
Sy Hoang Mai

Developing Low-power Cellular IoT
Solution with Narrowband IoT and
Lightweight M2M
Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

16 December 2019

Abstract

Author
Title

Number of Pages
Date

Sy Hoang Mai
Developing Low-power Cellular IoT Solution with Narrowband
IoT and Lightweight M2M

60 pages + 2 appendices
16 December 2019

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Smart Systems

Instructors Keijo Länsikunnas, Senior Lecturer
Toni Rosendahl, Thesis Instructor

The rise of the IoT era has witnessed the emergence of new and disruptive Low Power
Wide Area technologies. One of those innovations, Narrowband Internet of Things (NB-
IoT), is a new standard specified in the 3GPP project to enable a wide range of IoT cellular
applications by focusing on extended coverage, high-density deployment, low energy con-
sumption, and low-cost end device. Furthermore, this wireless technology is a promising
replacement candidate for legacy cellular M2M systems, which will be slowly phased out by
the 2G and 3G sunset.

Lightweight Machine to Machine (LwM2M) is a new device management protocol aspiring to
go beyond the current de facto IoT messaging MQTT. This new framework offers a stand-
ardisation in IoT device management and information reporting, thus promoting a high-level
of interoperability among applications and cloud services. Furthermore, Lightweight M2M
over UDP presents a significant advantage compared to MQTT over TCP for low power cel-
lular devices.

This paper documents the process of developing firmware for an IoT device utilising the two
technologies mentioned above, and at the same time, supplies relevant knowledge and anal-
ysis on subjects encountered throughout the project execution.

The outcome of this thesis is a functional proof-of-concept low power IoT device, which is
capable of delivering sensor measurements to an LwM2M server securely via NB-IoT. The
thesis is going to be used as a reference design at Etteplan Embedded Finland Oy to speed
up future developments.

Keywords IoT, NB-IoT, LwM2M, STM32, Mbed OS, Low power

Contents

List of Abbreviations

1 Introduction 1

2 Theoretical Background 2

2.1 Device Management System 2
2.1.1 Lightweight M2M Protocol Architecture and Functionality 3
2.1.2 Device Management in Lightweight M2M 5
2.1.3 CoAP in Lightweight M2M Service Enablement Interface 9
2.1.4 Lightweight M2M Resource Model and Information Reporting 11

2.2 Narrowband Internet of Things (NB-IoT) 15
2.2.1 Cellular IoT in Internet of Things Landscape 16
2.2.2 Narrowband Internet of Things 17
2.2.3 NB-IoT Connection States and Low Power Features 19
2.2.4 Power Saving Techniques in NB-IoT 21
2.2.5 NB-IoT Power Consumption Best Practices 26

2.3 Mbed OS 27

3 Design and Implementation 29

3.1 Project Goal and Requirements 29
3.2 System Components Selections 30

3.2.1 Main Hardware Components Selections 30
3.2.2 Software Component Selections 31
3.2.3 Guide on U-blox SARA-N211 NB-IoT Modem 32

3.3 Development Environment and Team Collaboration Workflow 33
3.4 System Design and Software Architecture 34
3.5 Software Testing 37
3.6 Optimising Power Consumption from Software Perspective 39
3.7 Challenges Encountered during Project Execution 42

4 Result and Discussion 44

4.1 Project Outcome 44
4.2 Comparison between NB-IoT with Competing Technologies 45

4.2.1 Comparison from Business Perspective 45

4.2.2 Comparison in Terms of IoT Factors 46
4.3 Firmware Upgrade Feature Considerations 47
4.4 Security Considerations Regarding Project 49
4.5 UDP vs TCP as Transport Layer for IoT Applications 51
4.6 Future Developments 52

5 Conclusion 54

Referencess 55

Appendices

Appendix 1. NB-IoT applicable eDRX cycle length and paging time window

Appendix 2. NB-IoT Active timer (T3324) and TAU timer (T3412) encoding

List of Abbreviations

API Application programming interface

BLE Bluetooth Low Energy

CI Continuous integration. A practice of merging all developers’ works to a

shared mainline, often automated nowadays.

DTLS Datagram Transport Layer Security. A protocol providing security for data-

gram-based communications.

DUT Device under test. Refers to the device that undergoes a testing procedure.

eDRX Extended/Enhanced Discontinuous Reception. This feature in NB-IoT im-

plies the mechanism of extending the cycle between paging attempts.

IDE Integrated development environment. An application offering a set of com-

prehensive tools for programmers to develop software.

IPSO WG “Internet Protocol for Smart Objects” Working Group. An organisation focus-

ing on promoting global interoperability of IoT device based on open stand-

ards.

IWDG Independent watchdog. A hardware element which resets the system if not

refreshed after a determined period, often used as the last line of defence

to rescue the system from unexpected software failure.

IoT Internet of Things. Generally, this term identifies anything that has a direct

or indirect connection to the Internet. In this thesis, this term addresses

embedded devices with such characteristics.

LPWAN Low power wide area network. A type of wireless communication technol-

ogy designed for low-powered, long-range communications.

LTE Long Term Evolution. A cellular standard specified by the 3GPP project,

commonly known to consumers as 4G technology.

LoRa A propriety spread spectrum modulation technique developed by Semtech

LoRaWAN An LPWAN technology developed by Semtech based on LoRa technology.

LwM2M Lightweight machine to machine. A protocol specified by the Open Mobile

Alliance for Machine to Machine communications and IoT devices manage-

ment.

MCU Microcontroller unit

M2M Machine to Machine

MQTT MQ Telemetry Transport. A popular standard messaging protocol for Ma-

chine to Machine in IoT applications.

MTC Machine-type communication. A synonym for Machine to Machine commu-

nication.

MTU Maximum transmission unit. This value specifies the maximum size of an

IP packet can be transported via a medium without fragmentation.

NAT Network address translation. A method of mapping one IP address space

into another by modifying the IP header, widely utilised as the way to con-

serve the address space from the IPv4 exhaustion.

NB-IoT Narrowband Internet of Things. A low power wide area network technology

specified by 3GPP, focusing on serving IoT applications.

OMA Open Mobile Alliance. A standards body which develops open standards

for the mobile phone industry.

PAT Port Address Translation. An extension of NAT, enabling multiple devices

in a local network to be mapped to a single public IP address.

PSM Power Saving Mode. In the LTE context, the term indicates the sleep mode

of the UE during which it exhibits the lowest current consumption.

RRC Radio Resource Control

RTOS Real-time operating system. An operating system intended to serve appli-

cations with real-time demand, widely used in embedded system projects.

TAU Tracking area update

TCP Transmission Control Protocol. A session-oriented communication model

of the IP stack, providing an ordered and reliable communication scheme

for Internet applications.

UART Universal Asynchronous Receiver/Transmitter. A hardware component

used for asynchronous serial communication, often integrated within the

microcontroller.

UDP User Datagram Protocol. A connectionless communication model of the IP

protocol, mainly used by low-latency and loss-tolerating applications.

UE User equipment. In the cellular context, this term implies any device used

by an end-user to communicate with the network.

URC Unsolicited Result Code. A message sent from the mobile equipment which

is not an immediate result of an AT command, used for delivering an arbi-

trary event (e.g. modem has received a call) or result code of an asynchro-

nous operation.

WWDG Window watchdog. This component resets the system if not refreshed

within a specific time window. Similar to the independent watchdog, it is

used to rescue the system from an unexpected failure.

1

1 Introduction

The emergence of the Internet of Things (IoT) is considered to be the next revolution in

data communication with a mission of forming an ecosystem in which each and every

device is connected and able to make intelligent decisions. This newly emerged capabil-

ity not only offers improvements to existing automation and manufacturing industries but

also advances other fields such as agriculture, transportation, and healthcare by provid-

ing means for optimisation in efficiency and flexibility while cutting down excess ex-

penses [1]. According to an Ericsson forecast [2, p. 8], by 2024, there will be approxi-

mately 22 billion IoT devices connected to the Internet. Consequently, this tremendous

number of connections urges for new versatile and scalable wireless technologies that

met the demand for future growth and changes in the IoT world.

Evidently, the characteristics of the connectivity technology have always played an es-

sential role in deciding whether will it be adopted by the mass as commercial projects

are driven by use-cases. For example, WiFi, a wireless protocol designed for low latency

and high throughput communication, has become the preferred option for smart con-

sumer devices thanks to its availability in virtually any modern home of the Western

world. Unfortunately, this ubiquitous wireless protocol does not fit into applications where

there is an appeal for low-power consumption and long radio range support along with a

high degree of scalability. On the other hand, a large proportion of the IoT world is con-

strained devices infrequently send out a small amount of data and sleep most of the time

to conserve energy, while considering low latency as a non-critical attribute. There have

been many attempts to design wireless technologies to satisfy these expectations, and

one of those promising pursuits is Narrowband IoT (NB-IoT) – a recent extension of the

LTE standard which seeks to provide connections for billions of IoT devices worldwide

over cellular. At the moment, network operators around the world are starting to sunset

their 2G networks, leaving out a great opportunity for this new technology enter the ma-

chine to machine (M2M) market.

The goal of this thesis was to document, describe and explain the knowledge needed as

well as the process of developing an IoT device which utilises NB-IoT and Lightweight

2

Machine to Machine (also known as Lightweight M2M or LwM2M) from a software de-

veloper perspective. The remainder of the thesis is organised as follows: Section 2 pre-

sents the theoretical knowledge of LwM2M and NB-IoT. Section 3 describes how the

project was carried out with technical depth. Section 4 states the project outcome and

provides additional discussions and analysis on different aspects that emerged during

the implementation phase. Finally, Section 5 concludes the paper.

2 Theoretical Background

This theoretical background section provides the audience with the fundamentals of de-

vice management, Lightweight M2M protocol, and Narrowband IoT to prepare a solid

ground for later discussions. Reference materials comprise official Lightweight M2M

specification, articles collected from journal databases such as IEEE, MDPI, and devel-

opment support documents presented by U-blox since their cellular module is used in

the project.

2.1 Device Management System

As the number of connected devices soars, so are the demand for organisations to man-

age, configure and monitor their device fleets. Nevertheless, a device management sys-

tem is not a new concept as this technique was adopted by mobile and Internet operators

many years ago to supervise and provision devices. A device management framework

generally offers a basic set of functionalities:

· Provision devices: concerns the bootstrapping process which setup identity
and first configurations of the device.

· Configuration: allows administrators to remotely change device settings
and parameters.

· Update: provides a software update delivery mechanism for deployed de-
vices.

· Fault management: delivers fault report in case of a system failure, which
helps maintenance to be carried out quickly and efficiently as possible to
minimise loss.

3

These functionalities are expected to be performed securely under appropriate access

right configurations and authentication scheme. A device management protocol, which

defines operations between devices and its administrators, can be examined through

three different aspects [3]:

· Protocol architecture: depicts how messages are packed and transported
across the communication channel.

· Connection dynamics: characterises the communication paradigm be-
tween server and client.

· Standardised data model: describes the data model shared between server
and client to perform operations defined by the protocol.

In subsequent sections, LwM2M protocol’s characteristics, along with its features, are

discussed in more details following these aforementioned criteria.

2.1.1 Lightweight M2M Protocol Architecture and Functionality

Lightweight M2M is a new device management protocol defined by Open Mobile Alliance

(OMA), whose goal is to provide a holistic solution for remote management and service

enablement in sensor networks and M2M environment. Figure 1 describes the architec-

ture of Lightweight M2M protocol along with a simplified representation of its communi-

cation model.

Figure 1. Lightweight M2M 1.0 architecture (right) and its simplified communication model (left).
Copied from Mikko Saarnivala [4, p. 5]

4

As illustrated in Figure 1, the LwM2M layer lies on top of Constrained Application Proto-

col (CoAP), and below that are supported transport layers such as UDP, TCP, SMS, or

LoRaWAN (TCP and LoRaWAN added in Revision 1.1) used for data transfer. This lay-

ering approach in the protocol stack separates responsibilities within the chain, making

it transparent for developers who implement the LwM2M library as well as the library

users.

Lightweight M2M protocol operates in a client-server model in which the server is the

LwM2M server while clients are IoT devices. As the protocol adopts RESTful operations

carried out over CoAP to perform its transactions, it is sensible to make the earlier clari-

fication because from CoAP perspective LwM2M server is a CoAP client and managed

device is a CoAP server. On the other hand, it is also worth noting that LwM2M protocol

allows a device to register to and be managed by multiple servers, though this feature

may introduce challenges for implementation and operation in practice. The LwM2M

specification defines an object called Access Control Object, which specifies the permis-

sion each server has on a particular object or object instance within the client. For sim-

plicity and conciseness purpose, the rest of this paper mostly refers LwM2M server in

the singular form, assuming the management relationship consists of one server and

one client. Figure 2 presents a high-level view of the data structured in a Lightweight

M2M client.

Figure 2. Data representation in lightweight M2M client data structure.

The LwM2M client, or the managed IoT device in this context, exposes its data to the

server through a flat tree data structure. Each node of the tree is called an object, which

can be single or multi-instantiable, consists of one or many resources. Each resource

can take the form of a boolean, an integer, a string, an opaque or a method (action) that

5

may be read, written or executed. More depth on data representation and information

reporting are covered in Chapter 2.1.4.

2.1.2 Device Management in Lightweight M2M

As a quick recap from earlier, LwM2M protocol operates in a client-server model, provid-

ing many IoT services including device bootstrapping as well as managing device state

and collected data. An LwM2M server can serve multiple devices at the same time. On

the other hand, a device can be managed by multiple servers, yet this is not a popular

approach at the moment. This sub-section examines the bootstrap procedure, device

management functionality and fault reporting process within the protocol.

2.1.2.1 Lightweight M2M Bootstrap Procedure

Bootstrapping is a term often refer to the process in which the first invoked program loads

and executes more extensive programs, acting as a kickstart of the computer booting

sequence. However, the bootstrap procedure in LwM2M does not imply this operation

but instead denotes the act of which client retrieves useful information from a bootstrap

server. This information contains the LwM2M server address and authentication creden-

tial needed for the device to later successfully perform a registration. The bootstrap

server is, in fact, an ordinary LwM2M server but its sole duty is to distribute necessary

information so that clients can connect and register to the right server. There are four

different bootstrap modes: factory bootstrap, smart-card bootstrap, client-initiated boot-

strap, and server-initiated bootstrap [5, pp. 19-23]. Factory and smart-card bootstrap are

as descriptive as it sounds, suggesting the necessary information is provided during fac-

tory provisioning or coming from a smart-card. On the other hand, server-initiated boot-

strap means the bootstrap server needs to push the required data to the client, but how

does it knows the client need bootstrapping falls on implementation-specific. This sub-

section only explains the client-initiated bootstrap procedure as it is the most straightfor-

ward bootstrapping method. In this bootstrapping manner, essential information to con-

nect to the bootstrap server is preloaded on the device, usually via factory provisioning

or hard-coded inside the firmware. Figure 3 shows the process of a device-initiated boot-

strap follows with registration to a device management server.

6

Figure 3. The process of a device-initiated bootstrap follows with registration to a device man-
agement server.

Figure 3 describes the bootstrapping process of an IoT LwM2M device as follows [6]:

1) The device uses its pre-provided information stored in non-volatile memory to con-
tact the bootstrap server. This information contains the bootstrap server address
and security credential needed for authentication.

2) After connected to the bootstrap server, the device receives new information about
the upcoming LwM2M server and a new security credential for authentication.

3) The device disconnects from the bootstrap server and uses the newly obtained in-
formation to register to the LwM2M server.

4) Upon validated the client identity, the server sends an acknowledgement confirming
that the registration has succeeded. The device is now considered registered and
managed.

Even though this bootstrap procedure is not mandatory, there are many benefits to be

derived from this feature, such as:

· The final bootstrap is executed after factory provisioning. As a result, the lat-
est credentials in effect are not factory provisioned, thus lowering the risk of
compromising device credentials during the manufacturing phase. In case
devices failed to bootstrap due to their identities claimed, it might indicate
that there is a security hole within the manufacturing process in which de-
vice credentials are leaked.

7

· The manufacturer has an additional opportunity to detect defective devices
before shipping by checking that the bootstrap procedure succeeded, hence
verifying basics operation and connectivity of devices.

· After the device has been deployed on the field, the bootstrapping mecha-
nism becomes an effective way to do re-keying, or merely redirecting the
device to a different server. This feature will come in handy when the device
credential is known to be compromised, or current managing server is going
down for maintenance, or an ownership change of devices is expected
(meaning devices are to be managed by another organisation’s server).

In summary, judging from the benefits coming from the bootstrapping feature, it is highly

recommended to implement client-initiated bootstrapping functionality for the IoT device

unless there are reasons to choose otherwise.

2.1.2.2 Device Monitor, Binding Mode and Fault Report in Lightweight M2M

Within the realm of LwM2M, a client needs to be registered to a management server to

report its status and collected data. The specification defines a connection parameter

called “Lifetime” which cites how long the client registration remains valid. In order to

maintain a session, a client must renew its registration before this timer runs out, and

such action is called a “Registration Update”. When the server receives such registration

update from a client, the Lifetime timer for that particular session is refreshed, and the

client must do another update before the next deadline, and so on. In case the client

misses the deadline, it is considered deregistered from the server and its session invali-

dated, thus, the client must redo the whole registration procedure again. Often this inci-

dent signals that the device needs maintenance from a power outage, connectivity issue,

hardware malfunction or software defect. Consequently, developers would like to con-

sider an appropriate lifetime value for their devices which is harmony between how quick

a downtime can be detected and how high is registration update frequency, a trade-off

among quality of service and power consumption. Figure 4 illustrates the agenda of a

client registration and a registration update between a client and an LwM2M server.

8

Figure 4. Client registration (left) and client registration update (right) flows. Copied from OMA
Lightweight M2M specification [5].

At the beginning of a registration procedure, the client presents the server with its “End-

point Name” (also known as client name), “Lifetime”, “LwM2M version”, “Binding Mode”

(not mandatory), and “Object Instances List”. All these connection configurations are

provided by the client. Commonly, the client attempts a registration update to renew its

session, but such operation can also be used to change the current lifetime value, or

signify an update on the object instances list in case objects or instances were added or

removed.

The binding mode is an important parameter determining the behaviour of the connection

between client and server, which certainly play a significant role in power-constrained

applications. This parameter specifies the transport binding (e.g. UDP, SMS) along with

whether the “Queue Mode” option is applied. Queue mode is an interesting feature which

benefits low-powered IoT devices that sleep most of the time and may only be reached

during a short time window. As stated in the LwM2M specification, Queue Mode requires

the server to queue its requests when the client is unreachable and send them out as it

is reachable again. The client may notify the server that it is now awake by sending a

registration update, thus they can exchange messages for some amount of time before

the client goes to sleep and again unreachable. As a result, the most appropriate binding

mode for low powered IoT devices is likely to be UDP with Queue Mode.

9

Furthermore, the LwM2M specification defines a mandatory “Device” object with the ID

of 3, which is designated to report a set of generic information of the device, including

battery level, power-source voltage, memory-free, error code, to name a few. In case the

predefined object is not sufficient for a particular reason, a private organisation can de-

fine its fault reporting object, or simply reuse a standard data reporting object. From a

particular viewpoint, the device status is just another sensor value to be reported to the

cloud, and it is up to the cloud server to make sense of it and determine the appropriate

action, for example informing the operator about the low-battery state of the device.

2.1.3 CoAP in Lightweight M2M Service Enablement Interface

To grasp Lightweight M2M communication in-depth, one should know about CoAP char-

acteristics as this protocol operates at one layer below LwM2M. In CoAP, messages are

exchanged asynchronously between endpoints, often via unreliable transports like UDP

in which data might fail to be delivered or arrive in an out-of-order manner. To counter

this intrinsic drawback, this protocol defines two lightweight reliability ensuring methods:

· Stop-and-wait retransmission with back-off time for confirmable message.

· Duplicate detection with message ID.

Figure 5 gives an example of the differences between reliable and unreliable transmis-

sion.

10

Figure 5. Illustration of reliable and unreliable transmission in CoAP.

There are four types of message in CoAP based on transport behaviour: confirmable

(CON), non-confirmable (NON), acknowledgement (ACK), and Reset (RST).

· CON message requires an acknowledgement message (ACK) from the re-
cipient. The sender will retransmit the same message at an exponential
increase interval until the max number of attempts reached, or a matching
reply is received, either it is a RST or an ACK.

· RST message is sent as a reply by the recipient in case it receives an
empty, or unprocessable message due to lack of context. This behaviour
holds in both cases where the orphan or invalid message is either CON or
NON message.

· NON message does not require an acknowledgement from the recipient.
This message type is particularly useful in case a particular piece of data
(e.g. room temperature) needs to be sent at a regular interval. To increase
the delivery rate, the sender can send out multiple copies of the same mes-
sage. Though this approach indeed increases the reliability of messages,
it also causes an increase in the network load.

Regarding the request/response semantics, CoAP operates with a client-server archi-

tecture and supports four basic methods: GET, POST, PUT and DELETE which is similar

to HTTP’s scheme. Furthermore, CoAP also supports the use of URI to enable access

to associated information on the device. As a result, it is feasible to make a CoAP device

operate as if it is a simple web application with the help of a CoAP-HTTP proxy.

11

2.1.4 Lightweight M2M Resource Model and Information Reporting

A Lightweight M2M client consists of a set of objects, each of which contains multiple

resources identified by unique IDs. These resources together form an interface for

LwM2M server to acquire data from its clients. Both client and server need to have a

consensus on the data type (e.g. string or float) of resources to avoid misinterpretation.

A resource within an object can be addressed via a URI in the {Object_ID}/{Object_In-

stance_ID}/{Resource_ID} format. The semantics of these IDs are determined in ad-

vance, thus the server can map or interpret the incoming data appropriately in the light

of the circumstances.

The IPSO Smart Objects Working Group (IPSO WG), a joined force between OMA and

IPSO alliance, proposes a list of LwM2M objects called IPSO smart objects as an attempt

to standardise object models used for data reporting, providing a high level of interoper-

ability for services and devices using LwM2M protocol [7] [8]. The data model of an

LwM2M object comprises four parts:

· Object representation (Semantic)

· Data types

· Operations (Read/Write/Execute)

· Content format
Let us examine the IPSO temperature object definition as an example. Figure 6 presents

the IPSO Temperature object definition.

12

Figure 6. IPSO Temperature object definition. Copied from openmobilealliance.org [9].

As presented in Figure 6, the temperature object is assigned ID 3303, and a client can

contain multiple instances of this object type. As the case may be, different instances of

the same object will represent different temperature measurements acquired by the sys-

tem, such as room temperature, device internal temperature, or dew point temperature.

These object instances can be interpreted differently according to the client context and

are out-of-scope of the IPSO objects definition. For the sake of explanation, assuming

the object instance ID has a value of 0, then its sensor value can be accessed via

“3303/0/5700”. According to IPSO object definition, performing a read on this URI from

the server-side would return the latest temperature measurement as a floating number.

On the other hand, the device has to reject other operations performed on the said URI

with an error code. Failing to follow this compliance can cause data misinterpretation or

security risk (e.g. compromising the private key in the server object via a supposedly

illegal read operation). Figure 7 presents the Interaction between LwM2M client and

server on read, write and execute operation.

13

Figure 7. Interaction between LwM2M client and server on read, write and execute operation.
Copied from OMA LwM2M Technical specification [5, p. 34].

Lightweight M2M defines three basic operations that can be performed on a resource:

read, write, and execute. There are more sophisticated actions that can be performed,

including create, delete, write-attribute, and discover which is not going to be discussed

as they are advanced features which are not yet commonly used in embedded devices.

As the name suggested, read operation allows reading the current value of resource or

object, write operation changes a value on client-side, and execute operation will trigger

pre-defined action on the client (e.g. device reboot). Figure 7 above describes how these

operations are carried out in practice in an illustrative manner.

Lightweight M2M defines an information reporting mechanism to enable LwM2M server

to keep track and get notified when new values are available on client-side, which is

called “Observation”. The advantage of applying this observation pattern is once the

server has subscribed to the client’s objects or object resources of interest, the client will

voluntarily push changes to server when value update is available, thus eliminating the

need for server polling for updates. The notification coming from client is an unreliable

CoAP message; hence, it is not possible to detect if packets are failed to deliver in case

the transport layer does not guarantee delivery (e.g. UDP). Despite the fact there might

be no guarantee of delivery from the transport layer, the situation may not as disastrous

as it sounds as the usual delivery rate is high enough for most IoT applications, and

14

CoAP does offer a reliability mechanism when needed as mentioned in Chapter 2.1.3.

Section 4.5 discusses further the reliability of UDP and whether it is sufficient for IoT

applications. Figure 8 provides an example of a (partial) LwM2M client consists of an

Object of ID 0 and three instances of object ID 3303 (IPSO temperature object), each

identified by its instance number.

Figure 8. An example of a (partial) Lightweight M2M client.

To illustrate this observe and notify mechanism, assume a situation in which an LwM2M

server would like to keep track of changes in an imaginary room temperature reported at

URI “/3303/2/5700”. Figure 9 describes the procedure of observing and notifying in

LwM2M protocol.

Figure 9. Information report via notification mechanism. Copied and modified from OMA LwM2M
specification [5, p. 40].

15

First, the server initiates the observation by sending an observation request specifying

the resource of interest, which will then be replied with an acknowledgement and the

latest value of the resource. From that point, whenever the client has a new value update

on the observed field, that value will be pushed to the server as a notification. Since there

is no acknowledgement for a notification, it is straightforward to see that the notification

should be idempotent to prevent unexpected complications. In the case of no longer

having interest on the observation, the server can terminate this relationship by sending

an “observation cancel” to the client after it receives a notification, indicating that it does

not want to receive more notifications on that resource. Other existing observations are

not affected by this cancellation.

Currently, there is no definition for notifying with acknowledgement in LwM2M, which are

supposed to be useful on resources more important compared to others. As a limited

workaround, the client can always send the same notification update more than once,

maybe by pretending they are different consecutive updates with an identical value. As

a matter of fact, a similar approach is used in Bluetooth Mesh to increase the probability

for an unacknowledged message to reach its destination. However, this method should

not be abused as it increases the device power consumption and may cause unneces-

sary load for the network.

2.2 Narrowband Internet of Things (NB-IoT)

This section first gives an introduction on NB-IoT, then later dives deeper into the funda-

mentals of this technology from an application developer perspective. Discussions focus

on NB-IoT connectivity behaviour at a high level while describing the power consumption

patterns associated with connection states. Hopefully, these analyses give an insight into

how NB-IoT works as well as how it favours low power application. Furthermore, the last

sub-section provides a list of best practices to minimise the device power consumption.

16

2.2.1 Cellular IoT in Internet of Things Landscape

When it comes to IoT connectivity options, traditional non-scalable wireless technology

such as WiFi and BLE is not suitable because of their shortcomings in large scale de-

ployment, which generally makes way for two other alternatives: mesh and cellular.

These two approaches impose different advantages and disadvantages, therefore, the

application requirements need to be taken into account when making decision on which

technology to use.

Wireless mesh is the type of technology in which devices talk to their neighbours to form

a network, making it feasible for outside-of-direct-radio-reach nodes to communicate. On

the other hand, in the cellular world, network devices known as user entity (UE) have to

talk with a base station, thus traffics will go through the network operator’s system. Table

1 provides a concise comparison between wireless mesh and cellular.

Table 1. A brief comparison between wireless mesh and cellular. Modified from digi.com [10].

Number of devices Network characteristics Device communication

Mesh
Many devices in the

same location

Does not need cellular

coverage

Can be self-healing

Favours communication

with network neighbours

Cellular Only a few devices in

the same location

Need network coverage Devices communicate

mostly with cloud server

As stated in Table 1, mesh networks are convenient for applications where many devices

are at the same location, and mostly communicate locally. For example, Wi-SUN is a

popular mesh solution for street lighting control as the lights can conveniently talk locally,

while self-healing properties of mesh network keep the operation reliable. Many cities

around the world, such as Miami and Paris, have deployed their wireless control lighting

infrastructure, thus proving that this technology is indeed a practical solution [11].

On the other hand, the cellular approach is viable for devices prefer direct communication

with the cloud. A few examples of applicable cellular systems are smart electricity meter

and smoke detector. There are a lot of exciting developments in progress for NB-IoT and

17

LTE-M, both of which are subsets of the standard LTE. These two newly emerged tech-

nologies, especially at the sunset of 2G and 3G around the world, aim to satisfy the

market demand for low power and long-range cellular.

Despite the fact of having different characteristics and area of usage, these two technol-

ogies can be complementary to each other. A good illustration for this statement is using

a mesh network for sensor nodes and a few cellular nodes as network gateways. Con-

sequently, this set up benefits from mesh scalability while keeping the cost in check as

the product maker does not have to install a cellular module in every unit [12]. A few low-

power mesh technologies to be named are Bluetooth mesh, Thread (6LoWPAN based),

and Zigbee. Moving back to the main topic, this paper now focuses on NB-IoT – a cellular

LPWAN technology.

2.2.2 Narrowband Internet of Things

Narrowband Internet of Things (NB-IoT) is a new low-power wide-area network technol-

ogy introduced in the 3GPP Release 13 (2015) that aspires to enable a wide range of

new IoT applications with improved power consumption, system capacity, spectrum effi-

ciency, and support extended coverage. It has been estimated that a single NB-IoT base

station can support 50,000 devices, while battery-powered NB-IoT devices can operate

up to 10 years under specific conditions. Figure 10 highlights the landscape of IoT &

Machine Type Communications (MTC) with two ends of the spectrum: massive MTC and

critical MTC.

18

Figure 10. IoT applications and Machine Type Communications. Copied from: qorvo.com [13].

The massive MTC category consists of LPWAN technologies that can support a tremen-

dous amount of devices, while critical MTC technologies offer reliable real-time commu-

nication. Within this outlook, NB-IoT inclines towards the massive MTC side as its char-

acteristics favour a massive number of low-cost and low-power consumption devices

targeting data-collecting applications. Figure 11 lists out three different spectrum deploy-

ment alternatives in deploying NB-IoT.

Figure 11. Operation modes in NB-IoT. Copied from "Narrowband Internet of Things whitepaper"
[14, p. 9].

The first option shown in Figure 11 is standalone deployment in which NB-IoT carrier

reuses an existing GSM band. The second option, in-band deployment, is occupying a

part of the LTE carrier for NB-IoT usage. The last alternative, guard-band deployment,

is deploying NB-IoT within in the LTE guard band. The physical layers of NB-IoT have

been designed to operate in this option without hindering the existing LTE. Fortunately,

an LTE base station, often built upon software-defined radio, requires only a software

19

upgrade to support NB-IoT, thus making it convenient to upgrade most of the existing

LTE networks to support this new technology. Figure 12 shows the current deployment

state of IoT cellular networks around the world by June 2019.

Figure 12. Mobile IoT cellular network deployment map (Jun 2019). Source: www.gsma.com [15].

According to the GSM Association, by May 2019, there have been 114 operators around

the globe supporting NB-IoT and/or LTE-M [16]. At the dawn of cellular IoT, despite the

fact LTE-M got more traction in the US, the rest of the world prefer to roll out NB-IoT first.

Consequently, NB-IoT is the better option for IoT applications which does not target the

US market. At the moment, all major network operators in Finland including DNA, Elisa

and Telia provide support for NB-IoT, but only DNA offers LTE-M. Coming from the fact

that Finland has excellent LTE coverage in residential areas [17], it would be reasonable

to predict that NB-IoT devices are going to have a great opportunity within cities since

they will receive strong signal, thus promise quality service.

2.2.3 NB-IoT Connection States and Low Power Features

Although NB-IoT is currently known as the most energy-friendly cellular technology in

the licensed band, understanding what are the energy components in an NB-IoT con-

nection is vital for developers to understand how to write proper firmware for low power

20

application. Figure 13 presents the state transfer diagram of user equipment (UE in terms

of energy components.

Figure 13. State transfer diagram of NB-IoT energy components. Copied from “Energy Modeling
and Evaluation of NB-IoT with PSM and eDRX” [18].

The chart in Figure 13 comprises six different states:

· Connected (RRC-connected): The UE is in RRC-connected state and can
exchange data – exhibits a high power consumption.

· Uplink (RRC-connected): UE radio sends data uplink when software sends
new packets to the destination server – exhibits a high power consumption.

· Downlink (RRC-connected): UE receives downlink data when there is data
sent to the device - exhibits a high power consumption.

· Paging (RRC Idle): UE is monitoring paging messages from the base sta-
tion in its RRC-Idle state - exhibits small spikes in power consumption
graph due to the radio reception.

· Idle (RRC Idle): UE waits for the next paging cycle or goes to power saving
mode (PSM) if T3324 expires - exhibits a low power consumption.

· PSM (RRC Idle): UE turns off the radio for a long time and sleeps until
T3412 expires or an uplink request came from the microcontroller - exhibits
lowest power consumption.

Figure 14 shows a simpler illustration of NB-IoT operating modes from the application
standpoint.

21

Figure 14. U-blox SARA-N211 module operating modes from an application perspective. Copied
from “SARA-N2 series system integration manual” [19, p. 11]

Fortunate for developers, they do not need to know extensively about all the state tran-

sitions featured in the NB-IoT protocol as certified modules (e.g. SARA-N211) already

managed these transitions, curtailing away a huge amount of responsibility from devel-

opers. The following Section 2.2.4 further explains two important timers T3324 and

T3412 and gives a more descriptive example of the power consumption in a typical us-

age scenario.

2.2.4 Power Saving Techniques in NB-IoT

There are two features in NB-IoT to optimise the power consumption: connection release

and resume; extended discontinuous reception (eDRX) in conjunction with power-saving

mode (PSM). These features together help reduce the power consumption significantly,

making it viable to create a battery-powered IoT device that may deliver the ten-years

theoretical expectation.

Figure 15 describes UE operations in a typical NB-IoT usage scenario. On the top, there

is the RRC connection state; the middle represents the activity between UE and base

station in corresponding to power consumption; the bottom indicates whether the radio

is enabled. Also, the power consumption in each event is presented accordingly, except

for the PSM mode which actually is the state with the lowest power consumption.

22

Figure 15. Summary of UE’s behaviour in NB-IoT associated with power consumption. Copied

from “Exploring the Performance Boundaries of NB-IoT” [20].

For power-constrained wireless application, the power consumption is in tight correlation

with the radio activity. The prevalent strategy to conserve energy in such applications

(e.g. BLE) is to schedule communication time window in advance for both sides, allowing

the radio to turn off between these intervals. Without any surprise, this philosophy is

indeed applied in NB-IoT.

At first, the UE goes to “RRC-connected” state as it sends out a mobile originated packet

to the network, which could be triggered by the application code sending a UDP packet,

or there is a tracking area update (TAU) to be performed. As a matter of fact, the UE can

jump to this RRC-connected state at any point as it sends data to the base station. Next,

the UE proceeds to wait for mobile terminated traffic and monitor Connected-eDRX (C-

eDRX). Mobile terminated traffic is simply a term for a message sent from the network

to the UE, as such message is terminated at mobile/UE side. After the “Inactivity Timer”

expires (in fact this transition comprises few timers according to LTE specification), the

module transits to “RRC-idle” state and starts monitoring Idle-eDRX (I-eDRX), at the

same time it starts the “Active timer” (T3324) and “TAU timer” (T3412). During this state,

the UE can sleep between paging occasions to reduce its power consumption. Paging

occasions are time window in which the network can inform UE if there is a downlink

packet for it, which will trigger UE to resume RRC-connected state to exchange data with

the base station. Otherwise, when the “Active timer” (T3324) expires, UE will go to PSM

23

- the lowest power state and remains unreachable by the network until “TAU Timer” ex-

pires or UE’s application sends a packet uplink. At such events, the UE goes to RRC-

connected state and is again ready to exchange data with the network. This connection

release/resume mechanism is achievable as UE retains its network session context to

avoid the overhead of renegotiation with the network. Figure 16 presents a typical power

consumption pattern of a UE as described earlier.

Figure 16. Modem current consumption from power-on to deep sleep mode visualised. Copied
from SARA-N2 Series System Integration Manual [19, p. 13].

With the illustration in Figure 16, it would be simpler to recognise the power pattern with-

out being distracted by connection states and radio activity information.

The purpose of eDRX and PSM in NB-IoT UE is to reduce receiver enabled time to save

power at the cost of connection latency. In layman’s terms, the eDRX feature means the

specifications now allows longer time duration between pagings. There are two eDRX

types: Connected eDRX (C-eDRX) and Idle eDRX (I-eDRX). Even though the ultimate

decision on connection parameters is up to the network, however, the UE can provide

its preferred values for Active Timer (T3324), TAU Timer (T3412), paging window (de-

noted as Tpw in Figure 15), and eDRX cycle. Unfortunately, the “Inactivity Timer” and C-

eDRX cycles are chosen by the network and UE cannot influence these parameters, but

that also means there is less responsibility for the application developer. Developers

should contact network operators to ask for supported network parameters choices since

they may not allow all possible values listed in the 3GPP specifications. Also, it is worth

noting that the network can change these connection parameters at any time. Appendix

1 provides a lookup table on how to encode eDRX and paging time window value. Ap-

pendix 2 supplies instruction on encoding T3324 and T3412. Figure 17 brings more de-

tails on eDRX regarding paging procedures in an illustrative manner.

24

Figure 17. Magnified power consumption pattern of NB-IoT UE in paging procedures. Copied
from Keysight NB-IoT Technical Fundamentals [21, p. 25].

Release assistant is a feature for UE to actively release the connection and go to RRC-

Idle as soon as possible, which is especially beneficial for battery-powered devices.

When the UE transmits a data packet uplink, it can use Release Assistant feature to

notify the base station that either only one downlink response from the cloud is expected

so the RRC will be released after the next downlink, or no further downlink is expected

and RRC resource will be released right after the uplink transmission completed. If this

feature is not used, the UE will be staying in RRC-connected state for a relatively long

time (e.g.10-30s) depending on the network config before transiting to IDLE, which can

be considered energy wasting. Figure 18 describes the power consumption patterns of

an NB-IoT module sending a 512 bytes datagram under different network settings.

25

Figure 18. Power consumption of NB-IoT module sending a 512 bytes datagram under different
network settings. Copied from “Exploring the Performance Boundaries of NB-IoT” [20].

For identifying operations of the UE, the module exhibits a deep sleep current of 3uA, 10

mA in Idle (which in fact differs from the observation made during this thesis as during

the Idle state outside paging occasions the module has the same consumption as during

deep sleep), 60 mA when radio is in reception mode and 200mA when radio transmits.

In situation (1) and (4) UE disabled the I-DRX by setting T3324 to 0, while in (2) and (4)

this timer is set to 20s. Situation (1) and (3) are nearly the same, and the only difference

is (3) uses release assistant to conserve power by avoiding staying in RRC-connected

state. On the other hand, (2) and (4) have the same settings, but in (4) there is a downlink

during UE I-DRX monitoring process. This downlink message brings the UE to RRC-

connected, and after receiving the message, the module spends some time monitoring

C-DRX and I-DRX before going to deep sleep, meaning the Active timer (T3324) got

reset by this downlink. This behaviour should be taken into account while developing

applications. Figure 19 provides a summary of eDRX related connection parameters in

NB-IoT.

26

Figure 19. Summary of eDRX related connection parameters in NB-IoT. Copied from “Exploring
the Performance Boundaries of NB-IoT” [20, p. 4].

Figure 19 provides a table of summary of NB-IoT eDRX related timers mentioned in this

section, coupled with information indicating whether the UE can suggest them. The TAU

timer (T3412) is left out due to not related to the eDRX process, is suggestable by UE,

making a total of six parameters to keep in mind during development.

2.2.5 NB-IoT Power Consumption Best Practices

The power usage of a device is determined by multiple factors, each of which if not ap-

propriately engineered, could ruin the expected power efficiency. This section provides

some tips to follow to optimise the device power consumption:

· Design a good PCB layout to reduce interference on the device. Be careful
with antenna matching circuit.

· Carefully choose electronics components suitable for low-power operation
to minimise quiescent current of the device. Sensors and peripherals need
to be put in a low-power state while being unused.

· Select appropriate preferred configurations for T3324, T3412, eDRX cycle
length and paging time window for the application requirements. Develop-
ers are recommended to ask the network operator if those configurations
are accepted in their network. Experimenting by trial and errors is time-
consuming.

· Use the NB-IoT release-assistant feature properly within the application.
Set the device uplink power accordingly while avoid operating the device
in coverage enhancement level 2.

NB-IoT currently only supports open-loop power control, meaning UE determines its

transmitting power. There are two transmit power levels of 23 dBm and 20 dBm sup-

ported by CAT-NB1, and 14 dBm added in CAT-NB2. To enhance coverage for IoT de-

vice, UE is classified into Enhancement Coverage Level (ECL) ranging from 0 to 2 in

27

which 2 is the worst-case scenario according to the signal strength received and report

by UE. This classification determines the number of repetition of the transmission to en-

sure the quality of service, but at the same time drives the power consumption of UE up

with increased air time. As this issue depends on the physical deployment, the device is

recommended to report its coverage class to the cloud server so maintainer can detect

it to take appropriate actions such as deploying it at an alternative location.

2.3 Mbed OS

Mbed OS is an open-source operating system developed by ARM and its silicon part-

ners, designed specifically for ARM Cortex-M microcontrollers. The operating system

aims to simplify the device software development process by offering a common abstrac-

tion layer across multiple microcontroller series from different vendors including NXP,

ST, Cypress, etc., hence reducing time-to-market for embedded devices in general and

IoT devices in particular. Furthermore, this approach allows applications developed for

Mbed OS to be migrated among Mbed compatible platforms with reasonable effort. Fig-

ure 20 gives a high level illustration of Mbed OS, presenting the framework’s architecture

and its main components.

Figure 20. The architecture of Mbed OS. Copy from os.mbed.com [22].

28

First of all, Mbed OS attempts to unify commonly available functionalities in microcon-

trollers, for instance, UART, I2C, Timer, etc … under the same C++ application program-

ming interface (API), making it virtually identical to configure and use a peripheral

throughout the Mbed ecosystem, hence promoting code reusability. Apparently, this API

unification also set up a good starting point for adding support to new targets or new

features into existing targets.

Second, MBed OS comes with support for many software modules related to sensor

drivers, data storage and connectivity. The availability of off-the-rack sensor drivers en-

ables a quick and straightforward solution for integrating new sensors into the system.

Besides, the OS also facilitate external data storage capability on SD card or SPI/QSPI

flash. On the other hand, there are connectivity supports built-in in the OS to reduce the

complexity of making an IoT device. Thanks to this flexibility offered by Mbed, developers

can make their device supports IP based connectivity via Ethernet, WiFi, 6LoWPAN,

cellular, or other forms of non-IP communication such as BLE, NFC.

Third, Mbed OS includes an RTOS for developing software with deterministic, multi-

threaded, real-time execution. This component equips developers with RTOS primitives

including threads, mutexes, semaphores, queues as well as other standard RTOS func-

tionalities to accommodate the application requirements. The RTOS feature can be ex-

cluded if not needed in the program to save RAM and flash consumption.

Moreover, the ARM MBed team provides a list of comprehensive API documentation

along with examples and tutorials on their website. As a result, these materials help de-

velopers to get familiar with MBed API as quickly as possible and help them to start

developing their customised system.

Another perk offered by Mbed OS is Greentea, an automated testing tool. Tests are

written in C++ as if it is a regular MBed based program, which will be executed directly

on the microcontroller. On the one hand, this testing tool minimises the amount of labour

needed since it handles all the device flashing as well as the test result collecting process

from device-under-test (DUT). On the other hand, Greentea support “host-test” features

which under the hood are Python scripts that run on a computer and communicate with

the microcontroller. For example, a tester can write a test case in which the host machine

29

request DUT to send a specific piece of data to the cloud and then check if the same

data is received on the cloud side, verifying the DUT connectivity capability. Since em-

bedded applications are much less convenient to test compared to a pure software ap-

plication, this automated tool is an excellent effort towards minimising the hassle of em-

bedded testing, which will consequently promote better quality for IoT projects [23].

3 Design and Implementation

This section dives into the technical aspects of the project, starting with the goal and

requirements of the project, then visits the system components selections and system

architectural decisions along with relevant processes including testing and optimising the

device power consumption. These contents should provide readers with an overall un-

derstanding of the system, and at the same time, give an outlook on how the project was

carried out.

3.1 Project Goal and Requirements

This thesis was carried out as part of a client project at Etteplan Embedded Finland Oy

to evaluate the capability of NB-IoT, LwM2M, and Mbed OS. Moreover, the artefacts of

this project will be used as a reference design to shorten the execution time of future

projects relying on the same technology stack and similar electronic components. This

“Design and implementation” section focuses on the software aspect of the system as it

aligns with the author’s duty throughout the project.

Regarding functionality specification, the device is expected to take data from a weather

station via Modbus protocol and send reports on environmental measurements and its

operating state to a cloud server over NB-IoT. Besides, the cloud server should be able

to execute predetermined operations on the device, for example, rebooting. On the other

hand, the whole system should operate as efficient and low power as possible.

30

3.2 System Components Selections

Choosing system components, one of the first and arguably the most crucial step, deter-

mine the foundation of the system. This subsection lists out hardware and software com-

ponents along with commentaries why they are chosen.

3.2.1 Main Hardware Components Selections

One of the first steps in designing a constrained, low power IoT embedded device often

is selecting the target microcontroller. After some research, an MCU from the STM32L4

family is selected for several reasons. First of all, ST Microelectronics is a well-known

semiconductor provider in Europe offering a diverse portfolio of microcontrollers for a

wide range of technical requirements. Second, Etteplan has delivered many successful

projects which incorporates STM’s components, including the selected MCU. Conse-

quentially, software and hardware designers at the company are already familiar with the

properties of this microcontroller as well as its development ecosystem. Third, the MCU

offers a hefty amount of flash and RAM, along with multiple peripheral instances of

UART, I2C, and SPI that presumably cover the expectations of the application. Though

this pick might not be the ideal choice for large quantity production, it is sensible to pri-

oritise creating a few working prototypes with as little hassle as possible at the project

start. When it comes to an economic incentive for revising components in case of mass

production, it is feasible to migrate the system to a less costly pin-compatible MCU within

the same family, which would offer reduced ROM and/or RAM while still satisfying re-

quirements [24]. Fourth, STM32L4 family is an ARM Cortex-M4F explicitly designed for

low power applications [25], considering one of the key requirements of the project. Last

but not least, the selected MCU is officially supported by Mbed OS, making the software

development much more straightforward as there is no need to port the framework to the

target.

Another essential physical component in this project is the NB-IoT modem, of which

eventually U-blox SARA-N211 got selected. Just in case this brand name sounds unfa-

miliar, U-blox is a reputable wireless module provider known for offering high-quality pre-

certified modules regarding WiFi, Bluetooth, GNSS and cellular [26]. Etteplan has previ-

ously conducted projects that use U-blox modem and feels confident in trying out this

31

NB-IoT module. Moreover, U-blox defines consistent footprint formats for their compo-

nents, in this case, a form factor named SARA, making it convenient to migrate among

modems with the same form as it reduces the effort needed for redesigning the sche-

matic and PCB layout. On the other hand, this CAT-NB1 module is capable of operating

in bands 8 and 20, compatible with networks in Finland. In future projects, it is possible

to swap the modem to a SARA-N3 which support more frequency bands and CAT-NB2,

or to SARA-N4/R4 if LTE-CATM1 or 2G fallback is requested. Another advantage of

using U-blox products is that the company provides detailed materials necessary for soft-

ware and hardware designing processes, and has always been responsive to customer

support.

3.2.2 Software Component Selections

In the present project, Mbed OS was selected as the base for the firmware by the ad-

ministration. While this may be true, this framework is, in fact, an appropriate choice for

the system thanks to its ideology of unifying APIs to simplify development and attempts

to provide proper support for external components. Mbed OS has been under active

development by ARM and its partners for the last ten years, making it one of the most

mature frameworks for microcontroller-based IoT device available. Equally important, the

framework is open source and has been licensed under Apache 2.0, MIT, BSD along

with a few royalty-free permissive binaries, thus making it applicable to commercial pro-

jects.

Another significant point of consideration was determining which IoT protocol to use.

Again, Lightweight M2M was chosen by the administration and therefore used in this

project. Genuinely, LwM2M is a good pick for several reasons. First, unlike the MQTT

protocol operating on TCP, LwM2M can be used on UDP, which happens to be the only

IP based protocol supported by SARA-N211. Second, the use of connectionless UDP

favours low energy consumption as TCP protocol requires the device to stay awake and

maintain the connection. Wakaama, an opensource lightweight M2M library backed by

Eclipse, was selected due to practicality and financial reason. Interestingly, the built-in

LwM2M client in U-blox N2 modem (not used in this project) is also based on the same

library [27, p. 11]. From a subjective point of view, LwM2M is an unfamiliar name com-

pared to MQTT as it is a latecomer of the IoT world and yet to be supported by major

32

cloud services. Fortunately, there are currently a few providers on the market support

LwM2M such as ARM Pelion or Cumulocity IoT. Hopefully this promising protocol will

gain more traction in the future as it is designed as a full-fledge device management

protocol with interoperability in mind.

3.2.3 Guide on U-blox SARA-N211 NB-IoT Modem

This section presents a summary with tips for integrating SARA-N211 U-blox NB-IoT

modem with the device. First of all, the microcontroller can communicate with the module

through an asynchronous serial interface (UART) without flow control support. This serial

interface supports 8N1 frame at four different baud rates of 4800, 9600, 57600 and

115200 [19, p. 17], but selecting a baud rate higher than 9600bps (fastest supported by

the Low Power UART of the modem) will disable deep sleep operations [28, p. 48]. Even

though there is no flow control support, the module activity can be detected via the V_INT

pin (active high). This property acts as an excellent trigger to enable the UART of the

MCU. The notifying mechanism of the V_INT pin is illustrated in Figure 21.

Figure 21. Interfaces supply output (V_INT) simplified block diagram in SARA-N2 series. Copied
from SARA-N2 series System Integration Manual. [19, p. 13]

The microcontroller controls the module by issuing AT commands – commands used for

modem controlling named after its “AT” (attention) prefix. Commands supported by the

module can be lookup in the “SARA-N2 AT Commands Manual” [28]. Most of the com-

mands coming from the MCU are acknowledged by the modem nearly instantly, how-

ever, the modem can issue an Unsolicited Result Code (URC) to the MCU at any time.

URC serves as a way for the modem to actively notify the MCU, for example reporting a

33

change in network registration state or a newly arrived UDP packet. For this reason, the

module’s activity indication via V_INT pin comes in very handy, especially for low power

device where the more power-downed peripheral, the better.

Coming back to the software perspective, whenever the application wants to send data

to a cloud server, it first needs to open a socket with a specified destination IP address

and port. Thanks to U-blox implementation, the N211 module comes with an embedded

UDP stack, freeing the responsibility of having to accommodate a TCP/IP library (e.g.

lwIP) for application developers. However, this pre-packaged convenience only supports

UDP IPv4, thus binding the system with UDP and IPv4 issues. Fortunately, this limitation

does not apply with other modem lines such as U-blox SARA R4 which supports both

TCP and UDP on both IPv4 and IPv6. According to U-blox’s manual, the module can

only send and receive payload at a maximum of 512 bytes. However, based on obser-

vation during the module usage, this statement turns out to be inaccurate as the stated

limitation only applies to uplink, but not to downlink. When there are more than 512 bytes

of payload sent downlink, the module still manages to receive the data correctly as the

real limit is close to 1500 bytes (1500 bytes is Ethernet MTU). This matter is revisited

with more details in Section 3.7.

A minor issue with this U-blox module is that it does not give out any indication when an

uplink packet is dropped. Even though this is not considered misbehaviour by the nature

of UDP, it has been observed that the modem drops some packets when there is a rel-

atively large amount of them sent uplink at once, decreasing the quality of service. De-

velopers may want to safeguard their implementation with a self-regulating packet pace

mechanism to avoid congestion on the module. This congestion is easy to reproduce by

sending many packets consecutively (e.g. ten packets, each of 400 bytes) when the

module connection is not yet in the RRC-connected state.

3.3 Development Environment and Team Collaboration Workflow

It is known that a well-established development environment and positive collaboration

among team members play an essential role in working efficiency. With this wisdom in

mind, team members discuss and settle on a common development environment as well

as rules for the Git workflow. The integrated development environment (IDE) chosen for

34

this project is Eclipse CDT (also known as Eclipse for C/C++) with GNU MCU Eclipse

plugin. The debugger used is ST-Link-V2 in conjunction with OpenOCD. The chosen

compiler is GCC-ARM, and the build tool is Mbed CLI – a tool provided by the Mbed

team to simplify the development process, including building and testing the application.

Program traces are collected via UART and can be displayed on PC with an USB-to-TTL

adapter. These setup decisions turn out to be cost-effective as these tools are quite easy

to set up, at the same time, offering extensive yet convenient features at a minimal cost.

Eclipse is a well-known IDE maintained by the reputable Eclipse Foundation who houses

over 350 open-source projects across a wide range of technologies [29]. According to

the release log, Eclipse CDT receives a new update every three months, indicating the

IDE is under active development and maintenance. On the other hand, GNU MCU

Eclipse is a well-maintained plugin for Eclipse CDT which provides an extensive set of

tools for ARM and RISC-V MCU at no cost. As a result, many silicon providers like ST

and NXP provide customised Eclipse CDTs as recommended IDEs for their clients. From

an embedded developer perspective, this toolset provides a functional text editor, a flex-

ible way to configure the build process along with good integration with debugging utilities

including GDB, OpenOCD, and JLink. Furthermore, the IDE offers a peripherals register

view which enables developers to quickly inspect peripheral registers whenever the tar-

get is stopped, thus speeding up the debugging process, especially for low-level driver

developments.

The project execution follows the Scrum methodology. About Git policy, the team decides

to use interactive rebase instead of merging. Rebase before merging into master is not

a problem within a small team, yet it makes the history on the master branch linear and

simple to follow. Furthermore, a merge request must pass the CI pipeline and got ap-

provals before getting accepted. As the CI process consumes time and requires starting

up a physical machine, team members agree that pipelines are only required to run be-

fore merging and for every commit on the master branch.

3.4 System Design and Software Architecture

The primary responsibility of the program is similar to a generic IoT data collecting sys-

tem, focusing on gathering sensor measurements and push them to the cloud for post-

35

processing. While this may be true, project steps are not as straightforward as they usu-

ally are because the design involves new technology stack with limited supporting mate-

rials. The first obstacle is porting the LwM2M Wakaama library from working with the

POSIX interface to using Mbed OS APIs. In the beginning, this task was difficult and had

no clear direction as the library does not come with any guide or instructions to achieve

such a goal. However, the right path to the solution was soon revealed after the example

code had been skimmed through and its execution flow followed by adding printing state-

ment as well as using a debugger. As a matter of fact, the developers of the library has

designed their code with portability in mind, defining wrapper facade functions for setting

up and tearing down connections, at the same time designating a function to send data

as well as a function to pipe received data into the library for processing. For this reason,

even though the example code depends heavily on POSIX calls, the library is loosely

coupled with this interface and can be ported to another platform by rewriting the men-

tioned functions appropriately and make minor changes on piping the received data into

the library.

Regarding the architectural aspect, the firmware architecture strictly follows the gate-

keeper design pattern. Gatekeeper pattern [30, p. 260] is a designed pattern in which

only a task, the gatekeeper task, has sole ownership of a particular resource, and only it

is allowed to use this resource directly, while other tasks can only use the said resource

indirectly via the service offered by this gatekeeper. As a result, this pattern ensures

mutual exclusion in accessing the resource while avoiding priority inversion or deadlock.

Furthermore, as only one task has direct access to a resource, it will be easier to identify

and resolve the issue in case one happens to arise. Figure 22 supplies a hardware block

diagram, listing out components that physically comprise the system.

36

Figure 22. Hardware block diagram of the system.

As Figure 22 illustrated, there are multiple components within the system including sen-

sors, external flash and cellular modem, which could be quite a challenge to manage in

a single-threaded application. Figure 23 presents the structure of the software, focusing

on threads’ responsibilities and how do they interact with others following the gatekeeper

pattern.

Figure 23. The software structure of the IoT application.

Generally speaking, the program consists of three major threads: main thread, sensor

thread, and watchdog thread, each of which has distinct duty within the system. First,

37

the main thread is responsible for initialising the MCU, spawning other threads and af-

terwards managing the communication with the LwM2M server. The second thread, sen-

sor thread, takes care of initialising sensors and collecting sensor data. These sensor

data will be relayed to main thread via a Mbed OS mail (similar to a pipe or a queue) to

be pushed to the cloud. The third thread, watchdog thread, acts as a failsafe mechanism

to rescue the system from unexpected unrecoverable failures with a reset.

3.5 Software Testing

Software testing, an element within the software quality assurance process, is an im-

portant ingredient which safeguards the functionality of the program, allows work collab-

oration between developers and promotes good coding practices. This section provides

a list of testing methods applied and applicable to this project. The names of these will-

be-mentioned techniques may not follow well-known conventions.

The first testing technique used in this project is manual white box testing. These tests

are to be manually performed by developers to verify whether the connectivity and

LwM2M proportions of the application works as expected. First, an LwM2M Leshan

server is set up on an AWS instance to carry out the role of a bootstrap and device

management server. Next, Tcpdump, a network analyser tool, is installed on the server

to log network traffic on ports of interest as its log can be later analysed with Wireshark.

Fortunately, Wireshark provides support for decoding LwM2M and decrypting DTLS

communication (provided the pre-shared key), thus making it a valuable utility to diag-

nose the connection problem and verify whether network data are consistent with infor-

mation sent from the device. In fact, this setup combines with the server’s log helped to

resolve the DTLS handshaking failure while attempting certificate authentication. On the

other hand, this setup also can provide an estimation on NB-IoT latency by measuring

how long does it take for a ping to travel back and forth. Since NB-IoT latency can be in

the degree of seconds, millisecond precision is not needed for this measurement. For

instances, initial ping to google.com can take nearly 9 seconds, but subsequent ping will

take much less time since the modem is already in the RRC-connected state. Later, this

simple test can be improved and use to test out the reliability of the network at a given

location. As Leshan server exposes a REST interface, it is possible to write an integration

test which sets resources to different values then try to read it back from the device,

38

ensuring all the fields are functioning as expected. This check helped to detect a mistake

on setting a new value to a string buffer as the application does not clear the buffer before

copying in new characters. Even though these tests were addressed as manual tests at

the beginning of the paragraph, most of them can later be automated when there is more

time for improvements. The device will also go through security testing at a more mature

state.

To increase the chance of detecting defects, the device is subjected to run multiple days

continuously. The server log and device log is checked to verify that the device still op-

erates and the server receives uplink data at expected intervals. Furthermore, on occa-

sions where the device loses session with the server, the device manages to re-establish

the connection, which adds confidence on the firmware.

As mentioned earlier, Mbed OS offers an automated testing tool called Greentea (Arm

Mbed reGREssion ENvironment for TEst Automation). This utility allows writing auto-

mated unit tests, which will then be automatically flashed and executed on the target

MCU. The fact that the test runs on native targets brings it as close as possible the real

application, minimising the risk of passing compiler errors without detecting. However,

this testing framework is still limited and can only perform assertion checks, while provid-

ing no support for convenient stubbing or mocking, things that are particularly useful in

testing written code behaviour at hard-to-produce situations. As a matter of fact, Mbed

OS itself uses also googletest to write off-target tests, however using this testing frame-

work is troublesome as it is placed inside Mbed OS repository. In contrast, Greentea

tests can be placed outside of Mbed OS folder. Currently, there are only a few Greentea

test cases written due to time constraint, but later more tests will be added.

Despite being a norm for modern software development, continuous integration (CI) of-

ten went missing in embedded system development. Continuous integration is the prac-

tice of automating the integration process of code changes from team members in a

software project. This practice often comprises automatic build, tests execution, code

quality analysis, etc. In this project, a pipeline has been set up to automatically build the

software, run Greentea tests, and perform static code analysis with Cppcheck. This au-

tomated process provides a reference compiling system, eliminating “it builds/passes

tests on my PC” excuses.

39

Though it is impossible to test software exhaustively, still the testing for this software at

this stage is not done properly. However, as now the way to make tests with Greentea

is established, the following testing will become easier. This is an aspect of the project

that could be enhanced later.

3.6 Optimising Power Consumption from Software Perspective

Considering the project accommodates NB-IoT with low-power capability, minimising the

power usage becomes a point of interest in the development. The rule of thumb for pre-

serving energy is bringing the processor and its peripherals along with external compo-

nents to the best low power mode as long as possible. In this project, for the sake of

simplicity while appreciating the “one step at a time” methodology, power consumption

optimisation effort is conducted only for a device comprises of an STM32L4 MCU and

an N211 cellular module.

Apparently, there are a few rules to follow when developing firmware for a low power

device. First of all, developers should avoid making the MCU doing redundant work while

avoiding polling and instead take advantage of Interrupts or DMA transfers if possible. In

case polling is unavoidable or the act of avoiding causes an unjustified increase in soft-

ware complexity, developers can try to limit the polling frequency to an adequate rate.

Second, configuring the system clock and peripherals appropriately could reduce power

consumption. In practice, lowering the system clock tends to give a slight increase in the

system efficiency, hence sometimes it is worthwhile to operate the system at lower clock

speed, or adjust the clock rate dynamically. Furthermore, clock source selections also

have an impact on power consumption, but likely there are other things to be considered.

For example, the STM32L4 multi-speed internal clock (MSI) may offer an advantage over

the high-speed external (HSE) clock regarding power efficiency and bill of material. How-

ever, the internal clock suffers more drift under temperature variation compared to exter-

nal oscillators’, leaving HSE the best candidate for outdoor devices. Though it is trouble-

some to apply a specific clock configuration in Mbed as abstraction hides away details,

this goal can be achieved by modifying the source code part which initialises the clock

or by reconfiguring the clock at the beginning of main(). Third, awareness of system

specifics may introduce opportunities to trim down the power consumption. For example,

40

STM32L4 MCU offers a low power UART, which indeed could result in lower power con-

sumption than standard UART.

According to the STM32L4 Reference Manual [31, pp. 163-169], the STM32L4 MCU

features seven low power modes, and each offers different compromises over power

consumption, peripheral availability, wakeup latency, and available wakeup sources.

However, due to the abstraction constraint of maintaining a common API across different

MCUs, Mbed OS simply divides low power modes into two levels: sleep and deep sleep.

Within the STM32L4 context, the Mbed sleep mode corresponds to the SLEEP mode of

the microcontroller, while the deep sleep mode corresponds to STOP2. This selection is

not a coincident as STOP2 mode is the lowest power state of the MCU in which RAM

contents on all banks are retained. Mbed OS provides a sleep manager for the IDLE task

to decide which sleep mode the MCU should go. This sleep manager depends on a set

of DeepSleepLock flags that can be raised and cleared by peripherals drivers of the OS.

Whenever the sleep manager is invoked, it performs a check to see whether there is any

DeepSleepLock held to determine the appropriate sleep option. For example, the MCU

can go into deep sleep if the processor is not busy, and there are no high-speed periph-

eral active (e.g. SPI transfer ongoing).

In a sophisticated program with multiple tasks executed concurrently, employing RTOS

is a good idea because the IDLE task hook is an appropriate place for bringing the sys-

tem into a low power state. On the other hand, signalling and blocking utilities from RTOS

such as event flags could make it easier to take advantage of the asynchrony of ISR or

DMA. Another essential remark on conserving energy for RTOS applications is enabling

tickless (or tick suppression) mode. This RTOS configuration disables the MCU Systick

Interrupt during the deep sleep operation, thus blocking this periodical interrupt from re-

peatedly waking the MCU and waste energy. Figure 24 shows the difference in the wake-

sleep pattern of a particular program with and without tickless configuration.

41

Figure 24. Comparison of awake-sleep pattern of a Mbed program with and without tickless. Cop-
ied from “Low power features in Mbed OS” [32].

Another item worth mentioning is a small drawback in the default Mbed OS tickless con-

figuration for STM32L4. The misbehaviour appears in the form of a periodic once-per-

second wakeup during long sleep of the device. Mbed OS, by default, uses a low power

timer for timekeeping purpose during the deep sleep state, in this case, LPTIM1 – a low

power 16-bit timer clocked from a low-speed clock source (e.g. 32kHz LSI). It turns out

that this unwanted periodical wake up is caused by the overflow of the timer – which can

be considered a hardware limitation. According to the Mbed OS Low Power Ticker port-

ing guide [33], the low power timer frequency has to be at least 8kHz to ensure the res-

olution, thus limiting the timer overflow interval to every few seconds. Equipped with this

knowledge, it is possible to increase the said timer prescaler and extend this wakeup

interval to every 4 seconds, though this duration is still very restricted. This issue is ad-

dressed in a recent Mbed power consumption optimisation guide [34] along with a pro-

posal of using the 32-bit RTC instead of LPTIM1. This solution has been confirmed work-

ing on the device used here.

The last thing in optimising power consumption is indeed evaluating the result. There are

affordable measurement kits on the market for profiling consumption of low energy de-

vices, such as NRF Power Profiler Kit or STM32 Power shield, but unfortunately, these

tools are not suitable for analysing the consumption of the NB-IoT device. Even though

the NB-IoT module demonstrates a low sleep current around 4 uA plus 2.6 uA from the

MCU, during uplink operation the cellular module alone can spike up to a few hundred

mA, going way outside the range of these tools. For now, a Keysight U1273AX digital

42

multimeter is used to measure the sleep current of the device and use a simple shunt

resistor in conjunction with an oscilloscope to roughly capture the consumption pattern

of the device. Certainly this is a far-from-perfect solution, nevertheless, it provides a fair

estimation of the power consumption. The team is considering using the QOITECH Otii

Arc probe, a professional energy consumption analyser offering high-resolution current

measurement within the range of 0 – 5A [35]. Furthermore, this gadget is accompanied

with a GUI desktop application for convenient logging and analysis, which likely will bring

more insight into the device power consumption where previous profiling attempts failed

to deliver.

3.7 Challenges Encountered during Project Execution

There are no projects gone through without coming across obstacles. This project was

no exception, and there were indeed a few hurdles that should be mentioned. This sec-

tion points out two challenges encountered during the project yet not fully solved: down-

link payload length limitation (mentioned in Section 3.2.3) and the unsustainable connec-

tion session issue.

The first obstacle, the downlink payload limitation, arose during the integration of DTLS

certificate authentication on the device side to secure the connection. It turned out that

a payload length of 512 bytes was not sufficient for carrying out the handshaking proce-

dure even with all the MTU and DTLS fragment size set to the most appropriate value,

and according to U-blox manual this limit is fixed. As the real limit seems incorrectly

documented since the received payload can be near 1500 bytes, this DTLS handshaking

problem virtually does not exist. The fix for this issue was relatively simple as the only

thing to do is increasing the limit of the software socket read, and it has already now

been applied to the program. However, the current Mbed OS SARA-N211 driver imple-

mentation follows this stated limit and only tries to read at most 512 bytes, leaving the

remaining part of the payload in the queue of the modem and mess up subsequent

socket reads.

The second obstacle, the unsustainable connection session, originates from the Network

Address Translation (NAT) technique used by the network operator. As commonly

known, IPv4 address space is exhausted, and ISPs and network operators have been

43

resorted to NAT for quite some time to mitigate this IPv4 shortage conundrum. From

observation, the author suspects that the technique applied in this situation is Port Ad-

dress Translation (PAT). PAT is a form of dynamic NAT, translating multiple local source

addresses to a single global IP address and port. As a result, it is theoretically possible

to map 65535 (16-bit) source ports to a single IP. Figure 25 illustrates the usage of the

PAT technique in a hypothetical network.

Figure 25. An Illustration of a PAT usage. Modified from techdifferences.com [36].

According to observations, every minute or more often, the operator carries out network

port housekeeping and removes the UDP port associations between the cellular module

and the outgoing server that stays inactive for at least a minute. This behaviour means

that every time the device sends a packet to the server, the packet may look as if they

originate from a different port under the server’s perspective. Initially, the DTLS protocol

identifies the connection based on the source IP and port [37], hence the sudden port

change invalidates the security context and kills the session. An NB-IoT device can pe-

riodically send a byte to the server as a makeshift to maintain the record within the op-

erator’s NAT table. This one-byte packet does not affect regular operation since the

DTLS layer discards it on the server-side as an invalid packet, yet this solution ruins the

low energy consumption. There are a few resolutions perceived at the moment: migrating

44

to IPv6, bringing the server into the same subnet as the cellular subscriptions with VPN

to avoid PAT, or using the recently proposed “Connection ID” feature in DTLS to retain

the security context upon address change. It is easy to recognise that the first resolution

requires changing the cellular module, and the second resolution needs close coopera-

tion with the network operator. The third solution is probably the most favourable, yet in

2019 this feature is still an IETF draft and may not yet be supported by DTLS libraries.

4 Result and Discussion

This section states the project outcome and brings along brief discussions regarding

relevant topics such as alternatives for NB-IoT, firmware upgrade, security and possible

development of the project.

4.1 Project Outcome

The project turned out to be a success as the developed device is capable of using NB-

IoT to register with an LwM2M server securely, and it can periodically push new weather

measurements and other information to the cloud as expected. The customer was

pleased to receive the device along with the supporting software, and also gives a com-

pliment on the fast project pace after seeing the demo and testing out the device [38].

Furthermore, it has been more than half a year from the delivery, yet the project manager

has not received any complaint from the customer. Considering this project a success,

the upper management decided to push the project even further with more sophisticated

features such as LTE-M, CAT-NB2, or 2G fallback.

The project was an excellent opportunity to explore unfamiliar topics including NB-IoT,

LwM2M, Mbed OS, and to acquire new experience regarding ST MCU, microcontroller

security as well as power consumption optimisation. Besides, this experiment also

helped realise potential commercial cases, at the same time, identifies the limitations of

the current technology and other unforeseen obstacles. Artefacts of this project are going

to be used as a reference design, speeding up time to market for similar upcoming pro-

jects.

45

4.2 Comparison between NB-IoT with Competing Technologies

Low power wide area network (LPWAN) technologies are gaining many tractions in the

industry thanks to their low power and long-range characteristics fitting many IoT appli-

cations. Currently, three LPWAN technologies standing out from the crowd: Sigfox,

LoRa, and NB-IoT.

4.2.1 Comparison from Business Perspective

This subsection offers a brief overview of the business models behind these LPWAN

technologies. Though deviating from the technological topic, developers may benefit

from knowing some of the non-technical aspects of the technology and be better pre-

pared for commercial projects.

Sigfox is a French company who offers a patented LPWAN solution under the same

name, which operates on the unlicensed ISM band. The company owns all the technol-

ogies related to the backend, cloud server and endpoint software, but keeps the market

open for device endpoints. As a result, many silicon providers such as STMicroelectron-

ics, Atmel, and Texas Instruments have designed radio modules based on Sigfox’s spec-

ification. This openness contributes significantly toward the low cost of end device radio,

which Sigfox believes is the key to bring customers into their ecosystem [39]. In brief,

Sigfox revenue comes from partnering with local companies to roll out Sigfox networks,

which has been available at 58 countries by the time of September 2019.

LoRa (Long Range) is a proprietary physical layer technology owned by Semtech which

operates under the unlicensed ISM spectrum, similar to Sigfox’s approach. However,

Semtech has a different approach compared to Sigfox’s business strategy. In contrast,

the company builds its business around patented hardware while recommending

adopters to join the LoRaWAN alliance and design their own LoRa equipment and appli-

cations around Semtech’s IC. As a result, businesses can deploy their private LoRa net-

works at a low cost, or even develop a customised protocol based on LoRA physical

layer [40], which helps to boost the LoRa adoption, especially at places without cellular

coverage. [39]

46

On the other hand, NB-IoT specification is a part of the 3GPP standard, which has been

revised by multiple giant telecom organisations. Contrary to the mentioned technologies

operating on the unlicensed spectrum, NB-IoT network operates mainly under the ex-

pensive licensed spectrum owned by mobile operators. Even though there are possibili-

ties of operating a private LTE/NB-IoT network, this option is only available to busi-

nesses. With the involvements of multiple parties, along with the complexity of the tech-

nology and multiple certifications to be met, NB-IoT ends up as the most expensive out

of these three LPWAN technologies. Notwithstanding, an NB-IoT device is more conven-

ient to set up in areas with cellular network coverage, not to mention the high certainty

in quality of service as the operating band is reserved.

4.2.2 Comparison in Terms of IoT Factors

With different physical and modulating strategies, Sigfox, LoRa, and NB-IoT exhibit dif-

ferent strengths and weaknesses. This section, inspired by “A comparative study of

LPWAN technologies for large-scale IoT deployment” paper [41], attempts to give a

rough comparison between these technologies on quality of service (QoS), battery life

and latency, payload length, network range and coverage. This comparison gears more

towards NB-IoT as it is a topic of this thesis.

First of all, NB-IoT offers the best QoS as it is based on LTE - a synchronous protocol

that operates on the licensed spectrum. In contrast, Sigfox and LoRa are asynchronous

protocols on the unlicensed spectrum, thus being more susceptible to signalling prob-

lems. On the other hand, NB-IoT is the worst candidate when it comes to battery life

because it relies on synchronous communication, and the module requires a few times

higher operating and sleep current compared to those of the other two. For applications

where low latency is demanded, NB-IoT (with appropriate connection configurations) and

class C LoRa devices (LoRa devices with always enabled receiver) are good options,

though these setups are costly in terms of energy.

In terms of payload, again NB-IoT supports the largest payload size of 1600 bytes com-

pared to the other two, though it has sometimes been seen that the real limitation de-

pends also on the specific implementation. In the meantime, LoRa supports a maximum

uplink size of 243 bytes and Sigfox 12 bytes, making them less competitive in situations

47

where a large amount of data/measurements is expected. From a subjective opinion,

more than often, LoRa’s packet size is adequate for sensor data collecting applications.

Even though these LPWANs offer much further range than most other IoT wireless tech-

nologies, it is still up to the application developer to check whether there is any support

for the technology in the area of interest. Since operators run Sigfox and NB-IoT net-

works, when there is no immediate support nearby, LoRa becomes the only available

options as it is possible to deploy private LoRa gateway. This situation often occurs in

rural areas.

In summary, NB-IoT is suitable for applications with high QoS requirements and do not

hold an extreme expectation on low power consumption as well as expenses. Next, LoRa

is satisfactory in IoT applications which can be insensitive to latency, while prioritising

higher battery life. Furthermore, it is relatively convenient to set up a private LoRa gate-

way where there is no immediate support for connectivity, but keep in mind that private

LTE is also an option. On the other hand, Sigfox lies on the low end of the spectrum and

mainly targets the most constrained and cost-sensitive applications.

4.3 Firmware Upgrade Feature Considerations

Receiving software updates seems to have become a normal part of modern life. On a

regular basis, people receive smartphone application updates with new fancy features.

On a regular basis, people silently receive Windows updates, which are suddenly re-

vealed with a “Do not turn off your computer” notification at the most convenient time.

Also on a regular basis, people read news where there is a zero-day vulnerability dis-

covered, and there is a random expert who advises people to update a particular piece

of software to the most recent version. There is an unofficial term known as “Patch Tues-

day” referring to Microsoft’s habit of releasing security patch at every second or fourth

Tuesday of the month. These signs indicate that software updating has become a norm,

and long gone are the days when people have to go buy a new CD containing the latest

release of their favourite software. With not much of a difference, firmware upgrade is

and will become more and more of an indispensable part of the IoT world, especially

when the number of deployed devices is in the thousands and each of them has an

Internet connection. It is easy to see that good firmware update provides a mechanism

48

to add new features, fix bugs, and patch vulnerabilities. However, lousy firmware update

could brick the device [42], which in the best scenario requires a manual update to fix.

Though this crucial feature not yet implemented for the system at hand, it has already

been placed into the to-do list.

The Cloud Security Alliance organisation (CSA) provides a list of recommendations for

IoT firmware upgrade processes [43]. Let us examine some relevant points (modified) to

the system in this project within the list considering the context:

1) Provide a way for devices to recover upon update failure. Firmware rolling back are
to be considered.

The device firmware should be able to recover from a failed update by reloading the most

recent working firmware to minimise service disruption. Rolling back could be considered

as a feature to recover from a fatal defect existed in the latest firmware but not in previous

versions. However, this rollback action needs to be authorised to avoid downgrade at-

tack.

2) All updatable components should be able to receive an update.

At this stage, there are only two updateable components in this IoT system: the micro-

controller and the SARA-N211 modem. Besides implementing an update mechanism for

the MCU, it is essential not to forget the modem is also a part of the system. SARA-N211

incorporates two different ways to deliver the update: Firmware Over The Air update

(FOTA) and Firmware update Over AT (FOAT). Neither of these methods was attempted

in this project.

3) Update strategy should adapt to the constraint of the system.

There are a few different update strategies perceived at the moment: full image update,

package update and differential update. For the MCU context, only full image update and

differential update are applicable. As NB-IoT bandwidth is limited, the differential ap-

proach may be a more pleasant way to deliver an update. For a full image update, it is

possible to apply compression to reduce the size of the payload. There is one small

reminder for low power system: the longer the device has to stay awake to download the

update, the more energy it consumes.

49

4) Updates should be authenticated and its integrity protected from end to end.

Updates should be authenticated to avoid being tampered during transmission and pre-

vent malicious code from being injected into and executed on the device. This goal can

be achieved by signing the firmware as a whole, so the device can verify the authenticity

before the update is carried out and every time the bootloader going to make a jump to

application code. It is too worth mentioning that authentication does not protect the de-

vice from downgrade attack. Moreover, the firmware update should be transferred via a

secure medium (e.g. DTLS). Also, the device may want to authenticate the update server

and vice versa. It is also good to consider encrypting the firmware with a secure cipher

(e.g. AES CBC-128) to ensure confidentiality, especially if it is stored in unsecured place

such as external flash.

5) The system administrator should be able to schedule updates.

One benefit of scheduling update is able to avoid network congestion or perform DoS

unintentionally against the update server. It is a good idea to separate update download-

ing from update applying. Another benefit in this scheduling ability is administrator can

gradually deploy the update to a small number of devices first for testing purpose before

increase the deployment scale after a reasonable time. This method can help avoid a

fatal update being delivered to all devices – a business nightmare.

Updating firmware, though its concept is simple, is, in fact, a very complex feature. There

are undoubtedly much more things to be considered for a full-fledged updating system.

4.4 Security Considerations Regarding Project

It is indeed very challenging and complex to thoroughly analyse and counter security

threats in advance for a system; however, it is often too late to build an application then

start adding security. This subsection presents a few thoughts on the microcontroller

based project regarding security considerations.

According to the STM32 application note “Introduction to microcontrollers security” [44],

attacks on IoT devices can be classified into three categories: software attack, hardware

50

non-invasive attack, and hardware invasive attack. Software attacks are efforts of ex-

ploiting programmatical weaknesses and attempts to readout or modify device data with-

out relying on a physical element. Due to the low starting cost, relatively convenient to

carry out, likewise hackers can share their malicious expertise around the Internet, soft-

ware attacks are the most common type of security threats. A general practice to mitigate

security risks is to read and follow standard security guidelines while refraining from in-

venting homegrown security scheme without sufficient expertise. This practice may in-

clude implementing a proper secure boot to block unauthorised firmware, employing

trustworthy libraries, conducting adequate software quality assurance, authenticating

and encrypting communication with the cloud server, implementing reliable firmware up-

date feature to patch newly discovered exploits. For the MCU context, disabling debug

port and enabling flash read-write protections are a good idea to prevent firmware cloning

and leaking device secrets, though the effectiveness of such actions on STM32 is to be

examined [45] [46].

General-purpose MCUs are not good candidates for withstanding hardware related at-

tacks. However, developers should be aware of common attack strategies, and if possi-

ble, follow countermeasure instructions to mitigate the risk, which will at least cost the

attacker more effort before succeeding. For example, using a cryptographic library with

fake instructions could obstruct a power analysis attack, or using an internal clock source

can dodge a clock glitching attempt. However, it is reasonable not to invest excessive

effort on countering hardware attack unless the device was specifically designed with

such criteria. Nevertheless, developers should be aware of the existing physical security

features offered by their platform, which again will make attacks more difficult to succeed.

Furthermore, post-detection of malicious attempts could be considered as good-to-have

countermeasures. For instance, as an IoT device must present its unique identity with

the management server, it is legitimate to suspect that a particular device identity has

been cloned if it appears to connect to the server from multiple places that are physically

apart from each other at the same time. Nonetheless, post tampering detection efforts

do not necessarily exist only in software, for example, a broken protection case might

signal the device has been physically tampered.

51

Last but not least, it is easy to realise that good security comes not only with a lot of cost

and efforts, but also comes with obstacles for debugging or investigating issues occurs

after the device has been deployed, which are deemed as bad things from a business

perspective. Besides, more often than not, users care less about security compared to

features and costs, making rooms for poor security habits.

4.5 UDP vs TCP as Transport Layer for IoT Applications

The TCP/IP model Transport layer offers two mainstream protocols: UDP and TCP. For

non-critical IoT applications, the most crucial requirement often is being able to deliver

collected data to the cloud. Most of the time, TCP is the preferred solution for most In-

ternet applications as it guarantees packet delivery, offers congestion avoidance and

automatically maintains the session for the connection. On the other hand, UDP is a

more lightweight protocol as it is connectionless while its packet header is smaller, mak-

ing it much more suitable for low-powered devices. Aside from the benefits UDP offered,

this protocol exhibits three problems that might hinder adoption: no congestion avoid-

ance, out-of-order delivery, and no guarantee of delivery. In typical power-constrained

IoT usages, small amounts of measurement data are usually sent out infrequently, thus

congestion avoidance and out-of-order delivery are not issues. For the last mentioned

problem, it is up to the figure of the successful delivery rate to determine whether IoT

applications want to employ UDP as the transport layer.

A blog post by Karl Seguin [47] describes an experiment which attempts to investigate

how reliable UDP transfers are between five AWS instances: two in New Jersey, one in

Los Angeles, one in Amsterdam and the last one in Tokyo. Over the duration of seven

hours, every 9 - 11 seconds, each server picks a target among the remaining ones and

send 5-10 packets ranging from 16 to 1016 bytes. The result shows that the worst deliv-

ery rate is 98.55% (1.45% loss), and during the test duration, there is a short period of

one to two minutes that many of the packets are lost. Interestingly, the successful deliv-

ery rate between continents is better than within the US’s soil. This experiment, though

only run for a short time, gives an impression on the delivery rate of UDP over the Inter-

net.

52

As NB-IoT is one of the interests throughout the paper, it is worth noting that the over-

the-air link-layer in NB-IoT between the UE and base station does feature acknowledge-

ment for uplink messages. According to U-blox’s document, the N211 module will at-

tempt to retry sending the same data once if not acknowledged by the base station at

the first attempt. However, it is yet to be confirmed by the writer whether the base station

will need acknowledgement from UE on downlink event. If there are important packets

that need to be re-sent until acknowledged, reliability ensuring mechanism from the ap-

plication layer should be responsible for such duty. For example, the CoAP layer handles

this role for an LwM2M application. Remarkably, using TCP (as MQTT) on NB-IoT im-

pacts the system worse than CoAP on UDP because CoAP confirming functionality is

sufficient for ensuring packet delivery, while TCP saturates the system transfer capacity

sooner than UDP [48].

It is advisable for developers to run a reliability test on their chosen NB-IoT network to

evaluate whether it is suitable for their application usage. The test can be as simple as

an NB-IoT module tries to send and receive numbered packets at random intervals and

sizes to see how the delivery rate varies over time. During such trial, packet loss pattern

or other conclusions can be derived from the percentage of packets reached destination

along with related timestamps. After obtaining the result, developers can in advance

identify issues such as firewall filtering, network address changes or poor signal quality

problem. Nevertheless, this test gives developers more insight into their system, poten-

tially helping them to ensure the service quality as well as allowing product owners to

make appropriate business decisions.

4.6 Future Developments

Excluding overengineered projects, it can be said that no engineering work is truly com-

plete, and to create a reliably functioning system, even simple ones, takes lots of effort.

This project is no exception, and in fact, there is plenty of work to be done for the device

to reach a mature state. Hardware-wise, there are already demands for upgrading the

cellular modem to one that supports more sophisticated features, and the reference de-

sign should take into account different sources of power input while retaining the power-

efficient characteristics. Furthermore, energy harvesting is also being considered a po-

tential enhancement for the system. Imagine an NB-IoT device capable of operating on

53

battery for more than a year without any recharging (which is totally feasible), and if

equipped with a solar recharging capability, its operation is likely to last for quite a long

time.

On the other hand, there are a lot of tasks remaining to be done on the software side.

First of all, the device firmware needs to accommodate support for new modems, which

will support features not available with the current modem. In case the new modules

support TCP, a reference example for an MQTT application will need to be developed

since that is the current de facto protocol supported by cloud services. Another highly

expected feature is the support for secure firmware upgrade. Recently, Winbond intro-

duced a new authenticated SPI flash family W74M, which opens up a proper way to store

data off the MCU flash securely and authenticatable. With this new capability, it is pos-

sible to transform Mbed OS power-loss resilient LittleFS into an encrypting file system

by writing encrypted data to the external flash with the key stored on the MCU, resting

assure that its data is always authenticatable. An applicable cipher for this situation could

be AES-GCM as the MCU will always know the address/index of the data it is reading,

thus making the flash still randomly accessible under this design.

Apart from improving the device firmware, the testing aspect of the project must be im-

proved. Aside from adding more tests, finding out a way to incorporate code coverage

reporting and execution profiling could give more insight into the software, potentially

reveal unforeseen issues of the system.

Out of all these enhancements, the whole bundle should be portable to newer MCU that

offers more robust security features, e.g. STM32L5 - an Arm Cortex-M33 with TrustZone

hardware-enforced security.

In summary, as the device is currently offering a minimum level of functionality, there is

a lot of work to be done in the future. Some of these enhancements, if done in-depth,

may occupy a standalone thesis.

54

5 Conclusion

This project successfully created a proof-of-concept low power IoT device which makes

use of NB-IoT, LwM2M, and Mbed OS. The resultant device fulfils its functionality expec-

tation of being able to deliver sensor measurements securely to the LwM2M cloud server

via NB-IoT, and it has been delivered to the customer. Initial investigations on the low

power capability of the current design look promising as the modem and the MCU during

deep sleep consumes only approximately 7uA, while the power consumption during op-

erating time is reasonable. Artefacts from this project are going to be used as a reference

design for the company, speeding up time to market for other similar designs.

Besides exploring the new NB-IoT technology, this project also acted as an attempt to

evaluate the readiness of software components, including Mbed OS and LwM2M

Wakaama. Furthermore, the project helps to realise the capability and performance of

the technologies used, at the same time identifying shortcomings of these components

and unforeseen obstacles. Moreover, this project also establishes a template for other

projects which happen to build on Mbed OS regarding development environment, Git

workflow, and software testing. On the other hand, additional researches for further im-

provements and relevant subjects are also conducted, which may help draw out a solid

road map for the project in the future.

Though this paragraph marks the end of the conclusion of this paper, it certainly does

not mark the finish line of this project. This project will be continuously improved, and at

its maturity, placed available under Etteplan’s Device Creation service.

55

Referencess

[1] C. Thompson, “Here's how IoT is transforming 6 different industries,” Business

Insider, 25 Oct 2016. [Online]. Available: https://www.businessinsider.com/iot-

transforms-industries-2016-10. [Accessed 7 May 2019].

[2] Ericsson, “Ericsson Mobility Report June 2019,” [Online]. Available:

https://www.ericsson.com/assets/local/mobility-report/documents/2019/ericsson-

mobility-report-june-2019.pdf. [Accessed 28 Jun 2019].

[3] S. B. D. A. C. B. Iago Felipe TRENTIN, “Lightweight M2M protocol: Archetyping

an IoT device, and deploying an upgrade architecture,” [Online]. Available:

https://ieeexplore-ieee-org.ezproxy.metropolia.fi/document/8480313. [Accessed

27 Jun 2019].

[4] M. Saarnivala, “IoT Device Management Security,” 2016. [Online]. Available:

https://www.arm.com/files/event/2016_ATS_India_B4_Mikko_Saarnivala.pdf.

[Accessed 7 May 2019].

[5] Open Mobile Alliance, “Lightweight Machine to Machine Technical Specification,”

[Online]. Available:

http://www.openmobilealliance.org/release/LightweightM2M/V1_0_2-20180209-

A/OMA-TS-LightweightM2M-V1_0_2-20180209-A.pdf. [Accessed 27 Jun 2019].

[6] J. Vermillard, “Bootstrapping device security with LWM2M,” [Online]. Available:

https://medium.com/@vrmvrm/device-key-distribution-with-lightweight-m2m-

36cdc12e5711. [Accessed 26 Jul 2019].

[7] “IPSO Smart Objects Working Group,” [Online]. Available:

https://www.omaspecworks.org/about/the-oma-specworks-work-program/ipso-

smart-objects-working-group. [Accessed 4 Aug 2019].

[8] M. K. H. T. Jaime Jimenez, “IPSO Smart Objects,” [Online]. Available:

https://www.omaspecworks.org/wp-content/uploads/2018/03/ipso-paper.pdf.

[Accessed 29 Jul 2019].

[9] Open Mobile Alliance, “OMA LightweightM2M (LwM2M) Object and Resource

Registry,” [Online]. Available:

http://openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html.

[Accessed 10 Sep 2019].

56

[10] Digi, “Mesh Networking vs Cellular Technology for IoT Applications,” [Online].

Available: https://www.digi.com/videos/mesh-networking-vs-cellular-technology-

for-iot-ap. [Accessed 26 Jun 2019].

[11] M. Halper, “The Top 10 Cities Implementing Connected Streetlights: Miami, Paris

and Madrid on top,” [Online]. Available: https://iot-analytics.com/top-10-cities-

implementing-connected-streetlights. [Accessed 26 Jun 2019].

[12] L. Amicucci, “Mesh + Cellular: Ideal Partners for Industrial IoT,” 5 Dec 2018.

[Online]. Available: https://blog.nordicsemi.com/getconnected/mesh-cellular-

ideal-partners-for-industrial-iot. [Accessed 27 Jun 2019].

[13] “How NB-IoT and LTE-M Fit into the IoT Ecosystem: The Future of Cellular IoT,”

31 Aug 2018. [Online]. Available: https://www.qorvo.com/design-hub/blog/how-

nb-iot-and-lte-m-fit-into-iot-ecosystem-future-of-cellular-iot. [Accessed 7 Aug

2019].

[14] Rohde & Schwarz, “Narrowband Internet of Things whitepaper,” [Online].

Available: https://scdn.rohde-

schwarz.com/ur/pws/dl_downloads/dl_application/application_notes/1ma266/1M

A266_0e_NB_IoT.pdf. [Accessed 9 Jul 2019].

[15] GSM Association, “Mobile IoT Deployments,” [Online]. Available:

https://www.gsma.com/iot/deployment-map/. [Accessed 26 Jun 2019].

[16] GSM Association, “Mobile IoT commercial launches,” [Online]. Available:

https://www.gsma.com/iot/mobile-iot-commercial-launches/. [Accessed 26 Jun

2019].

[17] Rewheel-Tutela, “Site density is key to LTE network performance – and critical

for 5G,” [Online]. Available:

http://research.rewheel.fi/downloads/Rewheel_Tutela_LTE_5G_performance_dri

vers_Europe_17022019_FINAL.pdf. [Accessed 26 Jun 2019].

[18] Ashish Kumar Sultania, Pouria Zand, Chris Blondia and Jeroen Famaey, “Energy

Modeling and Evaluation of NB-IoT with PSM and eDRX,” [Online]. Available:

https://www.researchgate.net/publication/329364141_Energy_Modeling_and_Ev

aluation_of_NB-IoT_with_PSM_and_eDRX. [Accessed 2 Jul 2019].

57

[19] U-blox, U-blox, [Online]. Available: https://www.u-

blox.com/sites/default/files/SARA-N2_SysIntegrManual_%28UBX-

17005143%29.pdf. [Accessed 18 Aug 2019].

[20] Borja Martinez, Ferran Adelantado, Andrea Bartoli and Xavier Vilajosana,

“Exploring the Performance Boundaries of NB-IoT,” 18 Feb 2019. [Online].

Available: https://arxiv.org/pdf/1810.00847.pdf. [Accessed 3 Jul 2019].

[21] JianHuaWu, “NB-IoT Technical Fundamentals,” [Online]. Available:

https://www.keysight.com/upload/cmc_upload/All/20170612-A4-JianHuaWu-

updated.pdf. [Accessed 18 Aug 2019].

[22] Arm, “An introduction to Arm Mbed OS 5,” [Online]. Available:

https://os.mbed.com/docs/mbed-os/v5.12/introduction/index.html. [Accessed 26

Jun 2019].

[23] ARM Mbed, “Greentea testing applications,” ARM, [Online]. Available:

https://os.mbed.com/docs/mbed-os/v5.13/tools/greentea-testing-

applications.html. [Accessed 25 Jul 2019].

[24] ST Microelectronics, “STM32L4 series of ultra-low-power MCUs,” [Online].

Available: https://www.st.com/en/microcontrollers-microprocessors/stm32l4-

series.html. [Accessed 25 Jun 2019].

[25] ST, “STM32L4 and STM32L4+ ultra-low-power features overview,” Mar 2018.

[Online]. Available:

https://www.st.com/content/ccc/resource/technical/document/application_note/9e

/9b/ca/a3/92/5d/44/ff/DM00148033.pdf/files/DM00148033.pdf/jcr:content/translati

ons/en.DM00148033.pdf. [Accessed 2 Sep 2019].

[26] Ublox, “U-Blox product category,” [Online]. Available: https://www.u-

blox.com/sites/default/files/ProductCatalog_V22_2019Feb.pdf. [Accessed 25 Jun

2019].

[27] U-blox, “U-blox Cellular Modules Open Source Software Licenses,” [Online].

Available: https://www.u-

blox.com/sites/default/files/products/documents/OpenSourceSWLicensesCellular

AppNote%28UBX-13001917%29.pdf. [Accessed 25 Aug 2019].

58

[28] U-blox, “SARA-N2 series AT Commands Manual,” [Online]. Available:

https://www.u-blox.com/sites/default/files/SARA-N2_ATCommands_%28UBX-

16014887%29.pdf. [Accessed 25 Aug 2019].

[29] Eclipse Foundation, [Online]. Available: https://www.eclipse.org/org/. [Accessed

5 Aug 2019].

[30] R. Barry, “Mastering the FreeRTOS™ Real Time Kernel,” Real Time Engineers

Ltd, [Online]. Available: https://www.freertos.org/wp-

content/uploads/2018/07/161204_Mastering_the_FreeRTOS_Real_Time_Kernel

-A_Hands-On_Tutorial_Guide.pdf. [Accessed 18 Aug 2019].

[31] “STM32L4x5 and STM32L4x6 advanced Arm®-based 32-bit MCUs Reference

Manual,” ST Microelectronics, [Online]. Available:

https://www.st.com/content/ccc/resource/technical/document/reference_manual/

02/35/09/0c/4f/f7/40/03/DM00083560.pdf/files/DM00083560.pdf/jcr:content/transl

ations/en.DM00083560.pdf. [Accessed 2019 Aug 29].

[32] B. Szatkowski, “Low power features in Mbed OS,” [Online]. Available:

https://drive.google.com/file/d/1nviXI1W--9pvymZLf4FGry-lniXqifvC/view.

[Accessed 12 Sep 2019].

[33] ARM Mbed, “ARM Mbed Low Power Ticker porting guide,” [Online]. Available:

https://os.mbed.com/docs/mbed-os/v5.13/porting/low-power-ticker.html.

[Accessed 2 Sep 2019].

[34] J. Jongboom, “Power management in Mbed OS,” [Online]. Available:

https://os.mbed.com/docs/mbed-os/v5.13/tutorials/power-optimization.html.

[Accessed 29 Aug 2019].

[35] “Otii Arc technical specification,” [Online]. Available:

https://www.qoitech.com/products/techspec#current-measurement. [Accessed

28 Aug 2019].

[36] “Difference Between NAT and PAT,” [Online]. Available:

https://techdifferences.com/difference-between-nat-and-pat.html. [Accessed 5

Sep 2019].

[37] H. T. T. F. T. G. Eric Rescorla, “The Datagram Transport Layer Security (DTLS)

Connection Identifier (work in progress),” [Online]. Available:

59

https://tools.ietf.org/html/draft-ietf-tls-dtls-connection-id-04. [Accessed 26 Aug

2019].

[38] Etteplan, “NB-IoT based platform for wireless data transfer,” [Online]. Available:

https://www.etteplan.com/references/nb-iot-based-platform-wireless-data-

transfer. [Accessed 30 Aug 2019].

[39] B. Ray, “SigFox Vs. LoRa: A Comparison Between Technologies & Business

Models,” 31 May 2018. [Online]. Available: https://www.link-labs.com/blog/sigfox-

vs-lora. [Accessed 1 Jul 2019].

[40] Link Labs, “Symphony Link vs. LoRaWAN,” [Online]. Available: http://info.link-

labs.com/hubfs/LPWAN_Technology_Explained.pdf. [Accessed 15 Sep 2019].

[41] E. B. F. C. F. M. Kais Mekki, “A comparative study of LPWAN technologies for

large-scale IoT deployment,” 20 Dec 2017. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2405959517302953.

[Accessed 8 Sep 2019].

[42] I. Thomson, “Firmware update blunder bricks hundreds of home 'smart' locks,”

11 Aug 2017. [Online]. Available:

https://www.theregister.co.uk/2017/08/11/lockstate_bricks_smart_locks_with_du

mb_firmware_upgrade/. [Accessed 3 Sep 2019].

[43] S. Khemissa, “Recommendations for IoT Firmware Update Processes,” [Online].

Available: https://downloads.cloudsecurityalliance.org/assets/research/internet-

of-things/recommendations-for-iot-firmware-update-processes.pdf. [Accessed 3

Sep 2019].

[44] ST, “Introduction to STM32 microcontrollers security - Application note,” Feb

2019. [Online]. Available:

https://www.st.com/content/ccc/resource/technical/document/application_note/gr

oup1/9f/0b/e4/b6/75/15/4f/e2/DM00493651/files/DM00493651.pdf/jcr:content/tra

nslations/en.DM00493651.pdf. [Accessed 4 Sep 2019].

[45] S. T. Johannes Obermaier, “Shedding too much Light on a Microcontroller’s

Firmware Protection,” [Online]. Available:

https://www.aisec.fraunhofer.de/content/dam/aisec/ResearchExcellence/woot17-

paper-obermaier.pdf. [Accessed 4 Sep 2019].

60

[46] “How to bypass Debug Disabling on SM32F103,” [Online]. Available:

https://medium.com/@LargeCardinal/how-to-bypass-debug-disabling-and-crp-

on-stm32f103-7116e7abb546. [Accessed 5 Sep 2019].

[47] K. Seguin, “How unreliable is UDP?,” 16 Oct 2014. [Online]. Available:

https://www.openmymind.net/How-Unreliable-Is-UDP/. [Accessed 07 Aug 2019].

[48] L. Anna, R. Antti and S. Juha, “Impact of CoAP and MQTT on NB-IoT System

Performance,” 31 Oct 2019. [Online]. Available: https://www.mdpi.com/1424-

8220/19/1/7/htm. [Accessed 27 Jun 2019].

Appendix 1

1 (1)

NB-IoT applicable eDRX cycle length and paging time window

Applicable eDRX cycle length: 20.48s, 40.96 s, 81.92 s (~1 minute), 163.84 s (~ 3 min),

327.68 s (~5 min), 655.36 s (~11 min), 1310.72 s (~22 min), 2621.44 s (~44 min),

5242.88 s (~87 min), 10485.76 s (~175 min)

Applicable paging time window: 2.56s, 5.12s, 7.68s, 10.24s, 12.8s, 15.36s, 17.92s,

20.48s, 23.04s, 25.6s, 28.16s, 30.71s, 33.28s, 35.84s, 38.4s, 40.96s

Reference:

Section 10.5.5.32 in 3GPP TS 24.008 V13.12.0 (2017-12)

NB-IoT Deployment Guide to Basic Feature set Requirements Version 2.0 05 April 2018

https://www.gsma.com/newsroom/wp-content/uploads/CLP.28-v2.0.pdf

Appendix 2

1 (1)

NB-IoT Active timer (T3324) and TAU timer (T3412) encoding

Reference: https://docs.nbiot.engineering/tutorials/low-power.html

	1 Introduction
	2 Theoretical Background
	2.1 Device Management System
	2.1.1 Lightweight M2M Protocol Architecture and Functionality
	2.1.2 Device Management in Lightweight M2M
	2.1.2.1 Lightweight M2M Bootstrap Procedure
	2.1.2.2 Device Monitor, Binding Mode and Fault Report in Lightweight M2M

	2.1.3 CoAP in Lightweight M2M Service Enablement Interface
	2.1.4 Lightweight M2M Resource Model and Information Reporting

	2.2 Narrowband Internet of Things (NB-IoT)
	2.2.1 Cellular IoT in Internet of Things Landscape
	2.2.2 Narrowband Internet of Things
	2.2.3 NB-IoT Connection States and Low Power Features
	2.2.4 Power Saving Techniques in NB-IoT
	2.2.5 NB-IoT Power Consumption Best Practices

	2.3 Mbed OS

	3 Design and Implementation
	3.1 Project Goal and Requirements
	3.2 System Components Selections
	3.2.1 Main Hardware Components Selections
	3.2.2 Software Component Selections
	3.2.3 Guide on U-blox SARA-N211 NB-IoT Modem

	3.3 Development Environment and Team Collaboration Workflow
	3.4 System Design and Software
	3.5 Software Testing
	3.6 Optimising Power Consumption from Software Perspective
	3.7 Challenges Encountered during Project Execution

	4 Result and Discussion
	4.1 Project Outcome
	4.2 Comparison between NB-IoT with Competing Technologies
	4.2.1 Comparison from Business Perspective
	4.2.2 Comparison in Terms of IoT Factors

	4.3 Firmware Upgrade Feature Considerations
	4.4 Security Considerations Regarding Project
	4.5 UDP vs TCP as Transport Layer for IoT Applications
	4.6 Future Developments

	5 Conclusion
	Referencess

