
ŀ

UTILIZATION OF MOBILE PHONE AS

POINTING DEVICE

Michal Németh

Bachelor’s Thesis

May 2011

Degree Programme in Information Technology

School of Technology

DESCRIPTION

Author(s)

NÉMETH, Michal

Type of publication

Bachelor´s Thesis

Date

16.05.2011
Pages

49

Language

English
Confidential

() Until

Permission for web

publication

(X)
Title

UTILIZATION OF MOBILE PHONE AS POINTING DEVICE

Degree Programme

Information Technology

Tutor(s)

MIESKOLAINEN, Matti

Assigned by

Ixonos Finland Ltd.

Abstract

Android platform along with smartphones running it is positioned on the third place in
the statistics of the most used mobile operating system with 16% worldwide. (April
2011) The high popularity among users due to user-friendly GUI and fast responsibility
as well as easy application development have affected this achievement.

This project aimed at utilizing provided hardware sensors's features from smartphone
devices together with various useful libraries from Android API. As a result, an
application combining different pointing devices was created. The application includes a
touchpad simulator, a simulator of a pointing stick, a detection of few gestures done by
rolling and pitching of a phone plus controlling a mouse cursor with tilting of the phone.
The connection with the controlled PC is established wirelessly via Wi-Fi. This project
provides possibility to easily extend it to a version which could also simulate a keyboard.
The outcome is a handy, easy-to-use application capable of substituting common
pointing devices.

The implemented application consists of two parts. The first one is an application for
Android platform smartphones and the second one is a server application executing
commands selected by user's application. The server application is implemented in Java
programming language.

Keywords

Android, sensor, mouse, gesture, touchpad, pointing stick, Java, Wi-Fi
Miscellaneous

1

CONTENTS

ACRONYMS..3

 1 INTRODUCTION...4

 2 THEORETICAL BASIS..5

 2.1 Pointing devices...5

 2.2 Smartphones with Android...7

 2.3 Sensors..9

 2.4 Eclipse and Java..11

 2.5 Ixonos and Scrum..14

 3 REQUIREMENTS...16

 4 IMPLEMENTATION...17

 4.1 Background..17

 4.2 Server application..19

 4.2.1 Description..19

 4.2.2 Communication interface..20

 4.2.3 Implementation and data flow...22

 4.3 Client application..28

 4.3.1 Description..28

 4.3.2 Application usage and implementation...29

 4.3.2.1 Database...30

 4.3.2.2 Connection..32

 4.3.2.3 Main Activity...32

 4.3.2.4 Compass...33

 4.3.2.5 Pointer...35

 4.3.2.6 Gestures..36

2

 4.3.2.7 Touchpad...38

 4.3.2.8 Pointing stick...39

 4.4 Testing..41

 5 CONCLUSION...42

 6 DISCUSSION..43

REFERENCES..46

FIGURES

FIGURE 1. Most used pointing devices..6

FIGURE 2. HTC Hero smartphone with Android OS..8

FIGURE 3. Logo of Eclipse project...12

FIGURE 4. Logo of Java...13

FIGURE 5. Logo of Ixonos company...14

FIGURE 6. Hardware architecture of the system..17

FIGURE 7. Interaction model of components of the system.................................18

FIGURE 8. Software architecture of the server application..................................20

FIGURE 9. List of PCs..29

FIGURE 10. Item's context menu..29

FIGURE 11. Data model..30

FIGURE 12. GUI of the client application...33

FIGURE 13. Orientation of axis in the Android device..34

3

ACRONYMS

API – Application Programming Interface

GUI – Graphical User Interface

HTML – Hypertext markup language

ICT – Information and Communication Technologies

IrDA – Infrared Data Association

IDE – Integrated Development Environment

Java SE, ME, EE – Java Standard Edition, Micro Edition, Enterprise Edition

JDK – Java Development Kit

NDA – Non-Disclosure Agreement

OHA – Open Handset Alliance

OS – Operating System

PC – Personal Computer

PHP – Hypertext Preprocessor

SDK – Software Development Kit

TCP / IP – Transmission Control Protocol / Internet Protocol

UML – Unified Modeling Language

Wi-Fi – Wireless Fidelity – Wireless network

XML – Extensible Markup Language

4

 1 INTRODUCTION

These days computers and all the electronic gadgets are an inseparable part of

our everyday life. Firstly mentioned personal computers are not any longer meant

only for working purposes, but more and more used for entertainment in people’s

spare time. This is also applicable to the mobile phones, which have transformed

into multifunctional devices with almost same features as computers have. That

provides developers of applications a possibility to combine them together and

thus create functionality, which was even few years ago completely unimaginable

to once become true. In the authors opinion, this project can be considered as

one of that type of features. Why? Because a person can remotely control his PC

when he forgets a mouse at home, or she/he just wants to control it while lying in

a cozy bed, or in other various situations. With this project the author of this

thesis wanted to achieve creation of an application capable of controlling mouse

cursor with movements of the mobile phone and additionally, some other

functions.

The topic was chosen because like I mentioned before, mobile phones (at

present mainly smartphones) have great potential for applications developers to

do almost everything. In this particular application Android platform phone was

used which is rising in popularity. That is obviously an opportunity for developers

to spread their products to more users and also users have wider variety of

different types of applications. Furthermore, modern smartphones have more

than one sensor for detecting changes in location and position of the apparatus.

The project presented in this thesis is derived from a similar one, which the

author was working on during 3 months internship period in Ixonos Finland Ltd. in

Jyväskylä. The original one is company confidential and NDA does not allow it to

be presented in public.

5

 2 THEORETICAL BASIS

 2.1 Pointing devices

Mouse

Undoubtedly, a mouse is the most commonly used pointing device allowing

partly actuating a personal computer. A mouse or a computer mouse is an input

device of a computer, used to control the cursor position on the screen and

perform operations by pressing its buttons. The computer mouse is generally a

small object that fits in users palm and is freely lying on a pad. At the bottom of

the mouse is a device that detects two dimensional movements of the mouse

relatively to the pad underneath and then it is transferred to a computer screen.

The mouse got its name because the older models with a cable leading to the

computer reminded of this rodent. (Mouse SK Wiki)

The following figure shows the most widespread devices. In the upper row

joystick, optical mouse, trackball are illustrated; in the lower row: touchpad and

pointing stick.

6

The cable is one way how to connect mouse with computer. Even though this

concept is old-fashioned, most models still have a wired connection, because

wireless requires batteries as a power supply. On the other hand, that

independence presents more comfortable usage anywhere.

Touchpad

Another widely used way of controlling the cursor, mainly integrated in laptops, is

touchpad (or trackpad). Touchpad is usually a small, rectangle shaped, resistive

touchscreen. To control it, a user has to slightly press its surface with the finger

and then slide it on the surface. Since it is almost always built-in, no external

mouse is needed; therefore it reduces the amount of necessary equipment, but

requires a “within reach” distance from laptop. (Touchpad SK Wiki)

FIGURE 1. Most used pointing devices.

7

Miscellaneous

Except these popular ones, manufacturers have come up with many different

inventions and combinations, namely trackball, joystick, pointing stick
(TrackPoint) and many others. There even exists a gyroscopic mouse, thus

something really close to this project, but the user still needs extra equipment.

 2.2 Smartphones with Android

Smartphone is a mobile phone that offers more advanced computing ability than

older types of phones. According to this ability, it is capable of running its own,

fully functional, mobile operating system.

One of those operating systems is Android OS. Android is a Linux based

software platform developed by American company Google Inc. giving the entire

platform with source code to the association of the companies (OHA) also a

member. Google not only initiated the creation of Android platform, but also the

emergence of OHA and financial rewards in the Android Developer Challenge

competition, which emerged from the first applications for this platform. Android

SDK allows developers to write applications in Java using libraries developed by

Google.

8

Android platform was announced on 5th November 2007 simultaneously with the

foundation of OHA consortium, which currently has 34 hardware manufacturers,

software and telecommunications companies involved in promoting open

standards in the world of mobile devices. Since the beginning of 2008, when the

very first publicly available version of this platform was released, its components

are all available to anyone under the Apache license-free software and open-

source license. Android from its launch has undergone a great change to the final

Android 2.3 version Gingerbread (12th June 2010). Android 3.0 is designed

only for tablets. (Android Operating System SK Wiki)

Below is a list of the latest Android versions for smarphones:

• Android 1.5 (Cupcake)

• Android 1.6 (Donut)

• Android 2.1 (Eclair)

• Android 2.2 (Froyo)

• Android 2.3 (Gingerbread).

(Android Operating System EN Wiki)

FIGURE 2. HTC Hero smartphone with Android OS.

9

Few manufacturers supporting Android OS are listed below as follows:

• Acer Inc.

• Cherry Mobile

• HTC

• LG Group

• Motorola

• Samsung

• Sony Ericsson.

(List of Android devices EN Wiki)

 2.3 Sensors

“In general, a sensor is a device that measures some physical quantity and

converts it into the form readable for an observing person or other device /

instrument.” (Sensor EN Wiki) Smartphones currently dispose with a couple of

different sensors for measuring various values. In terms of Android platform

phones, developers have possibility to utilize data from following sensors:

• Accelerometer

• Compass

• Gravity sensor

• Gyroscope

• Light sensor

• Linear acceleration sensor

10

• Magnetic field sensor

• Rotation vector sensor.

However, not every device has all of them. Some of listed receptors are not

relevant to the presented thesis; therefore the author does not introduce them

onward in the more detailed scope.

Accelerometer

“An accelerometer is a device that measures the proper acceleration of the

device. This is not necessarily the same as the coordinate acceleration (change

of velocity of the device in space), but is rather the type of acceleration

associated with the phenomenon of weight experienced by a test mass that

resides in the frame of reference of the accelerometer device.” (Accelerometer

EN Wiki) “Sensor's values are in meters/second^2 units. A sensor measures the

acceleration applied to the device. For this reason, when the device is sitting on a

table (and obviously not accelerating), the accelerometer reads a magnitude of g

= 9.81 m/s^2. Similarly, when the device is in free-fall and therefore dangerously

accelerating towards to ground at 9.81 m/s^2, its accelerometer reads a

magnitude of 0 m/s^2.” (Android Developers – sensors)

Compass

“A compass is a navigational instrument for determining direction relative to the

Earth's magnetic poles. It consists of a magnetized pointer (usually marked on

the North end) free to align itself with Earth's magnetic field.” (Compass EN

Wiki)

In Android's terminology it is called Orientation sensor. More details about a

Compass sensor are elucidated in the chapter 4.3.2.4 .

11

Gyroscope

“A gyroscope is an instrument consisting of a rapidly spinning wheel so

mounted as to use the tendency of such a wheel to maintain a fixed position in

space, and to resist any force which tries to change it. The way it will move if a

twisting force is applied depends on the extent and orientation of the force and

the way the gyroscope is mounted. A free vertically spinning gyroscope remains

vertical as the carrying vehicle tilts, so providing an artificial horizon. A horizontal

gyroscope will maintain a certain bearing, and therefore indicate a vessel's

heading as it turns. Modern gyroscopes (including those built-in in smartphones)

no longer have a spinning wheel.” (Gyroscope Cambridge Encyclopedia)

“All values are in radians/second and measure the rate of rotation around the X,

Y and Z axis. The coordinate system is the same as is used for the acceleration

sensor.” (Android Developers – sensors) Rotation is positive in the counter-
clockwise direction.

 2.4 Eclipse and Java

Eclipse

Eclipse is an open-source development platform that is known to most people

as an IDE for Java programming. Flexible design allows the platform to extend

the list of supported programming languages with the help of plug-ins, such as

C++, Python or PHP. It allows plug-ins that extend the development environment

such as the UML design, and writing HTML or XML.

12

Unlike other Java development environments such as NetBeans, Eclipse has a

philosophy of being closely tied to the scalability of using plug-ins. In the basic

version the Eclipse includes only integrated development tools for Java such as a

standard compiler, debugger, etc., but does not include a tool for visual design of

GUI, desktop applications or application server - all such extensions are needed

to be delivered by the form of plug-ins. For this reason is Eclipse currently the

most popular IDE for Java. (Eclipse SK Wiki)

Below is a list of Eclipse versions as follows:

• Callisto

• Europa

• Ganymede

• Galileo

• Helios.

(Eclipse EN Wiki)

FIGURE 3. Logo of
Eclipse project.

13

Java

Java is an object-oriented programming language developed by Sun
Microsystems and launched on 23rd May 1995. It is one of the most widely used

programming languages in the world. Thanks to its portability it is being used for

programs that are working on various systems from smart cards (JavaCard

platform), via mobile phones and various embedded devices (Java ME platform),

applications for desktop computers (Java SE) to large distributed operating

systems cooperating on a number of computers spreading around the world

(Java EE). These technologies as a whole are called the Java platform. On 8th

May 2007 Sun released the Java source code (about 2.5 million lines of code)

and Java will be further developed as open source. (Java CS Wiki)

There are several theories about the origin of the name of this language, one of

them speaks of the inspiration slang for coffee.

FIGURE 4. Logo of
Java.

14

 2.5 Ixonos and Scrum

Ixonos

“Ixonos is an ICT services company creating innovative solutions for mobility,

social media and digital services. Together with customers develops products

and services which let people enjoy inspiring digital experience. Ixonos’s clientele

comprises leading mobile and smartphone manufacturers operating on global

markets, mobile network suppliers and teleoperators as well as leading Finnish

finance companies and public administration organizations. Ixonos has its

headquarters in Helsinki, Finland, and other local offices in Tampere, Turku,

Salo, Jyväskylä, Oulu and Kemi. Besides that, Ixonos has subsidiaries in Košice,

the Slovak Republic, and in Germany, Ixonos Testhouse has office in Tallinn,

Estonia and Ixonos Beijing in China.” (Ixonos's internal brochure)

Projects in the company are developed with the use of Scrum methodology and

this particular one was no exception.

FIGURE 5. Logo of Ixonos
company.

15

Scrum

Scrum is one of many agile software development methodologies. It is a

process skeleton that contains sets of practices and roles.

The main roles are:

• Scrum Master – not team leader, but ensures that development runs as

smooth as possible and searches for needed resources

• Product Owner – represents customer's needs

• Team – a group of people responsible for the whole development.

The process is divided into stages called “Sprints”, from which every one lasts

few weeks (from two up to four) and each has a shippable version at the end of a

sprint. Each sprint begins with Spring planning meeting, where Sprint backlog is

prepared by selecting tasks from Product backlog. After that, every day is held a

Daily Scrum. At Daily Scrum the members review, what they have done the day

before, what are they planning for upcoming day and if they are facing any

serious obstacles. The meeting takes place every day at the same place and the

same time. The maximal duration should not exceed 15 minutes. At the end of

every sprint a functional version is presented along with Sprint Review Meeting.

(Scrum EN Wiki)

16

 3 REQUIREMENTS

The supervisor set the following requirements for the project:

The project has to consist of two parts:

• Client mobile application

• Server application executing client's commands.

Requirements for the client are listed below as follows:

• Implementation for Android platform

• Connection via TCP/IP protocol

• Usage of Wi-Fi

• Possibility to generate keyboard presses on the remote PC

• Possibility to control mouse cursor on the remote PC with changes in

orientation of the mobile device

• Possibility to detect easy to use gestures and assign them some special

function executed in the remote PC

• Simulate touchpad with usage of the screen of the mobile phone to control

the cursor on the remote PC

• Simulate pointing stick with usage of the screen of the mobile phone to

control the cursor on the remote PC

Requirements for the server are given below:

• Implementation in the Java

• Usage of java.awt.Robot to simulate keyboard and mouse events

• Usage of sockets for receiving orders from client

17

 4 IMPLEMENTATION

 4.1 Background

As previously stated, this project is not a copy of the original one, which the

author was working on during his internship, just a derivation of it. For

implementation Eclipse Galileo was used – IDE for Java developers including

Java SE Development Kit 6 Update 24 with Android SDK Tools revision 8.

The application was tested in early phases on a virtual device with Android 1.5,

later on real HTC Hero with Android version 1.5. The phone was connected

with a server machine via Wi-Fi router. The server application is written in Java

language in the same version of Eclipse and JDK. For transmission commands

from client to cursor movements Robot class from java.awt library was used.

From all these, it can be seen that the project consists of two main parts:

• Client application in a mobile phone

• Server application.

FIGURE 6. Hardware architecture of the system.

18

The more detailed software architectures of both parts are described in the

following chapters.

FIGURE 7. Interaction model of components of the system.

19

 4.2 Server application

 4.2.1 Description

Basically, the main function of the server is to execute commands entered by the

user with use of his client application. More specifically, if a user presses some

type of button on his user interface layout, for instance left mouse button click,

the server has to generate a system call, as if a real left mouse button was

clicked. Java contains dozens of different types of libraries and java.awt was

chosen that includes the Robot class. This class is capable of generating fake

button presses, releases and mouse cursor movements and many other various

functions, such as capturing a screen, getting color of selected pixel, and further.

The server does not know, what evoked sending the command to the server, if it

was simple button on layout or special gesture. It can recognize only 2 types of

event, either keyboard or pointer.

The server receives orders from client via socket connection, which is in this

particular case connected to wireless router attached to the server's PC. For case

in point see figure 6.

The following figure displays a software structure of the server consisting of two

packages: data and server. Section 4.2.2 contains closer look at the internal

structure and its functionality.

20

 4.2.2 Communication interface

Like in every type of communication, also computers or programs inside have to

understand each other and it is accomplished by a means called interface.

Interface in the project consists of few events, called Order. These orders,

represented by implemented class, have to be exactly the same on the client

side. Without the same “language”, it is impossible for the server to understand

clients commands. Basically, the computer communication is only bits, zeros and

ones, but merged to the bytes, then to integers, can be a full-valued way of

interaction. All interactions are based only on the integer values.

Class Order is a parent class (superclass) providing to all its child classes

(subclasses) core functions: reading and writing 32 bit Integers from, and into a

FIGURE 8. Software architecture of the server application.

21

socket. It is needed due to read() method from InputStream class and write()
method from OutputStream, since they read 8 bit, but Java's Integer is 32 bit.

Here a reader can see bitwise conversions in both essential methods:

public static int readInt32b(InputStream in) throws IOException {
/* reading 4 bytes from the socket for conversion */

int a = in.read();
int b = in.read();
int c = in.read();
int d = in.read();
/* creating 4 bytes Integer with bite shift operators */

if ((a < 0) || (b < 0) || (c < 0) || (d < 0)) // returns UNDEFINED
return -1;

return (a << 24) | (b << 16) | (c << 8) | (d);
}

public static void writeInt32b(OutputStream out, int value) throws
IOException {

/* splitting Integer into four one-Byte chunks and sending */

out.write((value >>> 24) & 0xFF);

out.write((value >>> 16) & 0xFF);

out.write((value >>> 8) & 0xFF);

out.write((value) & 0xFF);

}

The Order also has one attribute called type and it is part of every event. Actually,

it determines what type of command it is, whether keyboard or pointer one. Every

type is an integer value defined in OrderConstants interface class along with

other constants used to interact.

22

 4.2.3 Implementation and data flow

In this section “the life” of the server is described from its start till executing a

received command. In the main method instance of RemoteControlServer class

is created and in the new thread its process() method is run. That simply means

that process() method runs in the infinite loop, until it is not shut down or some

unexpected error occurs.

public void process() throws IOException {
if (serverSocket == null)

serverSocket = new ServerSocket(this.port);
System.out.println("RemoteServer: Waiting for connection.");

Socket socket = serverSocket.accept();

System.out.println("RemoteServer: Accepted connection.");

InputStream socketIn = socket.getInputStream();

OutputStream socketOut = socket.getOutputStream();

...

Process()'s task is to create a new socket connection for the client and when

clients tries to connect, the server automatically accepts it. A user is then

connected and the next part is reading data sent by the client from the socket.

For this purpose infinite while loop reads data from the socket. It is terminated by

disconnection of the user or sending mismatch data.

disp_loop:while (true) {
int type = Order.readInt32b(socketIn); // reads type
switch (type) {
case OrderConstants.TYPE_POINTER: // if pointer

PointerOrder po = new PointerOrder();
po.read(socketIn); // reads rest of order

23

handlePointerOrder(po); // handles received data

break;
case Order Constants.TYPE_KEYBOARD:

KeyboardOrder ko = new KeyboardOrder();
ko.read(socketIn);

handleKeyboardOrder(ko);

break;
default:

System.out.println("Unknown order type!");

break disp_loop;
}

}

As a first value in every single order, there has to be type. According to type,

switch statement differs, what type of command should be executed. Firstly,

instance of PointerOrder or KeyboardOrder is created and the rest of the data

is read. Secondly, handle method is called to process data received into

PointerOrder's or KeyboardOrder's private attributes. In case of unknown type,

break command ends up while loop.

private void handleKeyboardOrder(KeyboardOrder ko) {
System.out.println("Key pressed: " + ke.getKeyCode());

robot.keyPress(ke.getKeyCode());

robot.keyRelease(ke.getKeyCode());

}

HandleKeyboardOrder method is really simple. Based on the second given

value besides type, it performs keyboard button press through the

robot.keyPress(KeyEvent.VK_something) with virtual key code parameter. All

the virtual codes can be found on this constants' page

http://download.oracle.com/javase/1.4.2/docs/api/constant-

http://download.oracle.com/javase/1.4.2/docs/api/constant-values.html#java.awt.event.KeyEvent.CHAR_UNDEFINED

24

values.html#java.awt.event.KeyEvent.CHAR_UNDEFINED.

Right after key press is automatically executed

robot.keyRelease(KeyEvent.VK_something) is called with an identical value as

a key press. Of course, it could be sent by the user at the moment when he/she

in fact releases the button, but for this project's purposes it was not needed.

Computer game or some more complex application could have a feature of

sending the same event while the button is held.

HandlePointerOrder method has much more logic and algorithmization inside.

private void handlePointerOrder(PointerOrder po) {
po.setCurrentPosition();

sreenSize();

constX = dimensions.width / boundaryWidth;

constY = dimensions.height / boundaryHeight;

switch (po.getAction()) {
case OrderConstants.ACTION_POINTER_CENTRE:

...

case OrderConstants.ACTION_POINTER_MOVE:
...

case OrderConstants.ACTION_MOUSE_PRESSED_LEFT:
...

case OrderConstants.ACTION_MOUSE_PRESSED_RIGHT:
...

default:
}

}

http://download.oracle.com/javase/1.4.2/docs/api/constant-values.html#java.awt.event.KeyEvent.CHAR_UNDEFINED

25

The first step is to find out the current position of the cursor to have starting point,

since the robot uses absolute positioning. A savoir, the robot needs for instance

values 800 and 600 to position the cursor to the point that is distant 800 screen

pixels to the right and 600 screen pixels lower from the left top corner. The client

sends only changes of his movement, therefore the server has to modify the

current location in compliance with these changes and pass the final absolute

values to the robot. This approach puts fewer computing operations on the

mobile application and also different computers have different screen resolutions

– the user does not need to adjust to diverse PCs.

SetCurrentPosition() assigns actual position into private attributes (absolute

position) and screenSize() puts screen resolution into dimensions variable.

ConstX's and constY's are just multiplying constants because received values

are too small to cover the whole screen size with a moving phone round a slight

amount. All these steps are only preparation before the actual calculations of

received values.

The second PointerOrder's attribute (after type) is action regarding to the pointer

events and is differential value of the switch statement.

One possibility of action is centering (ACTION_POINTER_CENTRE). It is only

positioning cursor to the center of the screen. This feature was added, because

users want to “calibrate” their device at some point.

Move branch (ACTION_POINTER_MOVE) performs all necessary calculations

and the robot places the cursor.

case OrderConstants.ACTION_POINTER_MOVE:
float divideBy = 10.0f;
po.setCurrentPosition();

int curX = po.getCurrentX(); int curY = po.getCurrentY();
deltaX = (float) po.getX() / divideBy;

26

deltaY = (float) po.getY() / divideBy;

for (int i = 1; i <= 10; i++) {
robot.mouseMove((int) (curX + deltaX * i * constX),

 (int) (curY + deltaY * i * constY));
robot.delay(4);

}

break;

The client sends pointer events every 50 milliseconds – 20 times per second.

This interval was chosen, because there is no overload of data sent, but the

movement is not even very abrupt. Despite all effort, the cursor is not as smooth

as in the regular mouse, because of these 50 millisecond intervals and also the

robot does not shuttle the cursor, but simply “jumps” to the new position.

Moreover, the sensor in the phone generates values, even while lying on the

table, hence averaging is also needed there that causes more inaccuracies.

These issues concerning mobile device will be analyzed in a more detailed way

in the next chapter. To avoid seeming blinking (caused by untender movements)

of the cursor, time between orders is filled with moving manually the cursor to the

new position, instead of popping it in the new location. For creating those

transitions two different approaches were tried. The first one (shown above) feels

more “real-time”, but is not as accurate as the second, which has a notable delay.

After some testing by colleagues, the first one looked more user-friendly and was

chosen as a better one.

The whole transition process is divided into the ten pieces, so between two

commands the cursor moves 10 times. The received movement change values

are divided by ten and assigned to delta variables. Then, in the for loop, is a

cursor step by step moved to the new position. This significantly improves the

perceived smoothness; however it is still not perfect. The loop has to have 4

milliseconds delay, because it is executed faster than 50 milliseconds. Naturally,

27

human eye cannot record those ten steps without slowdown.

In order to make movements even smoother, divideBy could be changed to

higher values. The cursor then moves evidently much more fluently, but on the

other hand it is not clever to put a higher number than 50, since the delay gap

grows even more. In addition, the whole application is busier looping more times.

Consequently, the robot is active nearly for the whole 50 milliseconds, therefore

any delay is odd.

The shown move branch is applicable only for Pointer part of the client

application. Touchpad and pointing stick have different processing of received

values. The main difference between pointer and touchpad / pointing stick is that

touchpad's data are not actually processed at all, thus dividing process and

multiplying values with constX and constY are not needed. What the client sends,

the server just copies. In brief, instead of

robot.mouseMove((int) (curX + deltaX * i * constX),
 (int) (curY + deltaY * i * constY));

the server simply runs

robot.mouseMove((int) (curX + actualPosX), (int) (curY + actualPosY));

To summarize, the second mouseMove method only adds given values to the

current absolute position of the cursor.

This change significantly improves the accuracy of the touchpad to be almost

identical with real ones in laptops, for instance. The fact that even with the real

touchpad it is impossible to cover the whole screen, one finger scroll allows

reducing all calculations causing inaccuracy as much as possible. Unfortunately,

it cannot be said about pointer function.

The last two branches in action switch statement only perform mouse buttons

28

presses and releases using robot.mousePress(InputEvent.BUTTONX_MASK).

• BUTTON1_MASK – left mouse button

• BUTTON2_MASK – middle mouse button

• BUTTON3_MASK – right mouse button.

More constants can be found here:

http://download.oracle.com/javase/1.4.2/docs/api/constant-

values.html#java.awt.event.InputEvent.BUTTON1_MASK

 4.3 Client application

 4.3.1 Description

As for client side, here is the main logic and idea. Being short, the application's

main functionality is to send simple orders to the server, or identify movements or

gestures performed by a user and then send them. The core functions are as

follows:

• controlling a mouse cursor with changing phone's position

• recognizing few movement gestures

• touchpad simulator

• pointing stick simulator.

A built-in compass sensor was chosen to read the data it produces and utilize

them in algorithms. To mention some other minor features, the application is able

of adding, deleting and editing PC's IP addresses and storing them into the

database.

http://download.oracle.com/javase/1.4.2/docs/api/constant-values.html#java.awt.event.InputEvent.BUTTON1_MASK
http://download.oracle.com/javase/1.4.2/docs/api/constant-values.html#java.awt.event.InputEvent.BUTTON1_MASK

29

To run this application users have to own mobile phones with Android OS with a

minimum 1.5 version. The next requirement is built-in compass sensor.

 4.3.2 Application usage and implementation

A prerequisite before starting up the application is to manually connect

to the Wi-Fi a user is going to use. The application itself cannot connect to the

router, only to the socket, if available.

After the launch is called onCreate method of the MainActivity class that sets up

initial necessaries such as reading records with PCs from the database (if that

does not exist, then it creates a new one), putting them into the list and finally

showing them in the layout. “Add” button is situated in the bottom part of the

screen. On a click, a new layout is loaded with a text field for entering a new PC

that can be stored in the database for the next usage.

FIGURE 9. List of PCs. FIGURE 10. Item's context
menu.

30

If there are entries in the database, a user can press and hold the selected item

to launch the context menu with two options: either to “Edit” or to “Delete”

chosen entry. Apparently, the delete function deletes a record from the database

and the edit function offers a possibility to change details of the saved items. The

layout of the Edit form is the same as when adding a new entry, except that the

text fields contain old details for update.

 4.3.2.1 Database

A database has a minor mission in the project. Its only purpose is the user's

comfort – no need to insert the same data every time. Accordingly, the structure is

very simple.

Creation of the database:

super(context, DATABASE_NAME, null, 1);
db.execSQL("CREATE TABLE " + DATABASE_TABLE

+ " (_id INTEGER PRIMARY KEY AUTOINCREMENT, " + NAME

+ " TEXT, " + IP + " TEXT, " + PORT + " TEXT);");

FIGURE 11. Data
model.

31

Super clause calls constructor of the SQLiteOpenHelper, because class

handling database, extends SQLiteOpenHelper. The last parameter in the

constructor indicates that the database is in version number one.

As previously written, after the application's launch, all entries are put into list a

through the use of SimpleCursorAdapter class.

String[] resultColumns = new String[]{"_id", NAME, IP, PORT};
cursor = db.query(DATABASE_TABLE, resultColumns, null, null, null, null,

null);
ListAdapter adapter = new SimpleCursorAdapter(this,

 R.layout.list_item, cursor,

 new String[] {NAME, IP, PORT},
 new int[] {R.id.namePC, R.id.ipPC, R.id.portPC});

setListAdapter(adapter);

Parameters of SimpleCursorAdapter's constructor are as follow:

• context, where the ListView is running

• resource identifier of a layout file that defines views for this list item

wherein data will be shown

• database cursor containing all fetched data

• a list of column names representing the data to bind to the UI

• the views that should display column in the antecedent parameter.

 4.3.2.2 Connection

In the list of predefined computers, the user can choose by one simple clicking on

the wanted item. As a result, following method is called in order to connect to the

32

selected PC.

private void connectToSocket() throws Exception {
inetAddr = InetAddress.getByName(ip);

socket = new Socket(inetAddr, port);
PointerOrder po = new PointerOrder(ACTION_POINTER_CENTRE);
out = socket.getOutputStream();

po.write(out);

out.flush();

}

Connection to the demanded server's IP and specific port is trying to be

established. A command for centering the mouse cursor is immediately sent. If

establishment was not successful, the user receives “Connection error occurred.”

message via Toast widget.

 4.3.2.3 Main Activity

When the result of connection is alright, a new activity named Compass starts. It

holds the core client's program logic. The user interface has only few buttons for

presentation of keyboard commands and mouse buttons presses. Besides

handling buttons, it includes:

• initialization of the sensors

• reading the data from them

• processing of it and all needed calculations

• sending detected orientation changes / gestures.

All referred procedures are explained in the next chapter.

33

The following figure illustrates a user interface of the client application for a

mouse simulator and gesture recognition.

 4.3.2.4 Compass

A compass sensor has in Android API TYPE_ORIENTATION tag. Like in the real

compass, also this one is highly sensitive for tiny changes. For this reason it

generates new values even when it lies still on the table. Based on observation it

happens approximately every 20-25 milliseconds. These values are measured

for all three pivot axes X (value[1]), Y (value[2]), Z (value[0]) and are presented

in degrees. More specifically, the most used data for classic compass

applications are differences in Z coordinate. Actually it is azimuth, the angle

between the magnetic north direction and the Y axis, around the Z axis (0 to 359).

North is represented by 0, 90 stands for east, 180 refers to south and 270 is

west. A direction of the increase is clockwise. Pitching around X axis (-180 to

FIGURE 12. GUI of the client
application.

34

180) provides positive values when the Z axis moves toward the Y axis. Rolling
around Y axis (-90 to 90) gives positive values when the X axis moves toward the

Z axis.

“A reader should note that this definition is different from yaw, pitch and roll used

in the aviation, where the X axis is along the long side of the plane (tail to nose).”

(Android Developers – sensors)

 4.3.2.5 Pointer

This paragraph describes the processing sensor's data to achieve as good

pointing results as possible. The shown source code is not the real one, because

the actual code is too long. The algorithm below presents the main logic and how

it works.

if (firstTime) {

FIGURE 13. Orientation of axis in the Android device.

35

lastX = currentX;

lastY = currentY;

lastTime = currentTime;

} else {
// every 50 milliseconds

if (currentTime - lastTime > 50) {
// if change of X or Y angle was bigger than 2 degrees

if ((currentX - lastX > 2) || (currentY - lastY > 2)) {
move(currentX - lastX, currentY - lastY);

lastX = currentX;

lastY = currentY;

}

lastTime = currentTime;

}

}

This algorithm is executed every time when the sensor registers any change.

CurrentX and currentY contains current values from the sensor. In the first

running of the code values are used only for something similar to calibration to

have a starting point. Since this algorithm is executed really often (3-4 times in

100 milliseconds), the data loss is not harmful. CurrentTime is also provided by

the sensor's function.

Data are gathered every 50 milliseconds and only if a change in any axis is

higher than 2 degrees. The first condition could be changed for some type of

weighted mean or averaging, but there are not so much data for processing in

that short time period. The second one is used to remove flickering of the cursor.

They are caused by sensor's “inaccuracy” by calling onSensorChanged. Even,

when the telephone is lying on the table and is not moving at all, the sensor

generates small changes and those would worsen the wanted precision. As

36

mentioned before, the sensor can at some point pass zero boundary and

handling of these situations is missed in the source code, but has very important

status. When it is found out to the which direction the user is moving, then the

move(X, Y) method is called with Integer values (left – negative X, right – positive

X, up – negative Y, down – positive Y) and those values are sent to the server.

The last step is assigning the current position and time stamp to variables with

“last” prefix, to have reference for comparing when onSensorChanged is called.

 4.3.2.6 Gestures

The application recognizes two types of gestures. One is swinging (pitching)

around X axis and the other is swinging (rolling) around Y axis. Axes are

illustrated in figure 13. Every gesture has its assigned different keyboard button

press. More specifically, pitching around X axis upward acts same as “Arrow Up”,

opposite direction is “Arrow Down”. Rolling to the right side represents “Enter”

key and swing to the left side is “Escape” key.

The described algorithm only demonstrates the main idea of the Y related axis'

orientation changes.

if (firstTime) {
lastTime = currentTime;

lastGesture = currentTime;

} else {
// every 50 milliseconds

if (currentTime - lastTime > 50) {
if ((Abs(currentZ) > 20) && (!startCount)) {

direction = (currentZ > 0) ? RIGHT : LEFT;

startCount = true;

37

timerStarts = currentTime;

}

if (startCount)
if (Abs(currentZ) > 55) {

if ((currentTime - timerStarts) < 200)
if ((currentTime - lastGesture) > 500) {

if (direction == RIGHT)
gesture(RIGHT);

else
gesture(LEFT);

lastGesture = event.timestamp;

}

}

lastTime = currentTime;

}

}

Initially, in the first run current values were just assigned as is done in the

previous example. Afterwards, it is determined every 50 milliseconds, whether the

angle of the phone is higher than 20 degrees. This is considered a beginning of

the gesture, in case it is not only part of a gesture that already has begun in the

previous method call. At this point it had to be detected, to which side the phone

is turned. Clockwise movement generates positive values and in the algorithm it

means to the RIGHT. Anticlockwise has negative values and is labeled as LEFT.

The next step is to reach 55 degrees angle that is taken as accomplishing the

gesture, however it has to be done in less than 200 milliseconds. The time is

measured from passing 20 degrees till reaching 55 degrees.

To sum up, a user has to rotate his phone by at least 35 degrees within less than

200 milliseconds. This combination, along with some others, seems to give good

38

results according to testing by more users.

This is valid except that it had to be taken into account that the phone is also

returning to the default position. Backward movement was at the early stages

detected as movement to the opposite side. What is more, limitation about

gesture frequency had to be introduced. In this setup, only one gesture per half

second is accepted.

Algorithm for X axis is almost identical, except for the angle. In fact, swinging

around X axis is more difficult, especially down; therefore there is only 45
degrees angle to be reached. Even though the algorithm has some flaws, after

few minutes everyone is capable of mastering predefined gestures.

 4.3.2.7 Touchpad

Implementation of the touchpad was much easier in comparison with the Pointer

or gestures. Android's OnGestureListener class has useful methods for

identifying different touch gestures done with finger. Here is a list of the

mentioned methods:

• onDown – when a simple tap occurs

• onFling – notifies of a fling event when it occurs

• onLongPress – notifies when a long press occurs

• onScroll – when user scrolls on the screen

• onShowPress – when the user has performed down event and not a move

or up yet

• onSingleTapUp – opposite gesture than onDown.

39

OnScroll was chosen due to the values it generates. Float distance alteration of

X and Y coordinate. This provides all necessary data, almost ready for sending to

the server. Only few slight changes of raw values needed to be done. To avoid

little unintentional and in most cases unwanted motions, every value lower than

0.2 pixel, is simply ignored.

 4.3.2.8 Pointing stick

As noted in the introduction, pointing stick (TrackPoint is IBM's trademark) is a

small red joystick located between the “G”, “H”, “B” buttons in the middle of the

keyboard in some models of laptops (mainly IBM, Dell, HP). Speed of a cursor

movement depends on the quantity of power applied to the stick to the chosen

direction. Hence a red dot positioned in the middle of the phone's screen to

represent the reference point was created. After positioning a finger on the dot

and moving it away from the dot, the cursor moves accordingly to the appropriate

direction. The farther a user has his finger from the center, the faster the cursor is

moving.

The source code below is a simplified version of the real one:

if (currentTime - lastTime > 30) {
if (isNotInCircle(currentX, currentY)) {

deltaX = (currentX > centreX) ? currentX + centreX :

centreX - currentX;

deltaY = (currentY > centreY) ? currentY + centreY :

centreY - currentY;

deltaX /= 5;

deltaY /= 5;

lastTime = currentTime;

40

move(deltaX, deltaY);

}

}

Firstly, time difference of 30 milliseconds between two onScroll events is

checked. The result is assigned to the deltaX and deltaY variables. The next

step is to ignore scrolls which happen inside the red point. IsNotInCircle method

determines, if the fingertip lies in the red area. Next two lines mirror the

differentiation to which position the scrolling happens. The server executes

touchpad's and pointing stick's data in the same way and in this particular case

the sent values are enormously huge, especially those far from the center dot, so

there is need to divide them by five. Finally, the values are sent to the server side.

Even though the pointing stick utilization gives satisfying results, mobile's screen

does not provide a reference point unlike real physical dot under a person's

finger. The user then can lose a realization, where on the screen he/she is in

case he focuses his sight mainly on the monitor. As a result of this, a real physical

pointing stick is definitely much more convenient to use.

 4.4 Testing

Since the main development process lasted barely two weeks, there was no

room for special unity test or whatsoever. Moreover the project is not extensive to

such degree that absence of them could markedly affect the final result. However,

some kind of testing was carried to assure as the best results as possible. The

highest importance was put on accuracy and a “feel” during the usage. Various

angles to be reached in order to accept a gesture were tried, different frequencies

41

for sending of the orders we tested, diverse changes in sensitivity and ranges of

movement for the mouse simulator we experimented. To set it up as genuine as

possible, few colleagues were included to the testing process.

In despite of every user has his own vision how it should behave and because of

that it is hard to adjust it to everyone's complacence. Afterall the effort of creation

of the most common behavior and settings were accomplished.

42

 5 CONCLUSION

This chapter is aimed at concluding the results of the project called “Utilization of

a mobile phone as a pointing device”. The actual version of the project meets the

set requirements very well. However, there is still room for different optimization

and precision related issues improvements. The application provides all the four

main features needed – hardware mouse substitution, gesture recognition,

touchpad and pointing stick simulator. The main area for a research and an

algorithmization were sensors in the smartphone and generated values.

A utilization of gestures recognition and touchpad simulator provides very good

usability as well as pointing stick and mouse simulator; however, the last two

mentioned need more fine-tuning. All known deficiencies and possible corrections

related to them are described in section 6 .

The primary objective of the assigned project was to create an application that

should be as easy to use and as plausible as possible. In compliance with the

projects the thesis to report process of the whole development was written from

receiving requirements, through designing, implementing and finally testing.

Forasmuch as the application was only meant to be only for the internal

company's needs, it is impossible to present customer's feedback at this point.

Despite of that, the supervisor was very pleased and satisfied with the result,

moreover other superiors appreciated the application and evaluated it as more

than satisfactory. From the author's point of view the result is very good regarding

to the fact that the author attended only one course of Android platform

programming and had no previous experience with the most parts of this project

out of consideration for the deadline for it, plus the fact that it was the author's

very first project in a company starting on the second day in the job.

43

 6 DISCUSSION

As previously stated, the final version of the project meets the criteria even

though it is not as good as it should be. It cannot be considered as a ready-to-sell

product, because a fine-tuning is required. The main reason is the fact that the

project had a deadline, although it was only an internal project for the company

and I had no time to work on it in the spare time. Nevertheless I will try to focus

on some areas of the project that should be enhanced and present some

thoughts about them. Following paragraphs are mainly intent on pointer and

gestures functions.

Delay

The delay and the responsiveness in the IT field are very important issues and

every designer has to pay special attention to them during the designing process.

In this particular case the responsiveness of the application itself is very good but

the delay in the execution of the commands has room for improvements.

Essentially, it is not a Wi-Fi issue, but a combination of few aspects.

The first aspect is the frequency of the generating position changes of the

smartphone which would be sufficient if there were not inaccurate values.

Averaging of the raw values takes some time causing a significant part of the

delay. The second delay issue is caused by the way of processing the received

command. At first it has to be received and after that processed.

Users are very familiar with regular mice. They copy the movements instantly and

every small delay is immediately perceived. From this point of view the regular

mouse has a big advantage and this application is not very convenient for

working but only for occasional usage.

44

Precision

Flows in the precision have few main reasons. Sensors in the smartphones are

excessively sensitive and inaccurate comprising especially magnetometer

(compass). The fact that they produce changed values even when the device

stands still, shows it. Without any averaging the cursor jumps from one place to

another enormously. On the other hand, the more values are averaged, the huger

is the delay and the more the movement reminds floating. No sharp movements

are possible. This is the major problem, to find a compromise between delay and

precision. Usage of a compass sensor was a part of the requirements; however,

Android platform smartphones have also other types of receptors. Exertion to

research them could give better results as well. The next problem is caused by

Robot's move() function. Instead of fluent move from one point to another it

simply blinks to a new position. As a result a path calculation had to be

implemented which is obviously not the real path of the cursor. Casting from more

precise values to less could slightly affect precision.

Miscellaneous

Even though this project focused on the utilization of the mobile phone as a

pointing device, it uses Java's Robot which is capable of simulating also button

presses. The application includes few demonstration buttons such as Arrows,

Enter, Backspace, Escape but adding a virtual keyboard would be really easy.

A user could also appreciate modification of the project to the version without the

server part. Somehow it sends the commands directly to the OS for executing.

This approach reduces delay and with change of Wi-Fi with Bluetooth or IrDA

also reduces required hardware dependencies.

45

Altogether

Despite of all the minor shortages and the lack of the time, the application is very

handy and easy to use. Not only in emergency cases when a user forgets / loses

his mouse but also as an attractive way to handle PC. Gesture function will

definitely do. Especially touchpad behaves like a real one and the pointing stick

as well. Its only disadvantage in comparison with a built-in keyboard is that a user

can not feel it since it is only virtual. It is generally known that users prefer

sensational feedback, whether something real to touch, or feedback in form of

sounds or visual response.

During the developing process I discovered similar, already existing solutions on

the market. One is for iPhones and the other is for Android smartphones. In this

regard the presented project is apparently not “ground-breaking” regarding to its

idea. Nevertheless, I have not only deepened my knowledge in for me known

matters such as Android and Java programming but acquired plenty of new skills

and information. For me that matters.

The last remaining thing is to hope for interest of customers in the idea so it

would become a real project or possibly a part of a more complex solution.

46

REFERENCES

Accelerometer EN Wiki, http://en.wikipedia.org/wiki/Accelerometer, Referred to

on 27 April 2011.

Android Developers – sensors,

http://developer.android.com/reference/android/hardware/SensorEvent.html,

Referred to on 27 April 2011.

Android Operating System EN Wiki,

http://en.wikipedia.org/wiki/Android_(operating_system) , Referred to on 11 April

2011.

Android Operating System SK Wiki, http://sk.wikipedia.org/wiki/Android_(opera

%C4%8Dn%C3%BD_syst%C3%A9m) , Referred to on 11 April 2011.

Compass EN Wiki, http://en.wikipedia.org/wiki/Compass, Referred to on 27 April

2011.

Eclipse EN Wiki , http://en.wikipedia.org/wiki/Eclipse_(software) , Referred to on

11 April 2011.

Eclipse SK Wiki, http://cs.wikipedia.org/wiki/Eclipse_(v%C3%BDvojov

%C3%A9_prost%C5%99ed%C3%AD) , Referred to on 11 April 2011.

Gyroscope Cambridge Encyclopedia,

http://encyclopedia.stateuniversity.com/pages/9304/gyroscope.html, Referred to

on 27 April 2011.

Ixonos internal brochure, Ixonos's internal informative brochure, Referred to on

11 April 2011.

Java CS Wiki, http://cs.wikipedia.org/wiki/Java_(programovac%C3%AD_jazyk),

Referred to on 11 April 2011.

List of Android devices EN Wiki,

http://en.wikipedia.org/wiki/List_of_Android_devices, Referred to on 11 April 2011.

http://en.wikipedia.org/wiki/List_of_Android_devices
http://cs.wikipedia.org/wiki/Java_(programovac%C3%AD_jazyk
http://encyclopedia.stateuniversity.com/pages/9304/gyroscope.html
http://cs.wikipedia.org/wiki/Eclipse_(v%C3%BDvojov%C3%A9_prost%C5%99ed%C3%AD
http://cs.wikipedia.org/wiki/Eclipse_(v%C3%BDvojov%C3%A9_prost%C5%99ed%C3%AD
http://en.wikipedia.org/wiki/Eclipse_(software
http://en.wikipedia.org/wiki/Compass
http://sk.wikipedia.org/wiki/Android_(opera%C4%8Dn%C3%BD_syst%C3%A9m
http://sk.wikipedia.org/wiki/Android_(opera%C4%8Dn%C3%BD_syst%C3%A9m
http://en.wikipedia.org/wiki/Android_(operating_system
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://en.wikipedia.org/wiki/Accelerometer

47

Mouse SK Wiki, http://sk.wikipedia.org/wiki/My%C5%A1_(hardv%C3%A9r) ,

Referred to on 9 April 2011.

Scrum EN Wiki, http://en.wikipedia.org/wiki/Scrum_(development) , Referred to on

11 April 2011.

Sensor EN Wiki, http://en.wikipedia.org/wiki/Sensor, Referred to on 27 April 2011.

Touchpad SK Wiki, http://sk.wikipedia.org/wiki/Touchpad, Referred to on 10 April

2011.

Resources

http://stackoverflow.com/

http://developer.android.com/guide/index.html

http://download.oracle.com/javase/1.4.2/docs/api/overview-summary.html

http://download.oracle.com/javase/1.4.2/docs/api/overview-summary.html
http://developer.android.com/guide/index.html
http://stackoverflow.com/
http://sk.wikipedia.org/wiki/Touchpad
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Scrum_(development
http://sk.wikipedia.org/wiki/My%C5%A1_(hardv%C3%A9r

	Microsoft Word - coverict.doc
	description
	remoteBC_16.5
	ACRONYMS
	 1 INTRODUCTION
	 2 THEORETICAL BASIS
	 2.1 Pointing devices
	 2.2 Smartphones with Android
	 2.3 Sensors
	 2.4 Eclipse and Java
	 2.5 Ixonos and Scrum

	 3 REQUIREMENTS
	 4 IMPLEMENTATION
	 4.1 Background
	 4.2 Server application
	 4.2.1 Description
	 4.2.2 Communication interface
	 4.2.3 Implementation and data flow

	 4.3 Client application
	 4.3.1 Description
	 4.3.2 Application usage and implementation
	 4.3.2.1 Database
	 4.3.2.2 Connection
	 4.3.2.3 Main Activity
	 4.3.2.4 Compass
	 4.3.2.5 Pointer
	 4.3.2.6 Gestures
	 4.3.2.7 Touchpad
	 4.3.2.8 Pointing stick

	 4.4 Testing

	 5 CONCLUSION
	 6 DISCUSSION
	REFERENCES

