
Saimaa University of Applied Sciences
Faculty of Technology, Lappeenranta
Information Technology, Double Degree

Ondřej Filip

OPTIMIZATION OF APPLICATION DELIVERY
CONTROLLERS DEPLOYMENT

Bachelor's Thesis 2011

ABSTRACT

Ondřej Filip

Optimization of Application Delivery Controllers Deployment, 30 pages, 1 ap­
pendix

Saimaa University of Applied Sciences, Lappeenranta

Faculty of Technology, Double Degree Programme

Tutors: Pasi Juvonen, M. Sc. (Eng.), Pasi Sutinen & Taneli Lehtonen, Tieto Cor­
poration

The Goal for the thesis was to gather knowledge about f5 BIG­IP application de­

livery platform deployment in a company, describing the platform, and creating

guides for common usage scenarios while using virtualization to simulate real

deployment.

Current configurations of devices and also manufacturer deployment manuals

were examined. Interviews were done with network specialists working with f5

appliances.

There are presented drivers for application delivery devices as such in the thes­

is. Then the f5 BIG­IP LTM application delivery controller platform characterist­

ics are described and configuration guides for common usage scenarios based

on interviews with employees and manual study are formulated.

Keywords: ADC, Application, Application Delivery Controller, Load Balancing

CONTENTS

 1 Introduction...5
 2 Load balancing evolution..6
 2.1 DNS load balancing...6
 2.2 Software load balancing..7
 2.3 Hardware­based load balancing..9
 2.4 Application Delivery Controllers...10
 3 Driving factors...11
 3.1 High­availability..11
 3.2 Fault tolerance...11
 3.3 Predictability...12
 3.4 Scalability...13
 4 BIG­IP LTM platform...14
 4.1 Hardware...14
 4.2 Software architecture...14
 4.3 Configuration interfaces...15
 5 BIG IP VE platform..16
 5.1 Distribution...16
 5.2 Limitations of LTM VE..16
 5.3 Limitations of trial version..16
 5.4 Installation..17
 5.5 Testing environment...17
 6 Usage scenario...19
 6.1 Cookie persistence methods...20
 6.2 HTTPS load­balancing...21
 7 SUMMARY..23
 8 REFERENCES...25

Appendix 1: HTTP and HTTPS set­up

TERMINOLOGY

802.1q – standard defined by IEEE, describes the virtual LAN implementation

application delivery controller – appliance with advanced load balancing

capabilities

CA – abbreviation of certificate authority, entity in certificate issue process.

Verifies identity and issue certificates to other entities.

CRL – abbreviation of certificate revocation list, list maintained by CA which

contains all certificates which are not to be used but have not expired yet

CSR – abbreviation of certificate signing request, file in certificate issue pro­

cess, it contains information needed for certificate issue and is submitted to

CA for signing.

guest system – in virtualization, virtualized system, system running inside

host system, see host system.

hash calculation – mathematical function that converts larger data object to

small datum, its output is called hash value. Hash value has different forms

and is used in data structures, data integrity checks etc.

host system – in virtualization, system which uses virtualization application

to run virtual systems

HTTP cookie – textual information contained in HTTP headers and stored on

the client computer for the purpose of creating stateful session. For detailed

description see Kristol (2000).

NIC – abbreviation of network interface card

pool – in networking, abstraction of the group of items: service providers, ad­

dresses and others; used for configuration simplification

4

 1 INTRODUCTION

In the course of time we have seen how our lives have become more and more

dependent or influenced by services and tools provided by computers and in­

formation systems. As those are more or less integrated into our daily routines

it is inevitable that their unavailability can be a risk or – in better case – a nuis ­

ance for our lives, depending on the exact case.

Therefore there is need for high availability of such services which means a cer­

tain level of fault tolerance. With higher amounts of requests per certain time,

the possibility of easy scaling of the solution is also necessary. The load balan­

cing goal is to distribute the workload to multiple hosts with regards to their

status in order to achieve the mentioned capabilities.

This work discusses load balancing mechanisms or more exactly, the use of ap­

plication delivery controllers (ADC) as devices with the ability of securing

scalability and high­availability. This work focuses on f5 products when it comes

to application of theory. Furthermore, the mechanisms behind its operation are

explained and HTTP (HTTPS) usage case scenario is presented. Scenario de­

scriptions draw attention when configuration differs from the default or recom­

mended process. This thesis is based on working practice in which I particip­

ated in solving issues with ADC deployment. The thesis is not dealing with basic

BIG­IP LTM appliance configuration like “self IP” setup, license activation, and

VLAN setup.

The practice was done in the company of “Tieto Finland Oy.” Thesis topic was

formulated as there was a need of knowledge transfer from senior technical

staff. In the beginning there seemed to be a testing environment available but

later it came to simulating the environment on my own hardware.

5

 2 LOAD BALANCING EVOLUTION

This chapter presents load balancing origin and shows how each technology

performed relating to key properties.

In the 1990s when the Internet started to be a more and more interesting place

for business, running a single server for busy sites was not sufficient any more.

It introduced single point of failure (which businesses wanted to avoid) and also

the hardware upgrades to keep the single machine up to the demands could not

continue endlessly. Therefore the idea of spreading the workload across mul­

tiple machines came up as a solution.

 2.1 DNS load balancing

DNS round­robin technique is often seen as the pioneer of the load balancing. It

operates with one domain name (DNS A or AAAA record), for instance “www.ex­

ample.com”, associated with multiple IP addresses. When clients would try to

access a mentioned domain name, the DNS server would return the associated

IP addresses and each time change their order. This means that every time a

new DNS request was made the order of IP addresses was different and the

first record which is used by the client was different. The way of order change is

dependent on implementation and no standard exists.

Such solution offered and still offers an easy and relatively cheap way of load

distributing. In respect to high availability and fault tolerance the improvements

are questionable because DNS server does not know if the server behind the

address is alive and operational and so it can not answer the client request with

leaving the failed machine out of the response. Scalability seems fine as the

only thing to change after an addition of a server is the DNS record.

We should not forget that the DNS server is not able to control other DNS serv­

ers to whom the change need to propagate first. Clients and some DNS servers

may use caching and therefore limit or circumvent the round­robin technique.

DNS support for load­balancing is explained in detail in RFC documents, see

Brisco (1995).

6

 2.2 Software load balancing

Because the DNS round­robin technique was not sufficient – the need existed

for other technology which would fill the requirements of high­availability,

scalability and other key factors. Integrating load balancing capabilities into the

software became the answer.

Software solutions for load balancing problems are present in multiple imple­

mentations. They can be offered as paid proprietary applications or even as free

and open­source applications, for example, Linux Virtual Server.

Even though each implementation may differ, the basis is presenting one IP ad­

dress for a whole cluster of machines. All of the servers have their own IP ad­

dress, and at the same time they listen for packets designated to “cluster IP ad­

dress”. When a client initiates communication with a cluster, one of the servers

responds first and redirects the client to its own unique IP address.

A key advantage in such an approach lies in the application developer know­

ledge of application internals. He is then able to fine tune the mechanism or en­

hance it with new features related to load balancing easily. The solution can be

expanded, as when information about the load of particular node is exchanged

inside the cluster, and some nodes then take precedence in conveying user re­

quests. Software load balancing brought a certain level of predictability – de­

velopers could easily identify when user persistence was needed and repeated

load balancing should be avoided.

Regarding high availability, the advantages of a software solution seems to pre­

vail. With inaccessibility of one node, the remaining nodes continue to operate

without interruption and failure could be easily identified as the application knew

how to verify node status. The drawback here is that the more is added to the

complexity of software which bonds (client handling, health checks etc.) nodes

together, the more prone to failures the whole system becomes.

At first sight, scalability seems straight forward – prepare the new server and

then add it to the cluster. However, as the number of nodes increase, the

amount of inter node network traffic grows because each client needs to com­

7

municate with the other.

To imagine the consequences of such a situation, let us have the example when

the medium for nodes and client­to­cluster communication is shared (e.g. one

Ethernet port per node). In this case the increased level of traffic can lead to the

state where link capacity is saturated and an even higher amount of network

traffic is dedicated to inter node communication than to client­to­cluster commu­

nication. This finally results in inability to accept more clients as the medium is

used at its maximum and consequent failures to deliver packets and to accept

new clients arise. We can conclude that there is a risk of overloading the net­

work infrastructure with the sum of mentioned classes of communication when

we reach a certain number of servers and connections. We also should not for­

get that increased amounts of cluster­to­cluster communication have higher de­

mands on node system resources where reaching limits is undesirable.

How severe the impacts of inter node communication are when traffic grows de­

pends on how much CPU and network overhead is introduced by such commu­

nication. Please note that separating traffic with 802.1q (VLANs) is not the solu­

tion as limits are mostly imposed by media transfer rates. Although the bottle­

neck can be mitigated by adding another network specifically for inter node

communication it also means additional hardware cost with added complexity

level.

As Salchow (p. 4, 2007) has pointed out ­­ the tight connection of application

with vendor, imposed problems in maintaining the application and further devel­

oping it because all of that was under vendor control. There was no certainty

that application providing load balancing from one vendor would work with ap­

plication from the other one.

The solution which sought to provide vendor­neutral load balanced software

suffered from the same scalability issues plus facing additional high availability

(HA) issues as they could not provide same level of integration as the vendor

specific solutions. (Salchow 2007)

8

 2.3 Hardware-based load balancing

In this chapter I discuss the step in load balancing evolution which preceded

today’s application delivery controllers (ADC). This step is marked by dedicated

hardware appliances performing load balancing. They introduced a point of ag­

gregation with taking the burden of load balancing decisions from the servers

themselves. With no need to configure a certain number of nodes separately,

one entry point brought ease of configuration and administration.

The principle of functioning is straightforward: the load balancer presents an IP

address (sometimes called VIP address – virtual IP address) to the client, and

then upon reception performs a destination address translation forwarding pack­

ets to appropriate servers. The server processes the request and sends the cor­

responding packets back to the load balancer which again changes the ad­

dress, so to the client it seems that he is communicating with load balancer only

(Figure 1). The exact method of presenting a single entry point for client can be

different but for purposes of this work I will stick to this method.

The same situation as regarding device configuration, which moved to load bal­

ancer was with the health checking and other special services for cluster, now

also centralized. Therefore the growth of data related to “cluster care” was lin­

ear instead of exponential where every node needed to check with each other.

From that we can see the scalability was improved over software based solu­

tions. There is possibility for reduction of expenses and consolidating numbers

of servers because no resources are dedicated for load balancing operations

9

Figure 1: Hardware­based load­balancing principle

and servers just take care of their own specific tasks – less computational

power is needed in total.

Hardware load balancers brought also the positive approach of being vendor

neutral, and even if the solutions might not have been on a par with vendor­

tailored ones, the ability of load balancing every application whether it suppor­

ted load balancing itself or not proved to be more viable and added to HA level

provided by hardware load balancers.

With the already mentioned attributes of one point of administration, I ought to

mention the aggregation of statistical data from various sources. Be it the net­

work usage, number of requests in a given amount of time, log of potentially

dangerous traffic, or status of all servers which are supplied with client connec­

tions and many more particularly important data, all of this was now readily

available for administrators for checking, troubleshooting and maintaining, mak­

ing all aforementioned task much simpler.

 2.4 Application Delivery Controllers

Application delivery controllers (or appliances) can be viewed as descendants

of hardware load balancers. We can think of them as devices which have all

previously mentioned capabilities of HLB, and add more capabilities. They

evolved as more and more functionality was integrated into the load balancers

and their intelligence grew while capabilities for content caching, advanced

packet filtering, rate shaping and other solutions commonly present in previ­

ously dedicated devices (e.g. firewalls), brought them to another level in per­

formance concerning application delivery.

ADC offers fine­tuned traffic handling with respect to various application needs

while maintaining relative ease of use.

10

 3 DRIVING FACTORS

So far the historical aspect was explained and reasons for ADC deployment

lightly sketched. Needs which are to be satisfied by ADCs are described in more

detail in this chapter.

 3.1 High-availability

Generally, available service can be accessed and used by the user. Availability

in terms of services can be understood by mathematical expression as a per­

centage of time when the system can be used in a given time period.

With term high­availability (HA) I refer to a certain level (percentage) of availab­

ility which is expected by users – the system is available during certain operat­

ing hours. This means that no unplanned outages are introduced to the system

and all planned outages should be announced in advance (Piedad and

Hawkins, 2000). It is worth mentioning that availability can be perceived in a dif­

ferent way when it comes to different observers.

If a system was in fully operational state, but once its network connection to

customer experienced outage – the administrator would say that “availability”

was 100 percent, but the customer would disagree that only uptime was 100

percent whereas availability was just 98 %. What administrator was talking

about was in fact system uptime. System was up and operational but with no

connection between client and system – it was not available.

The reason why customers seek high­availability is easy to understand. They

want uninterrupted work process because otherwise decreased level of pro­

ductivity, loss of profit, and delays would occur. In the case that interruption of

service is needed they want to know about it before it happens so the pro­

cesses can be adjusted accordingly.

 3.2 Fault tolerance

Fault tolerance is thought of as the property of a system which enables the sys­

tem to continue to function in the case of one or more failures in its compon­

ents. In the case of failure, the degradation of its quality is equal to severity of

11

failure. For example, failure which is not critical for the whole system will not

cause the system to stop operating but merely would make some operations im­

possible.

Think of the mail server which could not receive a message for some user be­

cause user quota for mail is exhausted. The server would inform the sender

(maybe also affected user) and continue with processing other requests instead

of entirely stopping its operation.

In our case, customers seek a solution which is fault tolerant because they need

high­availability. We can think of fault tolerance as a an item enhancing availab­

ility.

 3.3 Predictability

Predictability is a term which is not well defined for specific scientific fields. In

general, it is the ability to predict. What we are trying to predict – those are vari­

ous properties of the system which depend on known and unknown variables

(Grund, Reineke and Wilhelm, 2011). Therefore if we consider some system

more predictable, we could predict values of watched properties with higher pre­

cision.

Think of connection oriented networks (ATM) versus connectionless networks

(IP). In connection oriented networks data flow along a certain path which was

created before the transfer began. We can easily predict where the packets will

flow and calculate delay during the whole data transfer. On the other hand, IP

protocol does not create any path but sends the packet which is travelling the

net on its own and could take alternate routes regarding other packets in the

same session. Calculated delay is calculated as ave rage and only after the

transfer was done.

In the field of load balancing we can understand predictability in that it says with

what certainty we can predict the decision of the system in server selection,

health checking, or other key properties of operation. The more clearly input

variables are defined, the more predictable the values of properties are. Predict­

ability can be easily exploited for further system adjustment and risk assess­

12

ment.

 3.4 Scalability

Scalability can be understood as ability to satisfy growing load demand grace­

fully with non­excessive resource usage growth and as the ability to accommod­

ate to continuous growth with addition of resources (Bondi, 2000).

If we can satisfy 1000 users with one device and the service does not suffer

when load grows to its maximum – service has similar qualities when serving

200 or 900 users – then the load was processed gracefully.

If for more users we would purchase for example another server for a total of

2000 user capacity, then our solution is able to accommodate to the demands

with addition of resources. The opposite situation would happen if addition of

more resources would not be possible because the technology in use does not

profit from additional resources and completely new technology would be

needed.

13

 4 BIG-IP LTM PLATFORM

In this chapter I will look into implementation of ADC. I will describe the BIG­IP

LTM solution from f5 company. f5 is considered as a leader in ADC market.

(Gartner, 2009, 2010 cited in McGillicuddy, 2010) Their application delivery port ­

folio is represented by BIG­IP product line which is the place where LTM (Local

Traffic Manager) lies.

 4.1 Hardware

BIG­IP solutions are delivered as standalone ADC devices from 1U to 2U size

or high performance blade­based solution. Devices differentiate with hardware

offload possibilities, port count, computational power, memory size and traffic

throughput.

All devices have management Ethernet port which is reserved for device config­

uration and is not to be used for routed traffic. There are also two RS­232 DE­9

ports: one is a console port while the other one is used for fail­over detection.

 4.2 Software architecture

f5's product line is based on a special operating system called Traffic Manage­

ment Operating System (TMOS) which is present in their devices along with the

Red Hat Linux system. According to Salchow (2011) the TMOS is a real­time

modular OS taking care of traffic related operations while running independently

of Linux OS.

Notable features of TMOS include simultaneous multiple network stack usage

where stacks appropriate for a certain type of application is used, hardware–

software processing interchangeability where TMOS modularity enables some

operations to be performed on dedicated hardware (e.g. SSL offloaded to

ASIC) instead of software processing and iRules – scripts written in Tcl (Tool

Command Language), which can be used to react on TMOS events and to alter

connections and packets thus extending the possible usage scenarios. (Sal­

chow 2011).

14

 4.3 Configuration interfaces

BIG­IP devices can be accessed both through text­based interface and graphic­

al interface. Text­based configuration is done with bigpipe or tmsh (Traffic Man­

agement shell) command tools which are run from the Linux system shell. Tmsh

a is more recent tool which has wider possibilities than bigpipe's shell. Both of

them can be seen as similar to Cisco's IOS shell.

The GUI is represented by a browser­based application called “Configuration

utility”.

15

 5 BIG IP VE PLATFORM

To facilitate deployment and pre­deployment operations, e. g. simulations in a

lab environment, BIG IP is available in the form of a virtual appliance.

Hardware requirements for virtual appliance are quite moderate with 1 GB of

RAM, one CPU and 10 GB of disk space. Disk space requirements can be

lowered by not using preallocated virtual disks.

 5.1 Distribution

Virtual appliance images can be downloaded from www.f5.com/trial/big­ip­ltm­

virtual­edition.php After free registration, the user is able to obtain up to 4 trial li­

censes and also virtual appliance files. There are two more variants to choose

from – the VMware ESX and the VMware Workstation version. I have chosen

the Workstation variant, and for virtualization I have used the VMware Player.

ESX variant would have probably been more viable for a full scale lab environ­

ment as it offers more flexibility, but I decided not to use it as my test machine

was not a dedicated hardware but my own computer.

 5.2 Limitations of LTM VE

The virtual edition of LTM does not support Spanning Tree Protocol (STP) nor

its successor, Rapid STP. Offloading SSL to hardware is not possible. There is

no information regarding virtualization of dedicated SSL processing hardware

and thus making it available and functional inside an LTM VE virtual appliance.

 5.3 Limitations of trial version

The trial version of LTM VE is primarily limited by its 90 day license. There are

also other limitations:

• Maximum transfer rate is limited to 1Mbit and only 150 concurrent SSL

connections are allowed

• Only a single CPU is supported

• Importing UCS configuration from other non virtual BIG­IP LTM may not

work properly

16

http://www.f5.com/trial/big-ip-ltm-virtual-edition.php
http://www.f5.com/trial/big-ip-ltm-virtual-edition.php

• Applying hot­fixes and version upgrade is not possible – on the contrary,

I was able to successfully do so in the case of hot­fix. It is possible that

this was possible only due to the manufacturer's omission in enforcing tri­

al restrictions.

The limitation of transfer rate is quite severe, and for any enterprise level test

lab I would recommend purchase of the LTM VE license. Otherwise, any tests

measuring throughput, response and other variables can hardly be seen as val­

id and helpful for deployment at the customer site.

 5.4 Installation

The installation process is described chronologically with notes about steps

which may not seem clear.

The installation file is in the form of an OVA package which contains checksum

files, VMware virtual disk file, and OVF (Open Virtualization Format) file, which

is used for description of the virtual appliance. For use in virtualization software

I had to convert the file into the appropriate format with ovftool CLI tool. Ovftool

is able to convert various file formats used in different virtualization solutions. It

is well documented in OVF Tool Documentation. (Vmware, 2010).

When I had all necessary files ready, the appliance was imported into the VM­

ware Player. At that point, the exact environment configuration is up to the per­

son who creates the lab, as he needs to specify networks for specific scenarios.

It is important to keep in mind that there are only two routed interfaces inside

the virtual appliance, but with VLAN tagging this should not impose severe

drawbacks.

 5.5 Testing environment

All virtual appliances needed for this work were run in Vmware Player software

version 3.1.3 on Gentoo Linux as the host operating system. In server roles

there were two guest machines – one with Gentoo Linux with the Apache 2.2.17

web server, and the other with Microsoft Windows 2008 R2 SP1 with IIS 7.5.

BIG­IP LTM VE appliance version 10.1.0 Build 3341.1084 with applied hot­fix

17

version 3402.0 were used in redundant set­up with configuration synchroniza­

tion enabled.

On the virtual servers there were four IP addresses configured so that each of

them were assigned to one separate site simulating more real servers. This

simplification was necessary as there was of lack of resources for running mul­

tiple instances of servers simultaneously.

Client request were performed from the host machine through virtual network

172.16.172.0/24 simulating client access. For graphical overview of the environ­

ment, see Figure 2.

I experienced issues with Microsoft Windows Server virtual appliance and VM­

ware virtualization software as there was need for NIC to behave as a trunk

port. Although support is present in the virtual NIC, the manufacturer of virtual­

ized card does not supply drivers and software with this ability for Server 2008

R2. The problem was circumvented by extracting drivers for the Vista platform,

replacing the pre­installed drivers, and installing the desired software extension

which had 802.1q support.

18

Figure 2: Test environment

 6 USAGE SCENARIO

The scenario in this chapter represent possible deployment of f5's BIG­IP LTM

for HTTP and HTTPS load balancing. It is assumed that the LTM has license

applied and the interfaces are set up so the network reachability is possible.

Also, the set­up of floating address which can be assigned to a virtual server is

expected. Concerning web servers, they should be operational and set up for

use.

The scenario is based on a site which uses two types of web application where

one is run on an Apache web server and the other on an IIS platform. The de­

sired state is that HTTP and HTTPS requests are processed and connection is

persistent once load­balanced.

The site has two IP addresses (“floating addresses”) which are used to serve

client requests. Every floating address is mapped to a different pool as is de­

scribed in Figure 2. DNS operation is not considered here as it is out of the

scope of the scenario.

In the scenarios, I conveniently used an LTM feature called “profile” which en­

ables the administrator to use and reuse a predefined set of values for a given

protocol set­up, persistence set­up and others. Therefore the profiles are a

centralized method of management of various variables. There are several pro­

files already available for typical use cases, and these can be altered and saved

as new profiles if the need for custom settings is present.

Nowadays HTTP application will most likely rely on some sort of persistence so

it is crucial to set it up and keep the client request coming to the same server

after the initial load balancing decision is made. Cookie persistent methods are

explained in a separate chapter.

All configuration steps are performed in a web­based configuration utility (CU).

The set­up of the the LTM appliances which fulfil scenario goal is in Appendix 1.

Appendix 1 is formulated so that in the end, the reader is able to configure

HTTP and HTTPS load balancing with cookie persistence.

19

 6.1 Cookie persistence methods

Cookie persistence methods use well known HTTP cookies. The cookies are

stored on the client computer and used for various HTTP application needs.

When the client communicates with the server it includes cookies in its re­

quests. Cookie persistence uses information inside those cookies to be able to

track client sessions and send requests in one session to the same server.

Even for cookie persistence there are several methods which differ in the way

the cookies are created, modified and processed.

Insert method

This method intercepts server response and adds a cookie with the name BI­

GIPServer. The cookie contains information about the chosen server and time­

out is set according to BIG­IP values. After the interception, the response is sent

to the client.

When the client send another request the request contains the BIGIPServer

cookie which is read by BIG­IP, and then the client request is forwarded to the

same server.

The cookie insert method advantage is that the server configuration remains the

same but the fact that the processing take place inside BIG­IP could be limiting.

Rewrite method

In the rewrite method the process starts on the server side. After receipt of a

load­balanced client request, the server inserts the Set­Cookie header with the

name BIGipCookie containing 120 zeros. BIG­IP intercepts the server response

and renames the header to BIGipCookie<pool_name> and also includes inform­

ation about the server and port.

When the client sends another request it sends also the cookie which is inter­

cepted by BIG­IP and sent to the appropriate server. The server response con­

tains blank cookie as in the beginning, and the process repeats itself.

The workload of the BIG­IP is reduced and servers can have the same configur­

ation, yet they need to be configured to generate the cookie beforehand.

20

Passive method

With this method the BIG­IP does not perform any modification to headers. In­

stead, servers are expected to be configured to include a cookie which identifies

them. The BIG­IP only reads the HTTP headers and look for the one needed for

decision.

Although the resource use is reduced as the BIG­IP does not perform any pack­

et changes, there is still the problem that every server needs special configura­

tion.

Hash method

As the name suggests, this method uses hash calculation. The client sends a

request to the server which includes a site specific cookie. Then the result is

sent back to the client. In the second request the cookie is already present and

the BIG­IP finds it and calculates the hash value based on the cookie. The res­

ult of the calculation determines which node is to be selected. Persistence is not

kept for the previous connection but for the subsequent ones.

 6.2 HTTPS load-balancing

There are basically two way to process SSL with LTM. The difference is in the

place of encrypted termination. Basically there are two methods:

Client-side SSL

The client establishes the SSL connection with LTM which offers a server certi­

ficate. For the client it still looks, like it communicates with the server but in fact

the data are decrypted in LTM and then transferred unencrypted to the server.

Server responses are again encrypted and then sent to the client. This methods

takes all SSL tasks away from servers with the drawback of unencrypted com­

munication. The administrator should be aware of that and take measures to

avoid eavesdropping inside the server network. If risks are estimated to be too

high, then the server­side method should be used.

Server-side SSL

The LTM posseses both client and server certificates. It decrypts the data for

21

processing and then encrypts them. Communication is encrypted from client to

LTM and from LTM to server. This method has an interesting possibility when fa­

cing systems which are not able to use up­to­date encryption or certificates with

a certain length, e. g. 2048 bits would consume too much resources. It is then

possible to use shorter keys in the local network (128 bits or similar) and use

the longer keys in client to LTM communication.

In the first place, the certificates should be obtained or at least self­signed certi­

ficates created. Certificates would probably be available in real deployment.

LTM can generate certificate signing requests (CSR) which can be used to ob­

tain certificates at a trusted CA.

In the Appendix 1, Client­side SSL configuration is used.

22

 7 SUMMARY

Load balancing is a viable technology which, nowadays integrated with many

more supportive technologies in dedicated devices, offers a comprehensive

solution for application availability, scalability and fault tolerance. At the same

time, the information in this field seems scattered and is not so easily available

compared to long discussed networking problems like IP routing.

Because I focused on vendor specific implementation which is used in the Tieto

Corporation in my work I was able to avoid over generalization. In that way the

work is not so distant from practice as it would be the case if it was dealing with

several vendors' equipment and general conclusions.

For purpose of the thesis I created an environment which reflected a usage

scenario of HTTP load balancing in virtualization software. The set­up of web

servers and the ADC appliances was performed in order to verify the process of

configuration and also to verify that the configuration worked according to ex­

pectations. The possibility of having ADC virtualized was very convenient be­

cause there was no hardware available for testing purposes at the company

site.

With the guide for HTTP and HTTPS load balancing set­up, I expect every net­

work engineer with basic knowledge of HTTP and IP operation to be able to re­

create the testing environment and also to deploy LTM devices at customer

sites. As for LTM configuration skills, only a basic level of understanding is re­

quired.

While working in the fore mentioned environment, I experienced some issues

which are related to LTM VE trial licence restrictions on throughput which effect­

ively made testing performance more or less meaningless. Otherwise, working

with the virtual version did not show any inconveniences regarding what an ad­

ministrator would expect from real hardware. I can recommend purchase of

LTM VE licence at least for the company test lab, or for further possibility for

education of network engineering staff as its ease of use is very convenient.

Also, using Vmware ESXi solution instead of the more basic Player software

would make the environment more customizable and easier to implement.

23

Concerning support during my work, I have to admit that there are certainly

things which might be improved as I felt it sometimes very difficult to approach

contact persons from the Tieto Corporation for advice or support. From my point

of view, there should have been more time dedicated to description of things to

be done in the beginning as well as a clear definition how things are to be ex­

ecuted from the Tieto Corporation point of view. Time and human resources

were sometimes wasted just because some problems were dealt on the fly. The

thing I would like to emphasise most is an early start of work for future students,

and that applies both to the business partner and to the students. [1][2][3][4][9]

[5][6][10][11][8][7]

24

 8 REFERENCES

Bellaiche, F., 2011. Network Devices Kit.
http://www.quantum-bits.org/?p=48 (Accessed 20 April 2011)

Bondi, A. B, 2000, Characteristics of Scalability and Their Impact on Performance.
www.win.tue.nl/~johanl/educ/2II45/Lit/Scalability-bondi%202000.pdf (Accessed 29
March 2011)

Bourke, T., 2001. Server Load Balancing. Sebastopol: O'Reilly & Associates, Inc.

Brisco, T., 1995, DNS Support for Load Balancing. http://tools.ietf.org/rfc/rfc1794.txt
(Accessed 10 April 2011)

F5 Networks, Inc., 2011, BIG-IP Local Traffic Manager Virtual Edition Trial.
www.f5.com/trial/big-ip-ltm-virtual-edition.php (Accessed 29 March 2011)

F5 Networks, Inc., 2011, Release Note: BIG-IP Virtual Edition Trial version 10.1.0.
http://support.f5.com/kb/en-us/products/big-
ip_ltm/releasenotes/product/relnotes_ve_10_1_0.html (Accessed 29 March 2011)

Grund, D., Reineke, J., Wilhelm R., 2011, A Template for Predictability Definitions
with Supporting Evidence. http://drops.dagstuhl.de/opus/volltexte/2011/3078
(Accessed 10 April 2011)

Kristol, D., 2000, HTTP State Management Mechanism.
http://tools.ietf.org/rfc/rfc2965.txt (Accessed 20 April 2011)

McGillicuddy, S., 2010, Magic Quadrant for application delivery controllers: Radware
ascends, newbies arrive.
http://itknowledgeexchange.techtarget.com/networkhub/magic-quadrant-for-
application-delivery-controllers-radware-ascends-newbies-arrive/ (Accessed 10 April
2011)

Salchow, Ken, Jr., 2007, Load Balancing 101: The Evolution to Application Delivery
Controllers. www.f5.com/pdf/white-papers/evolution-adc-wp.pdf (Accessed 2 March
2011)

Salchow, Ken, Jr., 2011, TMOS: Redefining the Solution.
http://www.f5.com/pdf/white-papers/tmos-wp.pdf (Accessed 22 March 2011)

Tango Desktop Project, 2011. Tango Icon Library
http://tango.freedesktop.org/Tango_Icon_Library (Accessed 20 April 2011)

VMware, Inc., 2010, OVF Tool User Guide. www.vmware.com/support/developer/ovf
(Accessed 29 March 2011)

25

APPENDIX 1
1 (5)

HTTP and HTTPS set-up

• Firstly add nodes into the LTM database – in CU navigate to Local traffic

> Nodes > Create…

◦ Enter IP address and node name. Node name is not hostname but

merely identifier. For example “LINUX_1“

• After that create pool of servers – in CU navigate to Local traffic > Pools

> Create…

◦ Here the name of the pool should be entered so as it is easily distin­

guishable and understandable. For this set­up it might be

“HTTP_POOL”.

◦ Select health monitors which are to be used for the pool. Select “http”.

◦ Choose the appropriate load balancing method and add members

from the pool. It may be a good decision to keep the “Round robin”

method until the persistence is configured and verified. In that case

the administrator will not assume that persistence was used on your

clients' requests when in fact only the load­balancing decision was

performed.

• Finally the virtual server is to be created – in CU navigate to Local traffic

> Virtual servers > Create…

◦ Enter the name (as explained above) and IP address, which is a float­

ing address

◦ For service port use the port on which the HTTP server is listening,

most probably 80.

◦ Choose “http” in HTTP Profile list

◦ In Default pool select previously created “HTTP_POOL”

Extending HTTP monitor

With “http” monitor shipped with LTM we get a monitor which accepts any re­

APPENDIX 1
2 (5)

sponse from the web server. Even the HTTP error pages are sufficient. As this

is most probably not an option for real deployment we should create our own

HTTP monitor. It will be looking for a page “server_ok.html” and inside it for the

string “Server is OK” so it is expected that such page is in place. Regular ex­

pressions are supported for more sophisticated testing.

This is just an example solution, it is up to the administrator and application de­

veloper or maintainer to decide how the functioning of the application should be

tested.

• In CU navigate to Local traffic > Monitors > Create…

◦ Type of monitor is HTTP, we also select to import setting from

shipped “http” filter

◦ In Configuration we should insert HTTP command to retrieve the pre­

viously mentioned test page: “GET /server_ok.html” That means this

page is available in web site root for example at address

www.example.com/server_ok.html

◦ In Receive string field you enter the pattern which should be present

in the returned document for the member to be considered operation­

al. Here the “Server is OK” string is inserted.

◦ Click on “Update” and apply new settings

In this moment the HTTP virtual server is ready for use but still there is no per­

sistence in client requests which are always load balanced and sent to different

nodes.

There are several persistence methods which have their pros and cons. Re­

garding HTTP traffic and the fact that often there are clients behind NAT, with

one shared IP address, the cookie persistence methods are preferable to

source address persistence.

Enabling cookie persistence

• For enabling cookie persistence – in CU navigate to Local traffic > Pro­

http://www.example.com/server_ok.html

APPENDIX 1
3 (5)

files > Persistence > Create…

◦ Persistence type is “Cookie” and parent profile would be generic

“cookie” profile.

◦ In this example we enable the rewrite method so check “Custom”

check­box and then uncheck all other check­boxes but “Cookie Meth­

od”. Select the appropriate cookie method and press “Update” to

store new persistence profile permanently. For IIS you would use the

insert method.

• Now the profile is created but not associated with a virtual server – in CU

navigate to Local traffic > Virtual servers

◦ click on the name of the HTTP virtual server you created previously

◦ click on the “Resources” button at the top of the page

◦ For “Default persistence profile” choose the name of new profile you

created

◦ Click on “Update” and apply new settings

Verifying cookie persistence

The process of persistence verification is quite straightforward. The administrat­

or would access the web site using a web client capable of cookie handling,

ideally browser. After the site has been accessed several times you can view

cookies associated with the site.

To view used cookies in Internet Explorer version 8 on Windows XP SP3 – nav­

igate to “C:\Documents and Settings\<user login>\Local Settings\Temporary In­

ternet Files” where cookies are stored as text files with the name in the form

“cookie:<user login>@domain”. You can easily find the cookie used by LTM

here. For other browsers like Opera, or Mozilla Firefox which have more soph­

isticated tools for managing cookies, consult their manuals.

To verify on the server side you would simply examine the access log of web

application servers in your HTTP pool. You can force your web browser to re­

APPENDIX 1
4 (5)

move specific cookies so the LTM will handle your request as a new one.

It should not be forgotten to change the pool load­balancing method to the pre­

ferred one if “Round robin” was chosen for facilitation of cookie persistence veri­

fication.

HTTPS load-balancing

For the purpose of the testing environment the self­signed certificate is used.

LTM can generate such certificate and it is also able to generate CSR file for

real world deployment.

It is assumed that there is another virtual server configured which will be used

for HTTPS. In this moment its configuration can be same as for HTTP server.

Later you could change its SSL profile. As we are using client­side SSL (only

HTTP traffic goes to server) the underlying pool and virtual IP address can be

shared. It is also possible to do the whole configuration of a new virtual server

after SSL set­up.

SSL related files are stored in “/config/ssl” directory in LTM file system. Directory

contains subdirectories for certificates, CSR, CRL and key files.

• In first step, create the certificate – in CU navigate to Local traffic > SSL

Certificates > Create…

◦ Enter certificate name (for LTM identification only).

◦ In Certificate properties choose “Self” as an issuer. In a real world

situation you would choose “Certificate Authority”. When you have

confirmed all certificate detail, LTM would allow you to download the

CSR file so you can obtain the certificate from trusted CA and then

import it in LTM.

◦ In Common name field you enter the web domain or name of the

server if this certificate is used in an internal network only. You can

use “www.example.com” value.

◦ Other values are included in the certificate so if you want to add more

APPENDIX 1
5 (5)

information, you can do it here. At least the “Organization” field should

be filled in.

◦ Choose Key size according to your preferences.

◦ Click on “Finished” which generates a new certificate and stores it in­

side LTM.

• Now a SSL profile would be created so it can be associated with the vir­

tual server – in CU navigate to Local traffic > Profiles > SSL > Client >

Create…

◦ Enter name of the profile and for Parent profile choose “clientssl”.

◦ Check “Custom” check­box and uncheck all subsequent check­boxes

so that only Certificate and Key items are enabled. Select appropriate

certificate and matching key.

◦ Click on “Finished” to save the profile.

• Associate the SSL profile with virtual server – in CU navigate to Local

traffic > Virtual servers > Virtual server list

◦ Select desired server and choose previously created profile in SSL

Profile (Client)

◦ Click on “Update” to apply the settings.

You can go through same persistence verification as in the HTTP set­up. Now

you have HTTPS virtual server with client­side SSL processing enabled and op­

erational.

	 1 Introduction
	 2 Load balancing evolution
	 2.1 DNS load balancing
	 2.2 Software load balancing
	 2.3 Hardware-based load balancing
	 2.4 Application Delivery Controllers
	 3 Driving factors
	 3.1 High-availability
	 3.2 Fault tolerance
	 3.3 Predictability
	 3.4 Scalability
	 4 BIG-IP LTM platform
	 4.1 Hardware
	 4.2 Software architecture
	 4.3 Configuration interfaces
	 5 BIG IP VE platform
	 5.1 Distribution
	 5.2 Limitations of LTM VE
	 5.3 Limitations of trial version
	 5.4 Installation
	 5.5 Testing environment
	 6 Usage scenario
	 6.1 Cookie persistence methods
	 6.2 HTTPS load-balancing
	 7 SUMMARY
	 8 REFERENCES

