial success in this area [6]. Figure 1 illustrates Amazon Echo 

that controls other connected smart devices with the voice command. It is inte-

grated with Amazon’s virtual assistant Alexa, which reacts to the wake word 

‘Alexa’. The user can send the voice command to the device by speaking natu-

rally after the wake word, to perform various operations [12]. 

 

 

FIGURE 2. BMW gesture control system that allows operating various function 

with hand gestures [13] 

 

In the automotive sector, touchless interaction is being adapted as it makes uti-

lizing a built-in system easier and decreases the probability of accidents caused 

by the distraction of the driver by reducing the need for taking eyes away from 

the road [14]. For example, BMW gesture control system that uses hand gestures 

for performing various functions such as accepting/rejecting an incoming call and 

increasing/decreasing volume. Hand gestures of the driver are detected by a 

camera in the roof lining that scans an area in front of the dashboard, as shown 

on the left side of Figure 2. On the right side of the figure, a hand gesture (swiping 

the hand towards the passenger side, across the control display) that rejects an 

incoming call is illustrated [13]. 

 



11 

 

 

FIGURE 3. Image manipulation with touchless hand gestures using GestSure 

system [15] 

 

In the healthcare sector, such as hospitals, an interest in touchless interaction is 

growing as it offers an effective solution for keeping the environment sterilized by 

removing the need for touching the systems [16]. An example of it is GestSure 

system that utilizes Microsoft Kinect for enabling surgeons to navigate MRI and 

CT scans with touchless hand movements [17]. Figure 3 shows a surgeon ma-

nipulating a medical image in the operating room without breaking sterility by us-

ing touchless interaction. 



12 

 

3 Prototyping a touchless user interface for interacting with a website 

 

 

3.1 Concept 

 

The prototype is built as a single-page application using React, which is a 

JavaScript library for building user interfaces, to be able to dynamically update 

the content of the demo website, without reloading the entire application. By doing 

so, the prototype application is made to keep functioning without interruption, 

when the user navigates between pages of the demo website. To interacts with 

the content of the demo website, the touchless user interface sits on top of the 

demo website, as illustrated in Figure 4. 

 

 

FIGURE 4. Structure of the prototype 

 

The touchless user interface is designed to be controlled using input from the 

face. The user’s face is captured on a video stream from the webcam, and by 

running face tracking and facial expression recognition on the video stream using 



13 

 

face-api.js, the position of the face and facial expression are received. The posi-

tion of the face is used to enable pointing operation, and facial expression is used 

to trigger click operation. 

 

For performing point and click operations, two different concepts are imple-

mented. The first concept is to use a point-pointer that is similar to a traditional 

mouse cursor for the operations. The point-pointer moves in the browser’s view-

port, according to the position of the face, and when it hovers over a clickable 

element of the website, click operation can be triggered by making a facial ex-

pression corresponding to an emoji appeared on it, as illustrated in Figure 5. 

 

 

FIGURE 5. Pointing a clickable element with the point-pointer 

 

The second concept is to use an area-pointer which points an area in the 3x3 grid 

that covers the entire viewport for the operations. The area-pointer points an area 

according to the position of the face, and detects clickable elements beneath the 

pointed area. Clicking a specific one among the multiple elements in the pointed 



14 

 

area is achieved by assigning different facial expressions for triggering click op-

eration on each element. The facial expression that triggers click operation is 

indicated on each element with a corresponding emoji, as illustrated in Figure 6. 

 

 

FIGURE 6. The area-pointer detecting multiple clickable elements in the pointed 

area 

 

Scrolling operations are performed by clicking buttons that are made to appear 

at the top (for scrolling up) or at the bottom (for scrolling down) of the viewport, 

when the point-pointer and the area-pointer are pointing upward or downward 

from the boundaries that are defined for each. When the point-pointer and the 

area-pointer are pointing leftward or rightward from the defined boundaries, but-

tons for triggering paging operations are made to appear at the left (for paging 

backward) or at the right (for paging forward) of the viewport. 

 

3.2 Input for controlling the prototype 

 



15 

 

3.2.1 Getting a video stream from the webcam 

 

In the web browser, accessing the video stream from the webcam is achieved by 

using the MediaDevices.getUserMedia() method provided by Web API. 

The method asks the user permission for accessing a media input such as a 

webcam or a microphone, and once the user accepts permission, it returns the 

MediaStream object that contains the input from the requested media device 

[18]. For the prototype, a video stream with a low resolution (320 x 240 pixels) is 

received from the webcam for fast performance.  

 

It is found that the received video stream using the method is not mirrored, 

resulting in its left and right direction to be the other way around from the user’s. 

Thus, the position information received by tracking face on the video stream 

needs to be handled accordingly to represent the user’s left and right correctly. 

 

3.2.2 Getting the position of the face for point operation  

 

When the face is detected from the video stream, face-api.js returns a bounding 

box (a blue-lined rectangle in Figure 7) that contains the detected face, and this 

bounding box provides its coordinates relative to the video stream. While the cen-

ter position of the bounding box (a red circle in Figure 7) can be used as input for 

point operation, it is found that it doesn’t track the face sufficiently when the face 

is turned left/right or tilted up/down. 

 

 

FIGURE 7. The bounding box and facial landmarks tracking the face that is facing 

front and right 



16 

 

 

Thus, face detection is made further to get facial landmarks (green lines in Figure 

7) of the detected face, and the position of the nose tip (a red star in Figure 7) is 

received from it. Figure 7 shows how the center of the bounding box and the 

position of the nose tip track the face that is facing front and right. On the left side 

of the figure where the face is directly facing the webcam, both are tracking the 

face similarly. However, on the right side of the figure where the face is turned 

right, the position of nose tip tracks the face better compared to the center of the 

bounding box. To move the center of the bounding box to the same position as 

the nose tip, the user has to move the entire upper body to shift the position of 

the head. Therefore, the position of the nose tip that better represents turning/tilt-

ing of the face is chosen as input data for pointing operation. In Figure 8, facial 

landmarks of the detected face returned by face-api.js are illustrated in detail. 

 

 

FIGURE 8. 68 facial landmarks where point number 30 indicates the nose tip 

 

The facial landmarks are returned as an array of 68 points, and coordinates of 

the nose tip can be accessed by referring to the index number 30 in the array. 

The coordinates are relative to the video stream on which the face detection runs. 

For instance, with the video stream of 320 x 240 pixels, X and Y coordinates of 

the nose tip range from 0 to 320 and 0 to 240, respectively. An example of the 



17 

 

returned X and Y coordinates of the nose tip, when the face detection runs on the 

video stream of 320 x 240 pixels, is shown in Figure 9. 

 

 

FIGURE 9. An example of the X and Y coordinates of the nose tip 

 

3.2.3 Getting signal for click operation from the facial expression 

 

With face-api.js, the following seven facial expressions can be detected from the 

face: angry, disgusted, fearful, happy, neutral, sad, and surprised. An example of 

a returned JavaScript object that contains the result of facial expressions recog-

nition is shown in Figure 10. 

 

 

FIGURE 10. A result of facial expressions recognition when the face is making a 

happy facial expression 

 

In the object, each facial expression is represented as a 'key: value' pair, where 

the key is a string representation of the facial expression, and the value is a nu-

meric value that indicates a probability of the facial expression being made by the 

face. The probability value ranges between 0-1, where 0 indicates impossibility, 

and 1 indicates certainty. In this prototype, facial expression with a probability 

above 0.85 is considered as an expression that the user is intentionally making. 

 

For the point-pointer (described further in section 3.3) that points a single element 

at a time, ‘happy’ facial expression is used to trigger click operation. Figure 11 

shows a code snippet that checks the probability of happy facial expression to 

determine if the user wants to trigger click operation on the pointed element. The 



18 

 

expressions object contains the result of facial expression recognition, as 

shown in Figure 10. 

 

 

FIGURE 11. A code snippet checking if the user is making ‘happy’ expression to 

trigger click operation 

 

For the area-pointer (described further in section 3.4) that points an area, every 

facial expression, except the ‘neutral’ expression, is used to trigger click operation 

since multiple clickable elements can be detected in the pointed area. The 

‘neutral’ expression is excluded since it is considered as a default expression that 

the user is making without intention for performing any operation. A code snippet 

in Figure 12 checks the probability of every facial expression provided by face-

api.js (except ‘neutral’ expression) to trigger click operation on a specific element 

among multiple elements in the pointed area. 

 

 

FIGURE 12. A code snippet checking what facial expression the user is making 

to trigger click operation on a specific element in the pointed area  



19 

 

 

By using JavaScript Object.key() method on the object expressions 

(shown in Figure 10), an array consists of names of the facial expression is 

returned, and by running the forEach() method on the array, probability of each 

facial expression in the expressions is checked. A facial expression with the 

highest probability is determined at the end of the forEach() execution, and its 

name and probability are assigned to variables detected and probability, 

respectively. Then, when the probability of detected facial expression is above 

0.85, click operation is triggered on the specific element according to the facial 

expression of the user. 

 

3.2.4 Preventing unwanted multiple clicks 

 

It is found that triggering click operation by checking the probability of facial ex-

pression as described in section 3.2.3 causes undesirable multiple clicks since 

the facial expression is made and fade out gradually over time, unlike instant 

action of pressing and releasing a button on the mouse. For example, even if the 

user begins to stop making a facial expression after achieving click operation, 

click operation could be still triggered continuously until the expression fades out 

enough so that the probability of it decreases below 0.85. To solve the issue, 

conditional statements (in code snippets shown in Figures 11 and 12) that were 

only checking if the probability of the detected facial expression is above 0.85, 

are adjusted to check the value of a variable isClicked as well, as shown in 

Figure 13. 

 



20 

 

 

FIGURE 13. Conditional logic for preventing multiple clicks 

 

The variable isClicked is set to False initially, allowing to trigger click opera-

tion when a probability of detected facial expression goes above 0.85. When click 

operation is fired by the facial expression, isClicked is set to True, to prevent 

triggering extra clicks even if the probability of the detected facial expression is 

still above 0.85. When the probability drops below 0.85, indicating that the facial 

expression that triggered the latest click operation is faded out, isClicked is 

set back to False, enabling to trigger click operation when the user newly makes 

a facial expression with the probability higher than 0.85. 

 

3.3 Point and click using the point-pointer 

 

3.3.1 Creating the point-pointer 

 

The point-pointer that moves according to the position of the user’s face is de-

signed to be visually distinguishable from the operating system’s pointer in order 

to avoid confusion, as shown in Figure 14. When its pointy end hovers on the 

clickable elements, a smiling face emoji representing happy facial expression that 



21 

 

triggers click operation is made to appear on its round body. Also, it is sized big-

ger than the operating system’s pointer to be noticed easily. 

 

FIGURE 14. Operating system’s pointer and face-controlled point-pointer 

 

3.3.2 Mapping the position of the face to the viewport 

 

As described in section 3.2.2, coordinates received by tracking the position of the 

nose tip is relative to the dimensions of the video stream on which the face de-

tection is run, not to the dimensions of the viewport. Using a video stream that 

has the same dimensions as the viewport is not a feasible option since the di-

mension of the video stream that can be provided by the webcam is limited while 

the dimension of the viewport can vary significantly depends on how the user 

sizes the web browser. Thus, the coordinate of the nose tip in the video stream 

is processed with a formula shown in Figure 15, to be mapped relative to the 

viewport regardless of dimensions of the video stream and the viewport. 

 



22 

 

 

FIGURE 15. Mapping the position of the face to the viewport 

 

The width and the height of the viewport are received by accessing the 

Window.innerWidth and the Window.innerHeight property that are 

provided the Web API, and they are updated accordingly when the viewport is 

resized by the user to maintain the mapping. In addition, to minimize the distance 

that the user’s face needs to move the point-pointer to the desired point in the 

viewport, a multiplier value sensitivity is added to the formula, as shown in 

Figure 16. The sensitivity is a positive number that is greater than or equal 

to 1. The higher the sensitivity, the less movement is required from the user 

to move the pointer to the desired point. 

 

 

FIGURE 16. A formula accommodating a multiplier value sensitivity 

 

 



23 

 

3.3.3 Moving the point-pointer 

 

Moving the point-pointer in the viewport is achieved by using CSS. First, the 

position property of the point-pointer is set to fixed so that it is positioned 

relative to the viewport. Then the point-pointer’s z-index property is set to a 

higher number than that of the elements in the demo website to make it always 

visible in the viewport. Finally, the point-pointer is moved by assigning the value 

of the pointerX and the pointerY (described in section 3.3.2) to its CSS top 

and right properties, respectively. The pointerY value is assigned to the 

right property instead of the left property, since its left and right directions 

are the other way around from the user’s, as explained in section 3.2.1. Also, the 

point-pointer’s CSS transition property is set to top 300ms, right 

300ms;, in order to move it smoothly without jittering. 

 

With the sensitivity value (described in Figure 16), the pointer can move 

beyond the viewport area, which is not the desired result. Thus, to prevent the 

point-pointer from moving beyond the border of the viewport area, the value of 

the pointerX and the pointerY is limited to stay in a range from 0 to the 

Window.innerWidth and a range from 0 to the Window.innerHeight, 

respectively. 

 

3.3.4 Detecting an element with the point-pointer 

 

Coordinates depicted by a pointy end of the point-pointer is used to detect the 

element on the website. The coordinates of the pointy end are received by using 

the Element.getBoundingClientRect() method of the Web API. The 

method returns a DOMRect object that represents a rectangle containing the 

element on which it is called. By accessing the properties of the DOMRect object, 

the size of the element and its position relative to the viewport can be obtained 

[19]. In Figure 17, calling the method on the point-pointer to get the coordinates 

of its pointy end is illustrated. By accessing the left and the top properties of 

the returned DOMRect object (shown as a rectangle with a purple border), the 

coordinates of the pointy end (shown as a green circle) are received. 

 



24 

 

 

FIGURE 17. Detecting an element at coordinates depicted by the pointy end of 

the point-pointer 

 

The received coordinates are passed as parameters of the 

Document.elementFromPoint() method of Web API. The method returns 

the Element object that is located at the specified coordinates relative to the 

viewport [20]. The point-pointer’s CSS pointer-events property is set to none 

so that an element beneath the point-pointer is returned, not the point-pointer 

itself. The returned element by the method is indicated as a rectangle with a red 

border in Figure 17. 

 

3.3.5 Checking if the pointed element is clickable 

 

The detected element with the point-pointer is examined if it is clickable. The 

element is considered as a clickable if its HTML tag is one that reacts to the click 

operation, such as <a>, <button> and <input>, and it can be checked by 

accessing the element’s tagName property which returns the HTML tag name of 

the element [21]. However, this approach for determining the element’s 



25 

 

clickability doesn’t work if a click event handler is added by the 

addEventListener() method to the element with an HTML tag that doesn’t 

react to the click operation, such as <div>, <span>, <p>, and so on. 

Unfortunately, while some browsers’ developer tool provides a method, such as 

getEventListeners() of Chrome DevTools Console [22], that returns event 

listeners registered on the specified element on their console, the Web API 

doesn’t provide a native method for it at the time of writing. Thus, as a 

workaround, the element’s CSS cursor property is checked if it is set to 

pointer, which commonly indicates that the element is clickable. Checking the 

cursor property of the element is achieved by using the 

getComputedStyle() method of the Web API. A code snippet that checks 

tagName and CSS cursor property of the detected element (a variable 

someElement in Figure 17) is shown in Figure 18. 

 

 

FIGURE 18. A code snippet checking if a detected element is clickable 

 

3.3.6 Clicking the pointed element 

 

Once someElement is turned out to be a clickable element after checking as 

shown in Figure 18, the user can perform click operation on the element by mak-

ing ‘happy’ facial expression, as described in section 3.2.3. Figure 19 shows a 

code snippet that triggers click operation on someElement with the Web API’s 

click() method. Note that the value of isClicked is also checked in the con-

dition of the if statement to prevent unwanted multiple clicks as described in sec-

tion 3.2.4, along with the probability of a happy facial expression. 

 

 



26 

 

 

FIGURE 19. A code snippet triggering click operation on the pointed element with 

‘happy’ facial expression 

 

3.4 Point and click using the area-pointer 

 

3.4.1 Creating the area-pointer 

 

The area-pointer is implemented to be able to point an area in the 3x3 grid that 

covers the browser’s viewport. It is created by nesting nine <div> elements in-

side of a container <div>. The container <div> is made to cover the entire view-

port by setting its CSS properties as followings: position: fixed; top: 0; 

left: 0; width: 100%; height: 100%;. Its z-index property is set to 

the higher value than that of elements in the demo website so that it is always 

positioned above the deme website. The nine <div> elements inside of the con-

tainer are positioned in 3 rows and 3 columns to form a 3x3 grid by setting their 

CSS properties as followings: float: left; width: 33.333%; height: 

33.333%;. The border of the 3x3 grid is made visible to visually indicate each 

area, while its opacity is set low to minimize obstructing visibility of the demo 

website beneath it. In Figure 20, the area-pointer is shown along with <div> el-

ements that structure it. Note that the position of each area in the 3x3 grid is 

named in its class attribute. 

 



27 

 

 

FIGURE 20. The area-pointer 

 

3.4.2 Selecting an area according to the position of the face 

  

The position of the face is separated into nine positions according to where the 

nose tip of the detected face is positioned in relation to the center position of the 

video stream to make it corresponds to the areas in the 3x3 grid. Boundaries that 

separate the position of the face is illustrated as dashed rectangles in the video 

stream in Figure 21. They are set compactly around the center of the video 

stream so that the position of the face can be easily switched with a slight move-

ment of the user’s face. If the detected nose tip is positioned outside of the de-

fined boundaries, buttons that trigger scrolling or paging operation are made ap-

pear, depends on where the nose tip is outside of the defined boundaries. (de-

scribed later in section 3.5) 

 



28 

 

 

FIGURE 21. Selecting an area in the area-pointer according to the position of the 

face 

 

Once the position of the face is recognized by the defined boundaries, an area in 

the 3x3 grid that corresponds to the position of the face is selected, by passing 

the position of the face in conjunction with ‘.area.’ as a parameter to the 

Document.querySelector() method, as shown in Figure 21. The selected 

area is highlighted with CSS background-color property so that the user can 

identify which area in the 3x3 grid is pointed. The opacity of the background-

color is set to a low value to make the demo website beneath it visible. 

 

3.4.3 Detecting elements in the pointed area 

 

Elements of the demo website beneath the pointed area are detected by 

executing the same method used for the point-pointer to get an element at a point 



29 

 

(described in section 3.3.4), throughout the pointed area using nested for-loop, 

as illustrated in Figure 22. 

 

 

FIGURE 22. Detecting elements in the pointed area 

 

The area-pointer’s CSS pointer-events property is set to none so that 

elements beneath the pointed area is returned from the 

document.elementFromPoint() method, not the area-pointer itself. The x 

and y loop variables in the nested for-loop are incremented by 10 at the end of 

each iteration to point the coordinates on every tenth pixel (shown as green 

circles in Figure 22) in the pointed area. This way, the faster performance is 

achieved compared to checking every coordinate in the area, and at the same 

time, the area is still checked densely enough to not miss elements beneath it. 

 

The detected elements in the pointed area are examined if they are clickable by 

checking the elements’ tagName and CSS cursor property, in the same way as 

described in section 3.3.5. Then, to the elements that are identified as clickable, 



30 

 

two classes, ‘clickable’ and ‘clickable’ + clickableElementsCount, are added 

to indicate them as clickable elements, as shown in Figure 23. 

 

 

FIGURE 23. A code snippet that adds two indicator classes to each element iden-

tified as clickable 

 

The first class, ‘clickable’, is added to the element as an indicator that the element 

is already detected as a clickable element. As illustrated in Figure 22 (multiple 

green circles on the elements), the same element can be detected multiple times 

while checking points in the pointed area, and by examining whether the element 

already has the class ‘clickable’, indicating the same element multiple times as a 

clickable element is prevented. With the second class, ‘clickable’ + 

clickableElementsCount, each clickable element is distinguished from 

another. A variable clickableElementsCount provides unique numeric value 

to each clickable element as it increments by 1 when the clickable element is 

detected. A total number of clickable elements that can be detected at once in 

the pointed area is limited to six to correspond to the number of facial expressions 

that trigger click operation on the area-pointer. 

 

Whenever the pointed area is changed, or the page is scrolled, clickable elements 

are detected newly. Before the new detection is made, the two added classes on 

the previously detected clickable elements are removed, so that they can be 

appropriately added to the newly detected clickable elements. 



31 

 

 

3.4.4 Indicating click-triggering facial expression with emojis 

 

Emojis corresponding to the facial expression that triggers click operation is dis-

played on each detected element, using CSS ::after selector, as shown in 

Figure 24. 

 

 

FIGURE 24. Displaying emojis on clickable elements using CSS ::after selec-

tor 

 

The detected elements (elements with ‘clickable’ class) are positioned by setting 

their CSS position property to relative so that emojis added to their pseudo-

element created with CSS ::after can be positioned relative to them. In 

addition, the detected elements are highlighted with CSS outline property. 

While the element’s border property could be used for highlighting purpose, the 



32 

 

outline is used instead since it doesn’t affect the content of the element, unlike 

the border that takes up space from the content [23]. 

 

3.4.5 Clicking the element in the pointed area 

 

In order to trigger click operation on the element in the pointed area, the facial 

expression of the user is checked as described in Figure 12 in section 3.2.3. Also, 

a value of variable isClicked is checked to prevent unwanted multiple clicks 

as described in section 3.2.4. The detected elements are selected with their 

unique class name (‘clickable1’, ‘clickable2’, and so on), and click operation is 

triggered on the element that has an emoji corresponding to the user’s facial ex-

pression, as shown in Figure 25. 

 

 

FIGURE 25. A code snippet triggering click operation on the element in the 

pointed area according to the user’s facial expression 

 

 

 



33 

 

3.5 Scrolling and paging 

 

3.5.1 Scrolling up and down 

 

When the point-pointer reaches the top or bottom border of the browser’s 

viewport, or when the area-pointer receives the position of the face that is located 

upward or downward, outside of the boundaries that are defined to separate the 

position of the face (described in section 3.4.2), it is considered that the user 

intends to perform scroll operation.  

 

The buttons that trigger scrolling up and down operations are made to appear 

only when those operations are possible. Whether the document can be scrolled 

up is determined by checking the value of Window.pageYOffset property that 

shows how much the document is scrolled vertically [24]. When its value is bigger 

than 0, indicating the document can be scrolled up, a button that can trigger 

scrolling up operation is made visible, as shown on the left side of Figure 26. 

Whether the document can be scrolled down is determined by comparing the sum 

of the Window.pageYOffset and the Window.innerHeight (the height of 

the viewport) with the document.documentElement.scrollHeight that 

indicates the total height of the document. When the sum is smaller than the total 

height of the document, indicating the document can be scrolled down, a button 

that can trigger scrolling down operation is made visible, as shown on the right 

side of Figure 26. 

 



34 

 

 

FIGURE 26. Buttons for scrolling operation 

 

For the area-pointer that utilizes multiple facial expressions to trigger click oper-

ation, a ‘happy’ facial expression is chosen for triggering click operation on the 

scroll buttons, and it is indicated by a corresponding emoji on the buttons. 

 

Once the button for the scroll operation is clicked, the Window.scrollBy() 

method is triggered to scroll the document. The method’s first and second 

parameters indicate the amount of the horizontal and the vertical pixel value to 

be scrolled, respectively [25]. Thus, a positive number is passed as the second 

parameter of the method to scroll down the document, while a negative number 

is passed instead to scroll up the document. 

 

3.5.2 Paging backward and forward 

 

When the point-pointer reaches the left or right border of the browser’s viewport, 

or when the area-pointer receives the position of the face that is located leftward 



35 

 

or rightward, outside of the boundaries that are defined to separate the position 

of the face (described in section 3.4.2), it is considered that the user intends to 

perform paging operation. 

 

The buttons that trigger paging operations are made to appear only when the 

current page has a previous page or a next page to go. In order to determine 

whether the current page has a previous or a next page, the pages visited by the 

user is tracked by examining a location object that is provided by React 

Router, which is a popular routing library for React. The location object 

contains the properties regarding the current page’s location, including the key 

property, which has a unique string value presenting the current page [26]. When 

the user navigates between pages, the location.key value of the page is 

added in order of occurrence to an array that is created when the application is 

initiated. If the user pages backward or forward, adding the key of the page to 

the array is prevented since the same key is already existing in the array. When 

the current page’s key value is located other than at the beginning of the array, 

it is determined that the current page has the previous page, and a button for 

paging backward is made to appear as shown in the left side of Figure 27. When 

the current page’s key value is located other than at the end of the array, it is 

determined that the current page has the next page, and a button for paging 

forward is made to appear as shown in the right side of Figure 27. 

 



36 

 

 

FIGURE 27. Buttons for paging operation 

 

Once the button for paging operation is clicked, the page is moved backward or 

forward using the History interface of Web API. When the paging back button is 

clicked, the Window.history.back() method is triggered to move one page 

backward from the current page, and when the paging forward button is clicked, 

the Window.history.forward() method is triggered to move one page 

forward from the current page. 

 



37 

 

4 Discussion 

 

 

4.1 Results 

 

The prototype of touchless user interfaces for interacting with a website is suc-

cessfully developed, and methods used for it are demonstrated in the thesis. For 

performing point and click operation, two different concepts, the point-pointer and 

the area-pointer, are implemented. The point-pointer provided a familiar way to 

interact with the website by imitating a traditional mouse cursor. On the other 

hand, the-area pointer provided a rather experimental way for interacting with the 

website by that pointing an area instead of a point. Scrolling and paging opera-

tions are triggered when the buttons that are designated for the operations are 

clicked by the point-pointer or the area-pointer. While the operations that were 

set as the goal of the prototype are made functional, certain limitations were found 

in the process of development, as described below. 

 

4.2 Limitations 

 

4.2.1 Lack of a native method for checking event listeners of the element 

 

Since Web API doesn’t provide a native method for checking event listeners of 

the element, as described in section 3.3.5, the element’s CSS cursor property 

is examined (assuming its value to be pointer if the element is clickable) in-

stead, to detect the element that is made to react to click event by the the 

addEventListener() method. While this workaround works in most cases, it 

could cause issues in case the cursor property of the clickable element is set 

to something else other than pointer, not following the convention.  

 

4.2.2 Limited number of detectable facial expressions 

 

As a total number of facial expressions that can trigger click operation is limited 

to six (every facial expression detectable using face-api.js, except the ‘neutral’ 

expression), a total number of elements that the area-pointer can detect at once 

in the pointed area is restricted to six, as a consequence. A workaround for this 



38 

 

limitation could be to optimize the layout of the website to avoid cramming more 

than six clickable elements in an area in the 3x3 grid.  

 

4.3 Development suggestions 

 
While the prototype for this thesis is implemented to be controlled by input from 

the user’s face using face tracking and facial expression recognition, other types 

of input could also be integrated by utilizing other techniques such as hand ges-

ture recognition or voice recognition, to develop the prototype further. For exam-

ple, voice recognition could be useful when implementing a typing feature that is 

lacking in the prototype. Also, the prototype could be developed as a web browser 

extension so that it can interact with any other websites in the web browser, not 

only with the demo website that is created as a part of the prototype. 



39 

 

REFERENCES 

[1] Interaction Design Foundation. Human-Computer Interaction (HCI). 

Read: 20.07.2019. 

https://www.interaction-design.org/literature/topics/human-computer-interaction 

 

[2] D. Wigdor et al. Brave NUI World: Designing Natural User Interfaces for Touch 

and Gesture. Elsevier (2011). Read: 20.07.2019. 

 

[3] Vincent Mühler. face-api.js. Read 02.08.2019. 

https://github.com/justadudewhohacks/face-api.js/ 

 

[4] Google Brain Team. TensorFlow.js. Read 02.08.2019. 

https://www.tensorflow.org/js 

 

[5] Facebook. React. Read 02.08.2019. 

https://github.com/facebook/react 

 

[6] Katerina Kralik. The Future of Touchless Technologies: Voice or Gesture 

(2018). Read: 05.08.2019. 

https://program-ace.com/blog/the-future-of-touchless-technologies-voice-or-

gesture/ 

 

[7] Barré, René de la et al. “Touchless Interaction-Novel Chances and Chal-

lenges.” HCI (2009). Read: 01.09.2019. 

https://www.researchgate.net/publication/215876112_Touchless_Interaction_-

_Novel_Chances_and_Challenges 

 

[8] Fortune Business Insights. Speech and Voice Recognition Market Size, Share 

& Industry Analysis, By Component (Solution, Services), By Technology (Voice 

Recognition, Speech Recognition), By Deployment (On-Premises, Cloud), By 

End-User (Healthcare, IT and Telecommunications, Automotive, BFSI, Govern-

ment, Legal, Retail, Travel and Hospitality and Others) and Regional Forecast, 

2019 - 2026 (2019). Read: 26.11.2019. 

https://www.interaction-design.org/literature/topics/human-computer-interaction
https://github.com/justadudewhohacks/face-api.js/
https://www.tensorflow.org/js
https://github.com/facebook/react
https://program-ace.com/blog/the-future-of-touchless-technologies-voice-or-gesture/
https://program-ace.com/blog/the-future-of-touchless-technologies-voice-or-gesture/
https://www.researchgate.net/publication/215876112_Touchless_Interaction_-_Novel_Chances_and_Challenges
https://www.researchgate.net/publication/215876112_Touchless_Interaction_-_Novel_Chances_and_Challenges


40 

 

https://www.fortunebusinessinsights.com/industry-reports/speech-and-voice-

recognition-market-101382 

 

[9] MarketsandMarkets. Gesture Recognition and Touchless Sensing Market by 

Technology (Touch-based and Touchless), Product (Sanitary Equipment, Touch-

less Biometric), Industry, and Geography - Global Forecast to 2022 (2019). Read: 

18.11.2019. 

https://www.marketsandmarkets.com/Market-Reports/touchless-sensing-

gesturing-market-369.html 

 

[10] O’Hara et al. On the Naturalness of Touchless: Putting the "Interaction" Back 

into NUI. ACM Transactions on Computer-Human Interaction (2013). 

Read: 23.09.2019. 

https://www.researchgate.net/publication/242070747_On_the_Naturalness_of_

Touchless_Putting_the_Interaction_Back_into_NUI 

 

[11] Amazon. Amazon Echo Plus: Creating a Smart Home Device Group ECHO 

(2017). Accessed: 20.11.2019. 

https://www.youtube.com/watch?v=UH8I8vKMJ5E 

 

[12] Amazon. Set Up Your Amazon Echo (1st Generation). Read: 15.11.2019. 

https://www.amazon.com/gp/help/customer/display.html?nodeId=201601770 

 

[13] BMW USA. Gesture Controls | BMW Genius How-To (2015). 

Accessed: 22.11.2019. 

https://www.youtube.com/watch?v=wqvAPskg_k0&feature=emb_title 

 

[14] Parkaj Singh. Automotive Gesture Recognition—The Next Level in Road 

Safety (2019). Read: 22.11.2019. 

https://www.electronicdesign.com/automotive/automotive-gesture-recognition-

next-level-road-safety 

 

[15] GestSure. A showcase video embedded in GestSure website.  

Accessed: 17.11.2019. 

https://www.gestsure.com/ 

https://www.fortunebusinessinsights.com/industry-reports/speech-and-voice-recognition-market-101382
https://www.fortunebusinessinsights.com/industry-reports/speech-and-voice-recognition-market-101382
https://www.marketsandmarkets.com/Market-Reports/touchless-sensing-gesturing-market-369.html
https://www.marketsandmarkets.com/Market-Reports/touchless-sensing-gesturing-market-369.html
https://www.researchgate.net/publication/242070747_On_the_Naturalness_of_Touchless_Putting_the_Interaction_Back_into_NUI
https://www.researchgate.net/publication/242070747_On_the_Naturalness_of_Touchless_Putting_the_Interaction_Back_into_NUI
https://www.youtube.com/watch?v=UH8I8vKMJ5E
https://www.amazon.com/gp/help/customer/display.html?nodeId=201601770
https://www.youtube.com/watch?v=wqvAPskg_k0&feature=emb_title
https://www.electronicdesign.com/automotive/automotive-gesture-recognition-next-level-road-safety
https://www.electronicdesign.com/automotive/automotive-gesture-recognition-next-level-road-safety
https://www.gestsure.com/


41 

 

 

[16] Cronin, Seán & Doherty, Gavin. Touchless computer interfaces in hospitals: 

A review. Health Informatics Journal 25(4):146045821774834 (2018).  

Read: 19.11.2019. 

https://www.researchgate.net/publication/323107258_Touchless_computer_inte

rfaces_in_hospitals_A_review 

 

[17] Chakraborty, I., Paul, T. Touchless Interaction: Communication with Speech 

and Gesture. User Experience Magazine, 14(1) (2014). 

Read: 17.11.2019. 

https://uxpamagazine.org/touchless-interaction/ 

  

[18] MDN Web Docs. MediaDevices.getUserMedia(). Read 15.08.2019. 

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia 

 

[19] MDN Web Docs. Element.getBoundingClientRect(). Read 15.08.2019. 

https://developer.mozilla.org/en-

US/docs/Web/API/Element/getBoundingClientRect 

 

[20] MDN Web Docs. DocumentOrShadowRoot.elementFromPoint().  

Read 15.08.2019. 

https://developer.mozilla.org/en-

US/docs/Web/API/DocumentOrShadowRoot/elementFromPoint 

 

[21] MDN Web Docs. Element.tagName. Read 19.08.2019. 

https://developer.mozilla.org/en-US/docs/Web/API/Element/tagName 

 

[22] Google Developers. getEventListeners(object). Read 20.08.2019. 

https://developers.google.com/web/tools/chrome-

devtools/console/utilities#geteventlisteners 

 

[23] MDN Web Docs. outline. Read 12.10.2019. 

https://developer.mozilla.org/en-US/docs/Web/CSS/outline 

 

 

https://www.researchgate.net/publication/323107258_Touchless_computer_interfaces_in_hospitals_A_review
https://www.researchgate.net/publication/323107258_Touchless_computer_interfaces_in_hospitals_A_review
https://uxpamagazine.org/touchless-interaction/
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/Element/getBoundingClientRect
https://developer.mozilla.org/en-US/docs/Web/API/Element/getBoundingClientRect
https://developer.mozilla.org/en-US/docs/Web/API/DocumentOrShadowRoot/elementFromPoint
https://developer.mozilla.org/en-US/docs/Web/API/DocumentOrShadowRoot/elementFromPoint
https://developer.mozilla.org/en-US/docs/Web/API/Element/tagName
https://developers.google.com/web/tools/chrome-devtools/console/utilities#geteventlisteners
https://developers.google.com/web/tools/chrome-devtools/console/utilities#geteventlisteners
https://developer.mozilla.org/en-US/docs/Web/CSS/outline


42 

 

[24] MDN Web Docs. Window.pageYOffset. Read 15.08.2019. 

https://developer.mozilla.org/en-US/docs/Web/API/Window/pageYOffset 

 

[25] MDN Web Docs. Window.scrollBy(). Read 20.08.2019. 

https://developer.mozilla.org/en-US/docs/Web/API/Window/scrollBy 

 

[26] React Training. location. Read 26.08.2019. 

https://github.com/ReactTraining/react-router/blob/master/packages/react-

router/docs/api/location.md 

https://developer.mozilla.org/en-US/docs/Web/API/Window/pageYOffset
https://developer.mozilla.org/en-US/docs/Web/API/Window/scrollBy
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md
https://github.com/ReactTraining/react-router/blob/master/packages/react-router/docs/api/location.md

