

An Evaluation of DB2 Express-C pureXML Feature Pack

using the TPoX Performance Benchmark

Li Wang

 Bachelor’s thesis

 Degree Programme in Business

 Information Technology

 2011

 Abstract

 08.04.2011

Degree programme

Authors
Li Wang

Group
2007

The title of your thesis

An Evaluation of DB2 Express-C pureXML Feature Pack

using the TPoX Performance Benchmark

Number of pages
and appendices
59 + 6

Supervisors
Martti Laiho

This thesis provides an introduction to XML indexes of DB2 pureXML Feature Pack, evaluat-
ing the effect of XML indexes to performance of application queries.

The thesis consists of two parts. The first part, chapters 1-4, present an overview of the
“Transaction Processing over XML” (TPoX) benchmark and introduction to the implementa-
tion of XML indexes in DB2 9 LUW, based on literature research in handbooks, case studies
and manuals. The smallest configured TPoX benchmark environment (XS scaling with
3 620 833 XML documents in 10GB disc size) is installed on Windows XP platform in a Mi-
crosoft Virtual PC 2007 computer. The second part, the empirical part in chapter 5, presents
series of tests using selected XQuery queries of TPoX in the generated XS environment, with
and without the XML indexes on XML columns. The use of indexes is studied from the ex-
tended EXPLAIN tables of hybrid DB2 giving performance estimates in TIMERON units of
DB2. The performance effect is measured in the corresponding TPoX test runs of 25...100
concurrent virtual users.

According to the empirical tests, the XML indexes have a remarkable impact on the query
performance and it proved to be effective to TPoX benchmark performance.

The study concludes that, the indexes on XML columns have a significant effect on the query
performance in TPoX benchmark. Moreover, how to build up the indexes on XML column is
also a highly considerable issue.

.

Key words
XML, database, benchmark, XQuery, SQL/XML, TPoX

Table of contents

Glossary of terms .. 1

1 Introduction .. 2

2 TPoX overview .. 3

2.1 TPoX data and XML schema ... 4

2.2 TPoX transactions and workload .. 5

2.2.1 Insert, update, delete ... 6

2.2.2 Queries .. 8

2.3 TPoX workload driver and documentation ... 9

3 Testing using TpoX ... 10

3.1 Installing TPoX .. 10

3.2 Preparing Testing ... 11

3.2.1 Download testing data .. 11

3.2.2 Performance test .. 12

4 Building of XML Index .. 15

4.1 XML index type .. 15

4.1.1 XML regions index ... 16

4.1.2 XML column path index .. 16

4.1.3 Index on an XML column ... 17

4.2 Creating index on an XML column ... 18

5 Experiment part ... 18

5.1 Test background and plan ... 18

5.2 Test on Q1 with and without the created index ORDER_ID 21

5.2.1 Test on Q1 with created indexes ORDER_ID 21

5.2.2 Test on Q1 without created index ORDER_ID 25

5.2.3 Test result comparison ... 28

5.3 Test on Q7 with and without created indexes on the joined table 29

5.3.1 Test on Q7 with created indexes .. 29

5.3.2 Test on Q7 by dropping the index ... 32

5.3.3 Test result comparison ... 36

5.4 Test on Q4 by reducing created indexes on table SECURITY 37

5.4.1 Test on Q4 with created indexes .. 37

5.4.2 Test on Q4 by dropping the indexes .. 40

5.4.3 Test result comparison ... 46

5.5 Query test on TPoX with & without created indexes on XML column ... 48

5.5.1 Query test on TPoX workload with created indexes 48

5.5.2 Query test on TPoX workload by dropping created indexes 52

5.5.3 Test result comparison ... 55

5.6 Summary of the tests ... 56

6 Conclusion .. 57

Bibliography ... 58

Appendices ... 60

Appendix 1. TPoX QUERIES ... 60

1

Glossary of terms

GRPBY Group rows

IXAND The ANDing of the results of multiple index scans

IXSCAN Scans or probes an index on relational data

NLJOIN Performs a merge-sort join

RETURN Returns data from a query

RIDSCN Scans a list of row identifiers (RIDs)

TBSCAN Performs a table scan

TEMP Stores data in a temporary table

TPoX Transaction processing over XML

TIMERON A unit of measurement used to give a rough relative estimate of

 the resources, or cost

XANDOR Evaluates multiple predicates simultaneously with

 two or more XISCAN operators

XISCAN Scans or probes an index on XML data

XSCAN Navigates XML data to evaluate XPath expressions

XVIP Physical index

XVIL Logical index

2

1 Introduction

According to the work of Nicola’s research group, XML database technology efficiently sup-

ports the use of XML. There is an increasing demand for XML database technology in com-

mercial enterprises including finance and banking, industry, school, government, health care,

and recording to such increasing demand, how to make XML database more functional be-

comes an important discussed topic. The performance is always a most considerable issue.

(Nicola, Kogan, Schiefer 2007, 1)

Comparing variety of XML database, XML database on the needs of users are not the same.

The performance has been chosen as the most important conditions by most users. So a varie-

ty of performance testing tools have emerged. Some tests only for the implementation of cer-

tain aspects of the database. Some are predominantly application-oriented, such as XMach-

1(Böhme, Rahm 2001) and XBench (Yao, Özsu, Keenleyside 2002). Some are designed as

abstract micro-benchmarks eg: XPathMark (Franceschet 2005), XMark (Schmidt, Waas, Ker-

sten, Carey, Manolescu, Busse 2002). Further on, base on the situation, Nicola’s research

group developed an application-oriented and domain-specific benchmark called “Transaction

Processing over XML” (TPoX). (Nicola, Kogan, Schiefer 2007a, 1) The goal of TPoX is to

allow database designers, developers and users to evaluate the performance of XML database

features, such as the XML query languages XQuery and SQL/XML, XML storage, XML in-

dexing, XML Schema support, XML updates, transaction processing and logging, and concur-

rency control.(Nicola, Kogan, Schiefer 2007a, 1) Based on their analysis of real XML applica-

tions, they designed and implemented TPoX which simulates a financial multi-user workload

with XML data conforming to the FIXML standard. The TPoX benchmark was originally

developed and tested by IBM and Intel but became an open source at SourceForge in January

2007. (http://www.answers.com/topic/transaction-processing-over-xml)

Nicola research group indicate a comparing with other benchmark recording the XML

benchmark requirements in their work. After analyse, they demonstrate the result of compar-

ing. They try to find the solution to meet more XML benchmark requirements. The following

is a short conclusion about their result and their goal to reach.

They believe that two separate XML benchmarks are required, one is data-centric scenario and

other is document-centric. TPoX models a data-centric scenario. Many data centric XML ap-

http://www.answers.com/topic/xquery

3

plications deal with million to billions of relatively small XML document, but only TPoX

defined multi-document tests scale from million to billions of XML documents. Rest of them

they only touch the low end required scale. XML document often required to use flexibility,

i.e change formats, business forms and other type’s documents. In TPoX they address data

variability by using a complex real-world XML Schema (FIXML, financial information ex-

change markup language). FIXML defines thousands of optional elements and attributes but

only a very small subset appears in any given instance document. TPoX allows multi-user tests

and make the isolated assessment of database performance much easier. Recording to the

read/write workload, the TPoX defines a mixed workload of 30% writes and 70% reads

which reach a higher level to stress all database system components. Except XPathMark, Only

TPoX uses namespaces. This meets the real world applications’ demands. The schema valida-

tion is required in XML applications and it efficiently affects the performance. TPoX requires

the schema validation as a mandatory operation. Other benchmarks they might allow schema

validation but none of them requires a mandatory operation. TPoX allow the multiple docu-

ment types and joins for XML applications. Of the other benchmarks, only XBench includes

such a join and only one. (Nicola, Kogan, Schiefer 2007a, 2)

Base on the work of the Nicola research group, in my thesis, I will use the TPoX benchmark

as the test tool to analyse the XML indexes. I will use the queries which Nicola research group

already defined. I will run the queries in different conditions to compare the work of XML

indexes on columns. The purpose of the work is to observe how the XML indexes on col-

umns efficiently affect the queries performance.

2 TPoX overview

Nicola research group state that TPoX is an application-level XML database benchmark based

on a financial application scenario. It is mainly used to assess the performance of XML data-

base system focusing on XQuery, SQL / XML, XML storage, XML indexing, XML Schema

validation, XML update, logging, concurrency, etc. From various financial application models,

they selected online brokerage& trading because it is an important application. It is easily un-

derstood by both benchmark participants and database users. (http://tpox.sourceforge.net/)

 TPoX consists of the following parts:

 XML Schemas for all document types used in the benchmark. including a FIXML schema;

 A set of transactions to be run on the generated data.

4

 A toolset for XML data generation to efficiently generate millions of XML documents

with well-defined value.

 A workload driver used to perform user-defined load, and collect and print test results; it

can be customized through configuration files.

 Documentation description TPoX implementation details and how to use the document.

The TPoX benchmark was carefully designed and implemented. TPoX reaches a certain tech-

nical requirements such as portability, simplicity, and scalability.

(http://tpox.sourceforge.net/) This chapter shows you an overview of TPoX. It will bring

some understanding on how TPoX benchmark works.

2.1 TPoX data and XML schema

TPoX data model is based on the trading scene in the financial system and it uses FIXML to

model some of its data. It consists of two business entities: customers and brokerage firms.

(Nicola, Kogan, Schiefer 2007b, 2) Figure1 below gives an overview of TPoX application sce-

nario.

Figure 1. TPoX application scenario (An XML database benchmark)

The scenario presents a simplification of a real-world brokerage application. The customers

buy and sell securities through the order. According to the customer requests, the brokers

process transactions. The core of the system is a database to support XML features; its per-

formance determines the performance of the application. (Figure1.)

The following figure shows the main logical data entities of TPoX relations and the corre-

sponding schema. Each customer has 1 or more accounts. Each account could have 1 or more

orders. Per order could buy or sell one warrants security each time for one account. Each war-

5

rant security can have 1 or more security holdings, which means that the warrant security can

be purchased by multiple accounts; similarly, each account may include one or more of the

Holdings. Each warrants security can exist in a number of orders or a number of holdings.

Figure 2. TPoX Entities and XML Schemas (A Transaction Processing Benchmark)

From the figure 2, we could see that TPoX’s data entities are represented by three XML

schemas. For each customer there is one XML document (CustAcc.xsd) that includes personal

data and information about his accounts and holdings. The size of CustAcc is between 4KB

and 20KB. Orders are represented using FIXML 4.4. FIXML is an industry standard XML

schema for trade-related messages such as buy or sell orders. The size of the order document

is between 1KB to 2 KB. Order document have many attributes and a high ratio of notes to

data. Security documents represent the majority of US-traded stocks, bonds and funds using

actual security symbols and names. Their size ranges between 3KB and 10KB. The three doc-

ument collections are interrelated with each other. For example, Order documents contain

security symbols and account numbers that exist in the security and the CustAcc documents.

(Nicola, Kogan, Schiefer 2007a, 4). In TPoX, the database size can be ranged from extra small

to extra-extra large depending on the number of Order and CustAcc documents. In my testing

part, I will use extra small or small size database because of the limit of computer storage

space.

2.2 TPoX transactions and workload

The TPoX benchmark execution has two stages: stage 1 performs concurrent inserts to popu-

late the database and maintain all desired indexes at the same time. Stage 2 performs a multi-

6

user read/write workload on the populated database, with 70% queries and 30% write opera-

tions including inserts, updates and deletes combined. Both stages are executed in the work-

load driver. (Nicola, Kogan, Schiefer 2007a, 4) The TPoX framework is very extensible and it

can be use to define several different sets of transactions for the different purposes. A mixed

workload consists of inserts, deletes, updates and queries. The queries are expressed in

XQuery which can be embedded in SQL, e.g. through the use of SQL/XML functions.

(http://tpox.sourceforge.net/WorkloadDriverUsage_v2.0.pdf) The way to process the per-

formance testing for TPoX is to execute the transaction specified by user. TPoX provides

basic transaction templates, which are stored in TPoX/WorkloadDriver/DB2/. The user can

modify or add the necessary implementation transactions. Every transaction is defined in the

file of its own. It could consist of one or a number of statements. Each statement is terminat-

ed by “%”. The transaction templates can include parameters as shown below, including as

“|1” The generation rules are provided by the load profile. The implementation of the test is

generated by the parameter maker. In my testing part, I will execute the query testing on the

workload and I will document the test process. Those queries will be referenced in the appen-

dix part.

2.2.1 Insert, update, delete

In FIXML, the insert/update/delete transactions can be used in the following observations:

 Customer accounts are updated to reflect trades (execution of orders), but not necessarily

immediately after every order.

 New orders arrive continuously, old order get pruned from the system eventually and at the

same rate (many order inserts, many order deletes).

 Security prices are updated regularly during a business day (updates).

 The turnover of a customer is low (few CustAcc inserts and few CustAcc deletes).

 The number of securities remains fixed (no delete or insert of securities).

(http://tpox.sourceforge.net/WorkloadDriverUsage_v2.0.pdf)

Table 1. TPoX insert & update transactions (A Transaction Processing Benchmark)

Transaction Business Scenario Result

Insert 1: A customer places a new

order to buy or sell a securi-

ty

Insert a new Order document in the

collection of order documents.

7

Insert 2: A new customer signs up

for online brokerage

Insert a new CustAcc document in

the collection of CustAcc docu-

ments.

Delete 1: An order is cancelled or

archived

For a given order id, delete the cor-

responding Order document

Delete 2: A customer closes all of his

account and terminates

business

For a given customer id, delete the

corresponding CustAcc document

Update1: A customer decides to close

one of his/her accounts

[delete subtree]

For a given account number, update

the corresponding CustAcc docu-

ment by removing the

Account from the CustAcc docu-

ment, unless it’s the customer’s last

and only account.

Update2: A customer opens (another)

account [insert/append sub-

tree]

For a given customer id, update the

corresponding CustAcc document

by appending a new

”Account” subtree to the list of ac-

counts in the CustAcc document,

unless this would exceed the

Maximum of number of accounts

per customer (currently seven).

Update3: The price of a security

changes [simple value up-

date]

For a given security symbol, replace

the values of the following elements

in the corresponding

Security document: “LastTrade”,

“Ask”, “Bid”.

Update4: Processing by the brokerage

house updates an order [val-

ue update]

For a given order id, replace the

value /FIXML/Order/@SolFlag

with “Y” or “N” (choose

randomly), and the value of

“/FIXML/Order/Instrmt/@Src

with a value randomly picked from

this list of characters:

8

“1”,”2”,….,”9”,”A”,”B”,”C”,….,”J”.

Update5: A previously placed buy

order gets executed [value

update, add/replace subtree]

For a given account number, securi-

ty symbol, and quantity: if the Cus-

tAcc document already

contains a holding of the given secu-

rity in the given account, increase

the value of the element

“quantity”.

Update 6: A previously placed sell or-

der gets executed [value

update, delete/replace sub-

tree]

For a given account number, [securi-

ty symbol,] and quantity: if the given

(sell-) quantity is equal

or greater than the “quantity” in the

corresponding “Position” in the

CustAcc document, delete

that “Position” subtree from the

given account.

Table 1 gives an overview about the insert/update/delete transactions. Business scenario and

result of each transaction can be found from the table. (Table 1)

2.2.2 Queries

In Nicola work, they defined seven core queries for a transaction processing workload. The

Queries notation will be shown in the appendix. Below is an explanation for the Queries

transaction. I will do the experiment test for the queries. I will build up XML indexes and run

some queries performance testing on TPoX workload. I will compare the result and find out

how XML index is useful for improving the benchmark performance in queries part.

Table 2. TPoX OLTP queries (A Transaction Processing Benchmark)

Q Query Name CustAcc Security Order Characteristic

1 get_order x Return full order doc-

ument without the

FIXML root element

2 get_security x Return a full security

document

9

3 customer_profile x Extract 7 customer

elements to construct

a new profile docu-

ment

4 search_securities x Extract elements from

some securities, based

on 4 predicates

5 account_summary x Construction of an

account statement

6 get_security_price x Extract the price of a

security

7 customer_max_order x x Join CustAcc & Order

to find the largest or-

der from a certain cus-

tomer

Table 2 lists the seven queries of the TPoX benchmark, the database tables accessed, and the

characteristics of the queries. The actual TPoX queries are listed in Appendix 1.

2.3 TPoX workload driver and documentation

Workload driver is a lightweight Java application that spawns 1 to n concurrent threads. Each

thread simulates a user that connects via JDBC to the database and submits a stream of trans-

actions without thinking times. All transactions and their weight are described in workload

description file which is input to the workload driver. Load description file used to control

the load-driven implementation; it tells the driver to carry the load configuration and how to

achieve one of the affairs of the parameters. Some examples of the load description files are

located in the TPoX / WorkloadDriver / properties. Load description file to specify the direc-

tory that contains the template or explicitly pointed out that the list of templates to be execut-

ed. (Nicola, Kogan, Schiefer 2007a, 4) The below figure 3 is an example of workload descrip-

tion file.

10

Figure 3. Sample of workload description file

NumOfTransactions specify the number of transactions contained in the template. t1 is the

name of the template. w1 is the weight of the transaction. If a weight is specified, then all the

transactions should be assigned the right value, and the total transaction weight value should

be 100, otherwise there must be some errors; the role of the weight is that, if the user specifies

the test time for the 100s, then under this load, t1 will be taken 50% in the whole implementa-

tion process which is 50s.

T1 * p1 is the generation rule for the parameter in transaction t1. Parameter maker will gener-

ate the value according to the rule generated in the test execution process. p1 | 1 indicates

that the first argument in the first transaction. p2 | 1 indicates first argument in the second

transaction. p2 | 2 indicates second parameter in the second transaction. p1 | 1 shows that

the first parameter randomly selected from a file. After"|", it shows the address of the file; p2

| 1 shows that in the transaction 2, the first parameter 1 Integer parameter random integer

uniformly distributed from the distribution 2000-4000. If the second transaction in the state-

ment that "... where $ doc / num = | 1", then "| 1" will be presented by a random number

from 2000-4000.

3 Testing using TpoX

3.1 Installing TPoX

11

This research is done with my laptop. I download the virtual machine. In the virtual machine

I have TPoX package there. The following structure is the TPoX package. The newest TPoX

version package could be found and downloaded from the website

http://sourceforge.net/projects/tpox/files/. After extracting the file, we can see the folder

structure under the TPoX.

Figure 4. TPoX folder structure

Following is a short description for each folder’s function.

 Datagen : test data generation tools;

 DB2, MSSQL, Oracle: used to test a specific database-related documents;

 GeneratedXML: used to store the generated XML files;

 Schemas: test used schema file;

 WorkloadDriver: is load driver folder, TPoX main program is located here.

3.2 Preparing Testing

3.2.1 Download testing data

In my testing, I installed the Window XP visual machine on my laptop and installed the DB2

and TPoX package in the visual machine. The testing data are already installed in the whole

package. In case if you don’t have available test data, usually you could just go to

12

http://tpox.sourceforge.net/ to download the testing data. The data is generated by datagen

by XXS standards. If you need more test data, you could run separately datagen to generate

test data which match your testing criteria.

You could just unzip the file after downloading the data, then copy the data and put them

under generatedXML.

TPoX/generatedXML/XXS/custacc/batch-[1-7]

TPoX/generatedXML/XXS/order/batch-[1-7]

TPoX/generatedXML/XXS/security

TPoX/generatedXML/XXS/account/batch-1

3.2.2 Performance test

Now I will demonstrate couple query performance test examples after setting up some of the

load TPoX description file. First of all ensure the Classpath contains the following Class or Jar

Packages:

db2jcc.jar

db2jcc_license_cisuz.jar (or any other db2_jcc_license *. jar file)

TPoX/WorkloadDriver/plugins/commons-cli-1.0.jar

TPoX /WorkloadDriver / classes

TPoX/DB2/classes

I do the performance test under the folder of TPoX/WorkloadDriver. In order to run a query

test we have to set the correct java classpath on the command prompt window. The following

figure will show how I set up the path.

Figure 5. Path setting on command prompt window for query testing

13

Figure 5 indicates the path setting when I do the query test on the workloadDriver. I in-

stalled the test template queries.xml in the folder properties under the workloadDriver. The

queries.xml file includes seven queries. I present them as a reference in the appendix.

 I perform the first test on the command prompt window. The test is referring to 5 concur-

rent users, 50 transactions for each user. The following figures are the snapshot of the

working status and testing result is showed in the snapshot of the statistics.

Figure 6. Query test for 5 concurrent users and 50 transactions per users

Figure 7. Statistics of the query test result for 5 concurrent users 50 transactions per user

14

Figure 6 is the transaction result on the workloadDriver. Figure 7 is a statistics result which is

created by TPoX under the folder WorkloadDriver/output/output2011_02_03_1643 after

running the query test.

 The second test is referring to 50 users and 50 transactions for each user. The testing struc-

ture and result are showed in the following figures.

Figure 8. Query test for 50 concurrent users and 50 transactions per users

Figure 9. Statistics of the query test result for 50 concurrent users 50 transactions per user

Figure 8 is the transaction result on the workload. Figure 9 is a statistics result which is created

under the folder WorkloaDriver/output/output2011_02_03_17:13 after running the query

15

test. These two tests just show how I run the query test on the WorkloadDriver. I will run

more tests in chapter 5.

4 Building of XML Index

In DB2 9, the pureXML provides intelligent and rich features for storing and working with

XML documents. One of them is the indexing feature that can index over XML columns and

return result sets from XQuery and SQL/XML. (Nicola, Kumar-Chatterjee 2010, 174) Index

is the way to speed up finding and accessing data. They are used normally to improve query

performance. In this chapter, I will introduce the pureXML index features and how to use the

XML indexes to improve the performance and how to create indexes on XML column.

4.1 XML index type

In DB2 9 pureXML guide, there is a detailed introduction of three XML indexes: XML re-

gions index, XML column path index, Index on an XML column. The following figure shows

how XML indexes work in DB2.

row doc doc

DB2 XML Indexes

XMLXML

XML

regions

index (XRGN)

4-32 kB

region pages

in XDA object

(tablespace)

(XVIP)
(XVIP)

(XVIP)

pattern (XVIL)
pattern (XVIL)

pattern (XVIL)
logical

physical

XML path indexes (XPTH)
XML column indexes

- Coding of Path types

[unique]

Table

DAT object INX object

SQL indexes

=> (RID, doc, (region,node))
RID

(path, value)

INX objects

Figure 10. XML indexes structure in DB2 (From teacher’s handout)

The figure 10 illustrated how the XML indexes work. The table with two XML columns is

maintained in a DAT object. The XML column in this table doesn’t contain the actual XML

16

documents but only the logical pointers to them, because the XML documents can be too

big to fit into a relational row on a single page. There are three types of indexes in figure 10:

XML regions indexes, XML path indexes, XML column indexes. I will explain these three

types’ indexes separately in the following section.

4.1.1 XML regions index

XML regions index stores the locations of each XML document that is stored in XML storage

in DB2.9. XML regions index is created automatically by DB2 9 when the first XML column

is created or added to a table. Even the table has multiple XML columns only one XML re-

gions index is created. (http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf 2006,

174-175) Every regions index is identified by the value XRGN in the column INDEXTYPE

and it is recorded in SYSCAT.INDEXES. (Nicola, Kumar-Chatterjee 2010, 34) The XML

regions index captures how an XML document is divided up internally into regions, which are

sets of nodes within a page. (publib.boulder.ibm.com) By default, XML documents are stored

in the XDA object. If a table has multiple XML columns, all of them share the same XDA

object. When a document tree does not fit on a single page, DB2 automatically and transpar-

ently breaks the tree into multiple subtrees, which are called regions. Each region is then

stored on a separate XDA page so a single document can span many pages. On the other

hand, if the documents are much smaller than the page size, multiple regions (documents) can

be stored on a single page so that no space is wasted. The key aspect of physical database de-

sign is the page size of a table space. The lower the number of regions per XML document the

better the performance. The number of regions per documents depends on the page size

(4KB, 8KB, 16KB, or 32KB). The large the page size of the table space the lower the number

of regions per document. (Nicola, Kumar-Chatterjee 2010, 34) The accessing to XML docu-

ments stored in XML storage always goes through XML regions index. The XML regions

index provides a logical mapping of those regions so that the document data can be retrieved

from the XML data pages. The document ID and version ID in the XML data descriptor are

used to do an index look-up in the regions index.

(http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf, 175.) In the TPoX bench-

mark, there are three tables: ORDER, SECURITY, and CUSTACC. Each table has one XML

regions index and those regions index can not be dropped.

4.1.2 XML column path index

17

The XML column path index is system-generated for each XML column created or added to

the table. It is recorded in SYSCAT.INDEXES. The XML path index is shown as XPTH in

SYSCAT.INDEXES.INDEXTYPE. If a table with two XML columns is created, there is one

XML regions index, but two XML column path indexes generated by DB2.9. XML column

path index maps paths to path IDs for each XML column. The XML column path index is

used to improve index access performance during queries.

(http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf, 175-176.) In the TPoX

benchmark, the path index is created by system itself for each table.

4.1.3 Index on an XML column

XML regions index and XML column path indexes are internal indexes which are associated

with XML column. These indexes are not recognized by any application programming inter-

face that returns index metadata. (publib.boulder.ibm.com)

Comparing with these two types of indexes, Index on an XML column is distinct from them.

Index on an XML column is an index created over an XML column. It is used for users to

enhance performance of XQuery and SQL/XML. XML index is created as B-tree index and

stored in the same place as relational indexes are stored. We can define multiple XML indexes

for one XML column. At same time we must be careful for creating indexes on XML column,

because it may cost to decrease the performance for INSERT, UPDATE, and DELETE, as

indexes also take spaces. We should only create indexes that are really needed.

(http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf, 176.) When we create an in-

dex on an XML column, two indexes are actually created, a logical index and a physical index.

The logical index contains the XML pattern information specified in the CREATE INDEX

statement. The physical index has DB2 generated key columns to support the logical index

and contains the actual index value. The user works with an index on an XML column at the

logical level for the CREATE INDEX and DROP INDEX statements. Processing of the

underlying physical index by DB2 is transparent to the user. The logical index has the index

name specified in the CREATE INDEX statement and has the index type XVIL. The physi-

cal index has a system generated name and has the index type XVIP.

(http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf, 181-182.) In my experiment

part, I will create indexes on XML column and also I will present the index result table which

will show all indexes and types including logical index and physical index.

18

4.2 Creating index on an XML column

When creating an XML index, the certain fields are required:

Index name: specify the name of XML index.

Table and column names: specify which XML column is indexed

XMLPATTERN: specify the node we want to index.

Data type: Specify SQL data type for XML index.

The following shows the CREATE INDEX statement structure for an XML index.

Figure 11. Structure of CREATE INDEX on XML column (DB2 9 pureXML Guide)

Figure 11 shows the most relevant part of the CREATE INDEX statement syntax for XML

indexes. The UNIQUE keyword in the statement is to enforce uniqueness across and within

all XML documents stored in a single XML column (Nicola, Kumar-Chatterjee 2010, 364). In

my experiment part, I will use the CREATE INDEX sentence to create few indexes on XML

column for tables ORDER, CUSTACC, and SECURITY. The screen script will be demon-

strated.

5 Experiment part

5.1 Test background and plan

In my experiment part, I will try to find out how the XML index influences the TPoX bench-

mark performance. In Nicola’s work, they already built some basic indexes on the tables. I will

try to find out how those indexes influence the query performance. All testing will be run on a

virtual machine. General information of testing background is as following figures.

19

Figure 12. Virtual xp system information

Figure 13. Processor information of virtual machine

Figure 14. Host window vista system information

The following table is a test plan. The table illustrates how the tests are planned and what pur-

poses they have.

20

Table 3. Test Plan

 Test contents Method Purpose

5.2 Test the single query

Q1 performance

without any created

indexes on XML col-

umns and with some

created indexes on

XML columns on

table ORDER

First test Q1 with created

indexes on XML column

(ORDER_ID) on table

ORDER

Second test Q1 without

created indexes on XML

column on table ORDER

Third compare the test re-

sult

To observe how a single index

on XML column (OR-

DER_ID) influences the sin-

gle query(Q1) on single table

(ORDER)

5.3 Test the single query

performance Query7

with some created

indexes and without

created indexes on

XML columns on

table OR-

DER&CUSTACC

First test Q7 with created

indexes on XML column

(ORDER_ACCOUNTID,

CUSTACC_ID)

Second test Q7 by drop-

ping the index OR-

DER_ACCOUNTID

&CUSTACC_ID separately

Third compare the test re-

sult

To observe how single index

(OR-

DER_ACCOUNTID&CUST

ACC_ID) on XML column

affects the single query (Q7)

performance executed with

two joined tables ORDER

and CUSTACC.

5.4 Test the single query

Q4 performance with

the created indexes

on XML columns

and performance

after separately drop-

ping single index

SEC_SECTOR,

SEC_PE,

SEC_YIELD on

table SECURITY

First test Q4 with created

indexes on XML col-

umn(SEC_SECTOR,

SEC_PE, SEC_YIELD)

Second test Q4 by separate-

ly dropping single index

(SEC_SECTOR, SEC_PE,

SEC_YIELD)

Third compare the test re-

sult

To observe how the single

index on XML column influ-

ences the single query perfor-

mance including multiple

created indexes on XML

column in single table SECU-

RITY

5.5 Query performance First test Q1-Q7 perfor- To observe how the created

21

test on TPoX work-

loadDriver with cre-

ated indexes on XML

column and by drop-

ping certain indexes

on XML column

mance on workload with

created indexes on XML

column

Second test Q1-Q7 per-

formance on workload after

dropping certain indexes on

XML column

Third compare the test re-

sult

indexes on XML column in-

fluence the whole throughout

and CPU utilization in the

query performance.

The test plan shows how I will process the test systematically. I will demonstrate the test in

the following sections following the plan.

5.2 Test on Q1 with and without the created index ORDER_ID

Before the test, I need to set up the certain environment. Performance of a query can be

evaluated using DB2 explain tools which will give cost estimate of the query in special DB2

timeron units and report of the access plan of the query providing information on optimizer

selected indexes for steps of the access plan. In order to use the visual explain tool, I have to

create first the explain tables manually by using the script EXPLAIN.DDL. So I go to the

directory sqllib\misc and write the command “db2 –tf EXPLAIN.DDL”. The explain tables

are created with a schema of the current DB2 user name. This allows me to control who can

use and share the tables. Now I can start my testing generating the access plans into the ex-

plain tables, and reporting the plans in textual format by the command-line tool “db2exfmt”.

5.2.1 Test on Q1 with created indexes ORDER_ID

In this test, I built up one index on XML column of table ORDER which Nicola suggested in

the TPoX benchmark. I use command monitor to issue the following command:

 create unique index order_id on order(ODOC) generate key using xmlpattern 'declare de-

fault element namespace "http://www.fixprotocol.org/FIXML-4-

4";/FIXML/Order/@ID' as sql varchar(15) COLLECT STATISTICS %

22

Figure 15. Create index ORDER_ID command

 Run runstats on table tiko.order to update statistics. (this command updates statistics about

the physical characteristics of a table and the associated indexes) Figure 16 shows how to

run a RUNSTATS command on the table ORDER.

Figure 16. RUNSTATS command

After running the command, I check the index result of table ORDER by issuing command

- SELECT indname, TABNAME, INDEXTYPE FROM SYSCAT.INDEXES

WHERE TABNAME='ORDER'.

Figure 17. Indexes on table ORDER with created index on XML column (ORDER_ID)

From the figure 17, we can see there are 4 different types and totally 3 indexes here

XRGN (XML Regions index), XPTH (XML column paths index), XVIL (Logical index on an

XML column), XVIP (Physical index on an XML column). From the theory explanation part,

we know XRGN and XPTH are created by system automatically. XVIL and XVIP are those

indexes created by issuing the CREATE command. From chapter 4.2, we know that indexes

on an XML column are only the indexes which we created over an XML column. So from the

above table, we can see the index which I created is ORDER_ID.

Then I run the Q1 on the command window. I use the command “db2 connect to tpox” to

connect to database. I put the query in “c:\temp\Q1.txt”. Then I write the command “db2 –

td% -f c:\temp\Q1.txt” to run the Q1. The query content is described in the figure 18.

23

Figure 18. Q1 on XML file

After the command is run successfully, I use command “de2exfmt –d tpox -1” to report the

execution plan for the query. The following is the access plan from the execution plan.

Figure 19. Access plan of Q1 with created indexes (ORDER_ID) on table ORDER

24

In order to interpreter the nodes of the access plan in figure 19, there are five lines and three

numbers in each node which we need to understand. The number above each operator name

(return, nljoin, grpby, tbscan, xscan) is the estimated number of rows produced by the opera-

tor. Next two numbers are the estimated cost of the operation in timerons and the estimated

number of I/Os the operator will perform. As an example, Figure 20 provides explanation for

a step node in the access plan:

Figure 20. Explanation of access plan in DB2 (DB2 pureXML cookbook, page405)

Now Let us see how the access plan above in figure 19 described the query Q1 execution. The

elements of the access plan are read from the bottom up, and from left to right. In step 7, the

index scan XISCAN probes the index with the path-value pair (/Order/@ID) and returns the

row identifiers (RIDs) for the documents to the sort operation in step 6. The RID scan will

build a list of the pages calling the prefetchers to retrieve the pages into the buffer pool and

passes the row IDs to the fetch operator. The fetch operation in step 4 can then fetch and

process the pages because they should already be in the buffer pool. For each row fetched, the

NLJOIN passes a document pointer to the XSCAN operator, which processes the corre-

sponding XML document. It evaluates the predicate on ORDER. Then it is passed to the

nested loop join (NLJOIN) in step 3. The nested loop join (NLJOIN) then accesses the inner

table. Then each element is passed up through the NLJOIN operator to the RETURN opera-

tor. The RETURN operator returns the result set to the calling application. A return result of

execution plan could be seen from the following figure:

Figure 21. Execution return result of Q1 with created index ORDER_ID on table ORDER

25

From the above figure 21, we can see the plan details of the returned performance results. It

explains all details including total cost, CPU cost and I/O cost after running the Q1 under the

index ORDER_ID which I created.

Now I run the query test on TPoX workloadDriver to observe the test result from work-

loadDriver for 100 concurrent users and 50 transactions per user. The following figure shows

the result.

Figure 22. Test result of Q1 on workloadDriver with created index ORDER_ID

Figure 23. Statistics of the test result with created index ORDER_ID

5.2.2 Test on Q1 without created index ORDER_ID

In this test, first part is that I want to see the query performance for Q1 when there are no any

created indexes on XML column on the table ORDER.

 I dropped the indexes which Nicola already built up by issuing command “Drop index

ORDER_ID” as presented in figure 24.

Figure 24. Snapshot of dropping ORDER_ID

26

 After dropping the index, we can check the current indexes from SYSCAT.INDEXES as

the figure 25; there are only region index and path index on the table ORDER.

Figure 25. Indexes on table ORDER without created indexes on XML column

Then I start to run the Q1 again on the command window by issuing the following command.

 C:\IBM\SQLLIB\BIN>db2 -td% -f c:\temp\Q1.txt

 C:\IBM\SQLLIB\BIN>db2exfmt -d tpox -1

After running the command, system populates a new execution plan for Q1 without any cre-

ated index on XML column as figure 26.

Figure 26. Access plan of Q1 without created indexes on XML column on table ORDER

Starting at the bottom of the access plan, we see that the base table accessed for this query is

the TIKO ORDER, and it has a cardinality of 250 rows. When no suitable indexes are defined

on the ORDER table, the ORDER table is accessed by the TBSCAN operator. The TBSCAN

reads all rows from the table. The NLJOIN operator connects the TBSCAN with an XSCAN.

27

For each row, the NLJOIN operator passes a pointer to the corresponding XML document

to the XSCAN operator. This tells the XSCAN which XML documents to operate on. Then

each name element is passed up through the NLJOIN operator to the RETURN operator.

The RETURN operator returns the result set to the calling application. A return result of exe-

cution plan could be seen from the following figure:

Figure 27. Execution return result of Q1 without created indexes on table ORDER

The figure 27 shows a return result. It is a part of the execution plan. From the result, we can

see how much total cost, CPU cost and I/O cost it takes to execute the Q1 without any creat-

ed indexes on XML column on table ORDER.

Then I run the query test on TPoX workloadDriver to observe the result for 100 concurrent

users and 50 transactions per user.

Figure 28. Test result of Q1 on workloadDriver without created XML index on ORDER

Figure 29. Statistics of the test result without created XML index on ORDER

28

From the figure 29, we can see the statistics result after running the query testing on the

TPoX workloadDriver. I will compare this result with the first test in the next section.

5.2.3 Test result comparison

Comparing the results of these two tests, one is with created indexes on XML column and

another one is without created indexes on XML column. We can see how the created indexes

on XML column work dramatically for the Q1. From the following table 4, we see after creat-

ing the index, the query works much faster comparing to the statement without created index-

es. AS the index ORDER_ID significantly reduces the number of rows fetched from the ta-

ble. It efficiently saves CPU cost and I/O cost during the query execution process.

Table 4. Difference of return result between two tests (figure21 &figure 27)

Return Result Without cre-

ated index

With created indexes

Order_id

cumulative total cost 1915,44 22,7652

cumulative CPU cost 4,16674e+006 128890

cumulative I/O cost 253 3

The following table shows the difference of Q1 performance test result on TPoX workload

driver between with created indexes and without created indexes on XML column on table

ORDER.

Table 5. Difference of Q1 performance test result on TPoX with and without created indexes

on XML (figure 22 & figure 28)

Get_order_sqlxml Total Time Avg Time Max Time Min Time

With index 152,57 0,20 0,87 0,01

Without index 323,77 0,42 1,60 0,00

From table 5, we see the difference with the two tests. After setting up the index (OR-

DER_ID) on XML column on table ORDER, the Q1 performance is faster almost 1 time

than without the index on XML column according to the figure.

29

5.3 Test on Q7 with and without created indexes on the joined table

In this test, I am going to test Q7 of Nicola. The purpose of this test is to observe how the

created indexes on XML column affect the query performance which is executed with the

joined tables (ORDER & CUSTACC). The following figure shows query content which you

could find also from Appendix page.

Figure 30. Q7 on XML file

5.3.1 Test on Q7 with created indexes

First I run Q7 with indexes created by Nocola’s group on XML column in tables ORDER and

CUSTACC, presented in the following figure 31:

Figure 31. Create indexes on table ORDER & CUSTACC

30

The following figures show the index results of two tables after the command executed.

Figure 32. Indexes result on table ORDER with the created indexes on XML column

Figure 33. Indexes result on table CUSTACC with the created indexes on XML column

Now I run the query test:

 I run Q7 on command window with the command “db2 –td% -f c:\temp\Q7.txt”

 I populate the execution plan with the command “ db2exfmt –d tpox -1”

An access plan where the created indexes on XML column on both tables (ORDER & CUS-

TACC) are used is shown in the following figure.

31

Figure 34. Access plan for Q7 with created indexes on table ORDER & CUSTACC

Figure 34 shows the access plan that is obtained after creating indexes on two tables: ORDER

and CUSTACC. Again, we read the execution plan from the lower-left corner. The XISCAN

operator probes the index with the path-value pair (/Customer/@id /) on table CUSTACC.

At same time, another XISCAN operator probes the index with the path-value pair

(/Order/@Acct) on table ORDER. These two XISCAN operators work together and one for

each table. They find the row IDs of the documents that match their own predicates. After

fetching on both tables, for each row fetched, the NLJOIN passes a document pointer to the

XSCAN operator, which processes the corresponding XML document. After each table get its

own result set, then they join together and another NLJOIN operator to process the corre-

sponding document then return a final result.

32

Figure 35. Return result for Q7 with created indexes on table ORDER&CUSTACC

Figure 35 shows a return result of the execution which is under two created indexes OR-

DER_ACCOUNTID and CUSTACC_ID.

5.3.2 Test on Q7 by dropping the index

Now I try to drop one index ORDER_ACCOUNTID from table ORDER to observe the

query execution and see how the index ORDER_ACCOUNTID affects the execution.

I drop the index ORDER_ACCOUNTID but keep the indexes in the table CUSTACC. The

following figure shows the drop command.

Figure 36. Snapshot of dropping ORDER_ACCOUNTID

After dropping the index, the index result is as the following figure:

Figure 37. Indexes result after dropping ORDER_ACCOUNTID

Figure 38. Indexes result table on CUSTACC

33

From figure 38, we can see I didn’t change indexes on table CUSTACC. Now I try to observe

the query testing after dropping ORDER_ACCOUNTID in order to find out how an index

influence transaction through two tables. Now I run the query again with same command on

command window.

 I run Q7 on command window with the command “db2 –td% -f c:\temp\Q7.txt”

 I populate the execution plan with the command “ db2exfmt –d tpox -1”

After running the command I got the new access plan for Q7 as the following figure 39.

Figure 39. Access plan for Q7 after dropping index ORDER_ACCOUNTID

34

From the access plan, we can see there is only one index CUSTACC_ID in the whole execu-

tion process. We can see the difference comparing with the first test. Because I dropped the

index ORDER_ACCOUNTID on XML column from table ORDER, so the table scanner

(TBSCAN) on table ORDER has to scan all 250 rows. It takes much more time to scan all

tables. The total costs is 1906, 4 timerons to read through ORDER table. Comparing with the

previous test, when using the index ORDER_ACCOUNTID, it only takes 16, 9034 total time

to read the table ORDER. We could see the total cost is increased about 100 times after

dropping ORDER_ACCOUNTID. On the other hand we could say after using OR-

DER_ACCOUNTID index, the query execution is faster than before about 100 times accord-

ing to the timeron unit. Since there is an efficient saving on CPU cost and I/O cost. The fol-

lowing figure 40 shows a return result. Which also indicates the CPU cost and I/O cost.

Figure 40. Return result for Q7 after dropping index ORDER_ACCOUNTID

Now I will run Q7 by dropping CUSTACC_ID to observe how the index CUSTACC_ID

affects the query performance.

Figure 41. Snapshot of dropping CUSTACC_ID

The following figure 42 shows an access plan for Q7 where the index CUSTACC_ID on table

CUSTACC was dropped.

35

Figure 42. Access plan for Q7 after dropping index CUSTACC_ID

From the result, we can see the table scanner has to read through whole CUSTACC table after

dropping CUSTACC_ID. TBSCAN takes about 15, 4479 timerons to read all 250 rows from

the table CUSTACC. For each row the NLJOIN operator passes a pointer to the correspond-

ing XML document to the XSCAN operator. For each document, the XSCAN operator

traverses the document tree, evaluates the predicates, and extracts the element if the predicate

are satisfied. Each element is passed up through the NLJOIN operator to the RETURN oper-

ator. Here the XSCAN takes about 15, 1544 timerons to traverse the document tree on CUS-

TACC table. The NLJOIN operator takes about 3804, 05 timerons to finish its work. Com-

36

paring the test with CUSTACC_ID, The NLJOIN only takes about 22, 7783 timerons to get

the job done, which is how the index CUSTACC_ID works for the query performance.

Following figure is a return result. I will compare the result with the previous tests in the next

section.

Figure 43. Return result for Q7 after dropping index CUSTACC_ID

5.3.3 Test result comparison

Now let us compare the return result of these two tests to see how the index OR-

DER_ACCOUNTID and CUSTACC_ID had affection on the execution of Q7.

Table 6. Difference of return result between three tests (figure43, 40, and 35)

Return Re-

sult

Without OR-

DER_ACCOUNTID

index

Without CUS-

TACC_ID index

With both created index-

es

cumulative

total cost

1939,45 3820,95 47,2454

cumulative

CPU cost

6,19141e+006 1,36233e+007 273224

cumulative

I/O cost

256 504,225 6,22549

From the table 6, we can see the big difference between three results. When the query is exe-

cuted with both created indexes (ORDER_ACCOUNTID&CUSTACC_ID), the total cost is

only 47, 2454, which is much less than the cost after dropping index ORDER_ACCOUNTID

(1939, 45) and CUSTACC_ID (3820, 95). On the other hand, comparing the total cost after

dropping ORDER_ACCOUNTID and CUSTACC_ID, we see after dropping CUS-

TACC_ID, the total cost is more than after dropping ORDER_ACCOUNTID, Which means

37

the CUSTACC_ID index has a more weight on affecting the query performance. Next ques-

tion is why the CUSTACC_ID had more affection on the query performance. From my study,

the document size has an influence on the work. According to the Nicola’s research, the

CUSTACC documents are between 4KB and 20KB in size and the Orders are between 1KB

to 2KB. Therefore, it will cost more timeron to execute the table CUSTACC than ORDER.

So the indexes on XML column in table CUSTACC have a more weight on affecting the que-

ry performance.

5.4 Test on Q4 by reducing created indexes on table SECURITY

In this test, I am going to test Q4 on SECURITY table. The single query is executed with 3

created indexes on XML column on single table. First I test the Q4 with all created indexes

which Nicola suggested. Then I test by dropping one index each time to observe the query

execution plan. I will record the test step by step. I try to analyse and find out how each index

influences the query performance. The following figure 44 is the query content. Also you will

find it in appendix page.

Figure 44. Q4 on XML file

5.4.1 Test on Q4 with created indexes

Here are the indexes which Nicola group already built up on table SECURITY. I run the fol-

lowing command to build up the indexes on SECURITY table according to Nicola’s sugges-

tion.

38

Figure 45. Create indexes on table SECURITY

The following figure 46 shows the indexes result after I run the command on command edi-

tor.

 SELECT indname, TABNAME,INDEXTYPE FROM SYSCAT.INDEXES

 WHERE TABNAME='SECURITY'

Figure 46. Indexes result table of SECURITY after creating indexes on XML column

Then I run the Q4 on command window by issuing “db2 –td% -f c:\temp\Q4. txt” and

“db2exfmt –d tpox -1”. After I run these commands then I get the execution plan for Q4. So

the following figures are the access plan and return result for Q4. From the access plan, we

can see the query was executed under 3 created indexes: SEC_SECTOR, SEC_PE and

SEC_YIELD. The return result shows the details of the execution including CPU, I/O cost.

39

Figure 47. Access plan for Q4 after creating indexes on SECURITY

The access plan in figure 47 contains three XISCAN (XML index scans) operators, one for

each XML predicate. The IXAND operator uses these XISCAN to alternately probe into the

three indexes to efficiently find the row IDs of the documents that match the predicates. The

FETCH operator then only retrieves these rows. These row IDs are sorted to remove dupli-

cates (if any) and to optimize the subsequent I/Os to the table. For each row fetched, the

NLJOIN passes a document pointer the XSCAN operator, which processes the correspond-

ing XML document. For each document, the XSCAN operator traverses the document tree,

evaluates the predicates, and extracts the element if the predicates are satisfied. The each ele-

ment is passed up through the NLJOIN operator to the RETURN operator. The RETURN

40

operator returns the result set to the calling application. The following figure 48 shows a re-

turn result including CPU cost and I/O cost.

Figure 48. Return result for Q4 with created indexes on table SECURITY

The following figure shows the query testing on the TPoX workload. We can see the Q4 per-

formance.

Figure 49. Query test on TPoX for 100 concurrent users and 50 transactions per user

5.4.2 Test on Q4 by dropping the indexes

Now I reduce the indexes to run the test again.

First part, I drop the index SEC_SECTOR.

41

Figure 50. Snapshot of dropping SEC_SECTOR

Now we can see the index SEC_SECTOR was dropped from the result table from the follow-

ing figure 51.

Figure 51. Index result table of SECURITY after dropping index SEC_SECTOR

I run the test again on the command window to get execution plan for Q4.

Figure 52. Access plan for Q4 after dropping indexes SEC_SECTOR on SECURITY

42

Figure 52 shows the access plan is obtained after dropping index SEC_SECTOR. The only

difference is access plan contains two XISCAN operators. The IXAND operator uses these

two XISCANs to alternately probe into the two indexes to efficiently find the row IDs of the

documents that match both predicates. The rest of the query execution works as in the previ-

ous plan in figure 47. Following figure 53 is a return result after the RETURN operator re-

turns the result set to the calling application.

Figure 53. Return result for Q4 after dropping indexes SEC_SECTOR on table SECURITY

Second part, now I only drop index SEC_YIELD.

Figure 54. Snapshot of dropping SEC_YIELD

Now we can see the index SEC_YIELD was dropped from the result table from the following

figure 55.

Figure 55. Index result table of SECURITY after dropping index SEC_YIELD

I run the test again on the command window to get execution plan for Q4.

43

Figure 56. Access plan for Q4 after dropping indexes SEC_YIELD on SECURITY

Figure 56 shows the access plan is obtained after dropping index SEC_YIELD. The access

plan contains two XISCAN operators. The IXAND operator uses these two XISCANs to

alternately probe into the two indexes to efficiently find the row IDs of the documents that

match both predicates. The rest of the query execution works as in the previous plan in figure

47. Following figure 57 is a return result after the RETURN operator returns the result set to

the calling application.

44

Figure 57. Return result for Q4 after dropping indexes SEC_YIELD on table SECURITY

Third part, now I drop the SEC_PE

Figure 58. Snapshot of dropping SEC_PE

Figure 59. Index result table of SECURITY after dropping index SEC_PE

I run same command to get the access plan for Q4 as the figure 60:

45

Figure 60. Access plan for Q4 after dropping indexes SEC_PE on SECURITY

Figure 60 shows the access plan is obtained after dropping index SEC_PE. The access plan

contains two XISCAN operators. The rest of the query execution works as in the previous

plan in figure 47. Following figure 61 is a return result after the RETURN operator returns

the result set to the calling application.

Figure 61. Return result for Q4 after dropping indexes SEC_PE on table SECURITY

46

5.4.3 Test result comparison

Now I will compare the test results with a table 7. Comparing the test results, we can see the

difference after dropping SEC_SECTOR, SEC_PE and SEC_YIELD. From the table, we

also can recognize that the weight of affecting the performance for each index is different.

The SEC_SECTOR has a heaviest effect on performance. The SEC_PE has a less effect on

performance. The SEC_YIELD has the least effect on performance.

Table7. Difference of return result between four tests (figure 53, 57, 61 and 48)

Return

result

After dropping

SEC_SECTOR

index

After drop-

ping

SEC_YIELD

index

After drop-

ping SEC_PE

index

With three cre-

ated indexes

cumulative

total cost

53,2615 31,0884 46,8005

22,88

cumulative

CPU cost

287727 235038 272913

302455

cumulative

I/O cost

7,02 4,09167 6,16667 3

Now I compare the result with two query tests on the TPoX workloadDriver. We can see the

Q4 running statement before and after dropping the index SEC_SECTOR. The performance

is better when using the index SEC_SECTOR. After dropping the index SEC_SECTOR, the

Q4 performance turned to be slower.

47

Figure 62. Query test on TPoX for 100 concurrent users and 50 transactions per user before

dropping index

Figure 63. Q4 test on TPoX for 100 concurrent users and 50 transactions per user after drop-

ping index SEC_SECTOR

48

Table 8. Difference of the performance result between before and after dropping the index

SEC_SECTOR

Search_securities_sqlxml Total Time Avg Time Max Time Min Time

With three indexes 115,73 0,16 0,74 0,00

dropping SEC_SECTOR 168,27 0,23 1,29 0,00

5.5 Query test on TPoX with & without created indexes on XML column

In this testing, I will test the query from Q1-Q7 under the condition with created indexes on

XML column and without created indexes on XML column in three tables for different con-

current users and 50 transactions. The test is to observe how the created indexes on XML

column influence the whole throughout and CPU utilization in the query performance.

5.5.1 Query test on TPoX workload with created indexes

First I observe the test with indexes which Nicola built up. The indexes for different table are

listed as the following:

Figure 64. Indexes on table SECURITY with created indexes on XML column

Figure 65. Indexes on table ORDER with created indexes on XML column

49

Figure 66. Indexes on table CUSTACC with created indexes on XML column

Now I run the query test on the command window.

Figure 67. Query test on workload for 25 users 50 transactions with created indexes

50

Figure 68. Query test on workload for 50 users 50 transactions with created indexes

Figure 69. Query test on workload for 75 users 50 transactions with created indexes

51

Figure 70. Query test on workload for 100 users 50 transactions with created indexes

Figure 71. Read-only workload XML queries throughput with created indexes

Figure 71 illustrates the query throughput (left y-axis) as well as the CPU utilization (right y-

axis) when the concurrent users are 25, 50, 75 and 100 (x-axis). The query throughput in-

creased with the number of the concurrent users as the CPUs were better utilized. On the

other hand, the throughput will show a decrease level when the CPU capacity exhausted. The

Read-only Workload, XML Queries

Queries/sec

 Number of concurrent users

52

result is coinciding with Nicola’s result. Only difference is the queries throughput amount per

second. Since the work environment and system storage in my computer is much less. You

could find the value details of the above figure in the following table 9.

Table 9. Value of read-only workload XML queries throughput with created indexes

 25 50 75 100

Queries/sec 178,57 192,31 375 357,16

%CPU Utiliza-

tion

24,87 35,28 39,74 41,26

5.5.2 Query test on TPoX workload by dropping created indexes

Now I drop the indexes on three tables. I only leave one unique index on every table. The

result lists are as the below tables:

Figure 72. Indexes on table SECURITY without created indexes on XML column

Figure 73. Indexes on table ORDER without created indexes on XML column

Figure 74. Indexes on table CUSTACC without created indexes on XML column

Now I run the query test on the command window again.

53

 Figure 75. Query test on workload for 25 users 50 transactions without created indexes

Figure 76. Query test on workload for 50 users 50 transactions without created indexes

54

Figure 77. Query test on workload for 75 users 50 transactions without created indexes

Figure 78. Query test on workload for 100 users 50 transactions without created indexes

55

TACC

Figure 79. Read-only workload XML queries throughput by reducing the created indexes

Figure 79 illustrates the queries throughput for the different concurrent users by reducing

certain indexes. The measurement method is same as the figure 71. Comparing with figure 71,

we can see the throughput is much less and CPU utilization is a bit higher. Similarly, in both

figures, the query throughputs increased with the number of the users as the CPU were better

utilized. More, you could find the value details of the above figure in table 10.

Table 10. Value of read-only workload XML queries throughput without created indexes

 25 50 75 100

Queries/sec 73,53 86,21 87,21 96,15

%CPU Utilization 20,48 33,75 46,58 47,91

5.5.3 Test result comparison

From the above figures, we could see the difference between two tests. After building up the

indexes, the throughputs for different concurrent users per second were increased about 3-4

times. The entire figures give a proof how the indexes on XML columns affect and improve

the query performance on TPoX benchmark workload.

 Read-only workload,XML Queries

Queries/sec

 Number of concurrent users

56

5.6 Summary of the tests

The aim of first test was to examine the single query Q1 performance without any created

indexes on XML columns and with some of created indexes on XML columns in the single

table ORDER. To observe the query performance on TPoX workload the test was performed

under the condition with and without the index ORDER_ID. As shown in table 4, the result

clearly indicates, that the ORDER_ID dramatically affect the performance. Thus, the test

simply gives a proof that a created index on XML column can improve query performance

much fast.

The goal of second test was to monitor the single query performance Q7 with some of created

indexes and without those created indexes on XML columns in the joined table OR-

DER&CUSTACC. The test was processed by populating three access plans in order to ob-

serve how the created indexes on XML column affect the query performance within a joined

table. One of the plans is with created indexes ORDER_ACCOUNTID & CUSTACC_ID.

Another one is after dropping one index ORDER_ACCOUNTID. The third one is after

dropping index CUSTACC_ID. The comparing result table displays how single index affect

the query performance in a joined table. A short analysis was also executed, showing that the

CUSTACC_ID has a more weight on affection the query performance. This suggests that the

document size might have an effect.

Third test was to test the single query Q4 performance with three created indexes on XML

columns (SEC_SECTOR, SEC_PE, and SEC_YIELD) also after separately dropping those

indexes on table SECURITY. The target of test is to observe how the multiple created index-

es on XML columns affect the query performance in a single table. A comparison of the re-

sults obtained from the runs were made and demonstrated in the table 7. The data exhibit that

the multiple indexes created on XML column in the single table have different effect on query

performance with the most affection seen by the SEC_SECTOR. In addition, the SEC _PE

has more affection on the query performance comparing to SEC_YIELD. Furthermore, a

short analysis was also carried out to explore why these three created indexes have different

affection on the query performance.

Forth test was to examine multi-user query performance on the TPoX workloadDriver under

the condition with created indexes on XML column and by reducing certain created indexes.

A series of multi-user query tests were performed using the seven queries. The workload for

57

25, 50, 75, 100 concurrent users were executed. After each run, the performance was

demonstrated by the figure that indicates how the throughputs were increased with the num-

ber of users as the CPUs were better utilized. The results from all runs were further compared.

From two performance structures, the throughputs were increased about three times with

more created indexes on XML columns.

6 Conclusion

The series of tests show how the indexes on XML columns affect the query performance.

More specified, the thesis presented a set of tests and examines to show how XML indexes are

used to avoid table scans and provide high query performance based on the TPoX bench-

mark. In the theory part, I gave an explanation about three types of XML indexes. The index-

es on XML columns are illustrated by the structures and moreover how the indexes on XML

columns affect the query performance was demonstrated in my experiment part. The results

from experiment part are shown in the summary.

In conclusion, from my tests and case studies, I realized that the indexes on XML columns

indeed have huge affections on the XML database performance. Especially in modern market,

there are a lot of demands on XML database applications. For instance, finance, banking and

stock marketing… The topic how to improve the application performance is always to be

considered as an important issue. Moreover, how to build up XML indexes becomes a key

point to improve the XML database performance. The XML indexes are essential for high

query performance, but their usage for query evaluation depends on how the query predicates

are formulated. In DB2, the new query operators allow DB2 to generate execution plans for

SQL/XML and XQueries. The optimizer can decide to not use an index even if it could be

used. According to my project plan and time schedule, I didn’t put much research on how to

create the more effective indexes on XML columns. This might be a work for future study. I

do hope my thesis and study could give a brief report on XML indexes in the DB2 pureXML

and it may bring some basic understanding on the topic.

Acknowledgement

I want to thank Dr. Nicola from IBM on his explanations to my questions on TPoX and

XML index implementation in DB2 pureXML.

58

Bibliography

Answers.com 2010.Transaction Processing over XML.URL:

http://www.answers.com/topic/transaction-processing-over-xml.Quoted:15.12.2010.

Böhme.T, Rahm.E. 2001. XMach-1: A Benchmark for XML Data Management. Proceedings

of German database conference BTW2001. pp. 264-273.

Franceschet.M. 2005. XPathMark – An XPath benchmark for XMark generated data. Interna-

tional XML database Symposium (XSYM). pp. 129-143.

IBM 2007. DB2 9 pureXML Guide. URL:

http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf. Quoted: 18.02.2011.

IBM 2009. Other database objects associated with XML columns. URL:

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.

xml.doc/doc/c0024071.html. Quoted: 08.02.2011.

Kogan. I, Nicola.M. 2009. Transaction Processing over XML (TPOX) Benchmark: Workload

Driver Overview and Usage. URL:

http://tpox.sourceforge.net/WorkloadDriverUsage_v2.0.pdf. Quoted: 26.02.2011.

Nicola. M, Kogan. I and Schiefer. B. 2007a. An XML Transaction Processing Benchmark.

Proceedings of the 2007 ACM SIGMOD. pp. 1-12.

Nicola. M, Kogan. I, Schiefer. B. 2007b. An XML Database Benchmark: Transaction Pro-

cessing over XML (TPoX). URL: http://tpox.sourceforge.net/. Quoted: 13.12.2010.

Nicola. M, Kumar-Chatterjee. P. 2010. DB2 9 pureXML Cookbook. IBM Press. United

States.

Schmidt. A, Waas. F, Kersten. M. L, Carey. M. J, Manolescu. I and Busse. R 2002. XMark: A

Benchmark for XML Data Management. International Conference on Very Large Data Bases

(VLDB). pp. 974-985.

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.xml.doc/doc/c0024071.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.xml.doc/doc/c0024071.html

59

Yao. B, Özsu. M. T, and Keenleyside. J. EEXTT 2002 and DiWeb 2002. XBench – A Family

of Benchmarks for XML DBMSs. pp. 162-164.

60

Appendices

Appendix 1. TPoX QUERIES

This appendix presents the code of the queries of the TPoX Benchmark. The percentage

characters (%) at the end of queries need to be configured as the statement terminator.

Q1: get_order

SELECT XMLQUERY

(

'declare namespace o="http://www.fixprotocol.org/FIXML-4-4";

for $ord in $odoc/o:FIXML

return $ord/o:Order

'

PASSING odoc AS "odoc"

)

FROM order

WHERE XMLEXISTS

(

'declare namespace o="http://www.fixprotocol.org/FIXML-4-4";

$odoc/o:FIXML/o:Order[@ID=$id]

'PASSING odoc AS "odoc", cast (? as varchar(10)) as "id"

)

%

Q2: get_security

SELECT XMLQUERY

(

'declare default element namespace "http://tpox-benchmark.com/security";

for $sec in $sdoc/Security

return $sec

'

PASSING sdoc AS "sdoc"

)

FROM security

WHERE XMLEXISTS

61

('

declare default element namespace "http://tpox-benchmark.com/security";

$sdoc/Security[Symbol=$sym]

'

PASSING sdoc AS "sdoc", cast(? as varchar(10)) as "sym"

)

%

Q3: customer_profile

SELECT XMLQUERY

(

'declare default element namespace "http://tpox-benchmark.com/custacc";

for $cust in $cadoc/Customer

return

 <Customer_Profile CUSTOMERID="{$cust/@id}">

 {$cust/Name}

 {$cust/DateOfBirth}

 {$cust/Gender}

 {$cust/CountryOfResidence}

 {$cust/Languages}

 {$cust/Addresses}

 {$cust/EmailAddresses}

 </Customer_Profile>'

PASSING cadoc AS "cadoc"

)

FROM custacc

WHERE XMLEXISTS

(

'declare default element namespace "http://tpox-benchmark.com/custacc";

$cadoc/Customer[@id=$id]'

PASSING cadoc AS "cadoc", cast (? as double) as "id"

)

%

62

Q4: search_securities

SELECT XMLQUERY

(

'declare default element namespace "http://tpox-benchmark.com/security";

for $sec in $sdoc/Security

return

 <Security>

 {$sec/Symbol}

 {$sec/Name}

 {$sec/SecurityType}

 {$sec/SecurityInformation//Sector}

 {$sec/PE}

 {$sec/Yield}

 </Security>

'

PASSING sdoc AS "sdoc"

)

FROM security

WHERE XMLEXISTS

(

'declare default element namespace "http://tpox-benchmark.com/security";

$sdoc/Security[SecurityInformation/*/Sector=$sector and PE[. >=$pe1 and . <$pe2] and

Yield>$yield]'

PASSING sdoc AS "sdoc", cast (? as varchar(25)) as "sector", cast (? as double) as "pe1", cast

(? as double) as "pe2", cast (? as double) as "yield"

)

%

Q5: account_summary

SELECT XMLQUERY

(

'declare default element namespace "http://tpox-benchmark.com/custacc";

for $cust in $cadoc/Customer

return

<Customer>{$cust/@id}

63

 {$cust/Name}

 <Customer_Securities>

 {

 for $account in $cust/Accounts/Account

 return

 <Account BALANCE="{$account/Balance/OnlineActualBal}"

 ACCOUNT_ID="{$account/@id}">

 <Securities>

 {$account/Holdings/Position/Name}

 </Securities>

 </Account>

 }

 </Customer_Securities>

</Customer>

'

PASSING cadoc AS "cadoc"

)

FROM custacc

WHERE XMLEXISTS

(

'declare default element namespace "http://tpox-benchmark.com/custacc";

$cadoc/Customer[@id=$id]'

PASSING cadoc AS "cadoc", cast (? as integer) as "id"

)

%

Q6: get_security_price

SELECT XMLQUERY

(

'declare namespace s="http://tpox-benchmark.com/security";

for $sec in $sdoc/s:Security

return

<print>The open price of the security "{$sec/s:Name/text()}" is

{$sec/s:Price/s:PriceToday/s:Open/text()} dollars

</print>

64

'

PASSING sdoc AS "sdoc"

)

FROM security

WHERE XMLEXISTS

(

'declare namespace s="http://tpox-benchmark.com/security";

$sdoc/s:Security[s:Symbol=$sym]

'

PASSING sdoc AS "sdoc", cast (? as varchar(10)) as "sym"

)

%

Q7: customer_max_order

SELECT DECIMAL(CAST(MAX(price) AS INTEGER), 15, 2) AS maxprice

FROM

(SELECT XMLCAST(XMLQUERY(

'

declare default element namespace "http://www.fixprotocol.org/FIXML-4-4";

let $orderprice := $odoc/FIXML/Order/OrdQty/@Cash

return $orderprice

'

PASSING odoc AS "odoc") AS DOUBLE) AS price

FROM custacc, order

WHERE XMLEXISTS

(

'

declare namespace c="http://tpox-benchmark.com/custacc";

$cadoc/c:Customer[@id=$id]'

PASSING cadoc AS "cadoc", cast (? as double) as "id"

)

AND XMLEXISTS

(

'

declare default element namespace "http://www.fixprotocol.org/FIXML-4-4";

65

declare namespace c="http://tpox-benchmark.com/custacc";

$odoc/FIXML/Order[@Acct=$cadoc/c:Customer/c:Accounts/c:Account/@id/fn:string(.)]

'

PASSING cadoc AS "cadoc", odoc AS "odoc")

) AS T

%

