
Yuxuan Liang

USING QT TO IMPLEMENT A TRANSLATION APPLICATION

Thesis
CENTRIA UNIVERSITY OF APPLIED SCIENCES
Information Technology
December 2019

ABSTRACT

Centria University
of Applied Sciences

Date
December 2019

Author
Yuxuan Liang

Degree programme
Information Technology
Name of thesis
USING QT TO IMPLEMENT A TRANSLATION APPLICATION
Instructor
Jari Isohanni

Pages
32+1

Supervisor
Jari Isohanni

The aim of this thesis was to create a translation application with Qt. The main idea was to make an

absolutely free translation application for users.

While learning a language, people have the option to add their own interpretation of words to the the-

saurus, to share and learn other people's understanding of words. The thesis consists of two parts. The

first part is to learn the basic knowledge of Qt procedures. Correspondingly, by learning the theoretical

knowledge of Qt, and then discovering which functions of the translation software can be realized

through related Qt programming knowledge. The entire software will use the relevant knowledge of Qt

database, Qt interface design, modeling, C ++, Qt signal and slot connection.

As a result of the thesis work, this translation application can meet the daily learning needs of users and

become an example of future development of Qt software.

Key words：
C++, SQL, Json, Qt Designer, Signal and Slots

CONCEPT DEFINITIONS

 DOS Disk Operating System

GUI Graphical User Interface

MFC Microsoft Foundation Class Library

VS Visual Studio

API Application programming interface

IDE Integrated Development Environment

SQL Structured Query Language

DDL Data Definition Language

TCP Transmission Control Protocol

UDP User Data-gram Protocol

 HTTP Hyper Text Transfer Protocol

ABSTRACT

CONCEPT DEFINITIONS

CONTENTS

1 INTRODUCTION ... 1

2 QT BACKGROUND AND DEVELOPMENT .. 2

2.1 Qt Modules .. 2
2.1.1 Qt basic module framework ... 3
2.1.2 Graphical interface library framework .. 4

2.2 Qt with Database SQL .. 5
2.3 QT Designer ... 6
2.4 QT with HTTP .. 7
2.5 QT signals and slots .. 10

3 IMPLEMENTATION OF TRANSLATION SOFTWARE IN QT 13

3.1 Architecture of QT translator .. 13
3.2 GUI Design with Qt Designer .. 15
3.3 User Login .. 16
3.4 Function Realization ... 18

3.4.1 Create Database .. 19
3.4.2 Signals and slots between objects .. 20
3.4.3 Word explanation function .. 23
3.4.4 Add word Function with QMessageBox and QPushButton .. 25
3.4.5 Qt event programming ... 26

4 FINAL APPLICATION ... 28

4.1 Login Test .. 29
4.2 Translation Function Test .. 30
4.3 Notebook adding Test ... 30

5 CONCLUSIONS ... 32

REFERENCES .. 33

FIGURES

Figure 1. Framework of the entire basic module ...3
Figure 2. Framework of the Qt graphical interface library ..4
Figure 3. Class hierarchy of QtSql module….....................................5
Figure 4. Qt database Driver type... 6
Figure 5. FTP Network protocol8
Figure 6. SYN connect with server...9
Figure 7. ACK connect with server …................... ...10
Figure 8. Signals with slots Structure...................... ...11
Figure 9. Qt transmitting Process..12
Figure 10. Basic Architecture of Qt application..14
Figure 11. Program Case...15
Figure 12. User login design ..17
Figure 13. Login interface structure..17
Figure 14. Structure of creating database..18
Figure 15. Create Database..19
Figure 16. Insert information to the notebook database..20
Figure 17. Execution process of MOC...21
Figure 18. Connect function..21
Figure 19. Connect structure...22
Figure 20. Definition of QNetworkfunctions..23
Figure 21. Relationship between Qnetworkfunctions..23
Figure 22. Json Convert...24
Figure 23. Json class relationship ...24
Figure 24. Messages with add words success or fail...25
Figure 25. Trigger Button ...26
Figure 26. Qt event programming structure...27

PICTURES

Picture 1. Main Interface translation..28
Picture 2. Login Interface...29
Picture 3. User login successfully..29
Picture 4. Word Translated Successfully ..30
Picture 5. Notebook Interface..31
Picture 6. Result of adding successfully to notebook...31

TABLES

Table 1. Widget property settings...16

 1

1 INTRODUCTION

English is the most commonly used language in the world. Classic and authoritative dictionaries such as

the Oxford English Dictionary and Long-man Dictionary can be said to be well-known. It is an auxiliary

tool for many scholars to learn English. A dictionary needs to invest much manpower and material re-

sources in the process of writing, and the electronic version of the online version is more convenient

than the paper version. It can be quickly checked at any time, so more and more people use the electronic

dictionary, becoming a kind of the new trend is playing an increasingly important role. The research

scope of electronic dictionaries in Europe is relatively wide, and the beginning is relatively earlier than

in China. For the types of dictionaries, which is not limited to the number of dictionaries. Domestic

research on dictionary use has also gradually developed.

The aim for this thesis is to make a translation application with Qt which is a cross-platform C ++ ap-

plication development framework that uses a variety of controls, such as line edit input, labels, buttons,

text editing area, list controls and other design controls for the design of the interface, and uses the

method of network communication to obtain the corresponding translation parsing function.

More specifically, the application includes a login system which allows users to log in based on their

username and password. At the same time, it has basic translation function and pronunciation function,

and can pronounce English for content that is parsed into English. The most innovative is the function

of adding new words, which can add unfamiliar words to the library, and users can view them when they

need them next time. In this function, users can view the new word list by viewing the new word book,

they can also delete and modify the word.

 2

2 QT BACKGROUND AND DEVELOPMENT

Qt is a cross-platform with C++ graphical user interface for application development framework devel-

oped by Troll-tech in 1991. It can be used to develop GUI -programs, as well as to develop non-GUI

programs, such as console programs. It is similar as MFC on Windows. It provides all the functionality

that an application developer needs to build a state-of-the-art graphical user interface. (Software 2019.)

Qt Creator is a lightweight cross-platform integrated development environment for Qt development. Qt

Creator delivers two key benefits: providing the first IDE designed to support cross-platform develop-

ment and ensuring that developers who are new to the Qt framework can get up and running quickly.

Even without developing Qt applications, Qt Creator is an easy to use and powerful IDE (Qt Wiki 2019).

Qt really refers to the Qt library, not Qt Creator. The Qt version number 5.7.0 on the official website

also refers to the version of the Qt library. Developers can also use the visual studio integrated develop-

ment environment to develop Qt-based applications.（Qt library 2019.) Qt encapsulates the same set of

external programming interface API on each platform. Developers can write Qt programs on one plat-

form, and can compile code without any modification to other platforms. Generating the application for

the corresponding platform. Simply put, a code is compiled everywhere.（C++ wiki 2019.)

2.1 Qt Modules

Qt's modules are divided into three parts: Qt Essentials, Qt Add-Ons, and Qt Tools. The Qt base module

includes the features of the Qt Core foundation. The Qt Extension module includes some mobile-related

modules from previous QtMobility, such as Bluetooth QtBluetooth, sensor QtSensors. Also included are

some of the previous Qt 4 modules, such as QtDBus, QtXML, QtScript. In addition, some new modules

have been added, such as graphic effects QtGraphicalEffects, serial Qt Serial Port, and Qt3D appearing

in the commercial version. These modules are used for special purposes and many of them need to be

used on special platforms. In the expansion module it also saw the Qt Print Support print support module,

which is a reorganization module of many previous classes; The Qt tool includes the Qt Designer, Qt

Help, and Qt Interface Tools. (Marco 2018.)

 3

2.1.1 Qt basic module framework

The Qt basic functionality for all platforms is defined in the QtBase, and the functionality provided in

that module is required in most Qt applications. The bottom layer of the Qt base module is the QtCore

module, and all other modules depend on it. (Marco 2019.) At the bottom is QtCore, which provides all

the basic functions of meta-object systems, object trees, signal slots, threads, input and output, resource

systems, containers, animation frameworks, JSON support, state machine frameworks, plug-in systems,

event systems, and more. On top of it, QtCore is directly based on QtTest, QtSql, QtNetwork and QtGui.

The test module QtTest and the database module QtSql are relatively independent, and more importantly,

the network module QtNetwork and the graphics module QtGui are in them.

Figure 1. Framework of the entire basic module (Marco 2019)

At the bottom is QtCore, which provides all the basic functions of meta-object systems, object trees,

signal slots, threads, input and output, resource systems, containers, animation frameworks, JSON sup-

port, state machine frameworks, plug-in systems, and event systems. On top of it, QtCore is directly

based on QtTest, QtSql, QtNetwork and QtGui. The test module QtTest and the database module QtSql

are relatively independent, and more importantly, the network module QtNetwork and the graphics mod-

ule QtGui are in them. Above these are the important update parts of Qt 5, QtQml and QtQuick. The top

layer is the newly added QtMultiMedia multimedia module, and the QtWebKit module on top of it.

(Jamin 2018.) For the whole framework, with understanding the lower module provides support for the

 4

upper module, or the upper module contains the function of the lower module. For example, the QtWeb-

Kit module, which has both graphical interface components and network capabilities, also supports mul-

timedia applications. (Jamin 2018.)

2.1.2 Graphical interface library framework

In fact, QApplication is not in the QtGui module. Not only the base class QWidget of all user interfaces

is not in the QtGui module, they are reassembled into a new module of QtWidgets. A major change in

Qt 5 is the redefinition of the QtGui module, which is no longer a large and comprehensive graphical

interface library, but provides a base class for GUI graphical user interface components, including win-

dow system integration, event handling, OpenGL, and OpenGL ES integration, 2D drawing, basic im-

ages, fonts, and text. (Mark 2018.)

In Qt 5, the graphics component classes from the previous QtGui module were moved to the QtWidgets

module, and the print-related classes were moved to the Qt Print Support module. However, the QtO-

penGL module was removed from Qt 5 and the OpenGL related classes were moved to the QtGui module.

Some readers may find that there is still a QtOpenGL module in the Qt extension module. In fact, it is

only reserved for Qt 4 porting to Qt 5. It is highly recommended to use the OpenGL class in the QtGui

module when writing Qt 5 programs. (Packt 2018.)

Figure 2. Framework of the Qt graphical interface library (Packt 2018)

Above the various supported platforms is the underlying platform abstraction layer QPA, a beacon pro-

ject called LightHouse, which is the foundation on which Qt can be ubiquitous. All the blue blocks on it

 5

are the contents of the QtGui module. They are divided into two categories. One is based on OpenGL,

which is the basis of the latest QtQuick2 and QtWebkit; the other is auxiliary access and input. A generic-

based graphical display class that is the basis for the classic QWidget widget class and QtQuick1. (Packt

2018.)

2.2 Qt with Database SQL

The QtSql module in Qt provides support for the database. The many classes in this module can be

basically divided into three layers. The driver layer provides the underlying bridge between the spe-

cific database and the SQLinterface layer; the SQL interface layer provides access to the database,

where the QSqlDatabase class is used to create the connection, and the QSqlQuery class can use the

SQL statement to interact with the database. Several other classes provide support for this layer;

several classes of the user interface layer implement linking the data in the database to the widgets.

Which are implemented using the model/view framework from the previous chapter.

Figure 3. Class hierarchy of QtSql module (Matthias 2002)

Which are higher Hierarchical abstraction, even if people are not familiar with SQL, people can ma-

nipulate the database. SQL is a language used to manipulate relational databases. SQL uses a combina-

tion of keywords, table names, column names. (SQL statement) to describe the content of the operation.

Keywords are English words whose meanings or usage methods have been defined in advance, and there

are keywords that contain various meanings such as "query the table" or "reference the table". SQL

statements can be classified into the following three categories depending on the type of instructions

given to the RDBMS. 90% of the actual SQL statements used are DML. DDL is used to create or delete

objects for storing data and tables in the database. (Lee 2019.)

 6

Figure 4. Qt database Driver type. (Matthias 2002)

2.3 QT Designer

PyQt is a toolkit for creating GUI applications. It is a successful fusion of the Python programming

language and the Qt library. PyQt was developed by Phil Thompson. PyQt implements a Python module

set. It has more than 300 classes and nearly 6,000 functions and methods. It is a mufti-platform toolkit

that runs on all major operating systems, including UNIX, Windows and Mac. PyQt uses dual licenses

and developers can choose between GPL and commercial licenses. Prior to this, the GPL version could

only be used on Unix. Starting with version 4 of PyQt, the GPL license is available for all supported

platforms. Because there are many classes available, they are divided into several modules. The QtCore

module contains core non-GUI features. This module is used for time, files and directories, various data

types, streams, URLs, MIME types, threads or processes. The QtGui module contains graphical compo-

nents and related classes such as buttons, forms, status bars, toolbars, scroll bars, bitmaps, colors and

fonts. The QtNetwork module includes classes for network programming that allow people to write

TCP/IP and UDP clients and servers that make network programming simpler and lighter.

QtXml contains classes that use XML files. This module provides implementations of the SAX and

DOM APIs. The QtSvg module provides classes for displaying SVG files. Scalable Vector Graphics

(SVG) is an XML language used to describe two-dimensional graphics and graphics applications. The

QtOpenGL module uses OpenGL libraries to render 3D and 2D graphics, and the module seamlessly

integrates Qt's GUI libraries and OpenGL libraries. The QtSql module provides classes for the database.

 7

(Pearson 2019.) With Qt Designer, developers can create both "dialog" style applications and applica-

tions that create a "main window" style with menus, tool-bars, balloon help, and other standard features.

Qt Designer provides a variety of form templates, allowing developers to create their own templates to

ensure consistency across an application or a range of application interfaces. Programmers can create

their own custom forms that can be easily integrated with Qt Designer. (Pearson 2019.)

Qt Designer supports the development of applications using a form-based approach. Forms are repre-

sented by user interface (.ui) files that can be converted to C++ and compiled into an application, or

processed at run-time to generate a dynamic user interface. Qt's build system automates the compilation

process of the user interface, making the design process easier. (Nicholas 2017.) Qt Designer can easily

integrate with many common IDEs Commercial license holders of the Windows platform that can gain

the power of Qt Designer user interface design within Microsoft Visual Studio®. In Mac OS X, devel-

opers can use Qt Designer within the Apple's Xcode® environment. In addition, Nokia has developed

Qt's integration plug-in for the cross-platform Eclipse integration environment to embed Qt Designer

and other Qt technologies into the integrated environment framework. (Ray 2014.)

2.4 QT with HTTP

HTTP is a standard for client and server requests and responses. A network access interface is provided

in the Qt network module to implement HTTP programming. A network access interface is a collection

of classes that perform general network operations that provide an abstraction layer for specific opera-

tions and protocols used, exposing only classes to the outside world, functions and signals. (Marco 2019.)

As mentioned in the previous section, Qt now uses the QNetworkAccessManager class and the QNet-

workReply class for HTTP programming. The network request is represented by the QNetworkRequest

class, which also serves as a container for information related to the request (for example, any header

information and encryption). The URL specified when the request object is created determines the pro-

tocol used by the request. Currently, HTTP, FTP, and local file URLs are supported for uploading and

downloading. The QNetworkAccessManager class is used to coordinate network operations. When a

request is created, the class is used to schedule it and send a signal to report progress.

 8

Figure 5. FTP Network protocol (Frank 2010)

This class also coordinates the use of cookies, authentication requests, and the use of their agents. The

response to the network request is represented by the QNetworkReply class, which is created by the

QNetworkAccessManager when the request is scheduled. The signals provided by QNetworkReply can

be used to monitor each response individually. (John Wiley & Sons 2010.) As shown in the figure 5

above, it can be seen that the FTP protocol of the application layer implements file sharing transmission

based on the TCP protocol of the transport layer. The TCP protocol of the transport layer is implemented

based on the IP of the network layer. By default, the FTP protocol uses two ports, 20 and 21, in the TCP

port, of which 20 is used to transmit data and 21 is used to transmit control information. TCP is a con-

nection-oriented protocol, mainly used for large data applications, such as file transfer. A TCP connec-

tion must be established after 3 handshakes. (John & Sons 2010.)

 9

Figure 6. SYN connect with server (Chang 2019)

The client sends a signal to the server request. After receiving the signal server, the server sends a re-

sponse signal to the client and provides the SEQ serial number (representing the number of each data

packet, because the data is sent into multiple data packets). When informing the client, users’ next packet

sequence number received. The client sends an ACK again to determine the server's ACK request syn-

chronization request. The client sends a FIN to close the client-to-server data transfer. The server re-

ceives this FIN, it sends back an ACK, confirming that the serial number is the received SEQ number.

The server closes the connection with the client and sends a FIN to the client A. The client sends back

an ACK message confirmation, and sets the confirmation sequence number to the received sequence

number plus one. (Chang 2019.) UDP with connection-less protocol is mainly used for the case where

the packet sequence is not required to arrive and a small amount of data is transmitted. The data trans-

mission efficiency is high. The disadvantage is that it is easy to drop the packet. The classes provided

by the Qt Network module allow the writing of TCP/IP clients and servers, as well as common protocols

such as FTP and HTTP. (Chang 2019.)

 10

Figure 7. ACK connect with server (Chang 2019)

2.5 QT signals and slots

Signals and slots are used for communication between two objects. The signal and slot mechanism is a

core feature of Qt and is the most prominent feature of Qt unlike other development frameworks. In GUI

programming, when a component is changed, it is always desirable for other components to understand

the change. More generally, people want any object to be able to communicate with other objects. For

example, if the user clicks the close button, people want to be able to close the window by executing the

window's close() function. In order to achieve communication between objects, some toolkits use a

callback mechanism, while in Qt, signals and slots are used for communication between objects.

A special signal can be emitted when a special event occurs, such as a button being clicked; and a slot

is a function that is called after the signal is transmitted to respond to the signal. Some signals and slots

have been defined in Qt's component classes, but more importantly for users is to subclass this compo-

nent and then signals and slots to achieve the desired functionality. (Pavel 2018).

The correlation between the signal and the slot used in the previous object is a signal corresponding to

one slot. In fact, a signal can be associated with multiple slots. At the same time multiple signals can be

associated with the same slot, and even one signal can be associated with another signal, as shown in

figure 8. If there are multiple slots associated with a signal, then when this signal is transmitted, the slots

will be executed one after the other, but the order in which they are executed is random and their execu-

tion order cannot be specified. (Packt 2019.)

 11

Figure 8. Signals with slots Structure (Pavel 2019)

The signal slot is one of the mechanisms that the Qt framework is proud of. The so-called signal slot is

actually the observer mode. For example, when an event occurs, for example, the button detects that it

has been clicked and it sends a signal. This kind of issuance has no purpose, Almost same to broadcasting.

If an object is interested in this signal, it uses the connect function, which means that the signal to be

processed is bound to its own function (called a slot) to process the signal. When the signal is sent, the

connected slot function is automatically called back. This is similar to the observer mode: when an event

of interest occurs, an operation is automatically triggered. (Witold 2019.)

 12

Figure 9. Qt transmitting Process (Pavel 2019)

Signals and slots are Qt-specific information transfer mechanisms and are an important foundation for

Qt design programs. As showed in figure 9, they allow a connection between objects that do not interfere

with each other. The essence of a slot is a member function of a class, and its parameters can be of any

type. There is almost no difference from ordinary C++ member functions. It can be virtual functions; it

can also be overloaded; it can be public, protected, private, or it can be called by other C++ member

functions. The only difference is that the slot can be connected to the signal and is called whenever the

signal connected to the slot is transmitted. (Witold 2019.)

Qt provides a mechanism to automatically and efficiently organize and manage Qt objects that inherit

from QObject. This mechanism is the object tree. The Qt object tree is very useful for user interface

programming. It can help programmers reduce the pressure of memory leaks. For example, when an

application creates an object with a parent widget, the object is added to the child widget's child list.

When the application destroys the parent widget, the objects in the child list below it are deleted one by

one. This allows people to focus on the system's business when programming, improve programming

efficiency, and also ensure the robustness of the system. (Witold 2019.)

 13

3 IMPLEMENTATION OF TRANSLATION SOFTWARE IN QT

Before starting to prepare this project, there are some reasons to choose Qt as the platform for this pro-

gram instead of Python and Java. First of all, Qt's code size is also among the best in the entire open

source world. When choosing to translate software, the user ’s login interface and program display in-

terface will be the main part, and Qt was first known for designing graphical interfaces. Secondly, be-

cause many dictionaries are developed using python using Linux, and the startup speed of Python has

not reached the second start. Using C ++ and graphics library Deepin tool kit (based on Qt) to make a

dictionary, which can log in to the translation system and implement queries Word interpretation and

translation function. Qt also provides JSON parsing classes related to QJsonDocument and QJsonObject,

which is very convenient, so users don't need to write the parsing class themselves. (Ray 2014.)

3.1 Architecture of QT translator

The architecture of qt translation software, which will be divided into three layers: GUI layer, Models

layer, and Communication layer. Because the GUI layer is based on Qt, this layer is implemented using

the Qt class library. All main interfaces will be from these three classes: QWiget, QMainWindow, and

QDialog. One is inherited, and an instance is generated in the main function and shown, and it enters the

main message loop. The model layer mainly implements the business logic of the software. The modules

here are divided into modules due to the business logic of the entire software to achieve a good combi-

nation effect. It makes a bridge class so that all business logic classes are instantiated in this bridge class.

The Communication layer is used to collect data. There are various communication methods, including

serial ports, network ports, and CAN ports. The data received by this layer is sent to the models layer,

and user input is also sent to the executive agency through this layer. By instantiating in the bridge class,

the bridge class is actually a class that has no business functions, but only provides a carrier that the

various classes can connect to each other signal slots. After designing all levels of code, and knowing in

which class and level to implement, users need to use threads to make the entire software run efficiently.

This is the running architecture. Generally speaking, all communication classes will be separated into a

single thread. In this way, it will not block the GUI thread, and it will be able to respond faster to col-

lecting information and passing control information to the lower computer.

 14

Figure 10. Basic Architecture of Qt Application (David 2012.)

The communication layer usually has several threads for several ports. Of course, some of the more

lightweight that can be combined in one thread. The bridge class receives the GUI thread. When the

interface pops up, it needs to get the latest value from the model and display it on the interface. It needs

to call the get method, requirements are best to put all models in a thread-the GUI thread. In the figure

11, the main frame of such an information collection and control system is set up. Based on the compo-

sition and analysis of the translation dictionary software and achieving the desired functions, the plan is

to divide the entire software composition into two major parts: the first part is the main user interface of

the user login page, the design and word display of the main page of the translation software. The second

part is to connect the click event of QPushButton to the on button clicked response function in the pro-

gram through the unique signal slot mechanism in Qt. The translation function is implemented through

the whole software, the function of deleting new words and viewing the new word book Functions.

 15

Figure 11. Program Case

3.2 GUI Design with Qt Designer

The application user interface was built by Qt designer. Qt Designer, also known as Qt Designer, is a

comprehensive WYSIWYG GUI builder, and its designed user interface can be used on a variety of

platforms. It is part of the Qt SDK and one of the most important development tools. With Qt Designer,

people can drag and drop various Qt controls to construct a graphical user interface and preview the

effect. (Jasmin 2006.) In this user login interface, in addition to the core Widget Box, Property Editor,

and Object Inspector components. The main step is to create the interface window through the Widget,

edit the page through the component, and use the property editor to change the window. Fill its body

and properties of each control.

 16

Parts category ObjectName Text(WindowTitle)

 Widget myForm Layout example

 Label label_user User name

Label label_password User password

LineEdit lineEdit_name None

LineEdit lineEdit_password None

Horizontal Spacer horizontalSpacer None

PushButton pushButton_login Login to system

PushButton pushButton_exit Exit system

Table 1. Widget property settings

In the table 1, the core content of the login page is to create signals and slots and connect to the platform.

The connection configuration window for signals and slots can be found by clicking the already created

login button (signals and slots inherited from Qwidget). It needs to select the clicked () signal of the

button and the close () slot of myForm and then accept with the login button. It comes from the main

body, through the link of signals and slots. The basic functions of the main interface design have been

realized.

3.3 User Login

Before starting the design, the goal of the application software is to implement the login function and

the password will appear as an encrypted display. The connection between the signal and the slot is used,

and the macros required by the signal and the slot are used through Q_OBJECT. Explicit is usually used

to prevent ambiguity, clicking the login button is the executed slot function. In the registered slot func-

tion, the "username" label, the "Password" tab, username edit line, password edit line, login button, and

logout button are the carriers that form part of it. The content of the second part is to get the text of the

 17

userNameLEd input box, it trimmed () removes the leading and trailing spaces, and it uses the tr() func-

tion to prevent garbled characters when setting Chinese. When the user enters the password and user

name, the close the form and the set the return value Accepted.

Figure 12. User login design (Matthias 2002)

Figure 13. Login interface structure (Matthias 2002)

Create controls

Capture the value of

the control for jud-

gment

Display

login

system

login in-

terface

User

name

User

name

input

Password

 Label

Password

input box

Login

button
Exit

 but-

t

 18

QMessageBox is later used to transmit the displayed information after login success or failure. The

QMessageBox class in Qt provides a variety of commonly used dialog types, such as the warning dialogs

here, as well as prompt dialogs and question dialogs. This uses a static function to set up a warning

dialog, which is convenient. The parameters are: this indicates that the parent window is the login dialog;

then the window title; then the content of the display; the last parameter is the button displayed, here a

Yes button is used. Note that system also needs to add the header file for this class, namely: #include

<QMessageBox>. At the same time, system needs to define a mainstream version that controls the file

in the main.cpp file. It calls login.exec() to block the main control flow until the return is completed and

it continues to execute the main control flow.

3.4 Function Realization

In order to implement the basic functions of translation, and the function of adding new words and

viewing new word books. In the figure 14, the software needs to establish a database to retrieve and

modify or view related information. Then it sends instructions to the related functions and implement

them through the connection of signals and slots. It goes to the Qt button to trigger the action of the

function, Qmessagebox prompts the related dialog box, and the code and interpretation uses it to read

the database file into Json.

Figure 14. Structure of creating database

Create database

Setting instructions

Insert information to

database
Update

Information from database

Delete information

from database

 19

3.4.1 Create Database

To Begin with Introducing the SQL module. In the Qt project file (.pro file), add the SQL module:

reference header file. In the class definition that requires SQL, reference the relevant header file. Then

establish database Check connection, add database driver, and set database name. In the Figure 15, the

aim is to create an object of QsqlDatabase, and define the name of the database and host. It uses open

() to open the database and determine whether it is successful. Use the QSqlQuery class for database

operations, which defines a QSqlQuery object, the auto statement is written directly in the parameter of

the exec () function. Create table is the statement to create the table. The actual length of the varchar is

changed. If sql_query.exec () is executed successfully, the table is created successfully.

Figure 15. Create Database (Screenshot from Qt Project)

 20

Figure 16. Insert information to the notebook database (Screenshot from Qt Project)

In the Figure 16, database information needs to insert the statement notebook (word, wordtr, wordmean)

values ('% 1', '% 2', '% 3) into the previously created notebook table. This is to insert statement, notebook

is the table name, and values () Is the data to be inserted. After the statement instruction is issued, it is

written directly in the parameter of the exec () function in the form of qDebug. By following the same

code function principle, using the statement UPDATE notebook SET wordtr = '% 1', wordmean = '% 2'

WHERE word = '% 3.DELETE FROM notebook WHERE word ='% 1. The instruction can achieve the

contents of the notebook database Update and delete.

3.4.2 Signals and slots between objects

In the figure 17, a signal is a specific identifier. A slot is a function (only various from general functions).

A slot function can be associated with a signal and can also be called directly like a normal function. In

fact, the signal and the groove are very simple to understand. people can understand it as track and field

competition. When the signal gun fires, the athlete starts to run, and the signal gun fires is the action to

signal. The athlete starts to run is the groove function people wrote. The relationship between signals

and slots can be divided into three types: one signal is associated with one slot, one signal is associated

 21

with multiple slots, and multiple signals are associated with one slot. The full name of MOC in Qt is

Meta-Object Compiler, also known as "meta-object compiler". When compiling C ++ file, if the class

declaration contains the macro Q_OBJECT, another C ++ source file will be generated, which is the

moc_xxx.cpp file.

Figure 17. Execution process of MOC

Q_OBJECT is a very important macro. It is a key macro of Qt's meta compilation system. After this

macro is expanded, it contains code that Qt helped people to write, including variable definitions and

function declarations.

Figure 18. Connect function(Screenshot from Qt project)

Compile the

program

moc

pre-treatment

Generate

moc.cpp

Normal compi-

lation

Q_OBJECT macro

generates a function

declaration, which

needs moc implemen-

 22

In the figure 19, when the connect function is executed, a Connection object is constructed and then

stored in the sender's memory. The moc precompilation helps people to construct the beginning (signal

function body) and end (qt_static_metacall callback function) of the signal slot callback. The intermedi-

ate callback process Qt has been implemented in the QOjbect function. Signals and slots are for the

convenience of MOC to parse C ++ file and parse out signals and slots. The signal slot has a total of 5

connection modes. The first four are mutually exclusive and can be expressed as asynchronous and syn-

chronous. The fifth unique connection uses in conjunction with the first four methods. Signals and slots

are essentially the same, but for users, signals only need to be declared, MOC helps people implement

them, slot function declarations and implementations need to be written by people. The connect method

is to store the sender, signal, receiver, and slot for subsequent search when the signal is executed. A

signal trigger is a series of function callbacks.

Figure 19. Connect structure

Connect

Construct a

connection

Stored in sen-

der's memory

Store sender, send signal

index, receiver, slot func-

tion

 23

3.4.3 Word explanation function

In Qt, signals and slots are the most important part of the entire qt composition. It is similar to the bridge

to establish a connection. people want to get the response of the instruction through the signal and the

slot. people need to use the get method of qt. In general, the function is implemented through QNet-

workAccessManager, QNetworkRequest and QNetworkReply. In the figure 20, here gives the official

function and definition of them.

Figure 20. Definition of QNetworkfunctions (David 2012.)

QNetworkRequest

QNetworkReply

Figure 21. Relationship between Qnetwork functions

In the Figure 21, QNetworkRequest sets the parameters of a network request. QNetworkReply is used

to receive data returned by the server. The QNetworkAccessManager acts as an intermediary, setting up

server

QNetworkAccessManager

Client

 24

post, get, and other methods to send requests, and then monitoring whether the server returns data (stored

in QNetworkReply), and delegates the returned reply to a slot for processing. When making a network

request, there are some steps to do: generate a QNetworkRequest object, set the request header, the actual

parameters required by the API used for the request, URL and other information. Prepare to parse and

process the slot of the QNetworkReply; generate a QNetworkAccessManager, send the request, and

return it Reply is delegated to the slot processing. (implementation is a connect statement)

In the figure 22, by QJsonDocument Json, QJsonObject and QJsonArray to achieve the function of read-

ing database content and translating words. In the figure 23, QJsonDocument provides a way to read and

write Json documents. QJsonDocument is a class that contains a complete JSON document that supports

reading and writing JSON documents in UTF-8 encoded text and QT's own binary format. Regardless

of the parameter information required to set the request or the reply that is returned, the data is expressed

in the form of QJson. Therefore, to achieve network requests, the generation and analysis of QJson is

important. The text-based representation should refer to the form ["Qt ”,” Version ”, true], and the

whole is a JSON document based on text-based representation. This whole can be stored in QByteArray

in Qt. QJsonDocument is a tool for reading and writing JSON documents in Qt. This corresponds to the

concept of arrays and objects in Json. Correspondingly, Qt provides two classes related to objects and

arrays: QJsonObject and QJsonArray.

Figure 22. Json Convert (Screenshot from Qt Project)

 25

Figure 23. Json class relationship

3.4.4 Add word Function with QMessageBox and QPushButton

The QMessageBox class provides a modal dialog for notifying users or asking users questions and re-

ceiving answers. The message box displays the main text to remind the user of the situation, the informa-

tive text to further explain the alert or ask the user a question, and optional details text to provide more

data when requested by the user. The message box can also display icons and standard buttons for ac-

cepting user responses.

 Figure 24. Messages with add words success or fail (Screenshot from Qt Project)

 26

In figure 24, it describes a dialog box for information prompts through function calls to determine

whether a new word has been successfully added to the database. The QPushButton component is used

to accept user click events, it can display prompt strings, it is a functional component, requires the parent

component as a container, it can be positioned in the parent component, it uses to execute commands or

trigger events. It is also a command button. Click on it to perform some action or respond to some

questions. Whenever an instruction is issued, it triggers the previous step of the corresponding function

implementation. In the figure 25, the main interface button slot function analysis, add a word function

to determine whether there is a message box prompt after empty. Get information about the current

translation of the new word, add it to the database. Then view the current word book, get the word, query

the word details and start to initialize the display dialog box. This will get updated data and update the

database.

 Figure 25. Trigger Button (Screenshot from Qt Project)

3.4.5 Qt event programming

Events are issued by the system or the QT platform itself at different times. When the user presses the

mouse, hits the keyboard, or when the window needs to be redrawn, a corresponding event is emitted.

Some events are emitted in response to user actions, such as keyboard events; others are automatically

issued by the system. In the figure 24, for example, for QPushButton mouse clicks, events won’t need

to care about this mouse click event, but about the clicked () signal. But events and signal slots in QT

are not interchangeable. The signal is emitted by a specific object. Once the signal is emitted, it will be

immediately handed over to the slot connected by the connect () function for processing. For events, QT

uses an event queue to maintain all emitted events. When new events occur information will be appended

to the end of the event queue. After the previous event is completed, the subsequent events are taken out

for processing, and QT events can also be directly processed without entering the event queue. Through-

out the entire program, log in to the button slot, close the button slot, translate the button slot, and add a

new word button slot to the pronunciation button slot. Check the current word list button slot. qt clicked

triggers events and implements corresponding functions through the link of signals and slots.

 27

 Figure 26. Qt event programming structure

 28

4 FINAL APPLICATION

The Final application has been made successfully. It has been tested with windows 10 platform using Qt

crater. The main project is based on main translation interface, user login interface and notebook inter-

face. In the main interface, there are 4 functions that have been achieved. Translation, pronunciation,

adding new book and checking notebook.

Picture 1. Main Interface translation

 29

4.1 Login Test

As can been seen in Pictures 2 and 3, they show that document data comes to Qt with correct username

and password which made login success. User login module: On the homepage login page, users fill in

their login account and password. If the information is correct, they can enter the system for operation.

Logout: After entering the system, the user can click the logout button in the upper right corner of the

interface to log out of the system.

Picture 2. Login Interface

Picture 3. User login successfully

 30

4.2 Translation Function Test

As Picture 4 shows, when command request to take related translation meaning of word. It successfully

appeared from database. After inputting the translation, the user can use the language to be translated,

and click the translation button to perform the automatic translation language function. Word translation

is a direct translation of words, and other interpretations will also appear. Sentence translation can trans-

late long sentences.

Picture 4 .Word Translated Successfully (screenshot from Qt project)

4.3 Notebook adding Test

From Pictures 5 and 6, it shows that the result of adding word notebook seemed to work well. By reading

the list of words users can add and delete, which means the word translation will be more open to accept.

Every user has the right to change the mistakes and improve with new vocabularies. That is the point

makes users to have a totally different experience, which triggers the application meaningful.

 31

Picture 5. Notebook Interface

Picture 6. Result of adding successfully to notebook

 32

5 CONCLUSIONS

The idea of making a translation application is to create a new model of a digital dictionary. Basically,

all the functions have been realized except pronunciation. It seemed there are some mistakes when cre-

ating request from pronunciation related API. Users can login with their account and add their favorite

words, users can even change the word whey want. But in general, this is just a basic function translation

application, there are many functions that can be added to it and make it become more useful. In this Qt

production program, the user login, the connection with the new word database, the addition and removal

of the new word information, the wording function, and the Chinese and English translation of words

and sentences were achieved.

But at the same time, there are also many problems that can be solved in later development. For example,

users can increase the connection web page query, so that the information found will be more compre-

hensive, detailed and authoritative. And users can add the relevant usage of each part of the word. At the

same time, the design of UI is a bit simplistic, users can add the function of the custom UI interface.

More importantly, adding the ability to retain the query history of the word will give the user a better

experience and is more convenient. Just like many search engines, hopefully that the translation software

will have relevant vocabulary when people input a few letters and sort according to the rating of the

search. The addition of the final phonetic symbol will be a finishing touch, because most Chinese people

learn to read English from the phonetic symbols. In general, there are still many to improve in infields,

but with current level of knowledge and ability.

 33

REFERENCES

Blanchette, J.& Summerfield, M. 2006. C++ GUI Programming with Qt 4. Pearson:Prentice Hall Pro-

fessional.

Piccolino, M. 2018. Qt 5 Projects. Birmingham: Packt Publishing Ltd.

Fitzek, F. & Mikkonen, T. & Torp ,T. 2010. Qt for Symbian. Willey:John Wiley & Sons.

Dalheimer, M. 2002. Programming with Qt. Sebastopol :O'Reilly Media.

Lazer, G.& Penea,P.2018. Mastering Qt 5 .Birmingham: Packt Publishing Ltd.

Summerfield, M. 2010. Advanced Qt Programming. New Jersey :Pearson Education.

Baka, B. 2019.Getting Started with Qt 5 .Birmingham: Packt Publishing Ltd.

Weller, J . 2015. Re-factoring my Qt database code. Available at:https://www.meet-

ingcpp.com/blog/items/refactoring-my-qt-database-code.html. Accessed:14 March 2015.

Qt: the C++ framework for developing cross-platform software. Article on the website of 1&1 IONOS

Inc. https://www.ionos.com/digitalguide/server/know-how/qt/. Accessed:23 January 2019.

Admin,T .2016. Qt Tutorials For Beginners – Creating Simple Login Form in QT. Available：

http://www.codebind.com/cpp-tutorial/qt-tutorial/qt-tutorials-beginners-creating-simple-login-form-

qt/. Accessed:13 June 2016.

Fitzpatrick, M . 2019. Actions — Tool-bars and Menus.Available:https://www.learn-

pyqt.com/courses/start/actions-toolbars-menus/. Accessed:15 April 2019.

https://www.meetingcpp.com/blog/items/refactoring-my-qt-database-code.html
https://www.meetingcpp.com/blog/items/refactoring-my-qt-database-code.html
https://www.ionos.com/digitalguide/server/know-how/qt/
http://www.codebind.com/cpp-tutorial/qt-tutorial/qt-tutorials-beginners-creating-simple-login-form-qt/
http://www.codebind.com/cpp-tutorial/qt-tutorial/qt-tutorials-beginners-creating-simple-login-form-qt/
https://www.learnpyqt.com/courses/start/actions-toolbars-menus/
https://www.learnpyqt.com/courses/start/actions-toolbars-menus/

	1 INTRODUCTION
	2 QT BACKGROUND AND DEVELOPMENT
	2.1 Qt Modules
	2.1.1 Qt basic module framework
	2.1.2 Graphical interface library framework

	2.2 Qt with Database SQL
	2.3 QT Designer
	2.4 QT with HTTP
	2.5 QT signals and slots

	3 IMPLEMENTATION OF TRANSLATION SOFTWARE IN QT
	3.1 Architecture of QT translator
	3.2 GUI Design with Qt Designer
	3.3 User Login
	3.4 Function Realization
	3.4.1 Create Database
	3.4.2 Signals and slots between objects
	3.4.3 Word explanation function
	3.4.4 Add word Function with QMessageBox and QPushButton
	3.4.5 Qt event programming

	4 FINAL APPLICATION
	4.1 Login Test
	4.2 Translation Function Test
	4.3 Notebook adding Test

	5 CONCLUSIONS
	REFERENCES
	Blanchette, J.& Summerfield, M. 2006. C++ GUI Programming with Qt 4. Pearson:Prentice Hall Professional.
	Fitzek, F. & Mikkonen, T. & Torp ,T. 2010. Qt for Symbian. Willey:John Wiley & Sons.
	Weller, J . 2015. Re-factoring my Qt database code. Available at:https://www.meetingcpp.com/blog/items/refactoring-my-qt-database-code.html. Accessed:14 March 2015.
	Admin,T .2016. Qt Tutorials For Beginners – Creating Simple Login Form in QT. Available：http://www.codebind.com/cpp-tutorial/qt-tutorial/qt-tutorials-beginners-creating-simple-login-form-qt/. Accessed:13 June 2016.
	Fitzpatrick, M . 2019. Actions — Tool-bars and Menus.Available:https://www.learnpyqt.com/courses/start/actions-toolbars-menus/. Accessed:15 April 2019.

