

THE PHOTO VIEWER APPLICATION

 Andrey Koptev
 Bachelor’s thesis
 Spring 2011
 Degree Programme in Information Technology
 Oulu University of Applied Sciences

2

PREFACE

This Bachelor’s thesis was commissioned by Digia Finland Oy, Helsinki,
Finland.
Digia is one of the leading ICT companies in Finland with around 1,600
employees all over the world. Digia's offering includes ERP systems, and
mobile and user experience services and solutions. The customers of the
company are businesses and organizations from various industries, with an
emphasis on public administration, industry, mobile industry, retail, services,
banking and insurance.

ACKNOWLEDGEMENTS

I would like to thank Digia Finland Oy in general and Sami Koivumäki in person
for the great opportunity of completing my Bachelor’s thesis work. I would also
like to express my gratitude to Leo Ilkko, my thesis supervisor, for his excellent
tutoring and organizing skills, to all my university teachers who helped me to
develop my competence, and to all my colleagues in Digia Mobile Solutions
department for their advice and willingness to help.
Special thanks go to my friends who believed in me no matter what the cost
was.

3

ABSTRACT

Oulu University of Applied Sciences
Degree Programme in Information Technology, Mobile Technology

Author: Andrey Koptev
Title of Bachelor’s thesis: The Photo Viewer Application
Supervisor: Leo Ilkko
Term and year of completion: Spring 2011
Number of pages: 39 + appendices 7

The aim of this Bachelor’s thesis was to prove the concept of building flexible
and dynamic user interfaces for Symbian^3 mobile phone platform by applying
declarative programming techniques and combining them together with the
modern powerful programming language – Qt.

To achieve that aim it was decided to construct a photo viewer application that
would be run on Symbian^3 devices. The key feature of that application would
be a dynamic user interface with multiple views for representing pictures located
on the phone’s memory.

The design was implemented using the UML language. This approach allowed
realizing important milestones and it also helped to drive the development
process in the right direction. The structure of the application was split into two
major parts – Engine logic and UI. The engine’s code was implemented using
the Qt programming language. The UI was done by applying a declarative
programming approach with the help of the QML language and Qt Declarative
module. The Nokia N8 smartphone was chosen to be a target device for testing
the application.

Although the project was internal competence development work during my
induction period as a software developer in Digia Finland Oy company, the
application still carries significant potential for future upgrading and a wide
utilization on the open market. It may especially be useful for developers who
are interested in producing different dynamic UIs for their own applications and
who consider applying declarative programming techniques for this purpose.

Keywords:

Qt, QML, QtQuick, Symbian, user interface, pictures, views

4

TIIVISTELMÄ

Oulun seudun ammattikorkeakoulu
Tietotekniikan koulutusohjelma, Mobiiliteknologia

Tekijä: Andrey Koptev
Opinnäytetyön nimi: Valokuvien katseluohjelma
Työn ohjaaja: Leo Ilkko
Työn valmistumislukukausi ja -vuosi: Kevät 2011
Sivumäärä: 39 + liitteet 7

Tämän opinnäytetyön tavoite oli konseptoida joustavia ja dynaamisia
käyttöliittymiä Symbian^3-matkapuhelinalustalle. Deklaratiivisia
ohjelmointitekniikoita yhdisteltiin tehokkaassa ja modernissa Qt-
ohjelmointikehyksessä.

Tavoitteen saavuttamiseksi suunniteltiin valokuvien katseluohjelma, joka toimii
Symbian^3-laitteissa. Dynaaminen käyttöliittymä, jossa on useita eri
selausnäkymiä, ja jotka näyttävät kuvia puhelimen muistista, on ohjelmassa
avainasemassa.

Suunnitelma toteutettiin UML-kielellä. Se mahdollisti tärkeiden virstanpylväiden
saavuttamisen ja ohjasi kehitysprosessia oikeaan suuntaan. Ohjelman rakenne
on jaettu kahteen tärkeään osaan: ohjelmalogiikka ja käyttöliittymä.
Ohjelmalogiikka toteutettiin Qt-ohjelmointikielellä. Käyttöliittymä tehtiin
deklaratiivisten ohjelmointitekniikoiden, QML-kielen ja muiden deklaratiivisten
Qt-komponenttien avulla. Ohjelman testaamista varten valittiin Nokia N8-
älypuhelin.

Ohjelma on sisäistä kompetenssinkehittämistä varten tehty ollessani
ohjelmistokehittäjänä Digia Finland Oy yhtiössä. Sillä on silti merkittävää
potentiaalia tulevaisuuden laajennuksille ja laajalle hyödyntämiselle vapailla
markkinoilla. Se voi olla erityisen käytännöllinen kehittäjille, jotka ovat
kiinnostuneita tekemään erilaisia dynaamisia käyttöliittymiä omiin ohjelmiinsa, ja
jotka harkitsevat deklaratiivisten ohjelmointitekniikoiden käyttämistä.

Asiasanat:

Qt, QML, QtQuick, Symbian, käyttöliittymä, kuvat, näkymät

5

TABLE OF CONTENTS

PREFACE ……………………………………………………………………….....… 1

ACKNOWLEDGEMENTS ……………………………………………………….…. 1

TABLE OF CONTENTS ………………………………………………………...….. 4

SYMBOLS AND ABBREVIATIONS ………………………………………………. 6

1. INTRODUCTION …………………………………………………………...... 7

1.1 Research problems and methods ……………………………………… 8

2. WORKING ENVIRONMENT …………………………………………....….. 9

3. DEFINITION ……………………………………………………………….... 10

3.1 User’s perception ………………………………………………………. 11
3.2 Technologies …………………………………………………………… 12

3.2.1 Symbian platform …………………………………………….. 12
 3.2.2 Qt technology ………………………………………………… 13
 3.2.3 Declarative programming …………………..…………...….. 15
 3.2.4 Qt Quick ……………………………………….……………… 16
 3.2.5 QML …………………………………………..……………….. 16
 3.2.6 MVC design pattern ……………………...………………….. 17
 3.2.7 Image file formats ……………………………………………. 19

4. IMPLEMENTATION ……………………………………………….………. 20

4.1 Architecture ……………………………………………………..…...….. 20
4.2 Engine …………………………………………………………..……….. 21
4.3 Model and delegates ………………………………….……..…...……. 23
4.4 UI Controller ………………………………………………..…………… 24
4.5 User Interface …………………………………………………………... 26

4.5.1 Grid view ……………………………………………….……... 27
4.5.2 3D view ………………………………………………….……. 28
4.5.3 List view ………………………………………………….…… 29
4.5.4 Settings screen …………………………………………..…... 30

5. TESTING ……………………………………………...…………………….. 31

6

6. FUTURE DEVELOPMENT ………………………………………………... 32

6.1 Functionality …………………………………………..………………… 32
6.2 Video playback ……………………………………….………………… 32
6.3 Metadata ………………………………………………..……………….. 33
6.4 Location …………………………………………………..……………... 33
6.5 Connectivity ………………………………………………..……………. 34
6.6 Social sharing …………………………………………………………... 35

7. CONCLUSION ………………………………………………......…………. 36

8. LIST OF REFERENCES ………………………………………...………… 37

9. APPENDICES ……………………………………………………......…….. 39

7

SYMBOLS AND ABBREVIATIONS

API Application Programming Interface
EXIF Exchangeable Image File Format
GIF Graphics Interchange Format
GPS Global Positioning System
GUI Graphical User Interface
HTTP Hyper Text Transfer Protocol
IDE Integrated Development Environment
JEIDA Japan Electronic Industries Development Association
JPEG Joint Photographic Experts Group
MMS Multimedia Messaging Service
MOC Meta Object Compiler
MVC Model-View-Controller
OS Operating System
PNG Portable Network Graphics
POI Point Of Interest
QML Qt Meta-Object Language
Qt QUICK Qt User Interface Creation Kit
REST Representational State Transfer
SDK Software Development Kit
SMS Short Messaging Service
SQL Structured Query Language
TIFF Tagged Image File Format
UI User Interface
UML Unified Modeling Language
XML Extensible Markup Language
Wi-Fi Wireless Fidelity
WWW World Wide Web

8

1. INTRODUCTION

Traditionally all desktop and mobile applications were developed using
imperative programming languages and techniques - by describing computation
in terms of statements that change a program state. This approach is simple
and understandable. It is much easier to describe a sequence of actions that
are needed to be done to complete a task, then to present a task in a form fully
understandable to a machine. However, in terms of user interface development
this approach is prone to failures.
On the contrary, web developers are used to describing web applications by
defining what the program should accomplish without prescribing how to do it in
terms of sequences of actions to be taken. This approach is called a declarative
programming and, unfortunately, in traditional desktop or mobile applications it
is still rarely used, compared to an imperative programming.

In order to break that tendency and drive a higher utilization of the declarative
approach in the mobile segment, Qt Software has recently came up with a new
project called Qt Declarative User Interface and introduced a new markup
language - QML.

“QML is a declarative language designed to describe the user interface of a
program: both what it looks like, and how it behaves. In QML, a user interface is
specified as a tree of objects with properties”. (Nokia 2010, date of retrieval
21.3.2011)
The user interface is basically a certain area where the user interacts with the
program flow. The main goal of that interaction between the user and the
program is to control the effective execution of the latter.

UIs designed by the QML language are often referred to as fluid or dynamic.
This description comes from a certain type of behaviour a program expresses
when interrupted by a user’s action. The behaviour could be e.g. flicking,
flipping, dimming, bouncing or another sort of animation. The secret of the UI’s
fluid behaviour lies in animated transitions between the sets of QML properties.
Thus, for example, by changing the value of opacity one can force objects to
become fully or partially transparent.

“The Qt Declarative module implements the interface between the QML
language and the elements available to it. It also provides a C++ API that can
be used to load and interact with QML files from within Qt applications”. (Nokia
2010, date of retrieval 21.3.2011)

The QML language could be fully extended by a C++ code via the Qt
Declarative module.

Both the QML language and the Qt Declarative module are parts of Qt Quick –
a powerful framework that contains a rich set of user interface elements, a
declarative language for describing user interfaces and a language runtime
environment.

9

1.1 Research problems and methods

During the development stage the following problems are required to be
resolved:

1. Building an application that would be responsible for locating and
displaying images

2. Defining the user experience for a dynamic and fluid multi-view data
representation

3. Deploying the application on a target device

Images could be of various data types and must be scaled to a certain degree
depending on geometry or the specific content layout of the current view.

Qt was chosen as the programming language for the engine’s code mainly
because of its flexibility and support of the target platform – Symbian^3. The
QML language support was necessary for running the application on the mobile
phone. Unfortunately, at the early stages of development that support did not
exist. QML became available for mobile phones only with the release of Qt 4.7.1
for Symbian libraries which happened approximately at the end of the 4th
quarter of 2010. (Nokia 2010, date of retrieval 16.12.2010)

The research process consisted of exploring various sources of information for
gathering, combining and processing data and realizing possible activities in
pursuit of effective solutions for problems described above.

Internet articles, technical literature and open source communities were widely
used as the main available sources of information in this project.

10

2. WORKING ENVIRONMENT

In order to achieve the major goal of the project and to find an effective solution
for the defined research problems, Qt SDK 1.1 Technology Preview was used
as a main working environment. The reason for that choice is that it is a simple
and easy way to design, debug and deploy applications.

The SDK contains a powerful IDE – Qt Creator 2.1 which includes the first
iteration of tooling support for Qt Quick. Additionally the SDK contains Qt 4.7.1
for Symbian libraries that are used in compiling and are available as a sis
packages for installing on a target device.
These are used for running the application on the phone.

At the early stages of development, before the Qt SDK had been officially
released, Symbian^3 SDK served as a major development framework.

The Qml viewer tool was used for development and testing purposes. It was
useful for testing and debugging the QML based user interfaces.

The GCCE toolchain was used for compiling the application.

The Symbian AppTRK tool was used for on-device debugging.

StarUML 5.0 was used for modelling UML diagrams.

11

3. DEFINITION

The system is regarded as a software demonstrator for proving the concept of
building flexible and dynamic user interfaces for Symbian^3 mobile phone
platform, by applying declarative programming techniques and methods.

The Photo Viewer application (which later in this document may be referred to
simply as “the application”) is a software program that will aid the research
process and serve as a base for concept demonstration purposes.

The application will be responsible for showing images contained on a host’s
memory.

By the term “host” one shall consider a mobile device on which the application
will be run.
In order to support all required features the host must be running the latest
Symbian Operating System – Symbian^3.

Major emphasis will be given to the way how images would be presented to the
user. Multiple graphical views would be used to demonstrate it.

The development process will be split into three stages:

 Building the functionality for harvesting the image data

 Designing the graphical user interface

 Combining both previous parts into one package

12

3.1 User’s perception

From the user’s point of view the application must be responsive and
entertaining.

The UML diagram on the Figure 1 explains the most relevant user stories that
are valid for the system:

FIGURE 1. The system overview.

The application must allow a user to browse images, located on the phone’s
memory. In order to achieve that, the application must provide functionality for
locating image files on the memory. To help the application find the desired
images, the list of settings is introduced.

The list of settings is a dialogue-based screen, where the user will be specifying
the proposed location of image files, and also filtering image file formats.

In addition to all above, the user also must be able to change the visual
representation of the desired image files. Adding multiple different layouts will
provide the possibility of browsing images in different views, therefore making
the whole application look entertaining.

13

3.2 Technologies

3.2.1 Symbian platform

Symbian is an open source operating system and a software platform designed
to be deployed on smartphones i.e. mobile phones that offer a more advanced
computing ability and connectivity than legacy mobile devices.

“Symbian is the world’s most popular smartphone platform. It’s implemented in
a diverse range of devices and provides app and media developers with a
consistent set of technologies. The flexibility of Symbian means it can offer
users classic mobile devices, utilising a standard keypad and QVGA screen,
through to high-end smartphones that offer nHD touch screens with tactile
feedback, full keyboards, and device sensors in innovative flip and slide form
factors. Equally at home delivering advanced enterprise apps, games, or music,
Symbian gives developers unparalleled opportunities in the mobile space”.
(Nokia 2010, date of retrieval 24.3.2011)

The Symbian operating system sees a wide utilization among major digital
mobile device manufacturers, including its producer – Nokia (Figure 2). For
several years until the current moment Symbian is still the leading operating
system available on the mobile phone market, having about 36,6 % of its share.

FIGURE 2. Symbian platform utilization.

The Symbian platform is based on the EPOC software architecture originally
developed by Psion.

“EPOC is one of the most exciting (if not the most exciting) C++ programming
systems available today. The operating system, with a solid object-oriented
design, is combined with particularities that are a necessity for hand-held
devices. This includes power management built within the kernel, sophisticated
memory management, event handling mechanisms, and effective multitasking”.
(Nokia Mobile Phones 2000, date of retrieval 24.3.2011)

The latest and the most advanced version of the Symbian platform, called
Symbian^3, was released in the fourth quarter of 2010.

14

3.2.2 Qt technology

Qt is a cross-platform application framework used for developing a software
with GUI as well as console applications, UI forms and scripts. It is popular
among many developers due to its rich toolkit with ready-made visual
components, called widgets.

“Qt allows open source and commercial software developers to code less,
create more and deploy everywhere. With Qt, developers can build innovative
applications and touch-enabled user interfaces once and then deploy across all
major mobile, desktop, consumer electronic and embedded platforms without
rewriting the code.” (Nokia 2010, date of retrieval 23.3.2011)

The cross-platform capability allows users to save development time for porting
their applications to different platforms. With the exception of some platform
specific libraries, general Qt core elements and features are fully compatible
with the following operating systems:

 Windows

 Linux/X11

 Mac OS

 Embedded Linux

 Symbian

 Maemo/MeeGo

 Windows CE

In addition to the standard C++ language, Qt extensively uses a special code
generator - Meta Object Compiler, or MOC. Although Qt is most popular among
C++ developers, it also contains bindings to other famous programming
languages, such as:

 Java

 Ruby

 Python

 C#

 Perl

 BASIC

 PHP

Qt features include 2D/3D drawing and hardware accelerated graphics support,
SQL database access, XML parsing, thread management, inter-object
communication, network connectivity, low-level multimedia functionality, a web
browser environment with real-time web content and services, and scripting.

15

All these features are split into separate modules and libraries (Figure 3).

FIGURE 3. Qt Modularization.

Qt is currently produced by Nokia's Qt Development Frameworks division,
which came into being after Nokia’s decision to acquire the original founder,
Norwegian company Trolltech, in January 2008.

16

3.2.3 Declarative programming

In computer science, declarative programming is a paradigm of expressing the
logic of computation. The key approach is to model the results that the user
expects without explicitly describing the control flow.

“Declarative programming is a way of specifying what a program should do,
rather than specifying how to do it. Most computer languages are based on the
steps needed to solve a problem, but some languages only indicate the
essential characteristics of the problem and leave it to the computer to
determine the best way to solve the problem. The former languages are said to
support imperative programming whereas the latter support declarative
programming”. (Archana Khambekar, C. Wilborn 2010, date of retrieval
24.3.2011)

Declarative programming is an umbrella term under which a number of other
famous programming paradigms may be referenced. Those branches include:

 Constraint programming

 Domain-specific languages

 Functional programming

 Hybrid languages

 Logic programming

“Declarative programs are context-independent. Because they only declare
what the ultimate goal is, but not the intermediary steps to reach that goal, the
same program can be used in different contexts”. (Jörg W. Mittag 2008, date of
retrieval 24.3.2011)

There are two main advantages of using declarative programming languages
over the imperative ones. The first one is that the program becomes concise
and easy to understand.

“The second advantage of the declarative programming model is that repetitive
imperative code that indicates how to solve things is provided in the computer
system behind the scenes. Such code can be made highly efficient and can
incorporate the best ideas from computing. It can take advantage of
parallelism.” (Wisegeek 2010, date of retrieval 24.3.2011)

There are not currently so many languages that utilize declarative programming
techniques, but the most famous of them are SQL and QML.

17

3.2.4 Qt Quick

Qt Quick, as Qt User Interface Creation Kit, is a powerful framework which
contains a rich set of user interface elements, a declarative language for
describing user interfaces and a language runtime environment.

“Qt Quick is a framework that provides a declarative way of building custom,
highly dynamic user interfaces with fluid transitions and effects, which are
becoming more and more common especially in mobile devices”. (Ryan Paul
2010, date of retrieval 25.3.2011)

Generally, Qt Quick can be described as a collection of the following
technologies:

 QtDeclarative module

 QML language

 QtCreator IDE support

Qt Quick is officially supported starting from Qt 4.7.

3.2.5 QML

QML, as Qt Meta-Object Language, is a flexible script-like, declarative language
for designing applications with fluid and dynamic user interfaces.

“QML is a declarative language designed to describe the user interface of a
program: both what it looks like, and how it behaves. In QML, a user interface is
specified as a tree of objects with properties”. (Nokia 2010, date of retrieval
21.3.2011)

Originally, QML was considered to be an extension to ECMAScript (cf.
JavaScript). The QML language provides a mechanism to construct an object
tree of QML elements, and enables the interaction between those elements and
Qt C++ objects.

QML is a part of Qt Quick. Generally, QML is aimed to mobile applications
where a good user experience is an important issue.

18

3.2.6 MVC design pattern

Model-View-Controller, in short MVC, is a classic software design pattern often
utilized by applications that require the using of multiple views for representing
the same data. Originally MVC was introduced in the Smalltalk-80 programming
language, which uses it for building user interfaces.

“MVC consists of three kinds of objects. The Model is the application object, the
View is its screen representation, and the Controller defines the way the user
interface reacts to user input. Before MVC, user interface designs tended to
lump these objects together. MVC decouples them to increase flexibility and
reuse”. (Gamma, Helm, Johnson, and Vlissides 1994, 4)

The structure of the application that was built by using a MVC pattern is shown
on Figure 4.

FIGURE 4. Application structure and the main processes inside the MVC
pattern.

The control flow inside an MVC structured application will start from an event
that was triggered by the user’s action.

MVC allows the users to change the way the view responds to an input without
changing its visual representation. MVC encapsulates the response mechanism
in a Controller object. (Gamma et al. 1994, 5)

The controller’s responsibility is to handle events that affect the model or views.
The controller receives the user input and instructs the model and views what
actions should be taken in order to react on that input.

The model maintains the data and manages the behaviour of the application.
The model can be represented by various data structures, such as database
tables, XML documents, or lists of abstract objects.

The view object renders the model into a form suitable for interaction. Multiple
views can be linked to a single model. A constant bidirectional communication
between the model and views is maintained for the purpose of monitoring and
applying data changes.

19

By combining the functionality of both View and Controller objects, one shall be
utilizing the simplified Model/View architecture. (Figure 5)

“This still separates the way that data is stored from the way that it is presented
to the user, but provides a simpler framework based on the same principles.
This separation makes it possible to display the same data in several different
views, and to implement new types of views, without changing the underlying
data structures.” (Nokia 2010, date of retrieval 24.3.2011)

FIGURE 5. Model/View architecture.

For the flexible handling of the user input, delegates are introduced in the
architecture. A delegate is a component that describes a prototype item of each
piece of data in the model. The delegates are used for creating the instances of
items in the model for the view.

The key relationships inside the Model/View architecture could be grouped as
follows:

 The model communicates with a source of data, thus providing an
interface for other components in the architecture.

 The view communicates with the model in order to obtain model indexes
i.e unique values referenced to items of data.

 A delegate communicates with both the model and the view for rendering
the items of data.

Usually, all three groups of elements - models, views and delegates are split
into separate classes. Splitting allows replacing and adding new instances to
them easily, thus extending the overall architecture.

20

3.2.7 Image file formats

The list of image file formats supported by the photo viewer application
contains:

 JPEG

“As Joint Photographic Experts Group, the abbreviated name of the
committee that created the JPEG standard.
JPEG is the most common image format used by digital cameras. It is also
the most common format for storing and transmitting photographic images
on the World Wide Web”. (JPEG 2007, date of retrieval 25.3.2011)

 TIFF

“Tagged Image File Format is a file format for storing images. TIFF
describes image data that typically comes from scanners, frame grabbers,
and paint- and photo-retouching programs. TIFF is not a printer language or
page description language. The purpose of TIFF is to describe and store
raster image data.” (G. Parsons, J. Rafferty 2002, date of retrieval
25.3.2011)

 GIF

“The Graphics Interchange Format (GIF) is a bitmap image format that was
introduced by CompuServe in 1987 and has since come into widespread
usage in the internet due to its wide support and portability. GIF images are
compressed using the Lempel-Ziv-Welch (LZW) lossless data compression
technique to reduce the file size without degrading the visual quality”. (Steve
Olsen 2003, date of retrieval 25.3.2011)

 PNG

“PNG (Portable Network Graphics), an extensible file format for the lossless,
portable, well-compressed storage of raster images. PNG provides a
patent-free replacement for GIF and can also replace many common uses of
TIFF. PNG is designed to work well in online viewing applications”. (T.
Boutell 1997, date of retrieval 25.3.2011)

21

4. IMPLEMENTATION

4.1 Architecture

The application’s architecture is displayed on Figure 6.

FIGURE 6. The application’s architecture.

The entire system consists of three major parts: engine, model, and multiple
views.

The Engine is taking care of searching pictures and maintaining the model.

The Model represents a list of absolute file paths to found pictures. The Model
is responsible for storing the data and updating the views.

The views are separate QML documents used for rendering the contents of the
Model. The Model data is represented in three forms:

 List – pictures are allocated in one row.

 Grid – pictures are placed in six columns.

 3D – pictures are displayed in a neat carousel-like layout.

Special QML components, called delegates, belong to the View group. They
serve as view prototypes. All user interactions among the views are handled in
the designated element – UI Controller, which also belongs to the View group.

22

4.2 Engine

The engine is the most important part of the system. It is the main area where
different logical operations, including communication with the file system,
locating image files, handling search filters, and updating the model list, take
place. Figure 7 shows what kinds of use cases are relevant to the Engine: `

FIGURE 7. Engine’s use cases.

Searching images through the file system can be a time consuming task
because the file system’s structure can be too wide, containing hundreds of
directories and subdirectories. The search mechanism will have to explicitly
check the contents of each directory and its subdirectories, thus causing an
enduring freeze of the user interface. In order to prevent that the worker thread
is introduced, it keeps the user interface responsive, while at the same time
executing the search algorithm in the background. This functionality is
implemented by inheriting the Engine class from QThread:

#include <QThread>
class GalleryEngine : public QThread

“A QThread represents a separate thread of control within the program; it
shares data with all the other threads within the process but executes
independently in the way that a separate program does on a multitasking
operating system. Instead of starting in main(), QThreads begin executing in
run()”. (Nokia 2010, date of retrieval 3.4.2011)

All possible time consuming operations in the Engine, such as searching for
image files and storing them in the model, are implemented inside the run
method (see Appendix 1).

The worker thread is triggered using the start method. Once the thread has
completed its operation, it emits the finished signal. The connecting to that
signal asynchronously allows the updating of the user interface:

iEngine->start();
connect (iEngine, SIGNAL(finished()), ctxt, SIGNAL(modelChanged()));

23

The Engine’s operations are displayed in the diagram on Figure 8.

FIGURE 8. Sequence diagram shows the operations that happen in the Engine.

Once the user has started the application, the Engine reads the settings from
the special data file “settings.dat”, the place where properties such as the
working directory and chosen file filters are stored when the application is not
running. Methods readProperties and saveProperties are used for that purpose
(see Appendix 2).
When the properties are ready and the worker thread has been started, then the
search mechanism is executed:

//find files specified by filters
files = iDir.entryList(iFilters, QDir::Files | QDir::NoSymLinks);

When the search has finished its execution, the model is updated:

for(int i=0; i<files.length(); i++)
{
 iFiles.append(iDir.absoluteFilePath(files[i]));
}

Every time the user changes the settings, the same operational sequence is
repeated. When the application is closed, the properties are saved and the
model is cleared of items.
Additionally, the Engine provides an API for retrieving and updating the working
directory, applying filters, and navigating through items in the model (see
Appendix 3).

24

 4.3 Model and delegates

The model is a place where the application stores the file paths of the found
images during the runtime. It is presented in the form of a list of text strings. Qt’s
standard type QStringList, which is a dynamic array of a QString type
(QList<QString>), was used to implement the model:

#include <QStringList>
…
QStringList iFiles;

Each data item in the model is represented as a string value:

“E:/Images/someimage.jpg”

Binding the Qt C++ model to QML views is done using the context property:

QDeclarativeView view;
QDeclarativeContext *ctxt = view.rootContext();
ctxt->setContextProperty("model", QVariant::fromValue(iEngine->model()));

Engine’s model method is used to access the data.

Every QML based view in the application has its own delegate component – a
prototype item that defines how the model data is rendered inside the view.

All delegates in the application are described as a separate components and
split into different QML modules. In order to achieve that, all delegates contain a
root item of a similar type:

Component {
 …
}

The idea behind this separation is that each delegate, if needed, can be easily
shared among multiple views. For example, an application can have two list
views that render model data in different ways: vertically and horizontally. In this
case, a single list delegate is reused.

There are three delegates in the application, each corresponding to its own
view:

 GridDelegate (see Appendix 4 for a detailed description and code)

 ThreeDDelegate (see Appendix 5 for a detailed description and code)

 ListDelegate (see Appendix 6 for a detailed description and code)

25

4.4 UI Controller

UI Controller is a special QML document used to handle the user interactions
among the different views of the application. Figure 9 shows what kinds of use
cases are relevant to the UI Controller:

FIGURE 9. UI Controller’s use cases.

The UI Controller is also the main entry point for a QML based user interface.
An instance of the QmlApplicationViewer class, which is a QML runtime
environment, sets the main QML file for the application as follows:

QmlApplicationViewer viewer;
viewer.setOrientation(QmlApplicationViewer::ScreenOrientationLockLandscape
);
viewer.setMainQmlFile(QLatin1String("qml/photoviewer/UIController.qml"));

Hence the runtime environment locks the screen orientation to a landscape
mode.

In order to be displayed in a view, independent user interface components must
be initialized by the UI Controller e.g. as follows:

Components.TitleBar { id: titleBar; width: parent.width; height: 40; opacity: 0.9 }

Important property values, related to the component, are explicitly initialized,
too. The original property values could be changed during the runtime
depending on user actions.

26

The UI Controller is responsible for handling multiple different operations as a
response to user actions (Figure 10).

FIGURE 10. Sequence diagram shows the operations that happen in the UI
Controller.

When the UI Controller initializes the views, they are linked to the model data as
well as the delegate prototype through special properties:

GridView {
 model: model
 delegate: gridDelegate
 …
}

Navigating through the views is done by handling the clicked signals of the
toolbar button:

Components.ToolBar {
 …
 onMiddleButtonClicked: if (controller.inListView == true) screen.inListView =
false;
 else controller.inListView = true
}

Transitions between the views as well as the events, such as loading the image,
are emphasized using multiple types of animations e.g. NumberAnimation:

NumberAnimation { properties: "x"; duration: 500; easing.type:
Easing.InOutQuad }

The UI Controller is described in more detail in Appendix 7.

27

4.5 User Interface

The Application’s user interface consists of four major views:

 Grid view

 3D view

 List view

 Settings view

Most of the above views, except for the last one, were implemented using the
QML language and feature dynamic transitions.

In order to preserve the development time, it was considered to borrow the
custom UI style and colour scheme from the Flickr demo application. Some
custom components, such as title bar, tool bar, and buttons are also borrowed
from the same Flickr demo application with small modifications. Figure 11
displays an overview of the application’s user interface:

FIGURE 11. User Interface overview.

The orientation of the application’s user interface is permanently locked in the
landscape mode. On the top of the screen, there is a title bar, which contains
the application’s title and exit button. Pressing that button will close the
application.

On the bottom of the screen, there is a toolbar, which contains three buttons.
The left button opens the 3D view. The right one opens the Settings screen.
The one in the center swaps the Grid view with the List view and vice versa.
Once the view is swapped, the label in the center button will be changed, too.

At the startup, the Grid view is set as a default one.

28

4.5.1 Grid view

The Grid view is a default user interface view of the application, meaning that it
will be displayed every time the program is initialized. The Grid view is
displayed in more detail on Figure 12.

FIGURE 12. Grid view.

The Grid view renders images placed in six columns. The view is vertically
scrollable.

The code snippet responsible for creating the Grid view looks as follows:

GridView {
 id: gridView
 width: parent.width; height: parent.height - 1
 x: (width/6-99)/2; y: x
 model: model
 delegate: gridDelegate
 cacheBuffer: 100
 cellWidth: (parent.width-2)/6; cellHeight: cellWidth;
}

Above properties determine:

 Special unique identifier

 Size policy of the view and its coordinates.

 Size policy of the single cell in the grid.

 Model and delegate

 Buffer size for retaining delegates outside the visible area of the view

29

4.5.2 3D view

The 3D view represents the screen where images are arranged in a carousel-
like layout (Figure 13).

FIGURE 13. 3D view.

The view is horizontally scrollable. The further images go to background, the
more their opacity and scale properties are decreased. The code snippet
responsible for creating the 3D view looks as follows:

PathView {
 id: threeDView; anchors.fill: parent
 model: model; delegate: threeDDelegate
 path: Path {
 startX: views.width/2; startY: 2* views.height / 3;
 PathAttribute { name: "opacity"; value: 1 }
 PathAttribute { name: "scale"; value: 1 }
 PathAttribute { name: "z"; value: 100 }
 PathQuad { x: views.width/2; y: views.height / 3
 controlX: views.width+200; controlY: views.height/2 }
 PathAttribute { name: "opacity"; value: 0.3 }
 PathAttribute { name: "scale"; value: 0.5 }
 PathAttribute { name: "z"; value: 0 }
 PathQuad { x: views.width/2; y: 2*views.height / 3
 controlX: -200; controlY: views.height/2 }}}

The 3D view is implemented utilizing QML’s PathView component. The idea is
that the delegates follow the predefined path. Each section of the path has its
own attributes that define how the delegate is changed. The path can be a
straight line or a Bezier curve.

Pressing the Back button will change the screen to the Grid view.

30

4.5.3 List view

The List view represents a simple layout where images are arranged in a
straight line in the centre of the screen (Figure 14).

FIGURE 14. List view.

The view is horizontally scrollable. The code snippet responsible for creating the
List view looks as follows:

ListView {
 id: itemsList
 model: model
 delegate: listDelegate
 width: parent.width
 spacing: 32
 height: (2*(itemsList.width / 5) - 32) * 9 / 16
 anchors.verticalCenter: parent.verticalCenter
 orientation: ListView.Horizontal
 snapMode: ListView.SnapToItem
 cacheBuffer: parent.width * 3
}

The cache buffer property is used to preload images that are outside the visible
area of the screen. It improves the smoothness of the scrolling behaviour at the
expense of the additional memory usage.

The snap mode property defines how the view scrolling will settle. In this case, it
will settle the view with an image aligned to the beginning of the view.

31

4.5.4 Settings screen

In order to change the search parameters the user must be able to modify the
application settings. The settings screen allows the user to change the values of
search filters and set a new search location (Figure 15).

FIGURE 15. Settings screen overview.

The settings screen is the only UI element that was implemented using native
Qt C++ widgets, such as QCheckBox, QLineEdit, QLabel, and QPushButton, as
well as native layouts: QGroupBox, QScrollArea, QVBoxLayout, and
QHBoxLayout. Unfortunately, the QML language doesn’t still have such
elements as a checkbox and a groupbox. Although, of course, it is possible to
implement those missing QML elements, it was considered to be a subject of
future development.

By pressing the browse button, for short labeled with three dots, the user
triggers the native Symbian file dialogue, where the search directory can be
selected:

QString dir = iEngine->getWorkingDir();
QString newDir = QFileDialog::getExistingDirectory(this,tr("Directory"),dir);

Once the dialogue is dismissed, a new directory location is prompted on the text
field and updated in the Engine.

The Settings screen can be closed with or without applying modifications.
Therefore, when the user presses the “OK” button, the settings are updated
calling updateFilters and updateDirectory methods. The example of updating file
format filters looks as follows:

if (ui->jpegCBox->isChecked())
{
 iEngine->jpegFilter = true;
 iEngine->addFilter(ui->jpegCBox->text());
}

On the contrary, pressing the “Cancel” button will cause all the changes to be
discarded.

32

5. TESTING

The application was tested on the following hardware for usability and
performance issues:

Device name Device picture Specification

Nokia N8

Display : 3.5 inch 16:9 nHD
AMOLED Capacitive
Touchscreen Display
Resolutions : 640 x 360 pixels
Colors : 16.7 Million Colors
Dimensions : 113.5 x 59 x 12.9
mm
Weight : 135 g
Camera : 12 MP camera with
Carl Zeiss optics
Video : 16 :9 video recording in
HD
Video Capture in 720p 25fps
with codes H.264, MPEG-4
Video Playback : HD 720p
Video playback
Music : Music Player
Music Player Formats : MP3,
WMA, AAC, eAAC, eAAC+,
AMR-NB, AMR-WB, E-AC-3,
AC-3
Memory : build-in Memory : 16
GB
Expandable Memory : 32 GB
with MicroSD card
Connectivity :
Bluetooth v3.0
HDMI
Micro USB connector and
charging
High-Speed USB 2.0
3.5 mm Audio Jack

33

6. FUTURE DEVELOPMENT

Due to the fact, that this thesis project is a proof of concept for utilizing
declarative programming techniques when building dynamic user interfaces, the
application lacks many functional features that are typical for the most similar
applications. Although those features are outside the scope of my thesis work, it
is still important to realize them. Therefore, I have researched and compiled a
list of possible improvement scenarios for the application that must be
considered during the future development process. Out of all, I have picked six
most relevant topics and described them explicitly in the following sections.

6.1 Functionality

An additional functionality should definitely be added to the application. A full
screen view needs to be implemented carrying a set of tools for customizing the
image representation. Such tools are image scaling, e.g. zoom-in and zoom-out
functionality, image rotation to both directions, image deletion, image brightness
and transparency modification, and, possibly, slide show functionality.

Setting the current image as a home screen wallpaper could also be considered
as an additional functionality.

6.2 Video playback

A video playback support could be added to the application, thus allowing not
only browsing through images but also watching video files. At this moment the
Engine is already capable of finding video files on the phone’s memory. The
only thing that needs to be modified in order to support searching for video files
are additional checkboxes with file extensions on the Settings screen.

The QML language assigns a special component for creating a video playback
functionality via the QtMultimediaKit module of QtMobility API. It is called a QML
Video element. Modern Symbian^3 smartphones, such as the Nokia N8,
support QtMobility by default, while the older phones require installing
QtMobility libraries on the phone manually.

This improvement will transform the application from just a simple photo viewer
into a full gallery.

34

6.3 Metadata

One of the possible improvement activities would be adding functionality for
reading the EXIF metadata in the application.

“EXIF, the Exchangeable Image File Format, is a specification standard for
storing information within digital image files. EXIF was created by the Japan
Electronic Industries Development Association (JEIDA)”. (Fred Zahradnik 2010,
date of retrieval 22.3.2011)

EXIF data is captured by digital cameras and stored into the EXIF file. This file
itself is embedded within each digital image file. Normally this data is hidden
from average users, but with the help of certain tools or methods it is possible to
extract it.

There are many EXIF file tags available, and the most commonly used are:
camera model, date and time, exposure, focal length.

This improvement could be interesting to a certain group of users such as
professional photographers who pay attention to image details.

6.4 Location

Another great idea for a future upgrade of the application is to implement a
geographical position binding with Nokia’s own OviMaps services. As it was
already mentioned in the previous section, most modern digital cameras are
capable of embedding the metadata information directly into a digital image file.
In addition to that mobile phone cameras are able to obtain GPS data and
embed it into an image file. These latitude and longitude values could be
extracted and used for setting the POI – point of interest, a specific point
location on a digital map that someone may find useful.

“A GPS point of interest specifies, at minimum, the latitude and longitude of the
POI, assuming a certain map datum. A name or description for the POI is
usually included and other information such as altitude or a telephone number
may also be attached. GPS applications typically use icons to represent
different categories of POI on a map graphically”. (Garmin 2011, date of
retrieval 22.3.2011)

35

So by clicking on that POI in the OviMaps application the user could actually
track where each picture was taken. This idea is not unique. It was somehow
already implemented using the Google Maps services and Picasa web albums
(Figure 16).

FIGURE 16. Picasa Web’s album map overview.

This improvement could be especially useful for tourists and photographers who
travel around the world and take pictures in different locations.

6.5 Connectivity

One of the possible future development scenarios would be implementing the
functionality of a data transfer over mobile networks. It will provide users with
the option of whether to send selected images via Bluetooth, an MMS message
or available Wi-Fi networks.

“Bluetooth technology is the global short-range wireless standard enabling
connectivity for a broad range of electronic devices”. (Bluetooth SIG 2011, date
of retrieval 22.3.2011)

“Multimedia Messaging Service (MMS) is an upgraded version of the SMS
(Short Messaging Service) through which you can send and receive multimedia
messages such as texts, pictures, video clips, audio clips, etc., with any other
compatible cell phone”. (Tech-faq 2010, date of retrieval 22.3.2011)

“In computer networking, wireless technology, or Wi-Fi, is a modern alternative
to networks that use cables. A wireless network transmits data by microwave
and other radio signals”. (Bradley Mitchell 2010, date of retrieval 22.3.2011)

This functionality is also typical to many similar applications.

36

6.6 Social sharing

In the past few years various social networks and internet services became
extremely popular among people of different ages world-wide (Figure 17). Many
of those networks, such as Facebook, MySpace, Twitter, LiveJournal and
internet services such as Flickr, Picasa Web Album and YouTube, allow
registered users to upload their own images and/or videos onto remote servers
and thus, share it among communities. Other users at the same time can
browse through the uploaded content and give feedback or rate those materials
as favorites. REST API is the functionality behind this type of data transfer.

FIGURE 17. Popular social networks and internet services.

“REST (Representational State Transfer) is a style of software architecture for
distributed hypermedia systems such as the WWW. REST defines a set of
architectural principles by which you can design Web services that focus on a
system's resources, including how resource states are addressed and
transferred over HTTP by a wide range of clients written in different languages”.
(Alex Rodriguez 2008; Roy Thomas Fielding 2000, date of retrieval 22.3.2011)

Upgrading the application to support the REST APIs of some popular web
services would allow sharing images over social networks and therefore,
attracting more potential users.

37

7. CONCLUSION

The aim of my thesis was to prove the concept that applying declarative
programming techniques over the imperative ones, will lead to a better
understanding of the advantages of the former. In the development process of
my project I chose to utilize the QML declarative programming language for
building dynamic user interfaces. This decision resulted to a significantly faster
design and implementation and allowed me to concentrate more on auxiliary
features such as animations.

In the aftermath of development activities I have succeeded in creating the
Photo Viewer – a mobile software application that serves as a concept
demonstrator for my thesis project.

Currently, the Photo Viewer application allows the user to browse through
images located on the phone’s memory, and to change the visual
representation of those images via multiple different views. In addition to that,
the application features nice fluid effects and animations, therefore making the
user experience look entertaining.

Unfortunately, some of the functionality was sacrificed due to the fact that the
scope of my project has been emphasized generally on random research tasks.

At this moment the application lacks many functional features that are typical for
most of the similar applications. The few cases demanding a future
development are the video playback and connectivity – the functionality
responsible for the data transfer over mobile networks. Implementing both of
them will drive the usability of the application to the same level among other
competitors currently available on the market.

The research and development process was interesting and challenging. I have
explored many articles on the subject and tested out different mobile
applications with similar functionality. However, finding the solution was never a
trivial task.

The project was internal competence development work during my induction
period as a software developer in Digia Finland Oy company. It allowed me to
familiarize myself with the modern trend in mobile software development. I have
significantly improved my professional skills in Qt programming language and
developed a new competence in QML language. I believe it will have a positive
effect on my future career.

38

8. LIST OF REFERENCES

1. Alex Rodriguez 2008. RESTful Web services: The basics
https://www.ibm.com/developerworks/webservices/library/ws-restful/
Last access date: 22 March 2011

2. Archana Khambekar, C. Wilborn 2010. Declarative programming definition
http://www.wisegeek.com/what-is-declarative-programming.htm
Last access date: 24 March 2011

3. Bluetooth SIG 2011. Bluetooth definition
https://www.bluetooth.org/About/bluetooth_sig.htm
Last access date: 22 March 2011

4. Bradley Mitchell 2010. Wi-Fi
http://compnetworking.about.com/cs/wireless/f/whatiswireless.htm
Last access date: 22 March 2011

5. Fred Zahradnik 2010. EXIF standard
http://gps.about.com/od/glossary/g/exif.htm
Last access date: 22 March 2011

6. Gamma, Helm, Johnson, and Vlissides 1994. Design Patterns - Elements of
Reusable Object-Oriented Software, ISBN 0-201-63361-2
Last access date: 24 March 2011

7. Garmin 2011. POI specification
http://www8.garmin.com/products/poiloader/
Last access date: 22 March 2011

8. G. Parsons, J. Rafferty 2002. TIFF specification
http://tools.ietf.org/html/rfc3302
Last access date: 25 March 2011

9. JPEG 2007. JPEG format specification
http://www.jpeg.org/jpeg/index.html
Last access date: 25 March 2011

10. Jörg W Mittag 2008. Characteristics of a declarative program.
http://stackoverflow.com/questions/129628/what-is-declarative-programming
Last access date: 24 March 2011

11. Nokia Mobile Phones 2000. EPOC specification
http://www.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_Papers/pdf_fil
es/dec002_net.pdf
Last access date: 24 March 2011

https://www.ibm.com/developerworks/webservices/library/ws-restful/
http://www.wisegeek.com/what-is-declarative-programming.htm
https://www.bluetooth.org/About/bluetooth_sig.htm
http://compnetworking.about.com/cs/wireless/f/whatiswireless.htm
http://gps.about.com/od/glossary/g/exif.htm
http://www8.garmin.com/products/poiloader/
http://tools.ietf.org/html/rfc3302
http://www.jpeg.org/jpeg/index.html
http://stackoverflow.com/questions/129628/what-is-declarative-programming
http://www.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_Papers/pdf_files/dec002_net.pdf
http://www.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_Papers/pdf_files/dec002_net.pdf

39

12. Nokia 2010. Model/View architecture
http://doc.qt.nokia.com/latest/model-view-programming.html
Last access date: 24 March 2011

13. Nokia 2010. QML language
http://doc.qt.nokia.com/4.7/qdeclarativeintroduction.html
Last access date: 21 March 2011

14. Nokia 2010. QML support on mobile phones
http://labs.qt.nokia.com/2010/12/12/start-with-qt-4-7-for-symbian-today/
Last access date: 16 December 2010

15. Nokia 2010. Qt Technology
http://qt.nokia.com/about
Last access date: 23 March 2011

16. Nokia 2010. Qt Declarative module
http://doc.qt.nokia.com/4.7/qtquick.html#qml-elements-and-the-qt-declarative-
module
Last access date: 21 March 2011

17. Nokia 2010. QThread class reference
http://doc.qt.nokia.com/4.7/qthread.html#details
Last access date: 3 April 2011

18. Nokia 2010. Symbian platform definition
http://www.forum.nokia.com/Devices/Symbian/
Last access date: 24 March 2011

19. Roy Thomas Fielding 2000. Architectural Styles and the Design of Network-
based Software Architectures
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
Last access date: 22 March 2011

20. Ryan Paul 2010. Nokia releases Qt 4.7 with new mobile UI framework
http://arstechnica.com/open-source/news/2010/09/nokias-cross-platform-
development-strategy-evolves-with-qt-47.ars
Last access date: 25 March 2011

21. Steve Olsen 2003. GIF specification
http://www.olsenhome.com/gif/
Last access date: 25 March 2011

22. T. Boutell 1997. PNG specification
http://tools.ietf.org/html/rfc2083
Last access date: 25 March 2011

23. Tech-faq 2010. MMS definition
http://www.tech-faq.com/mms.html
Last access date: 22 March 2011

http://doc.qt.nokia.com/latest/model-view-programming.html
http://doc.qt.nokia.com/4.7/qdeclarativeintroduction.html
http://labs.qt.nokia.com/2010/12/12/start-with-qt-4-7-for-symbian-today/
http://qt.nokia.com/about
http://doc.qt.nokia.com/4.7/qtquick.html#qml-elements-and-the-qt-declarative-module
http://doc.qt.nokia.com/4.7/qtquick.html#qml-elements-and-the-qt-declarative-module
http://doc.qt.nokia.com/4.7/qthread.html#details
http://www.forum.nokia.com/Devices/Symbian/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://arstechnica.com/open-source/news/2010/09/nokias-cross-platform-development-strategy-evolves-with-qt-47.ars
http://arstechnica.com/open-source/news/2010/09/nokias-cross-platform-development-strategy-evolves-with-qt-47.ars
http://www.olsenhome.com/gif/
http://tools.ietf.org/html/rfc2083
http://www.tech-faq.com/mms.html

40

9. APPENDICES

APPENDIX 1 THE SOURCE CODE FOR ENGINE’S RUN METHOD

APPENDIX 2 THE SOURCE CODE FOR SETTINGS INPUT/OUTPUT

APPENDIX 3 THE SOURCE CODE FOR ENGINE’S API

APPENDIX 4 THE SOURCE CODE FOR GRID DELEGATE

APPENDIX 5 THE SOURCE CODE FOR 3D DELEGATE

APPENDIX 6 THE SOURCE CODE FOR LIST DELEGATE

APPENDIX 7 THE SOURCE CODE FOR UI CONTROLLER

41

APPENDIX 1

THE SOURCE CODE FOR ENGINE’S RUN METHOD

void GalleryEngine::run()
{
 //clear list
 iFiles->clear();

 //If no directory - skip looking for files
 if(!iDir.exists())
 return;

 //find media files specified by filters
 QStringList files;

 //null filter
 if(iFilters.isEmpty())
 iFilters << "";

 //find files specified by filters
 files = iDir.entryList(iFilters, QDir::Files | QDir::NoSymLinks);

 //store found files in the list
 for(int i=0; i<files.length(); i++)
 {
 iFiles->append(iDir.absoluteFilePath(files[i]));
 }

 //set the current file index
 if(files.length() == 0)
 {
 iIndex = -1;
 qDebug() << "No files found!";
 }
 else
 {
 iIndex = 0;
 qDebug() << "Files found!";
 }
}

42

APPENDIX 2

THE SOURCE CODE FOR SETTINGS INPUT/OUTPUT

/* Read properties from data file. */
void GalleryEngine::readProperties()
{
 QFile file("settings.dat");
 QDataStream in;
 file.open(QIODevice::ReadOnly);
 in.setDevice(&file);
 if(file.exists()) {
 QString dir;
 //input and set the working directory
 in >> dir;
 setWorkingDir(dir);
 //input filter settings
 in >> jpgFilter >> jpegFilter >> pngFilter >> tifFilter >> gifFilter >> tiffFilter;
 //input filters
 in >> iFilters;
 }
 else {
 //set defaults
 setWorkingDir("/");
 jpgFilter = false;
 jpegFilter = false;
 pngFilter = false;
 tifFilter = false;
 gifFilter = false;
 tiffFilter = false;
 }
 file.close();
}

/* Save properties to data file. */
void GalleryEngine::saveProperties()
{
 QFile file("settings.dat");
 QDataStream out;
 file.open(QIODevice::ReadWrite);
 out.setDevice(&file);
 //output working directory
 out << getWorkingDir();
 //output filter settings
 out << jpgFilter << jpegFilter << pngFilter << tifFilter << gifFilter << tiffFilter;
 //output filters
 out << iFilters;
 file.close();
}

43

APPENDIX 3

THE SOURCE CODE FOR ENGINE’S API

/* Get index of the current file. */
int GalleryEngine::getCurrentIndex()
{
 return iIndex;
}
/* Get working directory path. */
QString GalleryEngine::getWorkingDir()
{
 return iDir.path();
}

/* Set new working directory. */
void GalleryEngine::setWorkingDir(QString aDir)
{
 iDir = QDir(aDir);
}

/* Reset file extension search filters. */
void GalleryEngine::resetFilters()
{
 iFilters.clear();

 jpgFilter = false;
 jpegFilter = false;
 pngFilter = false;
 tifFilter = false;
 gifFilter = false;
 tiffFilter = false;
}

/* Add file search filter. */
void GalleryEngine::addFilter(QString aText)
{
 iFilters.append(aText);
}

44

APPENDIX 4

THE SOURCE CODE FOR GRID DELEGATE

 Component {
 id: gridDelegate
 Item {
 id: wrapper; width: 99; height: 99

 Item {
 anchors.centerIn: parent
 scale: 0.0
 Behavior on scale { NumberAnimation { easing.type: Easing.InOutQuad} }
 id: scaleMe

 Rectangle { id: frame; height: 99; width: 99;
 anchors.centerIn: parent; color: "black"; smooth: true }
 Rectangle { id: whiteRect; width: 97; height: 97;
 anchors.centerIn: parent; color: "#dddddd"; smooth: true
 Image { id: thumb; source: image; anchors.fill: parent; smooth: true}
 }
 states: [
 State {
 name: "Show"; when: thumb.status == Image.Ready
 PropertyChanges { target: scaleMe; scale: 1 }
 }
]
 transitions: [
 Transition {
 from: "Show"; to: "*"
 ParentAnimation {
 NumberAnimation { properties: "x,y"; duration: 500;
 easing.type: Easing.InOutQuad } }
 },
 Transition {
 from: "*"; to: "Show"
 SequentialAnimation {
 ParentAnimation {
 NumberAnimation { properties: "x,y"; duration: 500;
 easing.type: Easing.InOutQuad }
 }
 PropertyAction { targets: wrapper; properties: "z" }
 }
 }
]
 }
 }
}

45

APPENDIX 5

THE SOURCE CODE FOR 3D DELEGATE

Component {
 id: threed_delegate
 Item { id: wrapper; width: 99; height: 99
 opacity: PathView.opacity
 scale: PathView.scale
 z: PathView.z

 Image {
 id: photo
 source: image
 width: 99
 height: 99

 }
 states: [
 State {
 name: "small"
 },
 State {
 name: "big"
 PropertyChanges {
 target: wrapper
 height: 130; z: 200; scale: 2
 x: (views.width - wrapper.width) / 2
 y: (views.height - wrapper.height) / 2
 }
 PropertyChanges {
 target: photo
 fillMode: Image.PreserveAspectFit
 }
 }
]
 state: "small"
 transitions: [
 Transition {
 from: "*" to: "*"
 PropertyAnimation {
 target: wrapper; duration: 700
 properties: "scale, x, y"
 easing.type: "OutElastic"
 }
 }
]
 }
}

46

APPENDIX 6

THE SOURCE CODE FOR LIST DELEGATE

Component {
 id: listDelegate
 Item { id: wrapper; width: 99; height: 99
 Item {
 id: thumbcontainer
 width: parent.width
 height: parent.height
 opacity: 0.0
 scale: 0.0
 Behavior on opacity { NumberAnimation { easing.type:
Easing.InOutQuad;} }
 Behavior on scale { NumberAnimation { easing.type:
Easing.InOutQuad;} }

 Rectangle {
 id: thumbbg
 color: "white"
 width: parent.width
 height: parent.height
 anchors.centerIn: parent

 Image {
 id: thumb;
 anchors.centerIn: parent
 //smooth: true
 //sourceSize.width: GridView.view.cellWidth
 //sourceSize.height: GridView.view.cellHeight
 source: image
 width: parent.width
 height: parent.height
 }
 }
 states: [
 State {
 name: "Show"; when: thumb.status == Image.Ready ||

thumb.status == Image.Error
 PropertyChanges { target: thumbcontainer; opacity: 1.0 }
 PropertyChanges { target: thumbcontainer; scale: 1.0 }
 }
]
 }
 }
}

47

APPENDIX 7

THE SOURCE CODE FOR UI CONTROLLER

Item { id: controller; width: 640; height: 320
 Rectangle { id: background; color: "#343434"; anchors.fill: parent
 Item { id: views; x: 2; width: parent.width - 4
 anchors.top: titleBar.bottom; anchors.bottom: toolBar.top
 Components.GridDelegate { id: gridDelegate }
 GridView { id: gridView
 model: model; delegate: gridDelegate; cacheBuffer: 100
 cellWidth: (parent.width-2)/6; cellHeight: cellWidth;
 width: parent.width; height: parent.height - 1
 x: (width/6-99)/2; y: x
 }
 Components.ThreeDDelegate { id: threeDDelegate }
 PathView { id: threeDView; anchors.fill: parent
 model: model; delegate: threeDDelegate
 path: Path {
 startX: views.width/2; startY: 2* views.height / 3;
 PathAttribute { name: "opacity"; value: 1 }
 PathAttribute { name: "scale"; value: 1 }
 PathAttribute { name: "z"; value: 100 }
 PathQuad { x: views.width/2; y: views.height / 3
 controlX: views.width+200; controlY: views.height/2}
 PathAttribute { name: "opacity"; value: 0.3 }
 PathAttribute { name: "scale"; value: 0.5 }
 PathAttribute { name: "z"; value: 0 }
 PathQuad { x: views.width/2; y: 2*views.height / 3
 controlX: -200; controlY: views.height/2}
 }
 }
 Components.ListDelegate { id: listDelegate }
 ListView { id: itemsList; width: parent.width; spacing: 32
 height: (2*(itemsList.width / 5) - 32) * 9 / 16
 anchors.verticalCenter: parent.verticalCenter
 orientation: ListView.Horizontal
 model: model; delegate: listDelegate
 snapMode: ListView.SnapToItem
 cacheBuffer: parent.width * 3
 }
 }
 Components.TitleBar { id: titleBar; width: parent.width; height: 40; }
 Components.ToolBar {
 id: toolBar; height: 40; width: parent.width; opacity: 0.9
 anchors.bottom: parent.bottom;
 leftButtonLabel: "3D view"
 middleButtonLabel: "Grid view"
 rightButtonLabel: "Settings"
 } } }

