

Transfer of monitoring solution

Adam Hrín

Bachelor’s thesis
December 2019
School of Technology, Communication and Transport
Information and Communications Technology

Description

Author(s)

Hrín, Adam
Type of publication

Bachelor’s thesis
Date

December 2019

Language of publication:
English

Number of pages

54
Permission for web publi-

cation: yes

Title of publication
Transfer of monitoring solution

Degree programme

Information and Communications Technology
 Supervisor(s)

Salmikangas, Esa

Assigned by

Solteq Oyj

Abstract

The customer of the assigner Solteq Oyj had requested for a transfer of a monitoring solu-
tion to a new platform. The currently used monitoring platform is an open source monitor-
ing software Zabbix version 2.4. It performs primarily network, process and application
monitoring of an instance of IBM WebSphere Commerce implementation.

Firstly, it was requested to review the existing monitoring and improve its current state.
For that, it was required to understand how the monitoring platform has been configured.
It was decided that visualization of the monitoring is to be done in a form of network
maps. These maps could help the team to recognize problems, bottlenecks and downtimes
even faster and more effectively as before.

The improvement of the current monitoring solution required configuration and program-
ming in Bash scripting language.

During the process of visualizing the monitoring, new programming needs arose. New
monitoring loopholes were found, and the purpose was to fix them. As a side product of
this process, the monitoring documentation was improved and enhanced to an extent that
the whole configuration was documented in one place.

The documentation also served as a specification for the transfer of the solution to a pro-
prietary SolarWinds platform. A sample monitoring was ordered from the SolarWinds team
in order to test the functionalities. The platform was studied and understood to the
needed extent. The transfer process has been in progress and will continue in near future.

Keywords/tags (subjects)

Network monitoring, application monitoring, Zabbix, SolarWinds

Miscellaneous

http://finto.fi/en/

1

Contents

1 Introduction ... 3

2 Theoretical background .. 4

2.1 Importance of monitoring ... 4

2.2 Network monitoring .. 4

2.3 Agent-based and agentless monitoring .. 5

2.4 Zabbix .. 6

2.5 SolarWinds ... 13

2.6 Monitored system ... 15

3 Improving current monitoring ... 18

3.1 Current state ... 18

3.2 Zabbix frontend ... 19

3.3 Documentation and configuration .. 20

3.4 Visualization of monitoring in Zabbix maps .. 22

3.4.1 Visualizing the first process .. 23

3.4.2 Order creation process ... 28

3.4.3 Dataload process visualizing ... 31

4 Monitoring transfer to SolarWinds Orion Platform .. 35

4.1 Transfer specification .. 35

4.2 Current situation in SolarWinds .. 38

4.3 Ordering a sample monitoring in SolarWinds ... 41

4.4 Implementing sample monitoring ... 43

5 Conclusion .. 45

5.1 Summary .. 45

5.2 Transfer continuation .. 46

2

References ... 48

Appendices .. 50

Figures

Figure 1. Example Zabbix setup .. 7

Figure 2. Zabbix architecture ... 8

Figure 3. SolarWinds Orion platform architecture ... 14

Figure 4. Server and Application Monitor (SAM) infrastructure 15

Figure 5. Dataload process ... 17

Figure 6. Zabbix dashboard .. 19

Figure 7. Zabbix network map of RTP service call flow .. 24

Figure 8. Network map node menu ... 25

Figure 9. Sterling Integrator network map... 25

Figure 10. Dataload process on Sterling Integrator ... 32

Figure 11. Sample monitoring of dataload process in SolarWinds 43

Figure 12. Dataload process monitor component history statistics 44

Figure 13. SolarWinds alert dashboard .. 45

Figure 14. Linux script execution error .. 47

Tables

Table 1. SolarWinds Global Alerts .. 38

Table 2. HADR Health ... 39

Table 3. Linux CPU Monitoring ... 40

Table 4. Linux Memory Monitoring .. 40

Table 5. DB Monitoring .. 41

Table 6. Linux script functions exit codes meaning in SolarWinds 42

3

1 Introduction

In today’s world, the terms network and application monitoring are crucial in the IT

industry. Network monitoring describes an IT process where networking components

are monitored for fault and performance and maintaned continuously to optimize

their availability. An important aspect of network monitoring is that it should be

proactive. Proactivity helps to find issues and bottlenecks in the initial stage. Efficient

proactive monitoring can prevent network downtime or failures. (Basics of network

monitoring n.d.)

Application monitoring is a process that ensures that a software application

processes and performs in an expected manner. Typically, application monitoring

provides runtime metrics of system performance. These metrics include the

transaction time, system response, transaction volume and overall health of the

back-end infrastructure. Generally, the metrics are delivered in the form of graphical

figures and statistics. These figures make it possible to evaluate the performance of

an application or the overall application infrastructure. (Application monitoring n.d.)

There are several monitoring platforms on the market. The hosting company Solteq

Oyj currently uses an open source platform. The customer of the company’s team

requested the monitoring to be transferred to a proprietary platform which the

customer site already has in use.

The current monitoring solution serves the AMS (Application Maintanance Support)

team to identify application and network issues. The monitoring platform offers an

alerting functionality. In case when monitored process turns into problem state, this

is alerted in an alerting dashboard and by an email notification. Naturally, the

monitoring is not perfect and the network and application monitoring have several

loopholes. It is required to imrove the current state of monitoring. During this

process, visualizing the network in a form of network maps was requested.

After implementing the improvements to the current monitoring platform the

transfer to another monitoring platform was realized.

The customer of the assigner required not to be mentioned in this thesis, therefore

all references to the customer are anonymized.

4

2 Theoretical background

2.1 Importance of monitoring

In order to understand what needs to be improved during the implementation phase

of the thesis, the most important objective needs to be explained. Monitoring the

health of a software product, sanity of processed data and the network in which the

software is deployed is equally important as the development of the product itself.

During the application lifecycle, many changes and customizations need to be intro-

duced as the application is further developed and new customers come. If monitor-

ing is constructed well, it can notify the service team of an issue that can be resolved

even before the consequences potentially reach the customer.

2.2 Network monitoring

Network monitoring is the use of a system that constantly monitors a computer

network for slow or failing components and that notifies the network

administrator in case of outages or other trouble. Commonly measured metrics

are response time, availability and uptime, although both consistency and reliability

metrics are starting to gain popularity. (Network monitoring n.d.)

Status request failures, e.g. when a connection cannot be established, it times-out, or

the document or message cannot be retrieved, usually produce an action from the

monitoring system. These actions vary; for example, an alarm may be sent (via SMS,

email, etc.) to the resident sysadmin, automatic failover systems may be activated to

remove the troubled server from duty until it can be repaired. (ibid.)

According to Olups (2019), basic functionality that can be expected from a

monitoring solution is:

• Data gathering: This is where everything starts. Usually, data is gathered

using various methods, including Simple Network Management Protocol

(SNMP), agents, and Intelligent Platform Management Interface (IPMI).

https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Network_administrator
https://en.wikipedia.org/wiki/Network_administrator
https://en.wikipedia.org/wiki/Response_time_(technology)
https://en.wikipedia.org/wiki/Availability
https://en.wikipedia.org/wiki/Uptime
https://en.wikipedia.org/wiki/Timeout_(telecommunication)
https://en.wikipedia.org/wiki/SMS
https://en.wikipedia.org/wiki/Sysadmin

5

• Data storage: Once the data has been gathered, it is beneficial to store it

for later analysis.

• Alerting: Gathered data can be compared to thresholds and alerts sent

out when required using different channels, such as email or SMS.

• Visualization: As the data has already been gathered and stored, it is triv-

ial to generate simple graphs or maps from it. (Olups 2019, 2.)

According to Basics of network monitoring (n.d.), the most important aspects of net-

work monitoring are:

• Monitoring the essentials: Identifying the devices that need to be moni-

tored

• Optimizing the monitoring interval: Deciding on the frequency of polling

• Selecting the right protocol: Secure and low-bandwidth consuming net-

work management protocol (e.g. SNMP)

• Setting thresholds: Aiming to identify real-time performance bottlenecks

proactively by being alerted about an issue sufficiently long time before

the network downtime

2.3 Agent-based and agentless monitoring

A decision about what kind of monitoring is going to be used needs to be made. It

depends on what metrics need to be monitored and which protocols can be used. It

is usually not an either-or decision, since some parts of the network can be moni-

tored without agents while other parts require agents to be installed.

Agents are small software applications that are tailored to run on each device that

the user wishes to monitor, collect desired data such as a performance metrics and

6

dependencies, and report that data back to a central repository - such as a monitor-

ing server - which organizes, processes and visualizes that data. Agents are extremely

common for monitoring heterogeneous environments, and they can be tailored to

almost any system. Agents provide versatility; however, they also present additional

workloads that IT administrators must manage and maintain. (Bigelow 2018.)

On the contrary, agentless products do not embed special management features into

the hardware device. Instead, they rely on industry-standard interfaces to gather

monitoring data. With standards-based communication interfaces, agentless systems

provide lightweight monitoring that targets key metrics and basic monitoring situa-

tions. (Korzeniowski 2016.)

For agentless monitoring, implementation ranges from built-in SNMP agents to re-

mote shell access, such as SSH. “Agentless” is slightly a misnomer. All management

requires an agent, whether the agent is embedded in the management platform, the

managed device, or a separately installed piece of software. The industry has ac-

cepted the de-facto definition of agentless as a management agent embedded in the

software of the device or as a capability of the manager, requiring no separate instal-

lation or licensing. Agentless monitoring really means the use of existing, embedded

capabilities. (Agent vs. Agentless Monitoring 2016.)

Agents provide more in-depth analysis and higher levels of security than agentless

monitoring achieves but also can be harder to deploy and more expensive. (Korzen-

iowski 2016.)

2.4 Zabbix

There are multiple monitoring tools on the market, some of them being proprietary,

which means that a license needs to be purchased in order to use the product (such

as SolarWinds, PRTG, ManageEngine). The second option are open source platforms,

such as Nagios and Zabbix. (Wilson 2019) The tool used for monitoring in the au-

thor’s team is currently Zabbix version 2.4.

Zabbix is an open source monitoring software tool for diverse IT components, includ-

ing networks, servers, virtual machines (VMs) and cloud services. Zabbix provides

https://searchitoperations.techtarget.com/tip/Agentless-monitoring-improvements-make-it-competitive-with-agent-based-solutions
https://searchitoperations.techtarget.com/tip/Agentless-monitoring-improvements-make-it-competitive-with-agent-based-solutions
https://whatis.techtarget.com/definition/agentless
https://whatis.techtarget.com/definition/agentless

7

monitoring metrics, such as network utilization, CPU load and disk space consump-

tion. The software monitors operations on Linux, Hewlett Packard Unix (HP-UX), Mac

OS X, Solaris and other operating systems. (Rouse 2018.)

Zabbix can be deployed for agent-based and agentless monitoring. Agents are in-

stalled on IT components to check performance and collect data. The agent then re-

ports back to a centralized Zabbix management server. That information is included

in reports or presented visually in the Zabbix graphical user interface (GUI). If there

are any issues regarding what is being monitored, Zabbix will send a notification or

an alert to the user. Agentless monitoring accomplishes the same type of monitoring

by using existing resources in a system or device to emulate an agent. (Rouse 2018.)

Architecture

Zabbix provides ways of monitoring different aspects of IT infrastructure. While many

installations have a single central system, it is possible to use distributed monitoring

with proxies and most installations will use Zabbix agents. (Olups 2019, 5.) A simple

Zabbix setup depicting several monitoring capabilities can be seen in Figure 1.

Figure 1. Example Zabbix setup (Olups 2019, 5.)

https://whatis.techtarget.com/definition/agentless
https://searchwindevelopment.techtarget.com/definition/GUI

8

The Zabbix server directly monitors multiple devices but a remote location can be

separated by a firewall, so it is easier to gather data through a Zabbix proxy. The Zab-

bix proxy and Zabbix agents, just like the server, are written in C language.

The main component is Zabbix database. Both Zabbix server and Zabbix frontend

need an access to Zabbix database. Zabbix frontend needs an access to Zabbix server

as well in order to display metrics about the server and some additional functionality.

The required connection directions are shown in Figure 2. (Olups 2019, 7)

Figure 2. Zabbix architecture (Olups 2019, 7)

Zabbix agent

In Zabbix, the agent is a piece of software deployed on a monitoring target to actively

monitor local resources and applications (hard drives, memory, processor statistics

etc). The agent gathers operational information locally and reports data to Zabbix

server for further processing using a JSON based communication protocol. In case of

failures (such as a hard disk running full or a crashed service process), Zabbix server

9

can actively alert the administrators of the particular machine that reported the fail-

ure. Zabbix agents are extremely efficient because of use of native system calls for

gathering statistical information. (Zabbix agent 2018.)

There are two types of checks Zabbix agent can perform: passive and active. In a pas-

sive check, the Zabbix server makes a data request towards agent and the Zabbix

agent provides the result. In an active check, the agent must first download from the

server a list of items to check. Then, based on the list, the agent will periodically send

required values of specified items to the server. (ibid.)

Agentless monitoring in Zabbix

Besides of previously mentioned Zabbix agent options, there is another way how to

perform monitoring of simple things without the need for an agent. Zabbix agentless

monitoring is done with a help of Simple checks, which rely on basic network proto-

cols such as ICMP and TCP to query monitored hosts (Olups 2019, 125). These checks

are mainly used to check the basic reachability of a host, such as if TCP port is open

or ICMP ping from the Zabbix server towards monitored host works.

Zabbix proxy

Zabbix proxy is a process that may collect monitoring data from one or more moni-

tored devices and send the information to the Zabbix server, essentially working on

behalf of the server. All collected data is buffered locally and then transferred to the

Zabbix server the proxy belongs to. Deploying a proxy is optional, however, it may be

very beneficial to distribute the load of a single Zabbix server. If only proxies collect

data, processing on the server becomes less CPU and disk I/O hungry. (Zabbix proxy

2018.)

Zabbix features

In order to understand how Zabbix works the basic features need to be introduced.

In Zabbix, hosts are the devices which are being monitored (servers, workstations,

switches, etc). Hosts are organized into host groups, which group hosts logically

based on various rules (platform-level, cluster-level rules, etc). Each host is

configured with number of items. Items are the most essential individual metrics. It is

specified what sort of data will be gathered from the host in an item. Items can be

10

logically grouped into applications. (Zabbix configuration 2018.) Olups (2019, 189)

points out some of the most used item types to be Zabbix agents, simple checks,

SNMP or IPMI.

Triggers

Triggers are logical expressions that “evaluate” data gathered by items and represent

the current system state. Trigger expressions allow to define a threshold of what

state of data is acceptable. Therefore, should the incoming data surpass the

acceptable state, a trigger is “fired” or it changes the status to PROBLEM.

Whenever a trigger changes its status, Zabbix event is generated. This is essential for

event correlation, which allows to correlate problem events to their resolution in

a manner that is very precise and flexible. Other types of events are discovery events

generated when hosts or services are detected, auto registration events generated

when active agents are auto-registered by server, and internal events generated

when an item or low-level discovery rule becomes unsupported or a trigger goes into

an unknown state. (Zabbix configuration 2018.)

Each trigger is also defined by its severity. There are Information, Warning, Average

High and Disaster severity options. The lowest generally describes the beginning and

the end of normal business operation, the highest indicates some severe problem

with immediate effect on the business. The actual severity meaning is defined by the

user himself. Triggers of different severities are displayed with different colours on

the user interface which brings a great visual help.

Discovery features

The previously mentioned discovery events are occuring as a result of discovery

features. Discovery features can simplify administration and speed up Zabbix

deployment. Network discovery feature enables Zabbix to automatically discover

new nodes on the network. It is based on information such as result of periodical

scans of IP ranges defined in Zabbix network discovery rules, availability of external

services and information received from Zabbix or SNMP agent. The actions made

upon the discovery result include creation or removal of hosts, adding hosts to host

groups. Another type of discovery is the so called low-level discovery. This feature

11

provides a way to automatically create items, triggers and graphs for different

entities on a computer. For instance, Zabbix can automatically start monitoring file

systems, memory usage, CPU usage, disk space or network interfaces of hosts.

(Zabbix discovery 2018.)

To ease up the process of assigning entities conveniently to multiple hosts, templates

are introduced. The entities may be e.g. items, triggers, graphs, screens, applications,

low-level discovery rules. Many hosts in real production can be identical or are fairly

similar so naturally the sets of entities created for one host may be useful for many,

which makes Zabbix configuration scalable and easy to manage. (Zabbix

configuration 2018.)

User parameters

The items that allow to query the built-in capabilities of a Zabbix agent, query SNMP

devices and reuse data on the Zabbix server are not always enough for some

monitoring needs. Sometimes there is a requirement to monitor something that is

not supported by Zabbix “out of the box“. The easiest and most popular method to

extend Zabbix data collection is user parameters. They are commands that are run by

the Zabbix agent and the result is returned as an item value. (Olups 2019, 419.)

User parameters are configured on the agent side. The file of an agent daemon pro-

cess zabbix_agentd.conf contains the definitions as follows:

 UserParameter=<key>,<shell command>

This brings an enormous advantage of executing eventually any command on the

Zabbix agent. According to Olups (2019, 421), it is recommended to use User param-

eters as active Zabbix items, as they can tie up server connections if they do not re-

turn a value very quickly.

Flexible parameters

To utilize the shell possibilities of using parameters in the command to make the

item scalable, Zabbix offers Flexible user parameters, the syntax of which is as fol-

lows (Olups 2019, 422)

 UserParameter=<key>[*],<shell command using $# shell parameters>

12

In this case, it is possible to specify parameters in the square brackets next to the key

delimited by commas, and access them in the command using $1, $2 shell syntax.

Wrapper scripts

Commands to be executed can be specified in the Zabbix agent daemon configura-

tion file on a single line only. Pushing whole scripts there can be very messy and

sometimes it can be hard to figure out the quotation. In such cases, a wrapper script

has to be written. Such a script can be useful if parsing data requires more complex

actions, or if parsing out multiple different values cannot be easily done with flexible

user parameters. (Olups 2019, 435)

This solution is widely used in the author’s team monitoring infrastructure, as it is

easily scalable.

Zabbix visualization

It is fairly natural for humans to understand better visualized data. Visualization in

Zabbix can be carried out with graphs which allow to grasp the data flow at a glance,

correlate problems, discover when something started or make a presentation of

when something might turn into a problem. The options for Zabbix graphs vary from

simple one-item graph, more complex customized graphs to several-items

comparison ad-hoc graphs. (Zabbix visualization 2018.)

Another visualizing option is network map. It is useful for having an overview of

network’s infrastucture depicting raised triggers on specific hosts or host groups.

Connections between nodes can be customized to show occured problems between

hosts using links. Application level monitoring can also be created utilizing network

maps. (ibid.)

Very often there is a need to display more graphs or network maps on one page.

Zabbix screens provide options for performing this feature. Essentially a screen is

a table with any number of columns and rows, and each cell can display one element.

These elements can be graphs, maps, other screens, entity overview information

(entity being host, item, trigger, host group, etc.), problems by severity, clock, etc.

(ibid.) Screens are significantly useful for network administrators, especially when

13

displayed on large screens, to have immediate information when something goes

wrong somewhere on the network.

2.5 SolarWinds

The introduced Zabbix monitoring solution is currently used in the author’s team.

Due to a company decision, the servers running Zabbix server and Zabbix proxy will

be shut down in near future; hence, the monitoring solution needs to be transferred.

It has been requested by the customer that the platform used will be SolarWinds

Orion platform.

In contrary with Zabbix, SolarWinds is a proprietary software for businesses to help

manage their networks, systems, and information technology infrastructure. (Solar-

Winds n.d.)

SolarWinds Orion Platform is a comprehensive bandwidth performance management

and fault management application that allows you to view the real-time statistics of

your network directly from your web browser. The Orion Network Performance

Monitor will monitor and collect data from routers, switches, servers, and any other

SNMP enabled device. Additionally, Orion platform monitors CPU Load, Memory uti-

lization, and available Disk Space. (SolarWinds Orion Platform Integration n.d.)

Architecture

From the high-level point of view, the architecture of Orion solution is similar to the

Zabbix architecture. Figure 3 displays a very simplified architecture of Orion platform.

It consists of SolarWinds Orion Server responsible for all the data gathering and pro-

cessing. The data is stored in an SQL Server and monitoring is presented to the user

in a SolarWinds Orion Web Console. The application server monitors devices which

can be basic network devices such as switches and routers, servers or all apps and

websites. (One platform to rule your IT stack n.d.)

https://en.wikipedia.org/wiki/Network_monitoring
https://en.wikipedia.org/wiki/System_monitor
https://en.wikipedia.org/wiki/Information_technology

14

Figure 3. SolarWinds Orion platform architecture (One platform to rule your IT stack

n.d.)

Features

SolarWinds comes with a wide variety of features and monitoring possibilities which

are out of scope of this thesis. However, the focus will be on describing only the fea-

tures which are going to be utilized when implementing the monitoring transfer.

The SolarWinds Orion web-console based tool which allows monitoring servers and

applications is called Server and Application Monitor (SAM). SAM includes over 250

“out of the box” application monitor templates that can be assigned to nodes and

used immediately. These templates are comprised of code and scripts that can be

customized for individual nodes, or groups of nodes. Alerts and thresholds for moni-

tored values can be configured. When polling occurs, scripts automatically gather

data and report results within the Orion Web Console. (Server&Application Monitor

n.d.)

Each template includes one or more component monitors designed to monitor a

server, application, or process. These pre-built templates can be assigned to nodes to

create applications that are specific to that node. (ibid.)

https://documentation.solarwinds.com/en/Success_Center/SAM/Content/SAM-SolarWinds-SAM-Alerts-sw2195.htm

15

Figure 4 (Server&Application Monitor n.d.) illustrates how different templates can be

assigned to nodes to create application monitors that display polling results in the

Orion Web Console together with the web console frontend.

Figure 4. Server and Application Monitor (SAM) infrastructure (Server&Application

Monitor n.d.)

2.6 Monitored system

The monitoring makes sense only if there is a system to monitor. The purpose of this

chapter is to introduce the company, the system the author’s team is working on and

the most essential processes inside the system which are critical for the customer

that hence are the most important to monitor.

Company background

The author of this thesis works as a trainee in a Finnish company Solteq Oyj in a team

providing implementation and support of an e-commerce solution. The author’s

16

work position is in an AMS department (Application Maintenance Support) which is

responsible for maintenance and support of the product. This includes e.g. fixing

bugs, updating APIs, modifying features, adding new features, enhancing app secu-

rity, improving UI and UX, updating the app to keep up with platform and hardware

requirements, and managing downtimes (Kitili 2018).

IBM WebSphere Commerce

The product that the team is delivering is IBM WebSphere Commerce. WebSphere

Commerce is a single, unified e-commerce platform that offers the ability to do busi-

ness directly with consumers (B2C), directly with businesses (B2B), and indirectly

through channel partners (indirect business models). WebSphere Commerce is de-

signed to be a customizable, scalable, and high availability solution that is built to lev-

erage open standards. It provides easy-to-use tools for business users to centrally

manage a cross-channel strategy. (WebSphere Commerce Version 8 n.d.)

E-commerce in general can be divided into several groups depending on who is the

customer. If the customer is another business, term B2B e-commerce is used. On the

other hand, if the customer is a single person considered to be the end customer,

this is called B2C e-commerce. From the perspective of the WebSphere Commerce

software, there are differences in implementation and service support in both stores.

The majority of stores currently running in the author’s team are B2B stores.

WebSphere Commerce Integration

External systems integration is a key feature of the WebSphere Commerce solution.

In WebSphere Commerce business logic is enabled for integration and built-in adapt-

ers and interfaces are provided for common integration points. (Integrating n.d.)

WebSphere Commerce can be configured to send a message to a back-end system

whenever an order is created at the store. This order information can be used by the

back-end system to do necessary order fulfillment processing. The back-end system

can later send order status messages back to WebSphere Commerce indicating that

order delivery occurred, or an order invoice is issued. An email can also be sent to

update the customer. (Integrating n.d.)

17

DataLoad Utility

It is important to understand processes running inside the WebSphere Commerce

system. One of the most important processes is dataload process. All the data

coming to the webshop must be understood by the system in order for the system to

be able to store the data into a database. Data sources vary across the stores. Stores

usually utilize their own ERP systems (Enterprise Planning System) as a data source

for the webshop. IBM WebSphere Commerce DataLoad Utility is a prefered way how

to load data into webshop. The loaded data are complex; however, from a higher

perspective, four main data entities essential for any B2B e-commerce generally can

be recognized: categories, products, pricelists and customers. It is important to

realize that in B2B e-commerce, every customer can have different pricelist. They can

obtain different promotions and discounts based on their previous purchases.

Therefore, the pricelists, even for the same products, vary across the customers.

According to Data Load utility architecture overview (n.d.), the simplified visual

overview of how the dataload process works can be described according to IBM

documentation as follows in Figure 5 (Data Load utility architecture overview n.d.):

Figure 5. Dataload process (Data Load utility architecture overview n.d.)

18

1. In the Business object builder layer, the Data reader is responsible for passing

the raw data source to Business object builder for processing and building

business objects. The business objects are common entities throughout the

WebSphere Commerce. The business object layer supports different types of

data sources, such as CSV format, XML files, external databases or ERP

systems.

2. The business object mediator converts the business objects into objects that

represent the physical database schema – physical objects.

3. The persistence layer persists the physical objects into the WebSphere

Commerce database.

Sterling Integrator

Every store may send the data in a slightly different format, which is why an

integration system able to translate the data to the format understood by the

DataLoad Utility must be placed in between.

Sterling B2B Integrator is a transaction engine that runs processes and manages

them according to business requirements. One of the most important processes is

data transformation. Data transformation is the cornerstone of electronic commerce.

With Sterling B2B Integrator, data transformation can be manipulated easily.

Supported data formats include Electronic Data Interchange (EDI), positional,

variable-length-delimited, Japanese Center for Informatization of Industry (CII), and

Extensible Markup Language (XML). (Sterling B2B Integrator n.d.)

3 Improving current monitoring

3.1 Current state

The author’s primary task is to take care of the process of transferring monitoring so-

lution from Zabbix to SolarWinds monitoring system. Before the transfer can be im-

plemented, the current situation of Zabbix monitoring needs to be revised. The pri-

mary reason for this is that despite the fact that the team had created a unified pro-

cedure of creating templates, items and triggers, the procedure was not always

19

obeyed. This was causing that the Zabbix frontend started to be disarranged and in-

consistent. The aim was to make the documentation of current monitoring complete

and organized.

During the process of documenting and organizing a new challenge was expected to

arise. An incomplete or wrong monitoring of part of the network can be revealed,

eventually some parts can be found not to be monitored at all. The purpose of the

work in this phase was to create or repair such monitoring with respect of how big

advantage it brings to the team, thus to the customer.

Another reason for the current situation mapping was to help the author to adapt

and get to know the system. The knowledge is expected to be passed to other team

members in a form of an easy-to-access documentation.

3.2 Zabbix frontend

The Zabbix frontend can be accessed with different administration privileges. It is

enough for a user who is interested only in the monitoring results to have an access

to monitoring overview, historical data, network maps, screens, et cetera. Monitor-

ing alert dashboard (shown in Figure 6) is the primary source of information about

raised alerts.

Figure 6. Zabbix dashboard

20

The dashboard contains information such as on which host the alert was raised, what

is the issue, how long is the problem event fired and some additional information.

For the sake of this thesis, the server DNS names were left out from the host column.

The background colors of the alert texts represent the severities of the triggers.

Based on this information, the team can perform all the necessary steps to fix the

problem underlying the monitoring unit. The internal team’s documentation should

therefore be in place.

Additionally, the user with administrator privileges is able to configure parts of the

monitoring. This user can then introduce new items, triggers and alerts as well as

modify existing ones, configure network maps, templates, host groups and discovery

events.

3.3 Documentation and configuration

Before the author began working on the monitoring solution, there had already ex-

isted a documentation on company’s internal knowledge sharing system. This docu-

mentation begins with describing the team defined trigger severities meanings in de-

tail. The main part of the documentation is a table describing the meaning and pur-

pose of Zabbix items. The table shows which template the items are on, what trig-

gers they have, which hosts are monitored by these items and, most importantly,

what action should be taken when the trigger of certain item is active. An example of

a record from the table can be found in Appendix 1.

There is already one inconsistency in the table, missing “Actions when triggered” col-

umn record for the last example. There are more similar cases in the documentation.

For the team this means that if the trigger gets active, it takes longer time for the

team member to find the cause. It is supposed that the creator of the Zabbix item

might have had more insights about the problem and could have shared his

knowledge to make the job easier in the future.

Definition of item keys

Another thing to notice in the table is the two kinds of item keys. All the Zabbix item

keys in the team’s configuration can be divided into two groups:

21

• Zabbix default keys

• User parameter keys

The Zabbix default keys are keys that come with the Zabbix “out of the box”. The

Zabbix agent can interpret the keys with no additional scripting required. These keys

usually include the most basic checks that are CPU, free disk space or available

memory related. Other checks worth mentioning belonging to this category used in

team’s monitoring solution are checking whether number of running processes on

server has not exceeded a threshold, network traffic flow on server or system uptime

of server. In this case, presented in Appendix 1, the example of Zabbix default key is

net.tcp.service[tcp,,8080] which checks if Jenkins service is running. It is known

that this service runs on given monitored host on port 8080. Using TCP protocol, Zab-

bix server checks the status of the service periodically.

It is important to mention that in the architecture of the Zabbix system there exists

the Zabbix proxy that acts on behalf of the server and intends to lower the load off of

the server. Therefore, the exact description of the previously mentioned check is that

the Zabbix proxy checks the status of the service periodically and hands out this in-

formation to the Zabbix server. This applies for all Zabbix checks using agents.

The User parameter keys (in the example in Appendix 1 they are checkDbBackup-

Status and checkSIFTPHTTPCode) make use of a custom shell script on the moni-

tored host itself. In the configuration file of Zabbix agent located on the host there is

an Include parameter. This parameter enables to include files in the configuration file

as a wrapper scripts. When installing Zabbix, the default directory for these included

files is generated as <path>/zabbix_agentd.conf.d/*.conf, meaning all the files in

this directory with a suffix .conf will be included. There are three files with such a

suffix: zabbix_agentd.userparams.conf, solteq.conf, and on database servers

db2.conf. All of them consist of definitions of User parameter keys and their respec-

tive shell commands. The first file contains general checks such as CPU, System infor-

mation or process check with only a one-liner shell command included directly in the

file. An example of a check monitoring application processes is findprocess user pa-

rameter:

22

 UserParameter=findprocess[*],[-z "$3"] && { ps -fU "$1" | grep "$2"

| wc -l; } || { ps -fU "$1" | grep "$2" | grep "$3" | wc -l; }

The db2.conf file contains database related checks such as High Availability Disaster

Recovery (HADR) status, backup and logfiles monitoring.

The solteq.conf file contains all the specific checks per template or host. In the shell

command section of each User parameter definition, a shell wrapper script monitor-

ing.sh is referenced. This script contains all the functions performed by the agent on

the hosts that return values to the Zabbix server. The definitions of keys from the ex-

ample in Appendix 1 are:

 UserParameter=checkDbBackupStatus<path>/zabbix_agentd.conf.d/monitor-

ing.sh checkDbBackupStatus

 UserParameter=checkSIFTPHTTPCode,<path>/zabbix_agentd.conf.d/monitor-

ing.sh checkSIFTPHTTPCode

For the completeness, using flexible parameters with arguments passed to monitor-

ing.sh functions is also possible in this fashion:

 UserParameter=checkFtpFileCount[*],{ <path>/zabbix_agentd.conf.d/moni-

toring.sh checkFtpFileCount $1 $2; }

3.4 Visualization of monitoring in Zabbix maps

In the next phase of monitoring improvement a Zabbix maps feature is utilized. Zab-

bix maps visualize the system architecture with respect to connection between

nodes. Each node and connection between nodes can be associated with items and

triggers connected to that node or connection.

This process of creating maps has two main reasons. Firstly, it helps the team mem-

bers to quickly spot new triggers raised and at the same time identify on which node

the problem is. For the future team members, maps help to grasp the architecture of

the system much easier and faster. Secondly, during the process of creating the map

there can occur a need for new monitoring item to be made. Making the map is a

creative process requiring logical thinking about nodes and their connections. There-

fore, it is much more natural to reveal some missing monitoring item on a place

where it should be.

23

The first and most obvious indicator is when there is no monitoring on the connec-

tion between nodes. This does not necessarily mean that the monitoring should be

placed there because not all connections are needed to be monitored. However, it is

a good place to start. Naturally, some nodes and connections need to be monitored

with multiple items focusing on different aspects of the application or network. The

maps help realizing what those aspects are.

Staging server

Before digging deeper into the monitoring, a specialized Staging server must be in-

troduced to understand the underlying structure. The WebSphere Commerce Staging

server is a part of the production environment where business and technical users

can update and manage store data and preview changes. The changes can then be

propagated to the production server. (Staging server n.d.)

Aside from its importance in the production application environment, Staging server

is also important for monitoring. Most of the Zabbix checks regarding the specific

features and application services are performed via Staging server. Some amount of

checks is performed via other servers, an example of those are checks of connections

or accessibility of services, availability of processes.

3.4.1 Visualizing the first process

Some customers use so-called Real-time pricing (RTP) services for providing net

prices of their products to WebSphere Commerce (WCS). These services are external

services called from WCS through Sterling Integrator (SI). SI works as a mediator that

receives a SOAP request GetPrices from WCS over HTTP and passes this request in

a form of service call to external RTP service. RTP service reacts to this call with

a response back to SI and SI processes the response back to a format understandable

by WCS. Finally, SI sends SOAP message Prices back to WCS over HTTP.

This process is critical for customers utilizing the RTP service, so it is important to

stay notified of any problem on the route. There already exists an item check-

IsRealTimePricingUp[*] in Zabbix. This item performs a check in monitoring.sh

wrapper script sending a SOAP message to given URL and waits for the response. If

the response takes too long to receive or it has non-success response code in HTTP

24

header the problem is signalized to Zabbix. Important part is the URL, which is

specified based on the parameter given to the Zabbix item represented as the *

symbol in the item definition. The item can check either the connection to RTP

through SI sending a request to SI the same way WCS does, or it can check directly

the external RTP service using its URL. For this monitoring check the Staging server is

used.

Creating the network map

Visualizing this process into a map means taking the related servers as nodes and

creating connections between them. One note regarding all the maps shown in this

thesis is that the details of the nodes such as the DNS names of the servers, private

IPs or other parameters have for the sake of the thesis been disregarded from the

map since they are internal information. Figure 7 shows the RTP network map.

Figure 7. Zabbix network map of RTP service call flow

The map contains two Staging servers each representing the production Staging

server in different WCS versions. Currently, both version 7 and version 8 of WCS are

in production use, since some customers have their eshops in one version and some

customers in the other. Additionaly there is a Sterling Integrator node and node

representing the RTP services.

There is a certain level of abstraction on each of the maps. Firstly, in fact there are

two RTP services represented in the production, which are on the map represented

25

by the cloud node. The line between this node and the Staging servers represents the

connection to both the RTP services.

Secondly, the Sterling Integrator is a grouping of more servers hidden behind. The

node is configured the way that it is possible to see one abstraction level lower – to

see the architecture of Sterling Integrator itself. When the node is clicked, a menu

with the option to see a Submap is visible under URLs submenu, as shown in Figure 8.

After selecting the option user is presented with the SI network map, as presented in

Figure 9.

Figure 8. Network map node menu

Figure 9. Sterling Integrator network map

26

The configuration of the nodes and connections between them is the core of the

whole map. Each node represents one host or host group in Zabbix. There is a visual

sign of when some trigger is active on a host, shown as a circle around the map node

with a color attributable to the severity of the trigger. However, it is not desirable to

show every active trigger of the server. For example, as mentioned before, Staging

server is responsible for most of the monitoring items, thus has a lot of triggers that

can be active. In this case, it is required to configure the nodes to signalize only active

triggers related to RTP monitoring. This can be achieved with help of applications.

Every item in Zabbix must belong to some application which groups items logically.

This application can then be configured on the map node, which essentially means

that only triggers assocatied with that application’s items will influence the node. For

the Staging servers this means that it is required to configure the nodes to accept

only the checkIsRealTimePricingUp application. In this case there is only one item

checkIsRealTimePricingUp[*] which belongs to this application since no other

monitoring check is made from the Staging servers towards SI or RTP services.

The Sterling Integrator node is in fact configured as a host group node. A new host

group SI PROD was created in Zabbix which groups six production SI hosts. Apart

from the four SI servers visible on figure 9, there are two more servers – SI Perimeter

1 and SI Perimeter 2; however, for the scope of this monitoring they are not

important.

For the host group node, there is also an option to define an application in the

configuration. However, there are no applications on the host group level in Zabbix.

If a trigger related to the application on any host inside the host group is active, the

host group node will signalize it with a coloured circle around the node.

Unfortunately, Zabbix host group map nodes do not show which host the active

trigger belongs to directly on the map. To find it out, the user must click the node

and choose a Triggers option in the menu under Go to submenu (figure 8), which will

redirect him to active triggers list with respective hosts shown.

The connections between nodes represented by lines with labels on them can also be

configured to change appearance when some trigger is active. For example, the line

can go red or bold to emphasize problem, alternatively the line can turn into dashed

or dotted line. The options how the line is shown if a problem state occurs are

27

completely customizable. The lines are configured separately by choosing related

triggers. Hence, the line between Staging servers and SI will change to bold red when

the RTP via SI request results in a problem. Similarly, when the direct request

between Staging servers and RTP services fails, the respective lines turn bold red.

There is one additional line with a label Ping to RTP from SI to RTP. An existing item

checkPingIntervalRTP is utilized. The item makes a simple ICMP ping to RTP

services from SI nodes and evaluates the response. There are two triggers configured

for this item, one firing when the ping times out and one when the ping takes in

average longer time to response than some preconfigured treshold. Both these

triggers are configured on the map, so whenever they are active, the map shows it.

By creating the map the main goal was achieved. During the process an

unsatisfactory configuration of triggers had been realized and was needed to be

improved. It was found out that existing triggers had not been configured properly

and had used Zabbix trigger functions in a wrong way. It has been concluded that

two kinds of triggers for each connection will be created. The connections are

between Staging and SI, between Staging and the first RTP service and between

Staging and the second RTP service. One trigger activates when the response from

the respective server has not reached the sender and another trigger activates when

there was no response for fifteen minutes. The trigger expressions look like this for

check through SI:

 {checkIsRealTimePricingUp[si].last()}=0

 {checkIsRealTimePricingUp[si].count(900)}=0

The trigger function last() with no arguments gives the last measured value. The

trigger function count(900) gives a sum of the values measured in last 900 seconds

(15 minutes). The item is configured to run the check every 60 seconds.

In the case of the first trigger firing, the team members should be prepared to take

an action, while when the second one fires they are supposed to take the action

immediately.

28

3.4.2 Order creation process

The most important feature of e-commerce solution is making orders. The shopper

can add product to a shopping cart creating an order by submitting the purchase. The

order undergoes different processes and transfers through various states during its

lifecycle. When the order is submitted in web shop frontend, a copy of the order is

created in WebSphere Commerce. The first status for the order is Submitted. The or-

der transfers to Sterling Integrator for processing in a form of ORDERCREATION xml

file. The output of SI processing is a file in a format that the external ERP systems can

receive. The file is stored in an Output folder on SI server. There is a periodical opera-

tion of pulling these files to FTP server, where they wait until an external ERP system

picks them up. As a backup, every processed ORDERCREATION file is stored in Staging

server in an archive. Once the ERP system confirms the order with an ORDERDETAIL

xml file sent back to WCS, the status of the order is changed to Confirmed. Similarly,

during processing of the order, update messages about shipment and invoicing are

sent back to WCS. Based on the information returned by ERP, the order states can

update to Partly shipped if only a part of ordered items are shipped to customer’s

shipping address or Shipped if the whole order is successfully shipped. Subsequently,

order status can change to Partly invoiced if only a part of ordered items is invoiced

or Invoiced if the whole order is invoiced.

Visualization of Order creation process

The concept of creating and configuring the Zabbix map is similar to the RTP process

case. In this map only the Order creation process itself is monitored in the direction

from WCS to ERP (from the left to the right on the map). The detail messages flow

coming from the external ERPs to WCS are not monitored at this time. The map can

be found as Appendix 2.

The database monitoring (the leftmost DB2 node) contains several checks. It is indi-

cated in which status and transfer-status the order is in the database record. The

transfer-status indicates whether the order has already been sent to Sterling Integra-

tor (SI) for processing. It was observed that sometimes the order is already in trans-

ferring state while the order is not in Submitted status. One check is dedicated to

alert about these orders. Another check is made to find out whether any

29

ORDERCREATION files have been created recently. If there is no new file in the last

two hours, this indicates a problem and an alert is shown about it.

There was a need to create new monitoring items utilizing the database data. If an

order is stuck in Submitted status for more than 10 minutes, this means that the or-

der was never delivered to SI for processing and thus, it never goes further in the

flow. Additionally, the order can get into ‘H’ status. which indicates that transfer to SI

was attempted but there was an issue (i.e. SI was down). In this case, the order will

be automatically retried to be transferred again by a scheduler running hourly.

Therefore, if the order is still stuck in the ‘H’ status after two hours, this means a

problem and an alert should be raised. Similarly, an order could end up in an ‘F’ sta-

tus. This would indicate an unknown issue with SI and some manual actions need to

be performed.

All these checks are implemented to be performed in similar ways. There is a Jenkins

job running scripts on Staging servers in different intervals. Jenkins is an automation

platform which helps to automate the non-human part of software development

process and can execute arbitrary shell scripts (Jenkins (software) n.d.).

Every time the script runs, it retrieves the current stuck orders from the database

and compares this list against the stuck orders found in previous script run. If there

are any new stuck orders, the order numbers are sent via email with a message alert-

ing existence of such orders. The number of stuck orders is returned as an output of

the script so that Zabbix can show the alert containing the amount of these orders. A

record about previously found stuck orders is kept in the logfile until the next run of

the script.

Another node monitored is WCS APP – the WebSphere Commerce Application

server. More specifically, the connection from WCS APP to SI is checked via SOAP in-

terface. If there is any problem with the response from SI back to WCS APP an alert is

shown. This problem is also indicated on the connection between WCS APP and SI

Load Balancer nodes on the Zabbix map.

The SI Load Balancer node represents the Sterling Integrator. In this specific case

from the Appendix 2 there are two problems indicated on the node, which means

two triggers got raised. The blue circle around the node tells the severity of the alert.

30

Blue color is associated with Information severity (Warning severity would be shown

in yellow color, Average severity is orange and High severity is represented by red

color). In case of multiple alerts active at the same time the highest severity is indi-

cated. Unfortunately, if there are two or more problems the map does not reveal the

texts of the alerts. Instead, the node needs to be clicked on and Triggers option in

the menu should be chosen in order for the list of active alerts to be shown.

Monitored functionalities on the SI Load Balancer include checking responsiveness of

SI FTP internal adapter and checking SI SOAP interface availability recursively.

The SI FTP server is in fact part of the SI servers – it is internal FTP accessible via

adapter; however, for the sake of clear visualization it is presented as a separate

server on the Zabbix map. The connection between SI Load Balancer and SI FTP is la-

beled as “SI FTP Adapter” and the connection line changes to a dashed red line if

there is any responsiveness problem with the FTP adapter.

It was mentioned earlier that ORDERCREATION files are backed up on the Staging

server. Monitoring consists of checking the timestamp of the last uploaded file and if

there is no new file for two hours in the archive, an alert is raised.

Continuing the upper branch in Appendix 2 map - from SI FTP to FTP node - there is a

monitoring item checking connectivity issue between these two nodes.

Finally, on the FTP node from where the external ERP systems pick the

ORDERCREATION files up is a monitoring item checking for files older than two hours

in dedicated folder. If there are such files in the folder, that indicates a problem with

ERP downloading since normally ERP deletes the files from the FTP folder after they

have been downloaded. In the shown case in Appendix 2 there is an Information se-

verity alert about three such files displayed on the map.

A new connectivity checking item was created during this phase. Its purpose was to

check the log files on the FTP server for any connectivity error to SI in the last two

hours. An alert should be raised if such an error was found. A part of the script func-

tion is shown in the following code sample containing useful comments, i.e. the lines

starting with ‘#’ symbol:

 # get all error records from the last log file

31

 GREP_RES=$(grep 'Errno' $NEWEST_LOG -B5)

 # there is an error in the latest file -> get the last timestamp

 if [[$GREP_RES]]; then

 # get all timestamps and tail the last one

 DATE=$(grep -Po "$DATE_REGEX" <<< "$GREP_RES" | tail -c23)

 TIMESTAMP=$(date -d "$DATE" +%s)

 # true -> last error occured in last 2 hours -> alert

 (($TIMESTAMP >= $NOW - $INTERVAL)) && { echo 1; } || { echo 0; }

 else

 # no error in the latest file

 echo 0

 fi

3.4.3 Dataload process visualizing

Dataload process is the most monitored WebSphere Commerce process consisting of

multiple monitoring checks on most of the hosts the process flows through. The

process Zabbix map can be found as Appendix 3. In many points in the flow, dataload

can be perceived as “reverted“ Order creation in terms of direction of files‘ flow.

Therefore, some checks – especially connectivity checks – are used in both flows.

All dataload files come from external ERP systems in the form of XML files. These files

are first loaded to the FTP server to a store-specific input folder. In this moment, the

first check takes place, iterating through all store-specific folders and counting the

files. There is no trigger or alert configured for this check at the moment. Likewise,

there is a check for the store-specific input folder size and file count. They serve to

gather the data; however, no specific alerts are configured for them. These checks

are not currently in use in Zabbix. The reason for this is that it has not yet been

agreed in the team what the critical tresholds are.

If there are no new dataload files being uploaded to FTP during some specified time,

this indicates a problem. In case of dataload files, there needs to be a check whether

new files have come within the last two hours. If there are none, especially in

production environment, an alert needs to be raised.

The connection between FTP and SI FTP adapter is monitored in the same way as in

Order creation process.

32

Sterling Integrator, on the map represented by SI Load Balancer, performs checks of

its FTP and HTTP (SOAP) interfaces and uses the same items which were already

described in Order creation process.

Figure 10 displays a constant dataload cycle manipulating files from SI to Staging

server. This process is active twice a day.

Figure 10. Dataload process on Sterling Integrator

The already processed CSV files in SI FTP are put to an /Out folder to be moved to

Staging server. Figure 10 describes this by the step number 2. The files should not

reside in the /Out folder for more than few minutes until they are moved to Staging

server, thus the files should not be older as certain period of time: It was agreed that

four hours is a good starting value for the monitoring item based on previous

experiences.

The team required an alert if such files are found. The following code sample shows

how this check is performed in the script. An lftp bash utility is used to access FTP

via interface, and it performs a command getting the last uploaded file timestamp.

This timestamp is tested whether or not it is over the specified 4-hour-value. For the

purpose of this thesis, the credentials in lftp utility to connect to SI FTP are left out

(they are provided as command line arguments to lftp utility with -u option).

33

 OLDEST=$(lftp $IP/<path>/Out/$1 -e "ls -t | egrep -v '^d' | tail -n1;

bye" 2>/dev/null)

 if [[$OLDEST]]; then

 DATE=$(echo $OLDEST | cut -d ' ' -f 6-8)

 TIMESTAMP=$(date -d "$DATE" +%s)

 NOW=$(date +%s)

 # $2 configured in item key

 INTERVAL=$(($2*60*60))

 (($TIMESTAMP <= $NOW - $INTERVAL)) && { RES=1; } || { RES=0; }

 echo $RES

 else

 echo 0

 fi

Figure 10 is a part of a bigger figure attached as Appendix 4 describing the Dataload

and SOLR Indexing Schedules on a daily basis. The process described so far is shown

as 1. phase in Appendix 4, and the subsequent phases are explained further on.

Monitoring of Staging server, which is the next host in the dataload process flow,

contains multiple existing and multiple new checks created during the process of

visualizing.

After the data is processed by Sterling Integrator and put on the /Out folder (Figure

10), there is a scheduled process that watches this folder and moves the files to

Staging server’s specialized store-specific dataload folder. It is important to be

notified if files reside in this Staging server’s folder for longer than 24 hours, since

during this time they should be passed on further in the flow and hence, are not

present in this folder anymore. Such a check is already implemented per each store-

specific folder.

The dataload process itself, which performs loading data from received files to the

Staging database (Figure 10 step number 3), is scheduled to run every time when

there are no new files in the specialized dataload folder for ten minutes. In Zabbix

there is a monitoring item which raises an alert when the dataload process is run.

This item has only informational character; therefore the related trigger has

Information severity.

34

During the process of visualizing the dataload process onto Zabbix map it was

realized that an additional monitor should be added. In case the dataload process

has not been run in the last 48 hours, this should be notified about. The monitor is

performed by checking dataload folders for any new files in the last 48 hours.

The next step after the dataload process from Staging server to Staging database has

been finished is to index the data. Indexing is a process of creating search indexes on

Solr servers to enable searching of structured and unstructured data based on vari-

ous search rules. These indexes are first created in the Staging environment and then

later propagated to the production environment. In Dataload and Solr Indexing

Schedules figure (Appendix 4) indexing is shown as 2. phase. It can be observed that

the indexing phase is happening twice a day, as well as other processes.

During the indexing, the first process is preprocessing the data which stores this data

in a specific structure into temporary summary tables. After this is complete, the ac-

tual indexing takes place, extracting the data from the temporary tables and sending

them to the Solr indexes. (Indexing external data in WebSphere Commerce search

n.d.)

If this process fails or some partial errors or warnings occur during the process, this is

logged into a store-specific logfile, since indexing takes place for every store sepa-

rately. It is very important to monitor this process by monitoring the logfile and alert-

ing if any problem occurs. Therefore, Zabbix monitoring item was created observing

these logfiles and giving Zabbix the information about an exit code of indexing if it

was not successful.

This indexing process is also displayed on Dataload Zabbix map (Appendix 3) as a con-

nection between Staging server node and Solr Master node. In case any problem oc-

curs, the connection line between these nodes indicates it visually by changing its

color to red.

At this stage, all the data is ready for propagating to production servers, i.e. index

propagation of indexes to Solr Repeater and Staging propagation of the actual data

from Staging database to the production database. According to the figure in Appen-

dix 4, this occurs twice a day always after the indexing has been finished. After this

data is propagated to the production servers, it should be visible on the storefront

35

for buyers. Monitoring these processes is also important and therefore Zabbix checks

were created for it. The propagation processes also create logfiles and indicate any

error by the exit code in the logfile. Therefore, monitoring these processes is similar

to monitoring indexing process.

On the Zabbix map (Appendix 3), index propagation and Staging propagation are dis-

played as connections between regarded nodes. For even better monitoring of con-

nection between Solr Master and Solr Repeater, a new connectivity check was cre-

ated.

The search data, however, is not usable in production until the final step of propaga-

tion, namely propagating to Solr Slaves is done. These nodes are shown on the Zab-

bix map (Appendix 4) as the last ones on the right and connectivity checks from Solr

Repeater were implemented here as well. The reason for using the Solr Slaves is that

there are two WCS Application server nodes in use in case any downtime on one of

them occurs. Each WCS Application server has its own Solr Slave server to use search

index from.

To finalize the propagation process, it must be mentioned that the product images

visible on the storefront do not undergo this whole process. They are propagated

without any indexing as the bottom part of the figure shown in Appendix 4. Monitor-

ing of this part has not been implemented yet; however, it has been realized that it

must be discussed upon in the future since this is also a business critical process.

4 Monitoring transfer to SolarWinds Orion Platform

4.1 Transfer specification

The creation of visualizing business critical processes on Zabbix map fulfilled its

purpose. New monitoring needs have arose and author’s work has been

accomplished in this part by satisfying these needs and creating sufficient monitoring

checks. The next step towards finalizing the requirements of the customer to transfer

current monitoring solution to SolarWinds platform must be taken. Before the

36

transfer is in progress, technical specification of what exactly needs to be transferred

and how is it supposed to be done needs to be created. The specification will also

serve as detailed documentation of current setup of Zabbix and will be shared

internally in author’s team.

The specification is done in the form of an Excel workbook. The concept is to

document and specify all used Zabbix checks with all the needed data so that there is

a base for the SolarWinds transfer.

As mentioned earlier, the Zabbix items are logically grouped into Zabbix templates.

These templates are then applied on configured hosts, meaning all the Zabbix items

in the template are applied on respective hosts. Therefore, each template is going to

be represented by one Excel table. Example of one of the tables can be found as

Appendix 5.

Every table defines which hosts are grouped in it in its header, hence which hosts

contain items mentioned in the table. First column of each table displays alert text

related to second column value displaying alert trigger expression. Subsequently,

these values are related to third column – the Zabbix item itself. Additional columns

are introducing parameters to item if they exist, then update interval in seconds of

associated item is shown. The last columns show whether the item or the trigger is

enabled per each host. Coloring of these cells is explained in an extra table.

If the cell in Alert or Item columns is gray, that means the item or the trigger is

disabled on template, which means that Zabbix is not gathering any data for such

item, or is not evaluating the trigger expression for such trigger. The reasons for

disabling an item or trigger are various. For instance, if the item (trigger) served only

for testing purposes when the monitoring check was being created or when the item

(trigger) is currently not in use, it is prefered to disable the item (trigger) over

deleting it, as it might be used again in the future. If such “template-level” disability

is set on an item or a trigger, all the hosts configured on this template have the item

or the trigger disabled by default as well. However, it is possible to overwrite this on

the “host-level“ and enable the item or the trigger only there.

The last columns are representing the status of an item and a trigger respective to

each host. The values in the last columns can be colored green which indicates that

37

related item is enabled on host, or it can contain one of the values ‘D‘ - disabled on

host, ‘NS‘ – not supported on host, ‘U‘ – unknown on host, ‘NE‘ – not existing on

host. Exceptionally, value and color in these columns showing trigger status can

represent trigger severity, which overwrites the default “template-level“ severity on

related host.

There are few entries in the table in Appendix 5 requiring further explanation. In the

original Excel sheet there is an additional table consisting of all the necessary notes

and explanations, so that the reader can refer to it when any information is not clear.

In the Appendix 5 there is one item named ‘_checkJenkinsService‘. The convention is

that if an item is prefixed with the underscore symbol ‘_‘ , this indicates that it is not

part of the team’s custom checks. The custom checks are represented as a function

in the monitoring.sh wrapper script and represent the user parameter Zabbix checks.

In contrary, items prefixed with the underscore symbol ‘_‘ are either Zabbix default

keys or one-liner user parameter agent-performed checks. Concretely, this

‘_checkJenkinsService‘ item uses Zabbix default net.tcp.service[tcp,,8080] key.

As described earlier, the ‘DB Connection error‘ trigger and the ‘checkDatabase‘ and

‘checkDataloadPremergeAllXmlFileCount‘ items are disabled on template.

The ‘checkStuckOrdersMStatusV8‘ item shows an example of trigger severity being

overwritten. The “template-level” severity is Not classified as indicated by the grey

coloring of the trigger expression, however the columns representing state of the

trigger per each host indicate that for Production Staging server the severity is set to

Average as indicated by the orange color and the text ‘Aver‘ in associated cell. Simi-

larly, for QA staging server the severity is set to Warning as indicated by the yellow

color and the text ‘Warn‘ in an associated cell.

Lastly, there are two items, concretely ‘checkStagingprop‘ and ‘checkIndexing[]‘,

which have a value ‘flexible‘ in the Update column. The Excel spreadsheet explains

what this flexible value means. These items do not have a default update interval,

but rather there is specified a period of time in the week (given by information about

the days in the week and range of hours) and update interval applied when the item

is active. An entry saying Interval: 60; Period 1-7, 11:30-11:31;1-7, 23:30-23:31

indicates that the item is gathering the data twice every day in specified periods.

38

4.2 Current situation in SolarWinds

After creating the specification for the transfer another step is to begin implementing

the transfer itself. It is important to mention that the author’s team customer has

been using the SolarWinds monitoring solution already in their processes and the

monitoring implementation for the author’s AMS team is going to be partly under

the control of the customer. Therefore, the author’s team is given only user level

privileges to the SolarWinds platform and all the configuration must be done by or-

dering it from SolarWinds team. This gives more security control over the monitoring

for the customer and the SolarWinds team. However, it brings constraints for the

AMS team to perform the whole transfer easily and conveniently.

As mentioned earlier in this thesis when introducing the SolarWinds Orion platform,

SolarWinds comes with some monitoring templates “out of the box”. The templates

are mainly focused on CPU utilization of monitored nodes, memory usage and disk

space occupancy. These templates were applied on all the configured nodes together

with an alert conditions coming “out of the box”. In table 1 there is an overview of

what comes with the platform known as Global alerts.

Table 1. SolarWinds Global Alerts

Alert name Alert condition

Global Memory Above 90% utilization longer than 15 minutes

Global CPU Above critical threshold of 90% for 15 minutes

Global Volume Space size < 5%/3%/1% on volumes < 1TB/10TB/ > 10TB

Global Node Up/Down Node is not responding for 5 minutes

Global High packet loss Percent packet loss over the last few minutes between

5% and 40%

Alert severities

When it comes to severities of alerts, SolarWinds does not offer as flexible configura-

tion. There are mainly three severity levels – Information, Warning and Critical. The

Zabbix platform offered flexible configuration and the author’s team used five sever-

ity levels for all the alerts. Therefore, the alert severities need to be adjusted to the

39

new standards when later implementing the custom monitoring. All the Global alerts

have Critical severity level.

Implemented applications

Before the author was given an access to the SolarWinds platform and he started

working on the transfer himself, some monitoring had already been implemented in

the platform in the past. This had been done when the customer had first started us-

ing the platform for his processes and had decided that the transfer for author’s AMS

team will be requested. The servers (nodes) were configured to be polled and some

monitoring applications were created.

Applications are the containers for individual monitoring components. They are

equivalent to templates in Zabbix. They can be assigned to nodes which are then

monitored by the application components. Components are equivalent to items in

Zabbix.

There are four already existing applications created. Following Tables 2-5 show the

application components as well as the nodes where the applications are configured.

Components that are identical or similar to items implemented in Zabbix are marked

with yellow background color.

1. HADR Health Application. This application monitors a database High Availabil-

ity Disaster Recovery (HADR) status. This indicates when there is any problem

with primary database and secondary database needs to take control. Custom

monitoring for this is setup also in Zabbix.

Table 2. HADR Health

Nodes Components

DB servers HADR Role

 HADR Connect Status

 HADR Heartbeat

 HADR Log Gap

 HADR State

 HADR Sync Mode

40

2. Linux CPU Monitoring Application. CPU related monitoring in Zabbix offers

few more customized items and triggers compared to the ones below, such as

monitoring of process load. That needs to be added to SolarWinds platform.

Table 3. Linux CPU Monitoring

Nodes Components

All servers (except SI servers) CPU User Time (%)

 CPU System Time (%)

 Wait IO (%)

 CPU Idle Time (%)

 Run queue

 Interrupts per second

 Context switches per second

 Total amount of interrupts after boot

 Total amount of CPU context switches after boot

3. Linux Memory Monitoring Application. Additional item currently in Zabbix but

not in SolarWinds is monitoring free swap space in percentage and triggering

an alert if it drops under 50%.

Table 4. Linux Memory Monitoring

Nodes Components

All servers (except SI servers) Total memory (kB)

 Used memory (kB)

 Free memory (kB)

 Total swap (kB)

 Used swap (kB)

 Free swap (kB)

 Buffers (kB)

 Cache (kB)

 Dirty Pages (kB)

 Anonymous Pages (kB)

 Amount of zombie processes

4. DB Monitoring Application. Monitoring of databases in this fashion is an extra

value brought by SolarWinds. In Zabbix all database monitoring was custom.

41

Table 5. DB Monitoring

Nodes Components

DB servers (except SI DBs) Database Used Space (MB)

 Log File Used Space in Specified Database (MB)

 Log File Free Space in Specified Database (MB)

 Average Buffer Total Hit Ratio (%)

 Average Data Hit Ratio (%)

 Average Index Hit Ratio (%)

 Number of Locks Held in Specified Database

 Average Read Time (ms)

 Connected applications to Specified Database

 Number of Long Running Queries

 Number of Table Scans

 Table with the Biggest Table Scans Value

 Used Space of the Biggest Table (MB)

No triggers or alerts have been associated with these components yet. The specifica-

tion is included in the Excel workbook dedicated for that.

4.3 Ordering a sample monitoring in SolarWinds

So far only the basic monitoring was described and plans for how to proceed with its

transfer were shown. Next step is to show how the custom monitoring will be trans-

ferred.

It was decided in the team that the first step is to order a sample monitoring to see

how fast and flexible the SolarWinds team is in implementing the solution. Three

monitoring items and alerts were chosen to be created with different level of imple-

mentation difficulty from easy to implement to complex check. The checks were de-

cided to be made only on the test servers for now. The items are

1. Kernel maxfiles. This monitor belongs to the basic monitoring because it uti-

lizes Zabbix default item key. It checks for configured Linux maximum of

opened files and fires an alert if this configuration drops under a threshold.

This item should be configured on all servers.

2. Dataload process. This belongs to the custom monitoring configured as user

parameter in Zabbix. Dataload process runs only on Staging servers and

therefore this check should be performed there.

42

3. Check old dataload files in SI shop-specific folder. This check is considered to

be complex because it runs the wrapper script function on SI node. The script

function connects to SI FTP and in every shop-specific folder it finds the oldest

file. Then it checks if this file is older than 4 hours. If that happens, an alert

should be fired.

The wrapper script monitoring.sh used in Zabbix is going to be utilized also for Solar-

Winds. The components will run the script function and evaluate the output. Linux

script monitoring in SolarWinds requires the script to output value in predefined for-

mat. The function should output the value in the following fashion:

 #monitoring.sh

 #!/bin/bash

 function monitoringFunction()

 {

 # body of the script

 echo “Message.1: $message1”

 echo “Statistics.1: $statistics1”

 echo “Message.2: $message2”

 echo “Statistics.2: $statistics2”

 exit 0

 }

The variables message1, statistics1, message2, statistics2 are the values

recognized by SolarWinds evaluator. The exit codes indicate the monitor status. Exit

codes have predefined meanings, as shown in table 6. (Linux/Unix Script Monitor

n.d.)

Table 6. Linux script functions exit codes meaning in SolarWinds (Linux/Unix Script

Monitor n.d.)

Exit Code Meaning

0 Up

1 Down

2 Warning

3 Critical

43

Therefore, monitoring.sh script is modified to fulfill SolarWinds standards.

4.4 Implementing sample monitoring

The job that had to be done on the SolarWinds site was to follow the Excel documen-

tation and with its help implement the sample monitors. First of all, the application

template needed to be created and assigned to the correct nodes. Secondly, the

sample components needed to be created on the template. Using the SolarWinds ap-

plication template is equally beneficial as using Zabbix template, since it increases

the maintainability of the monitoring by applying configuration to all nodes in a

batch. There is no need to configure the same parts of monitoring per each node

separately.

The way how SolarWinds SAM platform executes these Linux checks is either via an

agent installed on the servers or via SSH. Therefore, every node needs to be config-

ured with credentials for SSH login. Linux solarwinds user was created on each node

and was assigned required privileges to be able to run the monitoring.sh script.

Figure 11 shows the application overview of one of the sample monitors in the Solar-

Winds application tree, i.e. the dataload process monitoring. For security reasons,

the DNS name of each node was left out.

Figure 11. Sample monitoring of dataload process in SolarWinds

44

The application template is applied also for the bottom nodes Websphere Commerce

Application Server1 (staging) (QA) and Websphere Commerce Application Server1

(staging) (PROD). That means the components dataload.sh <store> are configured

the same way on all three nodes.

The SolarWinds Orion platform offers much more high-level statistics and graphs

about applications and individual components. Figure 12 displays a graph of history

statistics of monitored value for one component from the dataload monitoring appli-

cation. This helps to identify in which time or intervals the component increases its

value and helps to make long-term predictions.

Figure 12. Dataload process monitor component history statistics

The next step in implementing the monitoring is to create an alert for the application

components. For the dataload process monitoring two alerts were created

1. The first alert fires when the dataload process starts and, similarly as in Zab-

bix, has only informational character

45

2. The second alert has warning severity and fires when the dataload process

runs for longer than 60 minutes which may indicate a problem.

All the alerts are displayed on the alert dashboard and will be the most valuable in-

formation for the AMS team. Figure 13 shows such dashboard with some Global

alerts and one dataload alert.

Figure 13. SolarWinds alert dashboard

5 Conclusion

5.1 Summary

Network and application monitoring are constantly developing. The monitoring met-

rics are being advanced, performance of monitoring is being improved and visual

presentation such as graphs maps or dashboards are being adjusted to modern

trends. Naturally, monitoring platforms are trying to accommodate to these trends

and doing all they can to remain competitive on the market. Software companies uti-

lizing monitoring choose the platform which best suits their needs and fulfills the lat-

est standards. Often, the transfer of the monitoring needs to be performed if it is re-

alized that some other platform brings better value to the team. Such transfer was

implemented in this thesis.

The first step was to get familiar with the current monitoring solution in Zabbix plat-

form. I started to dig deeper in the configurations to understand the system. New

monitors were required to be implemented and old configuration was needed to be

46

reviewed. During this process, internal documentation about the monitoring was im-

proved and enhanced.

Visualizing of the monitoring was a new task for the team and I needed to under-

stand how it works in Zabbix and visualize the most critical processes of the applica-

tion on a network map. These maps help the team to identify problems quicker and

more conveniently. It also helped me to grasp even better understanding of the pro-

cesses which are being monitored. This initiated creative process of finding out criti-

cal pieces of the application which were not being monitored and such monitoring

was implemented.

The next step was to perform the actual transfer to SolarWinds monitoring platform.

The specification of how the transfer should be done was created and sample moni-

toring was ordered from SolarWinds.

5.2 Transfer continuation

Unfortunately, the SolarWinds team was not so agile and flexible in implementing

this sample monitoring. It was assumed that the sample monitors will be done in

shorter time as they in fact were. The SolarWinds team has been working on multiple

projects at the same time and our task was not majorly prioritized. The fact that the

AMS team did not have any access to editing the configuration on the SolarWinds

site made the whole process very slow.

Therefore, it was agreed in the team that privileges to edit the monitoring will be re-

quested from SolarWinds to some extent. The SolarWinds team assigned edit privi-

leges on application templates and components for the team. Although, they could

not assign alert edit privileges for security reasons, since the privileges to edit alerts

can be given only per the whole platform and the platform is used by many other

customers. It means that the creation of alerts stays as the responsibility of Solar-

Winds site.

By the time this thesis has been concluded, the sample monitoring has been imple-

mented and some additional monitoring applications and components have been

configured. The issues with connection to nodes via SSH have occurred seldom. For

47

instance, the components in an application template SI general experienced a prob-

lem as shown in Figure 14.

Figure 14. Linux script execution error

Nevertheless, it was tested that the Linux script execution does not fail but the com-

ponent fails for some reason anyway. This issue has been discussed on SolarWinds

site and the cause of the error is still unknown.

However, since the SolarWinds has implemented the sample monitoring, the process

became more familiar to both the AMS and SolarWinds site and further development

of monitoring is becoming faster. The transfer will be continued until all the current

monitoring in Zabbix is transferred. Then, testing period will last for few months on

both platforms and the Zabbix platform will be finally decommissioned after success-

ful testing.

48

References

Agent vs. Agentless Monitoring. 2016. Page on ScienceLogic website. Accessed on 09
April 2019. Retrieved from https://sciencelogic.com/blog/agent-vs-agentless-moni-
toring

Application monitoring. N.d. Page on Techopedia website. Accessed on 02 December
2019. Retrieved from https://www.techopedia.com/definition/29133/application-
monitoring

Basics of Network Monitoring. N.d. Page on ManageEngine website. Accessed on 20
March 2019. Retrieved from https://www.manageengine.com/network-monitor-
ing/basics-of-network-monitoring.html

Bigelow, S. 2018. Guide to buying server performance monitor software. Page on
TechTarget website. Accessed on 10 March 2019. Retrieved from https://searchdata-
center.techtarget.com/tip/Guide-to-buying-server-performance-monitoring-soft-
ware

Indexing external data in WebSphere Commerce search. N.d. Page on IBM Knowledge
Center website. Accessed on 7 October 2019. Retrieved from
https://www.ibm.com/support/knowledge-
center/en/SSZLC2_8.0.0/com.ibm.commerce.tutorials.doc/tutorial/tsd_search2_intr
o.htm

Integrating. N.d. Page on IBM Knowledge Center website. Accessed on 15 May 2019.
Retrieved from https://www.ibm.com/support/knowledge-
center/SSZLC2_8.0.0/com.ibm.commerce.integration.doc/concepts/ccvcapabilities.h
tm

Jenkins (software). N.d. Page on Wikipedia website. Accessed on 23 September 2019.
Retrieved from https://en.wikipedia.org/wiki/Jenkins_(software)

Kitili, G. 2018. What is application maintenance. Page on Quora website. Accessed on
14 May 2019. Retrieved from https://www.quora.com/What-is-application-mainte-
nance

Korzeniowski, P. 2016. Agent vs. agentless: Monitoring choices for diverse IT ops
needs. Page on TechTarget website. Accessed on 10 March 2019. Retrieved from
https://searchitoperations.techtarget.com/tip/Agent-vs-agentless-Monitoring-
choices-for-diverse-IT-ops-needs

Linux/Unix Script Monitor. N.d. Page on Solarwinds documentation website.
Accessed on 15 November 2019. Retrieved from http://www.solarwinds.com/docu-
mentation/en/flarehelp/sam/content/sam-linux-unix-script-monitor-
sw3260.htm?cshid=OrionAPMPHComponentTypesLinuxScript

Network monitoring. N.d. Page on Wikipedia website. Accessed on 14 March 2019.
Retrieved from https://en.wikipedia.org/wiki/Network_monitoring

Olups, R. 2019. Zabbix 4 Network Monitoring. 3rd ed. Birmingham: Packt Publishing
Ltd.

49

One platform to rule your IT stack. N.d. Page on solarwinds website. Accessed on 22
November 2019. Retrieved from https://www.solarwinds.com/solutions/orion.

Rouse M. 2018. Zabbix. Page on TechTarget website. Accessed on 22 March 2019.
Retrieved from https://searchitoperations.techtarget.com/definition/Zabbix

Server&Application Monitor. N.d. Page on SolarWinds Documentation website. Ac-
cessed on 8 November 2019. Retrieved from https://documentation.solar-
winds.com/en/Success_Center/SAM/Content/SAM-Using-Application-Monitor-
Templates-sw1115.htm

SolarWinds. N.d. Page on Wikipedia website. Accessed on 8 November 2019. Re-
trieved from https://en.wikipedia.org/wiki/SolarWinds

SolarWinds Orion Platform Integration. N.d. Page on Notepage website. Accessed on
8 November 2019. Retrieved from https://www.notepage.net/solar-winds/orion.htm

Staging server. N.d. Page on IBM Knowledge Center website. Accessed on 21 August
2019. Retrieved from https://www.ibm.com/support/knowledge-
center/en/SSZLC2_7.0.0/com.ibm.commerce.admin.doc/concepts/csstagingserver.ht
m

Sterling B2B Integrator. N.d. Page on IBM Knowledge Center website. Accessed on 30
September 2019. Retrieved from https://www.ibm.com/support/knowledge-
center/en/SSVSD8_8.4.1/com.ibm.websphere.dtx.md.doc/topics/g_md_sb2bi_sterli
ng_b2b_integrator.htm

WebSphere Commerce Version 8. N.d. Page on IBM Knowledge Center website. Ac-
cessed on 14 May 2019. Retrieved from https://www.ibm.com/support/knowledge-
center/SSZLC2_8.0.0/landing/wc_welcome.html

Wilson M. 2019. Best Network Monitoring Tools & Software of 2019. Page on pcwdld
website. Accessed on 22.05.2019. Retrieved from https://www.pcwdld.com/best-
network-monitoring-tools-and-software

Zabbix agent. 2018. Page on Zabbix Documentation website. Accessed on 10 April
2019. Retrieved from https://www.zabbix.com/documentation/4.0/manual/con-
cepts/agent

Zabbix configuration. 2018. Page on Zabbix Documentation website. Accessed on 12
April 2019. Retrieved from https://www.zabbix.com/documentation/4.0/man-
ual/config

Zabbix discovery. 2018. Page on Zabbix Documentation website. Accessed on 12 April
2019. Retrieved from https://www.zabbix.com/documentation/4.0/manual/discov-
ery

Zabbix proxy. 2018. Page on Zabbix Documentation website. Accessed on 10 April
2019. Retrieved from https://www.zabbix.com/documentation/4.0/manual/con-
cepts/proxy

Zabbix visualisation. 2018. Page on Zabbix Documentation website. Accessed on 10
April 2019. Retrieved from https://www.zabbix.com/documentation/4.0/man-
ual/config/visualisation

50

Appendices

Appendix 1. Example of Monitoring documentation

S
I F

T
P

 re
tu

rn
 co

d
e

Je
n

k
in

s se
rv

ice
 n

o
t

ru
n

n
in

g

F
a
ilu

re
 o

f d
a
ta

b
a
se

b
a
ck

u
p

s

M
o

n
ito

re
d

ite
m

/se
rv

ic
e

Ite
m

 ch
e
ck

s fo
r S

I

F
T
P

 re
tu

rn
 co

d
e
.

•

R
u

n
 b

y
 Z

a
b

b
ix a

g
e
n

t,

co
n

fig
u

re
d

 to
 ru

n

fu
n

c-

tio
n

 ch
e
ck

S
IF

T
P

H
T
T
P

-

C
o

d
e
() in

 m
o

n
ito

r-

in
g

.sh
 scrip

t file
.

 G
e
t to

 k
n

o
w

 w
h

e
n

Je
n

k
in

s se
rv

ice
 sto

p
s

w
o

rk
in

g

•

R
u

n
s o

n
 Q

A
 S

ta
g

in
g

(V
7
, V

8
)

•

U
sin

g
 za

b
b

ix ite
m

 k
e
y

n
e
t.tcp

.se
r-

v
ice

[tcp
,,8

0
8
0
]

 D
a
ta

b
a
se

b
a
ck

u
p

 scrip
t cre

a
te

s

a
n

 e
rro

r file
 if th

e

d
a
ta

b
a
se

 b
a
ck

u
p

 h
a
s

b
e
e
n

 u
n

su
cce

ssfu
l

fo
r so

m
e
 re

a
so

n
.

Ite
m

 ch
e
ck

s if th
e
re

a
re

 th
e
se

 e
rro

r file
s

in
 th

e
 lo

g
 fo

ld
e
r th

a
t

a
re

 n
e
w

e
r th

a
n

 4

d
a
y
s.

R
u

n
 b

y
 Z

a
b

b
ix a

g
e
n

t,

co
n

fig
u

re
d

 to
 ru

n

fu
n

ctio
n

 ch
e
ck

D
b

-

B
a
ck

u
p

S
ta

tu
s() in

m
o

n
ito

rin
g

.sh
 scrip

t

file
.

 P
u

rp
o

se
 &

 D
e
sc

rip
-

tio
n

ch
e
ck

S
IF

T
P

H
T
T
P

-

C
o

d
e

•

n
e
t.tcp

.se
r-

v
ice

[tcp
,,8

0
8
0
]

ch
e
ck

D
b

B
a
ck

u
p

S
ta

tu
s

Ite
m

 in
 Z

a
b

b
ix

•

T
e
m

p
la

te
 S

I g
e
n

e
ra

l

W
iP

ro

•

T
e
m

p
la

te
 m

o
n

ito
r-

in
g

.sh
 - sta

g
in

g
 W

iP
ro

•

T
e
m

p
la

te
 m

o
n

ito
r-

in
g

.sh
 - D

B
2
 B

a
ck

u
p

S
ta

tu
s

T
e
m

p
la

te

W
A

R
N

IN
G

: S
te

rlin
g

In
te

g
ra

to
r F

T
P

 -

w
ro

n
g

 re
sp

o
n

se

co
d

e

W
A

R
N

IN
G

: Je
n

k
in

s

se
rv

ice
 is n

o
t ru

n
-

n
in

g

IN
F
O

R
M

A
T

IO
N

: D
B

B
A

C
K

U
P

 E
R

R
O

R
 -

{IT
E
M

.V
A

LU
E
}

b
a
ck

u
p

 e
rro

r file
s

fo
u

n
d

T
rig

g
e
r(s) a

n
d

 se
-

v
e
rity

•

V
e
rify

 if Je
n

k
in

s se
r-

v
ice

 is n
o

t ru
n

n
in

g
,

e
v
e
n

tu
a
lly

 re
sta

rt.

•

D
B

2
 b

a
ck

u
p

 scrip
t h

a
s

fa
ile

d
 to

 d
o

 a
 b

a
ck

u
p

a
n

d
 h

a
s n

o
t re

m
o

v
e
d

o
ld

e
r b

a
ck

u
p

 file
s. In

-

v
e
stig

a
te

 b
a
ck

u
p

 lo
g

file
 cre

a
te

d
 b

y
 th

e

scrip
t w

h
y
 th

is h
a
s

h
a
p

p
e
n

e
d

 if a
d

d
itio

n
a
l

a
ctio

n
s a

re
 re

q
u

ire
d

.

P
o

ssib
le

 re
a
so

n
s in

-

clu
d

e
 D

B
 n

o
t u

p
, fille

d

d
isk

s. If th
e
re

 a
re

 su
c-

ce
ssfu

l b
a
ck

u
p

s a
fte

r

th
e
 fa

ile
d

 o
n

e
, m

o
st

lik
e
ly

 n
o

 fu
rth

e
r a

ctio
n

is re
q

u
ire

d
.

A
c
tio

n
s w

h
e
n

 trig
-

g
e
re

d

•

A
ll S

I h
o

sts:

•

T
E
S
T
 S

I

•

Q
A

 S
I 1

•

Q
A

 S
I 2

•

P
R

O
D

 S
I 1

•

P
R

O
D

 S
I 2

 V
8
 Q

A
 W

C
S
 S

ta
g

in
g

Q
A

 W
C

S
 S

ta
g

in
g

 A
ll h

o
sts th

a
t ru

n

D
B

2
 a

n
d

 b
a
ck

u
p

s a
c-

co
rd

in
g

 to
 b

a
ck

u
p

p
la

n
. B

o
ld

e
d

 se
rv

e
rs

h
a
v
e
 b

e
e
n

 v
e
rifie

d
:

▪

P
R

O
D

 D
B

2
 P

rim
a
ry

▪

P
R

O
D

 D
B

2
 S

e
co

n
d

a
ry

▪

Q
A

 D
B

2
 P

rim
a
ry

▪

Q
A

 D
B

2
 S

e
co

n
d

a
ry

▪

P
R

O
D

 S
I D

B
2
 1

▪

P
R

O
D

 S
I D

B
2
 2

▪

Q
A

 S
I D

B
2
 1

▪

Q
A

 S
I D

B
2
 2

H
o

sts w
h

e
re

 th
is

n
e
e
d

s to
 b

e
 m

o
n

i-

to
re

d
 o

n

51

Appendix 2. Order creation process Zabbix map

52

Appendix 3. Dataload process Zabbix map

53

Appendix 4. Dataload and SOLR Indexing Schedules

54

Appendix 5.

C
o

n
n

e
ctio

n
 fro

m
 Stagin

g W
C

S to
 SO

LR
 M

a
ster n

o
t w

o
rkin

g

 In
d

exin
g fo

r <p
aram

> h
as exited

 w
ith

 n
o

n
-su

ccess co
d

e {ITEM
.LA

STV
A

LU
E}

 In
d

exin
g fo

r <p
aram

> h
as exited

 w
ith

 n
o

n
-su

ccess co
d

e {ITEM
.LA

STV
A

LU
E}

 In
d

exin
g fo

r <p
aram

> h
as exited

 w
ith

 n
o

n
-su

ccess co
d

e {ITEM
.LA

STV
A

LU
E}

 H
TTP

2
 server is d

o
w

n

H
TTP

1
 server is d

o
w

n

Stagin
gp

ro
p

 h
as exited

 w
ith

 n
o

n
-su

ccess co
d

e {ITEM
.LA

ST
V

A
LU

E}

Jen
kin

s service is n
o

t ru
n

n
in

g

N
O

 N
EW

 W
C

S O
R

D
ER

C
R

EA
T

IO
N

 file
s fo

r 2 h
o

u
r (b

y tim
estam

p
)

N
O

 N
EW

 W
C

S O
R

D
ER

 C
R

EA
TIO

N
 fo

r 2
 h

o
u

r (b
y co

u
n

t)

{ITEM
.LA

STV
A

LU
E} o

rd
er(s) in

 O
n

eSh
o

p
 V

8
 stu

ck in
 sta

tu
s M

 fo
r m

o
re th

an
 1

0
 m

in
u

tes!

R
eal tim

e p
ricin

g n
o

 d
ata fo

r 1
5

 m
in

s fro
m

 o
o

e to
 W

C
S

R
eal tim

e p
ricin

g service
 erro

r fro
m

 W
C

S to
 o

n
lin

eo
e

C
SV

 files o
ld

er th
an

 2
4

h
 fo

u
n

d
 in

 p
re

-m
erged

ata <
p

aram
>

C
SV

 files o
ld

er th
an

 2
4

h
 fo

u
n

d
 in

 p
re

-m
erged

ata <
p

aram
>

C
SV

 files o
ld

er th
an

 2
4

h
 fo

u
n

d
 in

 p
re

-m
erged

ata <
p

aram
>

 D
B

 C
o

n
n

ectio
n

 erro
r

 A
lert

ite
m

.last()=0

 ite
m

.last()>0

ite
m

.last()>0

ite
m

.last()>0

ite
m

.su
m

(#
2)=0

ite
m

.su
m

(#
2)=0

ite
m

.last()>0

ite
m

.last()=0

ite
m

.n
o

w
() - ite

m
.last()>=

7
20

0

ite
m

.d
elta(2

h
)=0

ite
m

.last()>0

ite
m

.su
m

(90
0)=0

ite
m

.last()=0

ite
m

.n
o

w
() - ite

m
.last()>8

64
00

ite
m

.n
o

w
() - ite

m
.last()>8

64
00

ite
m

.n
o

w
() - ite

m
.last()>8

64
00

 Item
.last()<>0

 Trigger exp
ressio

n

ch
eckC

o
n

n
ectio

n
SO

LR
M

aster

 ch
eckIn

d
exin

g[]

 ch
eckH

TTP
Service[]

ch
eckStagin

gp
ro

p

_ch
eckJe

n
kin

sService

ch
eckW

C
SO

rd
erC

reatio
n

Tim
estam

p

ch
eckW

C
SO

rd
erC

reatio
n

C
o

u
n

t

ch
eckStu

ckO
rd

e
rsM

Statu
sV

8

 ch
eckIsR

ealTim
eP

ricin
gU

p
[]

 ch
eckD

atalo
ad

P
re

m
ergeO

ld
estFile[]

ch
eckD

atalo
ad

P
re

m
ergeA

llX
m

lFileC
o

u

n
t

ch
eckD

atab
ase

Item
s

V
8

 Q
A

 Stagin
g d

m
0

06
9

V
8

 P
R

O
D

 Stagin
g d

m
0

0
81

H
o

sts

Stagin
g M

o
n

ito
rin

g

Tem
p

late

 vach
ette

 ap
tu

s

 accesso
ries

 IH
S2

IH
S1

 o
o

e

 o
n

lin
eo

e

V
ach

ette

 A
p

tu
s

A
ccesso

ries

 p
aram

6
0

 flexib
le

 3
0

flexib
le

18
00

6
0

6
0

60
0

 6
0

 3
0

6
0

6
0

 U
p

d
ate

 D

 D

D

00
81

Item

 D

 A
ver

 N
E

 Trig

 D

D

 N
S

N
S

 D

D

00
69

Item

 D

D

W
arn

U

U

 N
E

 Trig

