
TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Bachelor’s thesis

Information and Communications Technology

2019

Matti Lindholm

IOT-BASED ASSET TRACKING
AND MEASUREMENT
MONITORING PLATFORM

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

BACHELOR’S THESIS | ABSTRACT

TURKU UNIVERSITY OF APPLIED SCIENCES

Information and Communications Technology

2019 | 38 pages, 2 in appendices

Matti Lindholm

IOT-BASED ASSET TRACKING AND
MEASUREMENT MONITORING PLATFORM

The number of IoT devices connected to the Internet is increasing every day. Some of these
devices are sensor devices that enable passive and efficient data acquisition in construction sites,
buildings and vehicles. These features allow close monitoring of changing conditions and
movements of assets such as persons.

This thesis contains an implementation of a web user interface (UI) designed for condition
monitoring and asset tracking use-cases. The background architecture which provides the data
for this UI is provided by an IoT platform. The implementation of the IoT platform is documented
along with the software frameworks utilized to implement it. The goal of this thesis is to provide
an overview of this specific IoT platform and document the most important features of its UI which
was developed as a real-life work development task.

This thesis concludes that IoT data can be effectively utilized using software frameworks and thus
IoT related software solutions can be efficiently implemented. This thesis also contains numerous
practical examples of utilizing these described software frameworks so that their practicality can
be understood. The documented IoT platform was developed at Fidera Ltd.

KEYWORDS:

IoT, IoT Platform, VueJS, LoopBack, Web Application, Tracking, Monitoring

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

OPINNÄYTETYÖ (AMK) | TIIVISTELMÄ

TURUN AMMATTIKORKEAKOULU

Tieto- ja viestintätekniikka

2019 | 38 sivua, 2 liitesivua

Matti Lindholm

IOT-POHJAINEN KOHTEIDEN JA OLOSUHTEIDEN
SEURANTA-ALUSTA

Internetiin kytkettyjen laitteiden määrä kasvaa päivä päivältä. Osa näistä laitteista on
anturilaitteita, jotka mahdollistavat passiivisen ja tehokkaan tiedonkeruun esimerkiksi
rakennustyömailla ja asuinrakennuksissa. Nämä ominaisuudet mahdollistavat muuttuvien
olosuhteiden ja kohteiden, kuten henkilöiden ja ajoneuvojen seurannan.

Tämä opinnäytetyö sisältää verkkokäyttöliittymän toteutuksen, joka on tehty tähän tarkoitukseen.
Käyttöliittymän tausta-arkkitehtuuria kutsutaan IoT-alustaksi, josta tarjotaan yleiskuva sen
toteuttamiseen käytettyjen ohjelmistokehysten lisäksi. Opinnäytetyön tarkoitus on dokumentoida
siinä kuvattu IoT-alusta ja toteutetun käyttöliittymän tärkeimmät ominaisuudet.

Opinnäytetyön johtopäätös on, että IoT-dataa voidaan hyödyntää tehokkaasti ohjelmistokehyksiä
käyttäen, joka mahdollistaa IoT:hen liittyvien ohjelmistoratkaisujen toteuttamisen. Opinnäytetyö
sisältää myös runsaasti käytännön esimerkkejä siitä, miten näitä kuvattuja ohjelmistokehyksiä
voidaan käyttää. Opinnäytetyössä kuvattu IoT-alusta toteutettiin Fidera Oy:ssa.

ASIASANAT:

IoT, IoT-alusta, VueJS, Vuetify, LoopBack, verkkosovellus, sensori

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

CONTENT

LIST OF ABBREVIATIONS 11

1 INTRODUCTION 7

2 INTERNET OF THINGS 8

2.1 Overview 8

2.2 IoT platform 8

3 PLATFORM BACK-END TECHNOLOGIES 10

3.1 Platform architecture 10

3.2 LoopBack4 11

3.2.1 Structure of a LoopBack application 13

3.3 PostgreSQL 15

3.3.1 Installation 16

3.3.2 Extension: TimescaleDB 17

3.3.3 Extension: PostGIS 18

4 PLATFORM FRONT-END TECHNOLOGIES 20

4.1 Basics of VueJS 20

4.1.1 Vue CLI 20

4.1.2 Component-based architecture 21

4.2 Building large-scale applications with VueJS 24

4.2.1 State management using Vuex 24

4.2.2 Routing 25

4.2.3 Environment variables 27

4.3 Vuetify 28

5 PLATFORM USER INTERFACE 31

5.1 Use-cases for the application 31

5.2 Main application features 32

5.3 Configuration options and settings 34

CONCLUSION 36

REFERENCES 37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

APPENDICES

Appendix 1. Pictures of Analytics UI

FIGURES

Figure 1. Depiction of the platform architecture 10
Figure 2. The browser-accessible OpenAPI Explorer of LoopBack4 12
Figure 3. JSON response to a HTTP GET 12
Figure 4. Key concepts of LoopBack 13
Figure 5. Installing LoopBack CLI, creating and starting an application 14
Figure 6. Model definition of Person 14
Figure 7. CRUD acronyms with matching SQL and HTTP methods 15
Figure 8. LoopBack controller for HTTP GET 15
Figure 9. Installing PostgreSQL, creating and connecting to a database 16
Figure 10. Installing TimescaleDB 17
Figure 11. Utilizing the time_bucket function of TimescaleDB 18
Figure 12. SQL query to a PostGIS-extended PostgreSQL database 19
Figure 13. Installing npm, Vue CLI and creating a template Vue application 21
Figure 14. Basic component structure 22
Figure 15. Utilizing the lifecycle hooks of Vue 23
Figure 16. Utilizing the ‘v-if’ directive of Vue to display a progress bar 24
Figure 17. How Vuex manages state (Vuex, n. d) 25
Figure 18. Creating routes using vue-router 26
Figure 19. Listening to route changes 27
Figure 20. Binding environment variables in package.json 28
Figure 21. Utilizing Vuetify in a Vue component 29
Figure 22. Utilizing the component API of a Vuetify button 29
Figure 23. Using a breakpoint to hide a component 30
Figure 24. Operational Dashboard of Analytics UI 32
Figure 25. Managing site floor plan images 33
Figure 26. Device configuration 34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

LIST OF ABBREVIATIONS

API Application Programming Interface. Contains methods that a client

application such as a web page can use. For instance, an API can be used to request

and record data.

CLI Command-Line Interface. A command-line based program for handling

user commands.

CRUD Create, Read, Update and Delete. Acronyms for performing create, read,

update and delete operations to a relational database.

DOM Document Object Model

GPS Global Positioning System

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IoT Internet of Things

JSON JavaScript Object Notation. Open-standard file and data interchange

format consisting of key-value pairs.

npm Node package manager. Handles application code dependencies.

OS Operating System such as Windows, Macintosh or Linux.

REST Representational State Transfer

SRID Spatial Reference System Identifier

SRS Spatial Reference System

SQL Structured Query Language. A standardized query language developed by

IBM that can be used to perform CRUD operations to a relational database.

TLS Transport Layer Security. Cryptographic protocol designed to provide

security for communication over a computer network.

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

UI User Interface

URL Uniform Resource Locator. A web address which is a reference to a web

resource.

7

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

1 INTRODUCTION

The Internet of Things (IoT) refers to the connection of devices to a network, through

which they transmit data collected by sensors. The total number of worldwide installed

IoT devices is estimated to rise to 75.44 billion by 2025. This is a fivefold increase in ten

years time. (Statista, 2016). An IoT device is capable of transmitting data over a network

without human or computer interaction. (TechTarget, n. d.). IoT devices such as sensors

are able to provide measurements from their surroundings. However, this data needs to

be stored and processed so it can be displayed in an application such as a user interface

(UI). Services related to storing and processing measurement data are provided by what

is called an IoT platform. There exists previous studies and thesis works documenting

the concepts and technologies related to IoT systems and their implentations such as

Internet of Things and IoT platforms. (Uppa, J. 2017). However, this thesis is different

because it provides an overview using practical examples of how to build an IoT platform.

During 2019 an IoT platform was developed at Fidera Ltd. The platform contains features

for several condition monitoring and asset tracking use-cases. The purpose of this thesis

is to provide an overview of the discussed IoT platform, document the utilized software

frameworks, explain how they can be applied to build applications and to work with IoT

data. Besides focusing on documenting the used front-end and back-end technologies a

web UI was built to provide functionality for these discussed features. The UI in question

is titled Analytics UI. It was built as a real-life work development task and it is the work

of the author of this thesis as a whole. The main UI features are documented and these

include sensor-based condition monitoring and the ability to track assets such as

persons, devices or vehicles and visualize their locations. The demand for such features

is based on needs such as monitoring employee working conditions on construction sites

and asset usage in order to prevent unwanted events such as inactivity or theft.

8

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

2 INTERNET OF THINGS

In order to understand IoT-based solutions it is necessary to have an overview of IoT

and the related generic concepts. The objective of this chapter is to provide a brief

overview of IoT and explain what is an IoT platform.

2.1 Overview

The objective of IoT is to make anything ’smart’ by enhancing everyday objects with the

power of data collection. A sensor is a simple component which is able to observe and

measure an event in the physical world. A sensor device is a small, low-cost and battery-

operated device that measures these events and has the ability to transmit information

to a network. An actuator is a component or a mechanism which is able to transform

digital information to an action in the physical world thus being able to influence its

surroundings. An example of this action would be turning another device on or controlling

lights in a room. IoT network traffic is typically bidirectional which allows for remote

control of the networks devices. The information collected by sensor devices is usually

sent to cloud services where the information can be processed, analyzed and visualized

in a user interface. (Uppa, J. 2017).

IoT has advantages that span across different areas of life and business. Examples of

these include smart homes and environmental monitoring applications. The underlying

architecture composed of various services provides this connectivity and is called an IoT

platform.

2.2 IoT platform

An IoT platform offers communication, data processing, analytics, device management

capabilities and software applications. It links machines and devices to cloud services

where the information sent by them is stored, processed and provided for applications.

Key features of IoT platforms include device management capabilities enabled by

bidirectional network communication, open-ended life cycle of platform applications

which means the creation and improvement over time of these applications, data

analytics which includes basic descriptive analytics, visualizations and predictive

9

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

analytics. The platform has to be maintainable so that the existing system can be picked

up and understood by new developers. The platform should also be secure and scalable

so that new applications and devices may be supported in the future. (Perry, M. 2016).

10

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

3 PLATFORM BACK-END TECHNOLOGIES

This chapter discusses the underlying platform architecture of Analytics UI and the

related software frameworks. The platform architecture is implemented using some of

the newest technologies available which are especially suitable for working with IoT data.

The circled sections in Figure 1 are the focus of this thesis and will be discussed in the

following chapters.

3.1 Platform architecture

Figure 1. Depiction of the platform architecture

11

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Platform architecture refers to the structure of the platform’s software system. The

architecture can be divided into three layers where each layer has its own functionality.

Layer 1 can be thought of as the device layer. It contains sensors and other devices that

measure and collect information. This layer also includes the gateway devices which are

responsible for transmitting the sensor data to the network.

Layer 2 contains the cloud storage and data processing services. Data sent by sensors

and devices is stored to databases and processed in servers. ’Central Flow Services’ is

responsible for receiving and decoding sensor data and transmitting it to the correct

customer API. The customer API then analyzes and processes the data into the correct

format so it can be displayed in the user interface of a software application such as

Analytics UI which is documented in Chapter 5.

Layer 3 includes the applications that are utilized by the end users of the platform. Any

number of new applications may be added to the platform. The possibility of adding new

applications and devices to the platform are key components considering platform

scalability.

3.2 LoopBack4

The platform back-end servers have been implemented using LoopBack4 which is the

latest version of the open-source LoopBack NodeJS framework. LoopBack4 will be

referred to as ‘LoopBack’ in the following chapters. LoopBack enables you to quickly

create APIs as microservices composed from existing back-end systems such as

databases and has support for TypeScript which stands for strongly typed JavaScript.

The APIs are exposed as endpoints for client applications. LoopBack uses the OpenAPI

specification. (LoopBack, 2019a).

12

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 2. The browser-accessible OpenAPI Explorer of LoopBack4

OpenAPI is a specification for visualizing web services that use Representational State

Transfer (REST). It is an HTTP application protocol based architectural style with guiding

constraints for distributed hypermedia systems. Interaction with LoopBack’s REST APIs

is implemented using HTTP GET/PUT/POST/DELETE and PATCH methods. Request

responses are in JSON format of which an example is shown in Figure 3. OpenAPI

defines a standard interface description for REST APIs. In essence, it provides

information about a service for humans and computers. LoopBack uses the OpenAPI

specification to generate APIs as shown in Figure 2. (OpenAPI Initiative, 2019).

Figure 3. JSON response to a HTTP GET

13

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

3.2.1 Structure of a LoopBack application

Figure 4. Key concepts of LoopBack (LoopBack, 2019b).

The purpose of this chapter is to describe the most fundamental parts behind the

application structure of a LoopBack API and the key concepts related to these parts

which have been circled in Figure 4. LoopBack provides the possibility to create APIs as

microservices which means that each API runs on an independent server. Server is an

implementation for inbound transports like HTTP and protocols such as REST and listens

on a specific endpoint such as ‘http://localhost:3002’ (hostname, port number), handles

incoming requests and returns appropriate responses. Application is the central class for

a module which contains the functionality of an API. (LoopBack, 2019b). The LoopBack

Command-Line Interface (CLI) can be installed using the command-line with npm. The

installation procedure is described in Figure 5.

Figure 5. Installing LoopBack CLI, creating and starting an application

LoopBack CLI is used to create APIs that consist of modules. A module is created in a

series of steps and can be initialized using the CLI command ‘lb4 <class>’ where

‘<class>’ is replaced using the name of the desired module class. These classes are

14

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

called model, datasource, repository, controller and service. They are at the foundation

of a LoopBack API.

Model contains a definition of a business domain object which is the representation of

the data used by the API. For instance, a JSON object conforming to a model definition

such as ‘Person’ can be passed in REST/HTTP payload which is used to create a new

instance of the ‘Person’ model in a database. Model definitions can also be mapped to

other forms like JSON and OpenAPI schemas. A model in LoopBack is JavaScript class.

(LoopBack, 2019c). Example of a model definition of ‘Person’ is described in Figure 6.

Figure 6. Model definition of Person

Two types of models exist for domain objects. Value Object does not contain an identity

(ID) because its equality is based on the object as a whole. For instance, if two ‘Person’

objects contain identical key-value pairs, they are equal. Entity is a domain object with

an ID and its equality is based solely on the ID. Two person objects that have the same

ID are equal because the ID refers to the same person. (LoopBack, 2019c).

Datasource is the connection between sources of data such a database and an API. It

is typically used together with a repository to provide access to data. (LoopBack, 2019d).

Repositories represent a Service interface which can be utilized to perform CRUD

operations against an underlying database. For instance, a repository may contain SQL

statements which can be utilized by a datasource. However, using LoopBack the

developer may not need to write custom SQL statements because LoopBack provides

filters and functions that can be utilized to perform database operations. An example of

such an operation is provided in Figure 8. (LoopBack, 2019e).

15

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 7. CRUD acronyms with matching SQL and HTTP methods

Controllers are responsible for handling the request response-lifecycle of an API. A

function can be utilized to deal with an incoming request such as HTTP GET to an API.

(LoopBack, 2019f). CRUD acronyms such as GET are explained in Figure 7.

Figure 8. LoopBack controller for HTTP GET

Figure 8 contains an example of the relation between a controller and a repository where

the ‘findById’ function returns a function call to another repository. In this case the

repository is named as the ‘positionObservationRepository’ which is responsible for

making a data query to a database for position observations.

Services contain methods for performing remote or local operations. (LoopBack,

2019g). For instance, a function responsible for parsing data to the suitable format for a

chart could be in a service. A service such as this could be called from a controller.

Understanding relations between models, datasources, repositories, controllers and

services enables the developer to create LoopBack APIs.

3.3 PostgreSQL

The databases of the platform have been implemented using PostgreSQL which is an

open-source object-relational database with development history that spans three

decades. PostgreSQL extends the SQL language, includes features for safely storing

complicated data workloads and has powerful add-ons that are referred to as extensions.

16

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

This chapter will discuss the installation of PostgreSQL in Ubuntu versions 16, 18 and

PostgreSQL extensions along with examples of how they can be best utilized for working

with IoT data. (PostgreSQL, 2019a).

3.3.1 Installation

PostgreSQL is available in the default Ubuntu repository. To get the latest releases the

PostgreSQL advanced package tool (apt) repository has to be added to the Operating

System (OS). apt is a command-line tool for handling software packages for Debian and

Debian based Linux distributions such as Ubuntu.

Before starting the installation, the Gnu Privacy Guard key (GPG) has to be first imported

for PostgreSQL packages to enable the installation of the latest PostgreSQL versions.

GPG is an encryption technique that was developed for use in e-mail exchanges but is

now used in a number of applications such as code signing Linux and GitHub

repositories. (PostgreSQL Wiki, 2019).

Figure 9. Installing PostgreSQL, creating and connecting to a database

After importing the GPG key, PostgreSQL can be installed using the command-line by

adding PostgreSQL repositories to the OS, downloading and installing PostgreSQL as

17

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

described in Figure 9. After a successful installation, PostgreSQL databases can be

created. SQL statements can be run to the database using the ‘psql’ command-line tool.

3.3.2 Extension: TimescaleDB

TimescaleDB is an extension built on top of PostgreSQL for handling time-series data

which is data that represents how a process changes over time. Time-series data has

three important characteristics. It is time-centric which means that records always have

a timestamp, data is only inserted, not updated and recent. IoT data can be classified as

time-series data. Like PostgreSQL TimescaleDB is also open-source. (Timescale, Inc.

2019a).

After the installation of PostgreSQL, a matching version of TimescaleDB may be installed

using the command-line.

Figure 10. Installing TimescaleDB

TimescaleDB installation contains the following steps that are listed in Figure 10:

• Adding TimescaleDB’s personal package archive to the OS

• Installing TimescaleDB using apt

• Connecting to an existing PostgreSQL database using the ‘psql’ command-line

tool and running the TimescaleDB SQL extension statement

The purpose of TimescaleDB is to facilitate working with time-series data. For example,

using common aggregate functions such as average or mean on time-series data is easy

using TimescaleDB. When visualizing large amounts of data, it is often necessary to

select a picking interval to limit the amount of data points in a chart. For instance, it would

18

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

be possible to count averages of every selected 10 or 100 values. (Timescale, Inc.

2019b).

Figure 11. Utilizing the ’time_bucket’ function of TimescaleDB

SQL query described in Figure 11 utilizes TimescaleDB’s ‘time_bucket’ function to count

monthly averages of temperature readings and returns the averages of every 100

readings of n-amount of temperature readings. Utilizing similar SQL queries provides

data for common chart-based visualizations of which examples are included in Appendix

1.

3.3.3 Extension: PostGIS

This chapter introduces a technology due to its potential applicability for location data

related use-cases described in Chapter 5. PostGIS is a spatial database extender for

PostgreSQL that adds support for geographic objects so location queries may be run in

SQL. Although PostGIS is designed for spatial data, it is also possible to store non-spatial

data in a PostgreSQL database which has been extended with PostGIS. (PostGIS n.d.

a). PostGIS adds spatial functions to the database such as area, distance, union,

intersection and special geometrical data types. These spatial functions may be used to

answer questions like ‘How close is the nearest asset?’ or ‘Is this asset inside a certain

area?’. It has a geometry column with data in a specific coordinate system defined by a

Spatial Reference System Identifier (SRID). (PostGIS n.d. b).

SRID is part of a spatial reference system (SRS) which is a coordinate-based system

used to locate geographical entities. SRID is a unique value which is used to

unambiguously identify local spatial coordinate system definitions that are different

systems for assigning coordinates to locations. (OGC, 2019).

19

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 12. SQL query to a PostGIS-extended PostgreSQL database

Figure 12 contains an SQL query which returns information about the locations of

persons. The query calls a PostGIS function named ‘ST_Contains’. This function returns

a Boolean value which is true if the person is in Turku and false if the person is not in

Turku. With features such as the ones described in this chapter, PostGIS can be utilized

in creating modern geofencing applications.

20

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

4 PLATFORM FRONT-END TECHNOLOGIES

The focus of this chapter is in the front-end frameworks utilized in the development of

Analytics UI. The term ’front-end’ is commonly used to describe the user interface of a

web application.

Frameworks in general provide functionalities that can be extended by writing additional

code. This chapter will discuss a front-end framework called VueJS as well as Vuetify

which is a material component framework. Vuetify provides a base style for UI

components and an easy-to-use component API. VueJS will be referred to as Vue in the

following chapters. The use of a front-end framework such as Vue includes valuable

features such as:

• Generic ’out of the box’ functionalities

• Open-source, reliable and tested code base which is maintained

• Tools for fast prototyping

• Comprehensive documentation

4.1 Basics of VueJS

Vue is a framework for building user interfaces. It was created by Evan You after working

for Google using AngularJS. Vue is fast, easy to pick up and integrate with other libraries

and implements a component-based architecture. A Vue project can be initialized by

installing the Vue CLI and creating a project template. (You, E. 2019a).

4.1.1 Vue CLI

Creating a Vue project starts by installing the Vue CLI which will be referred to as the

CLI in the following chapters. The CLI offers a collection of official plugins for fast

application creation and management. Additionally, a full graphical user interface is also

provided. The CLI can be installed globally using the Node Package Manager (npm)

which is the default package manager for the JavaScript runtime environment NodeJS.

(You, E. 2019b). The installation and the creation of a template Vue application is

described in Figure 13.

21

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 13. Installing npm, Vue CLI and creating a template Vue application

npm can be used to install packages that are reusable pieces of software which can be

downloaded from registries. When a package is added to an application, the application

is dependent on the package, so the package becomes an application dependency. The

list of application dependencies is stored in a file called ‘package.json’. If ‘package.json’

is present in a project application dependencies can be installed by running the

command ‘npm install’ in the project folder using the command-line.

4.1.2 Component-based architecture

Vue implements a component-based architecture which means that a Vue application is

composed out of components. Component-based architecture is an architecture model

that is based on reusable sets of functionalities encapsulated as components.

Components have their own structure, methods, APIs and they are reusable. For

instance, a component may be a part which makes up a segment of a user interface.

Components are also updated when a change occurs in the data used by the component.

This feature is called reactivity and it is based on the link between the component data

and the Document Object Model (DOM). (Shapiro, D. 2016).

The DOM is an interface which treats the HTML document as a tree structure where

every node is an object that represents a part of the document. The DOM can be

manipulated using programming languages such as JavaScript. (W3C, 2005).

Components have a specific code structure. The HTML code of a component is wrapped

inside ‘template’ tags. ‘script’ tags contain the component’s JavaScript code such as data

structures and functions.

22

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 14. Basic component structure

Components can contain components and it is possible to pass data between them. This

is a basic component feature of which an example has been implemented in Figure 14

where:

• Two components have been created and named ‘ParentComponent’ and

‘ChildComponent’. In practice these components are two different files which

have been included in Figure 14 for demonstration purposes

23

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

• ParentComponent contains a data structure of type string named ‘parentData’

which is passed on to the ChildComponent using the name ‘childData’

• The passed data is declared in the ChildComponent using the ‘props’ object

which contains the name and type declarations of the passed data

Components have a lifecycle which contains different stages of initialization. These

stages are called lifecycle hooks that are functions that give the developer an opportunity

to run code at specific stages of initialization which a Vue instance (a component) goes

through. These stages include template compiling, setting up data observation, mounting

and updating the component instance to the DOM when data used by the component

changes. (You, E. 2019c).

Figure 15. Utilizing the lifecycle hooks of Vue

Figure 15 contains an example where the ‘created’ lifecycle hook of Vue has been

utilized. ‘created’ contains a function called ‘getData’ which sends an HTTP GET to an

API. Using JavaScript’s ‘setInterval’ function ‘getData’ is set to run every 60 seconds so

each minute another request is triggered, and data gets refreshed. The ‘beforeDestroy’

lifecycle hook is utilized to clear the interval to stop the occurring requests before the

component is destroyed.

Conditional rendering is a feature of Vue and can be used to decide based on a

condition if an element will be rendered. Vue offers specific conditional directives such

as ‘v-if’ which can be used directly in HTML to decide if an element such as a component

will be rendered. For example, using the ‘v-for’ directive it would be possible to

dynamically create a list of items on the screen or use ‘v-if’ to display a progress bar

during updates as in Figure 16 where ‘progressBar’ refers to a Boolean variable.

24

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 16. Using the ’v-if’ directive of Vue to display a progress bar

Framework features such as reactivity, lifecycle hooks and conditional rendering make

the developer’s work easier. The generic ‘out of the box’ functionalities described in this

chapter are at the foundation of building Vue applications.

4.2 Building large-scale applications with VueJS

Vue is suited for building large-scale applications. There are specific packages that are

part of Vue’s core repositories and increase the conveniency of building large-scale

applications. This chapter will discuss these packages that can be installed as application

dependencies using npm.

4.2.1 State management using Vuex

Once the application grows larger and more complex, the need for modularity is

increased. This necessitates splitting the code into several components based on their

respective uses. Sharing data between components can be implemented using a

package called Vuex. Vuex is a state management library for Vue applications. Vuex

contains a store which all the applications components can share. This reduces the need

of repeating component-specific code such as often used API calls and data structures.

(Vuex, n.d.). How the different parts of Vuex interact with each other is described in

Figure 17.

25

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 17. How Vuex manages state (Vuex, n. d.)

Vuex ‘store’ consists of four parts:

• State contains the data structures and variables which can be imported to any of

the application components

• Actions are asynchronous functions that contain API calls or calls to synchronous

functions called mutations

• Mutations are used to mutate data stored in state. Mutations do not have a return

value

• Getters are functions which are used only to retrieve data out of state

Vuex becomes handy when it is necessary to share functions and data between several

components. However, it also increases the complexity of the application. Using Vuex

does not prevent having component-specific data structures and variables.

4.2.2 Routing

Component routing can be implemented using ‘vue-router’ which is the official router for

Vue. vue-router provides nested mapping for views and a modular component-based

26

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

router configuration. Implementing routes for components makes them URL accessible.

(You, E. 2019d).

Figure 18. Creating routes using vue-router

vue-router can be installed using npm. A folder called ‘router’ is created in the application

root folder which has a file called index.js. This file contains the router object where

different routes can be defined for components thus making them accessible by URL

which is a reference to a web resource. Components may also be lazy loaded which

means that the component is loaded to memory only when the component-specific route

is accessed. To do this in a Vue application, the component can be imported using a

dynamic import syntax described in Figure 18.

27

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 19. Listening to route changes

vue-router can be set to listen to route changes using its ‘beforeEach’ function so that

appropriate action can be taken when a specific route is accessed. A route change

happens when the user tries to access a route such as ‘/login’ and is triggered using the

‘next’ function. An example of listening for route changes using vue-router’s ‘beforeEach’

function is provided in Figure 19 where the following checks and actions occur:

• If a token is not found the user is redirected to the login page

• If the user has a token and the route change matches an existing route the user

is allowed to access the route

• If the route change is not matched with an existing route then the user is routed

to the ‘/notfound’ route that could contain a notification such as ‘404, page not

found’

4.2.3 Environment variables

Vue supports the use of environment variables. These are specific files that can be used

for build management. Builds are compiled JavaScript modules. In essence a module is

just a file.

For instance, the production and staging builds may utilize a different API which has an

API specific URL. If the URL is defined using an environment variable, it is possible to

define a different API URL for each build.

28

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 20. Binding environment variables in package.json

Figure 20 contains an example of binding environment variables in ‘package.json’. By

binding ‘build:prod’ to ‘vue-cli-service build –mode prod’ in the scripts object of the

‘package.json’ file we can now initiate a production build with the configuration set by the

production-specific environment variable by writing ‘npm run build:prod’ in the CLI. ‘prod’

refers to ‘.env.prod’ which is a file and an environment variable. The CLI will set up a

production build where all the compiled modules are gathered to a folder named ‘dist’

which can be deployed to a file server.

4.3 Vuetify

Vuetify is a material design component framework for Vue which can be installed using

the Vue CLI. Material design is a definition for qualities that may be expressed using UI

regions, surfaces and components. (Material Design, 2019).

Vuetify provides components that implement material design guidelines and offers

decent cross-browser support and an easy to learn component API where each

component such as a button or a toolbar has an API which can be utilized to customize

the component. (Vuetify, 2019a). Vuetify can be added to the project using the

command-line, navigating to the project folder and running ‘vue add vuetify’.

29

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 21. Utilizing Vuetify in a Vue component

After adding Vuetify to the project Vuetify components are ready to be utilized using the

‘v-component’ syntax. This means that Vuetify component names start with the ‘v-‘ prefix

and can be added to the HTML code section of a Vue component. All Vuetify elements

must be created within the ‘v-app’ tags as shown in Figure 21.

Figure 22. Utilizing the component API of a Vuetify button

The component API of Vuetify allows for rapid development once the developer is

moderately familiar with the framework. However, the components provide limited

customization options and applications developed with Vuetify will look alike to some

degree. An example of utilizing the component API of a Vuetify button is described in

Figure 22 where the size and color of a button is defined using the button’s API.

Due to the rise of smartphones, responsivity is required from modern web applications.

Responsive applications are applications designed to work well on all screen-sizes.

Some elements such as Vuetify’s data tables are naturally responsive and Vuetify offers

material design viewport breakpoints that can be attached to Vuetify components. These

breakpoints are JavaScript helper classes and may be used to hide and show the layout

components based on the size of the user’s screen. They have aliases such as ‘md’

which stands for the screen size of medium. An example of the use of these breakpoints

is demonstrated in Figure 23. (Vuetify, 2019b).

30

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 23. Using a breakpoint to hide a component

By combining a front-end framework such as Vue with a material component framework

like Vuetify an application developer is equipped with tools to efficiently develop user

interfaces for modern web applications.

31

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

5 PLATFORM USER INTERFACE

The practical part of thesis documents Analytics UI which is a web user interface

developed using Vue and Vuetify. Analytics UI is the work of the writer of this thesis as

a whole. This chapter will discuss the main use-cases the application was created for

and provide an overview of the main application features.

5.1 Use-cases for the application

Analytics UI was developed to answer various use-cases related to industrial condition

monitoring and tracking applications. These use-cases include:

• Measurement of environmental attributes such as temperature and humidity. For

instance, monitoring employee working conditions or the drying of cement

• Sudden changes in environmental attributes. For instance, noticing such

changes could prevent an accident or the breakdown of a machine

• Tracking of assets such as persons, vehicles or devices. For example, this could

be used to optimize routes, the use of personnel and prevent theft

• Monitoring device and vehicle use-times to optimize the number of vehicles in

use. For example, construction companies often rent vehicles. Having unused

vehicles would increase a company’s monetary expenses

Condition monitoring related use-cases also require various configuration options and

settings offered by Analytics UI.

Analytics UI includes visualizations for various types of object recognition-based camera

analytics for improving customer service processes. These are chart visualizations that

have their own section in the UI. These include:

• Customer counting and speed of service calculation for fast food restaurants. The

data provided by this feature can be used by restaurant owners to optimize the

number of employees so the greatest number of customers can be served

• Customer counting for shopping malls and stores

32

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

5.2 Main application features

Figure 24. Operational Dashboard of Analytics UI

Analytics UI has a view called Operational Dashboard and it contains the most important

application features related to the condition monitoring use-cases discussed in Chapter

5.1. While various types of devices are supported by the platform back-end which

provides the data for the user interface this chapter will discuss sensor devices for the

sake of simplicity.

Features related to condition monitoring are visualizations of sensor measurement data

related to asset use times and attributes such as temperature and humidity. These

visualizations include:

• Bar chart visualizations of asset use times

• Line chart visualizations of sensor measurements

Sensors can be configured, and attribute related limits set so that alerts are generated

when a set limit is breached. This enables the user to acknowledge and process a sensor

alert and to take whatever physical actions are necessary by the changed conditions.

Sites, assets and sensors are visualized on an instance of Google Maps shown in Figure

24. This includes:

• Acknowledging alerts

• Viewing locations of sites, assets, sensors and their status. Sensors may be

attached to assets or set to stationary locations

33

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

Figure 25. Managing site floor plan images

Assets and sensors are also visualized on an interactive site-specific floor plan image

which provides more accurate information about a site such as a building which cannot

be visualized accurately enough on a map. Figure 25 is an image of the interactive floor

plan which includes features such as:

• Uploading site floor plan images of standard image formats

• Creating and saving areas on the image where sensors can be attached so the

following features are possible:

o Visualization of areas with activity such as an active sensor

o Active alerts

The map and floor plan visualizations of alerts and sensors are one option for visualizing

this information. List-based views are also provided.

34

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

5.3 Configuration options and settings

Figure 26. Device configuration

Features described in the previous chapter are based on devices such as sensors.

These devices need to be configured before they are functional. The devices also need

to be taken to the physical location they are intended to provide measurement data from.

Figure 26 is an image of the configuration menu where configuration options are offered

for:

• Sensors which includes:

o Adding sensors to the system

o Setup of sensor attribute alert limits

o Formation of sensor groups

o Attaching sensors to assets

o Setup of static device GPS locations

• Support for other device types such as Bluetooth beacons with device type

specific configuration options

• Assets such as:

o Persons, vehicles or employees with basic descriptive fields such as

name, e-mail, phone number and description

• Sites that have:

o Name and a GPS location. Sensors and devices generally belong to sites

and are located on site related areas

• Areas

35

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

These discussed configuration options contain features for CRUD operations. Features

for user management are included and they contain features for managing user

accounts. These are:

• Basic user account management such as changing the user’s password

• Admin users have the option of managing sites, creating and editing user

accounts with site-related rights

By utilizing these configuration options and settings, Analytics UI can be used to create

user accounts, insert devices to the system and configure them ready for use.

36

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

CONCLUSION

This thesis dealt with a real-life work development task where a web user interface was

built with features for industrial condition monitoring and asset tracking use-cases. The

UI in question is part of an IoT platform which connects IoT devices and others to

services with the purpose of providing data for applications such as web user interfaces.

The theoretical part of this thesis demonstrates how specific back-end and database

frameworks can be applied to implement the server applications and databases of a

scalable IoT platform. The theoretical part also documents how the front-end framework

VueJS can be applied together with a material design framework called Vuetify. The

practical part of this thesis documents the main features of the platform’s UI which has

been implemented using the technologies described in the theoretical part of this thesis.

The discussed UI contains features such as Google Maps based tracking of assets with

sensors and other devices, indoor tracking, sensor-based condition monitoring and vast

device configuration and user management options. The UI in question is titled Analytics

UI and it is the work of the writer of this thesis as a whole.

It can be concluded that with the proper utilization of back-end and front-end frameworks

web applications may be built fast. Utilizing frameworks such as LoopBack and VueJS

save development time as they contain ready-made implementations that can be used

to build APIs and user interfaces efficiently. While having a good understanding of

programming in general helps in the utilization of these frameworks a lot of time is spent

learning the frameworks inner workings such as VueJS’s component-based architecture

or the utilization of LoopBack’s various classes. Each of these frameworks would have

enough topics in itself for a thesis so they could not be discussed in-depth, instead this

thesis provides a comprehensive overview of their use with hands-on examples in the

making of an IoT platform.

Since this thesis is limited in detail but gives an overview of an IoT platform and its

essential parts, a natural extension of this work would be to discuss each part separately

and in more detail. It should be noted that the implementation of an IoT platform is by no

means limited to the technologies presented in this thesis, but they serve as an example

of an implementation. The presented technologies may be used in server, database and

user interface implementations whether they are or are not IoT related. If it is disputed

whether the implementations presented in this thesis are applicable, it should be known

that the discussed IoT platform is currently used by customers, some of which represent

large and well-known companies. The IoT platform was developed at Fidera Ltd.

37

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

REFERENCES

Statista. (2016). Internet of Things (IoT) connected devices installed base worldwide

from 2015 to 2025 (in billions). (Referenced on 17.11.2019).

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

TechTarget. (n. d.). Internet of Things. (Referenced on 17.11.2019).

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

Uppa, J. (2017). Sensorit, laitteet ja aktuaattorit. (Referenced on 1.11.2019).

https://www.theseus.fi/bitstream/handle/10024/138552/Uppa_Jari.pdf?sequence=1&is

Allowed=y

Perry, M. (2016). Evaluating and choosing an IoT platform. (Referenced on 6.11.2019).

https://www.oreilly.com/learning/evaluating-choosing-iot-platform

LoopBack. (2019a). Crafting LoopBack 4. (Referenced on 9.11.2019).

https://loopback.io/doc/en/lb4/Crafting-LoopBack-4.html

OpenAPI Initiative. (2019). OpenAPI specification. (Referenced on 9.11.2019).

http://spec.openapis.org/oas/v3.0.2#openapi-document

LoopBack. (2019b). Key concepts. (Referenced on 9.11.2019).

https://loopback.io/doc/en/lb4/Concepts.html

LoopBack. (2019c). Model. (Referenced on 9.11.2019).

https://loopback.io/doc/en/lb4/Model.html

LoopBack. (2019d). Datasource. (Referenced on 9.11.2019).

https://loopback.io/doc/en/lb4/DataSources.html

LoopBack. (2019e). Add a repository. (Referenced on 10.11.2019).

https://loopback.io/doc/en/lb4/todo-tutorial-repository.html

LoopBack. (2019f). Controllers. (Referenced on 10.11.2019).

https://loopback.io/doc/en/lb4/todo-tutorial-controller.html

LoopBack. (2019g). Services. (Referenced on 7.12.2019).

https://loopback.io/doc/en/lb4/Services.html#overview

38

TURKU UNIVERSITY OF APPLIED SCIENCES THESIS | Matti Lindholm

PostgreSQL. (2019a). What is PostgreSQL. (Referenced on 9.9.2019)

https://www.postgresql.org/about/

PostgreSQL Wiki. (2019). Quickstart. (Referenced on 17.11.2019).

https://wiki.postgresql.org/wiki/Apt

Timescale, Inc. (2019a). What is time-series data. (Referenced on 3.8.2019).

https://docs.timescale.com/latest/introduction/time-series-data

Timescale, Inc. (2019b). time_bucket(). (Referenced on 3.11.2019).

https://docs.timescale.com/latest/api#time_bucket

PostGIS. (n.d. a). About PostGIS. (Referenced on 4.8.2019). https://postgis.net/

PostGIS. (n.d. b). Description. (Referenced on 4.8.2019).

https://postgis.net/docs/ST_SRID.html

OGC. (2019). Spatial referencing by coordinates (ISO 19111:2019). (Referenced on
4.8.2019). https://www.opengeospatial.org/docs/as

You, E. (2019a). What is Vue.js. (Referenced on 4.8.2019). https://vuejs.org/v2/guide/

You, E. (2019b). Components of the system. (Referenced on 5.7.2019).
https://cli.vuejs.org/guide/#components-of-the-system

Shapiro, D. 2016. Understanding component based architecture. (Referenced on
23.10.2019). https://medium.com/@dan.shapiro1210/understanding-component-based-

architecture-3ff48ec0c238

W3C. (2005). What is the Document Object Model. (Referenced on 5.7.2019).
https://www.w3.org/DOM/#what

You, E. (2019c). Instance Lifecycle Hooks. (Referenced on 6.7.2019).

https://vuejs.org/v2/guide/instance.html#Instance-Lifecycle-Hooks

Vuex, (n. d). What is Vuex. (Referenced on 6.7.2019). https://vuex.vuejs.org/

You, E. (2019d). Introduction. (Referenced on 6.8.2019). https://github.com/vuejs/vue-
router

Material Design. (2019). Introduction. (Referenced on 1.11.2019).
https://material.io/design/introduction/#

Vuetify. (2019a). What’s the difference. (Referenced on 5.7).
https://vuetifyjs.com/en/introduction/why-vuetify

Vuetify. (2019b). Breakpoints. (Referenced on 5.7.2019).
https://vuetifyjs.com/en/customization/breakpoints

Appendix 1 (1)

 Appendix 1 (2)

