

Tapio Andersson

PORTABILITY OF QT APPLICATIONS IN THE MOBILE ENVIRONMENT

Information Technology

Software engineering

2009

PORTABILITY OF QT APPLICATIONS IN THE MOBILE ENVIRONMENT

Andersson, Tapio

Satakunta University of Applied Sciences

Degree Programme in Information Technology

Specialization Option in Software Engineering

Commissioned by Digia Plc.

Supervisor: Antti Vainio, M.Sc

May 2009

Tutor: Ismo Trast, Tech.Lic. , Principal Lecturer

UDC: 004.057.5, 004.41

Number of Pages: 36

Keywords: portability, mobile environment, Maemo, S60, Qt

The purpose of this Bachelor's thesis was to get more experience about the

portability of Qt applications in the mobile environment. Qt is a cross-platform

application framework.

Software development in the mobile environment is diffused to many different

platforms. The aim of this thesis was to find answers how portable Qt is. The

study was made through analysis of different aspects: platform independence,

code maintenance, performance and testability.

The theory part of this thesis covers software development in mobile

environments, Qt as a tool and portability between Maemo and S60. The applied

part lists findings in those four aspects listed at the end of the previous chapter.

In the near future Qt will be a very interesting option for mobile software

development. At its current state it is not ready for commercial products.

QT SOVELLUKSIEN PORTATTAVUUS MOBIILIYMPÄRISTÖSSÄ

Andersson, Tapio

Satakunnan ammattikorkeakoulu

Tietotekniikan koulutusohjelma

Ohjelmistotekniikan suuntautumisvaihtoehto

Yritys: Digia Oyj.

Valvoja: DI Antti Vainio

Toukokuu 2009

Ohjaaja: Yliopettaja, TkL Ismo Trast

UDK: 004.057.5, 004.41

Sivumäärä: 36

Asiasanat: portattavuus, mobiiliympäristö, Maemo, S60, Qt

Tämän opinnäytetyön tarkoituksena oli hankkia lisää kokemusta Qt sovellusten

portattavuudesta mobiiliympäristöissä. Qt on järjestelmäriippumaton

sovelluskehys.

Ohjelmistokehitys mobiiliympäristöissä on hajaantunut monelle eri alustalle.

Tämän opinnäytetyön tarkoituksena oli etsiä vastauksia, kuinka portattava Qt on.

Tutkimus on tehty analysoimalla aihetta seuraavien näkökulmien kautta:

järjestelmäriippumattomuus, ohjelmakoodin ylläpidettävyys, suorituskyky sekä

testattavuus.

Teoriaosa opinnäytetyöstä käsittelee ohjelmistokehitystä mobiiliympäristöissä,

Qt:ta työkaluna ja portattavuutta Maemo ja S60 alustojen välillä. Käytännönosa

listaa löydökset niistä neljästä näkökohdasta jotka mainittiin edellisen kappaleen

lopussa.

Lähitulevaisuudessa Qt on hyvin mielenkiintoinen vaihtoehto mobiili-

ohjelmistojen kehittämiseen. Se ei ole nykyisessään tilassa valmis kaupallisiin

tuotteisiin.

CONTENTS

 CONTENTS..4
1 INTRODUCTION ..6
2 SOFTWARE DEVELOPMENT IN MOBILE ENVIRONMENTs8

2.1 Software development before Qt... 8
2.2 S60 platform before Qt.. 9
2.3 Maemo platform before Qt.. 9
2.4 Brief Qt history.. 10
2.5 Structure of Qt ... 11

3 CROSS-PLATFORM SOFTWARE...12
3.1 Cross-platform software and portability in theory .. 12
3.2 Open C/C++ .. 13

4 QT AS A TOOL..14
4.1 Signals and Slots ... 14
4.2 Qt's tools .. 15
4.3 Using Qt in Mobile Environments .. 16

5 PORTABILITY ..17
5.1 Qt differences in S60... 17
5.2 Creating SIS-package and Platform Security.. 18
5.3 Maemo specific differences in Qt ... 20
5.4 Creating DEB-package.. 20
5.5 Installation without creating DEB-package .. 22
5.6 Physical differences in the devices.. 22
5.7 Qt's Expandability ... 23
5.8 Qt Unit testability .. 24

6 CODE MAINTENANCE ...24
7 PERFORMANCE ...26

7.1 Device performance .. 26
7.2 How efficient it is to produce code with Qt .. 27
7.3 How efficient it is to test with Qt unit tests... 27

8 IMPLEMENTING EXAMPLE APPLICATION WITH QT28
8.1 Installing developing environments ..28
8.2 Implementing example application ... 29

9 RESULTS ...31
9.1 Platform independence .. 31
9.2 Code maintenance ... 31
9.3 Performance... 32
9.4 Testability.. 32

10 SUMMARY..32
 REFERENCES..34
 APPENDICES ..36

Android A new mobile platform provided by Google

API Application Programming Interface

Cross-platform Platform independent that works on every supported OS

DEB Debian installation package

DLL Dynamic Link Library

GTK The GIMP Toolkit

GUI Graphical User Interface

Framework Reusable abstractions of code wrapped in an API

IDE Integrated Development Environment

J2ME Java 2 Micro Edition

KDE K Desktop Environment

LAN Local Area Network

LGPL Lesser GNU Public License

Linux Linux is UNIX like operating system

Maemo Lightweight, Linux based operating system

MOC Meta-Object Compiler

OpenC/C++ Application development environment for S60

OpenGL Open Graphics Library

OS Operating System

PDA Portable Digital Assistant

P.I.P.S PIPS is POSIX on Symbian

Plc. Public limited company

Qt Cross-platform application framework

SIS Symbian Installation Source, Symbian installation package

SMS Short Message Service

SSH Secure Shell

TBA To Be Announced

WLAN Wireless LAN

X11 X Window System, Version 11

1 INTRODUCTION

Software development in mobile environment is diffused to many different

platforms. Qt is one solution for this multi-platform problem. Qt is a cross-

platform C++ application framework. This means that it is possible to implement

an application by using Qt and use the same source code on another platform with

only some minor platform independent settings or code changes. So it should

make software development faster and more cost efficient too.

The purpose of this study is to get more information about portability of the Qt

applications between S60 and Maemo platforms. This thesis focuses are finding

how platform independent Qt software should be designed, benefits,

disadvantages and problems of using Qt in the mobile environment. This study is

made through analysis with different aspects: platform independence, code

maintenance, performance and testability.

This thesis is prepared for Digia Plc. Digia is a company which is established in

Finland but it also has field offices in China, Estonia, Russia and Sweden.

Company delivers IT-solutions to it's customers. Digia employs over 1300

professionals globally. Main business areas of the company are information and

communication technologies, smartphones and real-time systems.

There is not much written information available about using Qt in mobile

environment. The reason for choosing this topic for the thesis is that Digia needs

more practical information about Qt. Since Nokia bought Trolltech in 2008 Qt

become even more interesting technology in mobile software development. This

is also the reason why Qt is very topical subject and Digia is interested in it.

During writing this thesis S60 version of the Qt was in unfinished state. Some of

the Qt modules were not ported yet for S60 platform. This caused some problems

on S60 platform, but those problems should be fixed in next Qt releases.

 7

2 SOFTWARE DEVELOPMENT IN MOBILE ENVIRONMENTS

2.1 Software development before Qt

In the long run smart phone business is diffused between many different operating

systems. The applications need to be separately implemented to different

platforms. On the Q4 2008 sales Symbian OS (Operating System) was the leading

smart phone operating system that had 47,1% of the smart phone markets, with

RIM (Research In Motion) had 19,5%, Windows Mobile (Windows CE) had

12,4% and Apple (iPhone OS) had 10,7%. Leaving 10,3% of the shares goes

between Linux, Palm, BREW and Android. [1]

 Figure 1. Market shares Q4 2008 [1]

There have been some solutions for the multi-platform problem earlier, but none

of those solutions has been very successful. Mobile version of Java, J2ME (Java 2

Micro Edition), had lacks for using it with different types of devices. It was not as

adaptive as mobile phone industry wanted it to be.

One big lack in mobile environment is usability. GUI:s (Graphical User Interface)

in the phones have looked similar for a long time. S60 platform started to look

outdated after Apple released its iPhone OS. Other platforms like RIM and

Windows Mobile looked also more modern than S60. So there became a need to

Symbian OS
RIM

Window s Mobile
iPhone OS

Linux, Palm, BREW and Android

0

5

10

15

20

25

30

35

40

45

50

 8

make improvements for S60 GUI and to seriously challenge iPhone's touch UI. Qt

may also become a solution for better looking and easy-to-use GUI:s.

2.2 S60 platform before Qt

S60 is software platform that runs on Symbian OS. Symbian OS, originally named

as EPOC, was originally designed in the early 90's for PDA:s' (Portable Digital

Assistant) operating system. In the year 2000 name EPOC was renamed to

Symbian OS. Nokia released the phone model 9210. It was the first Symbian

phone, in which it was possible to install custom made 3rd party Symbian

applications. [2] [3]

Because Symbian OS has so long history some features of it are made for earlier

devices purposes. This causes also some compatibility problems between old and

new devices. Writing code on S60 is not always easy or efficient. If we make a

simple GUI based dialog application, we have to create four classes: Application,

Document, appUI and appView. If we want to show some text in that dialog we

have to manually allocate memory for the text. We also have to take care of de-

allocating of the memory manually.

In the Qt world all this can be done in a straight-forward manner in one file. First

we make a main application and add a QWidget object. We can add a QLabel

widget and put the text on it with the setText() function. Same kind of application

as formerly mentioned is done much easier and faster with Qt than native S60

code. Allocation and de-allocation of memory is done automatically by Qt. This

reduces the number of human errors.

2.3 Maemo platform before Qt

Maemo is a lightweight operating system, which is created and developed by

Nokia. It is based on modified Debian GNU/Linux. In the Linux world there has

been a problem, that there is too many different programs can be used, multiple

programming components and many different versions of them. There has been a

 9

need for something stable, standard and easy to use. Qt is the answer for this kind

of problem. After Nokia bought Trolltech they could develop Qt in the way they

need and want.

There are no released Maemo devices yet that are using Qt. Nokia N810 Internet

tablet is currently using Hildon application framework. Hildon is based on GTK

(The GIMP Toolkit). It is possible to install Qt 4.5.0 package from Maemo

repository to N810.

When Nokia released Qt for S60 in March, 2009, Qt licensing was changed. It

was released under LGPL license (Lesser GNU Public License). Furthermore, it

has commercial license. Now it is possible to make commercial software with Qt

and use it for free. That makes Qt more interesting for both software companies

and open source community. Open source community did not show much interest

on Qt before because it was released under GPL license. [2] [13]

2.4 Brief Qt history

The story of Qt began in Norway on 1990. Haavard Nord and Eirik Chambe-Eng

started to design an object-oriented C++ application which needed to be able to

run on Macintosh, UNIX and Windows. In 1991 they started to design and write

classes. In the next year Eirik got an idea for “signal and slot” based system,

which was a simple but efficient GUI programming paradigm. That kind of

system is now copied to many other toolkits. Haavard and Eirik decided to go into

business and to build “the world's best C++ GUI framework”. [4]

In 1994 Qt got its name when its inventors took Q from Emacs font because it

looked so “cute” and the letter T from word toolkit. On 4th of March 1994, a

company named Quasar Technologies was established. Later it changed its name

to Troll Tech, and after that to Trolltech. First years were challenging for the

company. The company had no customers and Qt was in unfinished state. [4]

 10

In April, 1995, Trolltech got its first customer and Qt was also released with a

commercial and open source license. Next notable step in Qt's history took place

in 1996 when Matthias Ettrich decided to build KDE (K Desktop Environment)

and chose Qt as a base for the project. That helped Qt to become a standard for

C++ GUI development on Linux. Qt got also version number 1.0 in this year. [4]

 In August 1999 Qt won LinuxWorld's award in the category of best library/tool.

In the next year Trolltech released Qt/Embedded Linux. It had an own lightweight

window system as a replacement for the X11 (X Window System, Version 11).

Licensing changed also to commonly used GPL for open source usage. By the end

of the year Trolltech released Qtopia application platform for mobile phone and

PDA usage. Qt/Embedded Linux won the LinuxWorld “Best Embedded Linux

Solution” in 2001 and 2002. Trolltech's Qtopia Phone won the same title in 2004.

[4]

In the summer 2005 Qt 4.0 version was released. It contained 500 classes and

more than 9000 functions. It has been splitted to many libraries so that a user

needs to link binaries only against the parts that are really needed. The fourth

version of Qt had also many improvements like template containers, advanced

model/view functionality, fast and flexible 2D painting framework and Unicode

classes.

Now Trolltech is known as Qt Software after Nokia bought it in June 2008. Nokia

bought also Symbian in June 2008. [4]

2.5 Structure of Qt

The idea in Qt 4 is that it is built from modules. Binaries must be linked against

only those modules which are needed. Modules and current working states are

listed in following Figure 2:

Module Description Works currently with

QtCore Non-graphical classes used by other modules Maemo and S60 (Not fully)

QtGui GUI programming classes Maemo and S60 (Not fully)

QtNetwork Network programming classes Maemo and S60 (Not fully)

 11

QtOpenGL QpenGL classes Maemo (No capable devices)

QtScript Qt Script classes Maemo and S60

QtSql Database classes Maemo

QtSvg SVG image file classes Maemo and S60

QtWebKit Classes for rendering and editing Web content Maemo

QtXml XML classes Maemo and S60

QtXmlPatterns XQuery & XPath classes for XML operations Maemo

Phonon Multimedia classes (from KDE project) TBA (for Maemo and S60)

Qt3Support Compatibility classes for previous Qt3 Maemo

 Figure 2. Table which shows different make options with S60

Main modules of the Qt are shown in picture:

 Figure 3. A picture of Qt's main modules. [10]

Of those modules Open GL is implemented for Maemo but not for S60 devices.

Phonon module's implementation is still in progress and it’s not fully

implemented for Maemo or S60 yet. Phonon is a part of KDE project and will be

take care of Qt's Multimedia routing and playback. All Qt modules offer easy-to-

use functionalities for different actions. [10]

 12

3 CROSS-PLATFORM SOFTWARE

3.1 Cross-platform software and portability in theory

Cross-platform term means that some application is platform independent. Cross-

platform software is usually deployed in a platform specific binary or in a

platform independent source code packages. In Qt's case term cross-platform

means that Qt framework must be ported natively to every platform so that it

works. This operation is done by Qt Software. After some platform has its own

port of Qt then applications can be compiled against it. In the ideal case one only

needs to run commands: qmake and make. Native Qt application framework

takes care of all platform specific things. Qmake builds platform specific build

files like Makefile in Maemo or abld.bat, bld.inf, package and resource files in

S60.

Cross-platform software is wise way to reduce costs of developing software. It

makes also possible to create software for multiple devices at the same time. From

usability perspective platform independent software is also good thing for people

who use it. All applications work the same way on every device.

3.2 Open C/C++

Open C/C++ is a development environment for Symbian devices. All Symbian

OS versions do not have native support for all of the C- or C++- features. Because

of that S60 3rd Edition Feature Pack 1 needs P.I.P.S plug-in (P.I.P.S. Is POSIX on

Symbian) for SDK and devices. S60 3rd Edition Feature Pack 2 and S60 5th

Edition have Open C/C++ pre-installed.

Open C/C++ works in a layer between native Symbian and Qt libraries. Open

C/C++ takes care of initializing the main() function in S60 side. Qt uses private

implementation for platform specific classes and that makes porting possible.

 13

Open C/C++ can also be used in middleware components or porting existing

desktop applications to S60.

 Figure 4. Figure about how Open C works between S60 and Qt. [14]

4 QT AS A TOOL

4.1 Signals and Slots

Qt has a tool named moc (Meta-Object Compiler). Meta-Object Compiler reads

C++ header files. If it finds a class declaration that contains the Q_OBJECT

macro, it produces C++ source code containing the meta-object code for those

classes. This Q_OBJECT macro is possible to add in a class which is inherited

from the QObject class. [20]

Qt uses signals and slots for communication between objects. Macro SIGNAL

defines a signal that is going to be emitted. Macro SLOT defines a function which

receives emitted signal. MOC generates automatically loose coupling connection

used between signals and slots. Multiple signals could be connected to multiple

slots. [19][20]

It is possible to make subclasses from Qt's widgets and add own slots to they.

Multiple signals could be connected to a single slot and one signal could be

 14

connected to multiple slots. It is also possible to connect some signal to another

signal which triggers some slot function.

According to personal experience, signals and slots have one problem. It is

possible to implement application which goes though compiler and still does not

work. If signal or slot gets renamed or is named badly then connect() function

does not work correctly with Meta-Object Compiler. It may take long time to find

this kind of problem because compiler does not give any errors.

The signals and slots is type safe mechanism. Signals and slots have signatures

and those need to match between used signals and slots for that implementation

works. There is loosely coupling between signals and slots. This means that

emitted signal does not need to know about slot which receives it. It is possible to

use slots for receiving signals and as normal member functions. See more in

Annex 1.

4.2 Qt's tools

Qt offers extensive set of tools for developing software. Qt Assistant is a tool

which works as Qt's reference documentation. It contains code snippets and a lot

of helpful information how to use framework's classes. The information in Qt

Assistant is usually in a simple format and easy to use. Qt Assistant has also good

search tools.

 Figure 5. Picture of Qt Assistant

 15

Another good tool is Qt Designer. It makes it possible to design GUI:s fast and

easy with layouts. Layouts make it possible that GUI:s look the same in different

devices. Qt takes care of scaling GUI components automatically for the resolution

used on devices. Qt Designer generates files that have extension .ui. It is an XML-

file that is used for creating C++ code automatically. Own Qt widgets can be used

with Qt Designer if they are promoted for some Qt Designer's widget.

 Figure 6. A picture of the Qt Designer.

Qt Creator is an IDE (Integrated Development Environment) which combines text

editor, debugger, Qt Assistant and Qt Designer. Compared to other popular IDE

used for Qt development, Java-based Carbide C++ IDE, Qt Creator is more

lightweight. The features of Qt Creator include text editor with code completion

and real time error and warning indicators. There is no support for S60 or Maemo

emulators in the Qt Creator. In future there might be emulator support in Qt

Creator. [17]

4.3 Using Qt in Mobile Environments

Qt is originally developed for desktop usage. Qt's memory usage has been

optimized for performance and not for such small memory usage that is typical for

mobile applications. This is the reason why some components have been

 16

refactored especially for mobile environment usage. Some of the Qt's components

differ between S60 and Maemo. For example build tool chains, windowing

systems and file systems are different. Software binary deliveries differ also very

much. S60 uses signed SIS (Symbian Installation Source) packages while Maemo

uses DEB (Debian) packages. [2] [13]

Development environments between S60 and Maemo are totally different. S60

software development is done in Windows operating system. It is possible to use

Carbide C++ IDE in Windows. Maemo developing is done in Linux operating

system. Linux needs a tool named Scratchbox. It is platform in platform.

Scratchbox works as a running and cross-compiling environment while

developing the Maemo applications. Scratchbox needs device specific

applications. Those device specific applications usage could be compared as

SDK:s in S60 side. There are no Maemo devices with phone features on the

markets yet. [2] [13]

5 PORTABILITY

5.1 Qt differences in S60

Building Qt for S60 application differs from building standard S60 application.

The Symbian side tool chain is the same but the standard Qt's build tools qmake

and make are used as a wrapper around original Symbian build tools. Command

qmake -project can be used for creating a project file. This is needed if there is a

folder which contains only .cpp, .h and .ui files and there is no Qt's project file

.pro. Command qmake generates same files as S60 tool bldmake bldfiles. Those

files are bld.inf, .mmp file, .reg, .rss, .mk extension makefiles and Makefile.

Makefile is used as a wrapper around normal Symbian build command abld.bat.

S60 specific make options are listed in Figure 8. [5] [9]

 17

 Figure 7. This image shows how Qt for S60's tool chain works. [9]

make Creates abld.bat and makefiles and builds for emulator

make clean Removes abld builds and makefiles

make debug Creates all debug builds (all udeb:s)

make debug-
armv5

Creates armv5 debug build

make debug-
gcce

Creates gcce debug build

make debug-
winscw

Creates winscw debug build for emulator

make release Creates all release build (all urel:s)

make release-
armv5

Creates armv5 release build

make release-
gcce

Creates gcce release build

make run Builds winscw and runs it on emulator

 Figure 8. This table shows that how command make could be used with S60 environment. [9]

5.2 Creating SIS-package and Platform Security

Qt itself and libraries which are using it don't need other signing than self signing.

S60 has its own platform security architecture. Platform security provides a

platform with the ability to defend itself against malware or badly implemented

programs. Symbian devices are running many different servers. There are public

S60 API:s (Application Programming Interface) to connect those servers. Using

of those API:s may need platform security capabilities. For example, if a

 18

programmer wants to use GPS-data from the phone then using of the Location

capability is needed. If Qt application needs to use GPS-data then Location

capability must be added in the project file like this:

 symbian:TARGET.CAPABILITY += CapabilityName. [5] [6] [7] [9]

Because of S60 platform security programmers may need to add two things to the

.pro file if some of the capabilities are used. The project file needs line like:

symbian:TARGET.UID3 = 0xE0000001. This tag UID3 (Unique Identifier)

identifies the application so that it is possible to sign SIS package with Symbian

Signed service. For Open Signed Online service application's UID must be

between ranges: 0xE0000000 - 0xEFFFFFFF. The signing service can be found

from: https://www.symbiansigned.com/. S60 specific libraries or dynamically

linked libraries can be set on project file too. Syntax for setting up libraries:

symbian:LIBS += -llibraryname. S60 specific project file parameters are listed

in Figure 9. [5] [6] [7] [9]

TARGET = ApplicationEx
symbian:LIBS += -llibraryname -llib2
symbian:TARGET.UID3 = 0xE0000001
symbian:TARGET.CAPABILITY +=
UserEnvironment

 Figure 9. Here is example of self signable S60 specific project file. [5] [6] [7] [9]

Qt applications in S60 environment don't need any capabilities for them but if

some S60 specific API:s are used then application signing is needed. User

grantable capabilities are listed in the “Basic set”. If “Extended set” capabilities

are needed those SIS-packages must be signed with Symbian Signed signing.

“Phone manufacturer approved set” capabilities must be signed with manufacturer

certificate. If capabilities and UID are not correctly set for a program that is going

be installed in the phone then package doesn't work or install correctly.

 19

 Figure 10. This image shows Capabilities. [6]

After successiful running of the command make release-gcce it is possible to

create package from file ProjectFileName_gcce_urel.pkg. SIS-package could be

created with command createpackage -i ProjectFileName_gcce_urel.pkg.

5.3 Maemo specific differences in Qt

The biggest difference between Maemo and S60 is that devices are using different

operating systems. All Maemo platforms are based on GNU/Debian Linux.

Because of this packaging goes nearly like when creating a standard Debian

package. In Maemo environment there are no Servers. Instead there are Daemons.

There is not S60 kind platform security. In contrary to S60, the platform security

in Maemo devices is taken care of by different user right levels. The highest user

level is Root user. Application or daemon can act as a user and it can be granted to

do only things that are wanted.

5.4 Creating DEB-package

Packaging in Maemo is quite complicated. Here are the simplified steps that are

needed for creating DEB-package: [11] [12]

1. Project folder must be formed like: “../myapp-0.1”. [11] [12]

 20

2. All files from that directory must be copied to folder: “../myapp-0.1/src” and

“ ../myapp-0.1/src/myapp.pro” must be renamed to “../myapp-0.1/src/src.pro”.

[11] [12]

3. The next step is creating a new project file: “../myapp-0.1/myapp.pro”.

Content of the project file must be like this: [11] [12]

QMAKEVERSION = $$[QMAKE_VERSION]

ISQT4 = $$find(QMAKEVERSION, ^[2-9])

isEmpty(ISQT4) {

 error("Use the qmake include with Qt4.4 or greater, on

Debian that is

 qmake-qt4");

}

TEMPLATE = subdirs

SUBDIRS = src

 Figure 11. DEB package specific options in .pro file.

4. Following command creates Debian specific files needed for creating the

package:

 dh_make --createorig --single -e maintainer@email.org -c gpl [11] [12]

5. After executing previous command orig.tar.gz source code archive is created

and sub folder debian with some files in it. Created files must be edited manually.

These instructions aren’t enough for creating working Debian package. Files in

that debian folder named control and rules must be edited manually. Developer

must add the needed dependencies in the control file. Dependencies are the

programming components like libraries which are needed for running building the

application binary. Using of the qmake must be added for rules. See more in

Annex 2.

Better and more comprehensive instructions for creating packages can be found

from the following Internet resources:

http://wiki.maemo.org/Packaging_a_Qt_application

 21

https://maemo.org/forrest-images/pdf/maemo-policy.pdf.

5.5 Installation without creating DEB-package

It is also possible to build Maemo binaries with Scratchbox's ARM tool chain or

on the device with GCC-compiler. Built binary can be copied itself to the device

with needed libraries. File transfer can be made with SSH connection through data

cable or with WLAN connection (Wireless LAN).

Qt applications can be installed to the devices or to the Scratchbox emulator with

command make install if the following lines are added to the project file: [9]

TARGET = myapp

unix:target.path = /usr/bin

unix:INSTALLS += target

 Figure 12. Maemo make install specific options in .pro file.

5.6 Physical differences in the devices

Even now there are two kinds of devices on the markets. In the S60 side there are

plenty of older 3rd Edition Feature Pack 1 and also newer 3rd Edition Feature Pack

2 devices. Both of those device types did not have a support for the touch screen.

All of the Qt's GUI widgets are not working as they should in those S60 3rd

Edition's devices. There are also S60 5th Edition devices. Those devices are the

newest and have support for using touch screen. In those devices Qt's GUI

widgets work better than those older S60 3.X devices.

At this moment it is complicated to design software that is usable on 3.X devices

with the current release of the Qt for S60. It is possible to make GUI:s but it may

need some hacking and customizing for the original Qt GUI widgets. At this

moment creation of the GUI:s is not such easy and slick that it will be in future. In

some applications the GUI may need to be separately designed depending on the

availability of touch screen. With Qt Designer it is fast and easy to create

 22

adaptable GUI:s for different type devices. Using of the layouts makes it possible

that GUI components scale automatically for different type devices.

In the Maemo side there are only internet tablet devices on the markets. Those

devices are technically older and don't have typical phone features. Existing

Maemo devices are still good for testing and developing purposes. Those devices

give quite a good view about what should be expected from the devices of the

future.

5.7 Qt's Expandability

Qt itself does not have any features to support platform or device specific features.

There are no built-in support for phone features telephony or SMS messaging.

Forum Nokia has released Mobile Extensions for Qt for S60 package as

technology preview. That package has wrapper classes for using already

implemented, native S60 classes. Those extensions provide easy to use methods to

S60 specific API:s. This Mobile Extensions technology preview can be found

from: http://wiki.forum.nokia.com/index.php/Mobile_Extensions. [16]

One lack in those extensions is that all of the features don’t work exactly like in

S60. Good thing in using of those extensions is that they make software

development easier and also reduce number of possible buffer overflow cases.

S60 uses generally manual allocation of memory. Allocation is usually done with

pushing and popping data in cleanup stack. Qt's way is do this allocation

automatically and that is the reason why number of human errors is smaller.

Another lack in using Mobile Extensions is that there are no Maemo devices

released yet on the markets which support those features like phone and receiving

SMS messages. In the ideal case same the software should work in both platforms

S60 and Maemo. There are not any proofs of concepts about it released. In the

future there might be Mobile Extensions which work in both S60 and Maemo.

 23

5.8 Qt Unit testability

Unit tests could be used to check for some kind of errors which are possible to test

some way. Unit testing is very important with functions which do operations to

complex data structures. The idea of tests is that some function gets or sets some

value or changes some variables. The returned values are compared automatically

against correct value that is the expected outcome for the test case. If a test passes

without errors then value can be written to some log file.

Qt has its own module QTest for writing unit tests. In Qt the unit tests are made

with QTest functions. Those tests are portable if code under test is portable. If the

code which is going to be tested is made with portable Qt code and native

platform specific code is used only through wrapper classes then code under test

is portable. If a test is made for a piece of code that combines for example S60

and Qt code then testable functions are limited only those parts that are made with

Qt. It is also possible to use QTest for platform specific unit tests.

6 CODE MAINTENANCE

There is not yet much Qt code on S60 or Maemo platforms that needs

maintenance or could be maintained. In future there might be same kind of Mobile

Extensions package to Maemo. Biggest difference between maintaining those

platforms is that Maemo needs a computer where Linux is installed whereas S60

needs Windows. It is possible to install Linux to virtual machine in Windows or

vice versa but it is not as efficient as using native computer OS.

In the ideal case only maintenance is done for the Qt application code. In that way

development is faster and easier. If some new features are made available to

devices then platform specific implementation is needed. This kind of code is not

usually directly portable and benefits of Qt don’t come true. There might also be

 24

errors that are caused by Qt. Currently there are some listed bugs in S60 Qt pre-

release version 4.5.0-garden. For example QListBox widget does not work

correctly in the older 3.X devices. That kind of listed Qt related bugs will be fixed

in future.

The code maintenance may be done different in a way on the future. There might

be Qt framework related bugs. This kind of bugs may exist in some certain device

model or device platform. Because Qt is quite a new tool in the mobile

environment there might be lots of bugs at the start. Data security also might

cause also problems. Mobile devices are nowadays even more and more like

computers. It is very important to take care that data security is always up to date.

Maintenance with Qt might mean also maintenance of the wrappers or the

extensions. That kind of maintenance can be platform specific if the fixes are

made to the platform native implementations.

One difference in code maintenance between S60 and Maemo applications is that

S60 use Mercurial based version controlling whereas Maemo side uses GIT as

version controlling. That brings a need for both version controlling program

experts because commands and functionalities are different.

 25

7 PERFORMANCE

7.1 Device performance

As a part of the research for this thesis Qt's example application named

Padnavigator was modified to work as 15-puzzle game. Padnavigator

demonstrates using of QGraphicsView. This application was chosen as a part of

the thesis because it needed much computation power. That kind of application is

good for performance analysis.

Because Qt has long history in desktop usage some of its features are not

optimized for mobile usage. In desktop computers there are usually more

computation power for graphical output. During the research for there appeared

lacks in graphical performance. The application implemented for this thesis was

running with too slow frame rate.

In Maemo devices low graphics performance might be the reason because some

irrational image data conversion may occur. Maemo's X windowing system is

running in 16-bit mode. Images are processed usually in 32-bit mode. When

image is drawn to a screen then image data needs 32-to-16 bit conversion. This

operation is called blitting. It wastes too much CPU time and makes the

application running slower. [21]

In S60 there were same kinds of problems in performance. In S60 case the

problem might be the same or it might be caused by too slow memory allocation.

Same kind of problems come out with desktop versions of the Qt. Using Open GL

acceleration fixed those performance problems in desktop environment. In both

Maemo and S60 there is not yet support for using Qt's Open GL features. In future

releases of the Qt those issues will be fixed certainly.

 26

7.2 How efficient it is to produce code with Qt

Maemo and S60 devices differ physically quite much. There are only a couple

Maemo devices in the markets and none of them is capable to be used as a normal

GSM phone. Maemo devices have a touch screen. There are only couple S60

phones in the markets which have a touch screen. This thing must be taken care of

when developing GUI:s for different types of devices.

Usability in different type devices depends very much on GUI:s. Sometimes it is

not possible to make things in GUI:s that work well with touch screen and

standard phone buttons. Currently some of Qt's GUI components are not working

very well in S60 phones. For example QLineEdit and QSpinBox components are

working well only in S60 5th Edition phones. Those issues will be fixed in future

releases. [22]

Implementing applications with Qt is faster than with native S60 code. Qt uses

automatic memory management and that should reduce the number of code errors.

Qt has its own multipurpose data type QVariant. It acts like a union for most

common Qt data types. Different Qt data types can be stored to QVariant and read

later to other data types. That kind of feature makes also development easier and

faster and potentially reduces probability of errors.

7.3 How efficient it is to test with Qt unit tests

Unit tests can be made in the way they work with many different platforms. This

reduces the time needed for writing unit tests. Implementation which is going to

be tested must be written with Qt. This means that unit test must use public Qt

implementation and platform specific code must be wrapped in private

implementation. If tested code uses some native code then unit tests might need

also some platform specific code.

 27

With QTestLib tool it is possible to make test suites. In that way it is possible to

run multiple unit test cases with starting only one test program. This makes unit

testing faster. It is possible to write test results to XML-file and add style sheet for

that file. Thus the results could be formatted into a report.

8 IMPLEMENTING EXAMPLE APPLICATION WITH QT

8.1 Installing developing environments

Implementation of the example application was started by installing developing

environments. Maemo environment needs computer that have Linux. The Linux

installation needs Scratchbox cross-compilation toolkit installed. It is possible to

install Linux to virtual machine but in practice the usage of virtual machines

causes long delays and even occasional jams. Installation time for fully installed

development environment for Maemo developing is about 5-6 hours. If developer

doesn’t has any previous Linux experience it takes much more time. Linux has

own command line commands and which are different as Windows. [23] [24]

In the Windows world there must be Carbide C++ 2.0 IDE installed. S60 SDK for

3rd Edition FP2 or 5th Edition is needed too in Windows. After those prerequisites

are installed then Qt for S60 can be installed. It is more straight-forward to install

Qt for S60 in Windows than installing Linux and Scratchbox for Maemo. It takes

about 2-3 hours to install development tools in Windows. Qt libraries must be

compiled manually in both Linux (Maemo) and Windows (S60) during

development environment installation process. This takes most of the time when

installing environments for the developing. [25]

 28

8.2 Implementing example application

Example application is based on Qt's example application, Padnavigator. In Qt's

version 4.2 there became a new method, QGraphicsView, to draw graphics.

Graphics views are designed to be the future way to produce elegant looking

GUI:s and graphics. It seems like the graphics views are still not powerful enough

to run smoothly. Qt releases in future and bringing the Open GL support to the Qt

in mobile environments will help some of those issues.

Padnavigator example application loads images in QPixmaps objects. Those

objects are set to subclass RoundRectItem widget. For this thesis Padnavigator

example was modified to 15-puzzle game. There was also an idea that some

picture was taken as a starting point and it was cut to 15 pieces. The

RoundRectItem pieces were shuffled after they were textured with image pieces.

Objects needed also special id:s so that right places in the grid could be checked.

Game needed logic that checks if all of the pieces are in correct positions. Also

shuffle logic was needed.

Padnavigator example application was designed only to be a good looking demo.

There was no logic that identified pieces. It was little complicated to modify the

program in a way that it started to work like a 15-puzzle game. Different pieces

were identified by setting objectName to every piece.

15-puzzle design was started on S60 platform with much older Qt version 4.4.2-

pyramid. That caused problems in developing because that version doesn't have

full support for phone keyboard and phone specific soft keys. The developing was

started with S60 because its features were not such mature state as Maemo.

Developing had to make with the rules of the weakest link. It was in this case S60.

Qt application on S60 needs to be set shown in full screen mode. It can be done

with showFullScreen() function. S60 doesn't have support for application

windows whereas on Maemo this is possible. Portable Qt applications must be

designed the way they usable to use with devices which have only keypads and no

 29

touch screen. In future this thing might get some improvements to solve device

control depending issues.

 Figure 13. Picture of Qt's Padnavigator based 15-puzzle game

 30

9 RESULTS

9.1 Platform independence

Qt software platform independence depends mainly on two things. All of the Qt

modules are not ported to both Maemo and S60. Some of the Qt modules are still

in developing state. There will be Phonon multimedia module, but at the moment

it does not have all features yet implemented. It is not feasible to port Qt

applications between Maemo and S60 if some of those use modules which is not

ported yet.

S60 devices have that kind of problem that there are devices with touch screen

and those where are only keypad and soft keys. Some of the Qt Gui module

components are not working smoothly with those devices with keypad and soft

keys. Usability between the applications may be different if there is no keypad or

touch screen available. At the moment it is possible to make own subclasses from

Qt:s widgets and add needed keypad event handlers. Qt software fixes the

detected problems in next Qt releases.

Naturally Qt does not currently bring any solution for that problem that there are

also other devices than S60 and Maemo. If Qt get ported to RIM, iPhone and

Windows Mobile it increase portability of Qt applications in mobile

environments.

9.2 Code maintenance

Code maintenance becomes easier with Qt. It is easier to maintain the code when

the applications are portable. Implemented applications will work with other

platform devices. At the beginning there might be more Qt related problems like

with S60. That kind of problems takes longer time to get solved because new

releases of the Qt are needed. After those problems that are found in the early

 31

phase of porting Qt are fixed and Qt is more mature then developing applications

between S60 and Maemo is possible and it faster to maintain.

9.3 Performance

Qt is still in development state and has some performance problems. Applications

which use QGraphicsView widget seem to perform quite poorly. QGraphicsView

seems to performance poorly also in desktop environment if it is not used with

Open GL support. In future Qt's graphical performance might be better. This may

be possible though if new Qt versions work faster or t Open GL support become

available in Qt and devices. It currently seems that it is even hard to make a

simple animation with bouncing ball on Maemo or S60 with Qt.

Coding performance is good with Qt. According to personal experience, the

implementation speed is much faster compared to native S60. In Qt data types are

allocated and de-allocated automatically which reduces the number of human

errors.

9.4 Testability

Same unit tests can be used in both Maemo and S60 if test code is made with pure

Qt. If test code uses some native code, then test can only be used on the platform

it is implemented for. There have not been any portable unit test methods before

Qt which can be used in Maemo and S60.

10 SUMMARY

Code less, Create more, Deploy everywhere – says Qt's promotion phrase. Qt is

still in developing state. In the near future Qt will be a very interesting option for

mobile software development once its “childhood diseases” get solved. It will

reduce costs because program components can be reused as portable code.

Currently it is only possible to learn how to implement software with Qt in mobile

environment. It is not ready for commercial products because all needed Qt

 32

modules are not yet available for Maemo and S60 and some performance issues

exists.

At its current state Qt keeps its promises for being easier and faster to implement.

It reduces also probability of errors. Qt doesn't remove the need for unit tests on

every platform but it should make portable unit tests possible at some level. In

future it will be possible produce elegant looking GUI:s with Qt for mobile

devices. Therefore Qt will also be a tool to seriously challenge and compete with

the GUI:s of iPhone and RIM.

 33

REFERENCES

[1] Wikipedia – Smartphone. [WWW]. [referenced 30.03.2009]. Available:
http://en.wikipedia.org/wiki/Smartphone

[2] Wikipedia - Symbian OS. [WWW]. [referenced 30.03.2009]. Available:
http://en.wikipedia.org/wiki/Symbian_os

[3] Wikipedia – EPOC. [WWW]. [referenced 30.03.2009]. Available:
http://en.wikipedia.org/wiki/EPOC_(computing)

[4] Blanchette, J. & Summerfield, M. C++ Qt GUI Programming with Qt4. xix-
xxi pp.

[5] qmake Manual. WW]. [referenced 30.03.2009]. Available:
http://doc.trolltech.com/4.5/qmake-manual.html

[6] Platform security. [WWW]. [referenced 15.04.2009]. Available:
http://developer.symbian.com/main/documentation/sdl/symbian94/sdk/doc_source
/guide/platsecsdk/index.html#guide.platsec.index

[7] Platform security [WWW]. [referenced 25.03.2009]. Available:
http://www.symbian.com/developer/techlib/v9.2docs/doc_source/guide/platsecsdk
/index.html#guide.platsec.index

[8] Open Signed Online [WWW]. [referenced 25.03.2009]. Available:
https://www.symbiansigned.com/app/page/public/openSignedOnline.do

[9] Integration of Qt and S60 build systems. [WWW]. [referenced 30.03.2009].
Available:
http://library.forum.nokia.com/topic/Qt_for_S60_Developers_Library/GUID-
19FFA67B-D2D4-4282-9E95-D382BB4FD594.html

[10] Qt’s Modular Class Library. [WWW]. [referenced 30.03.2009]. Available:
http://www.qtsoftware.com/products/library/modular-class-library

[11] Packaging a Qt application. [WWW]. [referenced 30.03.2009]. Available:
http://wiki.maemo.org/Packaging_a_Qt_application

[12] Maemo Packaging Policy. [WWW]. [referenced 30.03.2009]. Available:
https://maemo.org/forrest-images/pdf/maemo-policy.pdf fwerf

[13] Wikipedia – Maemo. [WWW]. [referenced 13.04.2009]. Available:
http://en.wikipedia.org/wiki/Maemo_(operating_system)

[14 Qt in the S60 environment. [WWW]. [referenced 30.03.2009]. Available:
http://library.forum.nokia.com/index.jsp?topic=/Qt_for_S60_Developers_Library/
GUID-A43924F3-1D37-4A84-93B8-917AB01A1629.html

 34

[16] Qt for S60 Mobile Extensions.. [WWW]. [referenced 30.03.2009]. Available
(Needs Forum-Nokia account):
http://wiki.forum.nokia.com/index.php/Mobile_Extensions

[18] Youtube - Qt Creator - 01 An Introduction. [WWW]. [referenced
20.04.2009]. Available:
http://www.youtube.com/watch?v=U7yje3D1UM4&feature=PlayList&p=22E601
663DAF3A14&index=0&playnext=1

[19] Qt Software - Signals and Slots. [WWW]. [referenced 20.04.2009].
Available: http://doc.trolltech.com/4.5/signalsandslots.html

[20] Qt Software - Using the Meta-Object Compiler (moc). [WWW]. [referenced
20.04.2009]. Available: http://doc.trolltech.com/4.5/moc.html

[21] D.C.T.W.Y.C.D.T - Qt 4.4 and Maemo. [WWW]. [referenced 20.04.2009].
Available: http://ariya.blogspot.com/2008/08/qt-44-and-maemo.html

[22] Qt Labs - QtforS60KnownIssues. [WWW]. [referenced 20.04.2009].
Available: http://labs.trolltech.com/page/QtforS60KnownIssues

[23] maemo.org - SDK Releases. [WWW]. [referenced 04.05.2009]. Available:
http://maemo.org/development/sdks/

[24] Maemo QT4. [WWW]. [referenced 04.05.2009]. Available:
http://qt4.garage.maemo.org/packages.html

[25] Qt 4.5 - Installing Qt on S60. [WWW]. [referenced 04.05.2009]. Available:
http://pepper.troll.no/s60prereleases/doc/install-s60.html

 35

APPENDICES

/*
MyClass.h
*/

class MyClass : Qobject
{
 Q_OBJECT
public:
 //Constructor
 MyClass(QObject *parent = 0);

 void testSignal();

// Example slot
public slots:
 void exampleSlot();

// Example signal
signals:
 void exampleSignal();
}

/*
MyClass.cpp
*/

#include “MyClass.h”

MyClass::MyClass(QWidget* parent)
{
 testSignal();
 connect(this, SIGNAL(exampleSignal()), this,
SLOT(exampleSlot()));
}

void MyClass:: testSignal()
{
 emit exampleSignal();
}

 Annex 1. Example of using signals and slots.

#!/usr/bin/make -f
APPNAME := my_app_name
builddir:
 mkdir -p builddir

builddir/Makefile: builddir
 cd builddir && qmake-qt4
PREFIX=/usr ../$(APPNAME).pro

build: build-stamp

build-stamp: builddir/Makefile
 dh_testdir
 # Add here commands to
compile the package.

 36

 cd builddir && $(MAKE)
 touch $@

clean:
 dh_testdir
 dh_testroot
 rm -f build-stamp
 # Add here commands to clean
up after the build process.
 rm -rf builddir
 dh_clean
install: build
 dh_testdir
 dh_testroot
 dh_clean -k
 dh_installdirs

 # Add here commands to install
the package into
debian/your_appname
 cd builddir && $(MAKE)
INSTALL_ROOT=$(CURDIR)/debi
an/$(APPNAME) install
Build architecture-independent files
here.
binary-indep: build install
We have nothing to do by default.

Build architecture-dependent files
here.
binary-arch: build install
 dh_testdir
 dh_testroot
 dh_installdocs
 dh_installexamples
 dh_installman
 dh_link
 dh_strip
 dh_compress
 dh_fixperms
 dh_installdeb
 dh_shlibdeps
 dh_gencontrol
 dh_md5sums
 dh_builddeb

binary: binary-indep binary-arch
.PHONY: build clean binary-indep
binary-arch binary install configure

 Annex 2. Example of debian/rules file.

