.
m "N
BTN L AAGA-HELIA

University of Applied Sciences

An Evaluation of DB2 Express-C pureXML Feature Pack

using the TPoX Performance Benchmark

Li Wang

Bachelor’s thesis
Degree Programme in Business

Information Technology

2011

Abstract

1
BTN LAAGA-HELIA 08.04.2011

University of Applied Sciences

Degtree programme

Authors Group

Li Wang 2007

The title of your thesis Number of pages
and appendices

An Evaluation of DB2 Express-C pureXML Feature Pack 5016

using the TPoX Performance Benchmark

Supervisors
Martti Laiho

This thesis provides an introduction to XML indexes of DB2 pureXML Feature Pack, evaluat-
ing the effect of XML indexes to performance of application queries.

The thesis consists of two parts. The first part, chapters 1-4, present an overview of the
“Transaction Processing over XML” (TPoX) benchmark and introduction to the implementa-
tion of XML indexes in DB2 9 LUW, based on literature research in handbooks, case studies
and manuals. The smallest configured TPoX benchmark environment (XS scaling with

3 620 833 XML documents in 10GB disc size) is installed on Windows XP platform in a Mi-
crosoft Virtual PC 2007 computer. The second part, the empirical part in chapter 5, presents
series of tests using selected XQuery queries of TPoX in the generated XS environment, with
and without the XML indexes on XML columns. The use of indexes is studied from the ex-
tended EXPLAIN tables of hybrid DB2 giving performance estimates in TIMERON units of
DB2. The performance effect is measured in the corresponding TPoX test runs of 25...100
concurrent virtual users.

According to the empirical tests, the XML indexes have a remarkable impact on the query
performance and it proved to be effective to TPoX benchmark performance.

The study concludes that, the indexes on XML columns have a significant effect on the query
performance in TPoX benchmark. Moreover, how to build up the indexes on XML column is
also a highly considerable issue.

Key words
XML, database, benchmark, XQuery, SQL/XML, TPoX

Table of contents

GLOSSALY OF TEIINIS 1.ttt ettt ettt et s s 1
1 INtEOAUCHON ettt ettt ettt bbbt 2
2 TPOX OVEIVIEW .ottt ettt s et b ettt ettt es b anaes 3
2.1 TPoX data and XML SChema.....cccovueueirinnirieiiiirreccerireeiee et 4
2.2 TPoX transactions and WOrkloadcccoveeeirinnncirinnneccnrrecceneenes 5
221 Insert, update, delete ... 6

222 QUETIES ettt 8

2.3 TPoX workload driver and documMentationcoeeeeeeeeeeeececeeeeeererererenenenenns 9

3 Testing using TPOX ..o 10
3.1 Installing TPOX ..o 10
3.2 Preparing TeStNZ ...ccviviviviiiiiiiiiccicie e 11
3.2.1 Download testing data........ccceviieiriniiiiiiiiniiiiecenes 11

3.2.2 PerfOrMAanCe tESTuuiiiiiiieieiereierererereteresesetesssesesessssssesseesesesesesenes 12

4 Building of XIML INAEX c.ccriiiieiriiiciiicciriiccieeceeeese e esesesennae 15
4.1 XML INAEX tYPE..cuiuiiiiiiiiiiiiiiiiiiiet e 15
4.1.1 XML £2I0NS INAEX wuvvvirireiiiiiciriieieiersieeneesieeseseeee e sessssenens 16

4.1.2 XML column path indeXc.ccoeeurriieiriniieieeeeeeeseeeeeseeees 16

4.1.3 Index on an XML COIUMMN ..oevviririviririiiiccccceeeeeeerevenenenee 17

4.2 Creating index on an XML cOlUMMN......cccueiriniiieirinieeircceeeereeieneaes 18

5 EXPEriMEent PArt ..o 18
5.1 Test background and plan........cccccvieiiniiiinniiinii, 18
5.2 Test on Q1 with and without the created index ORDER_ID.................... 21
52.1 Teston Q1 with created indexes ORDER_IDccccovveieinninnnnee 21

5.2.2 Test on Q1 without created index ORDER_ID.......cccoceeviinnnnee 25

5.2.3 Test result COMPALISONoovviiririiiiiiiccee e 28

5.3 Test on Q7 with and without created indexes on the joined table............. 29

5.3.1 Teston Q7 with created INAEXES ..c.eeevererievereireririeiecerreeecerenee 29

5.3.2 Test on Q7 by dropping the indexccovuierriviiciriniiieiniicniines 32

5.3.3 Test result COMPALISONc.evvviiriiiiiiiciceeieeiee ettt 36
5.4 Test on Q4 by reducing created indexes on table SECURITY 37
5.4.1 Test on Q4 with created INAEXESoovvvveiiciiiiiciciiiieeee, 37
5.4.2 Test on Q4 by dropping the indexes........cccovvriviriiriniiiniiiiininns 40
5.4.3 Test result COMPALISONcucviiiiiiinininiiiii s 46

5.5 Query test on TPoX with & without created indexes on XML column ... 48

5.5.1 Query test on TPoX workload with created indexes........cccouvueucee. 48

5.5.2 Query test on TPoX workload by dropping created indexes.......... 52

5.5.3 Test result COMPATISON ...cvuviiiuiiiiiiiicieiiiccese e 55

5.6 Summary Of the tESES ..o 56

0 CONCIUSION ..ttt 57
BIibOGIaphy ... 58
APPEIAICES ..ttt 60

Appendix 1. TPOX QUERIESooococvooooeoeessseeeesssssoeessssoessssssessssseessssoseese 60

Glossary of terms

GRPBY
IXAND
IXSCAN
NLJOIN
RETURN
RIDSCN
TBSCAN
TEMP
TPoX

TIMERON

XANDOR

XISCAN
XSCAN
XVIP

XVIL

Group rows

The ANDing of the results of multiple index scans

Scans or probes an index on relational data

Performs a merge-sort join

Returns data from a query

Scans a list of row identifiers (RIDs)

Performs a table scan

Stores data in a temporary table

Transaction processing over XML

A unit of measurement used to give a rough relative estimate of

the resources, or cost

Evaluates multiple predicates simultaneously with

two or more XISCAN operators

Scans or probes an index on XML data

Navigates XML data to evaluate XPath expressions

Physical index

Logical index

1 Introduction

According to the work of Nicola’s research group, XML database technology efficiently sup-
portts the use of XML. There is an increasing demand for XML database technology in com-
mercial enterprises including finance and banking, industry, school, government, health care,
and recording to such increasing demand, how to make XML database more functional be-
comes an important discussed topic. The performance is always a most considerable issue.

(Nicola, Kogan, Schiefer 2007, 1)

Comparing variety of XML database, XML database on the needs of users are not the same.
The performance has been chosen as the most important conditions by most users. So a varie-
ty of performance testing tools have emerged. Some tests only for the implementation of cer-
tain aspects of the database. Some are predominantly application-oriented, such as XMach-
1(Bohme, Rahm 2001) and XBench (Yao, Ozsu, Keenleyside 2002). Some are designed as
abstract micro-benchmarks eg: XPathMark (Franceschet 2005), XMark (Schmidt, Waas, Ker-
sten, Carey, Manolescu, Busse 2002). Further on, base on the situation, Nicola’s research
group developed an application-oriented and domain-specific benchmark called “Transaction
Processing over XML” (TPoX). (Nicola, Kogan, Schiefer 2007a, 1) The goal of TPoX is to
allow database designers, developers and users to evaluate the performance of XML database
features, such as the XML query languages XQuery and SQL/XML, XML storage, XML in-
dexing, XML Schema support, XML updates, transaction processing and logging, and concur-
rency control.(Nicola, Kogan, Schiefer 2007a, 1) Based on their analysis of real XML applica-
tions, they designed and implemented TPoX which simulates a financial multi-user workload
with XML data conforming to the FIXML standard. The TPoX benchmark was originally
developed and tested by IBM and Intel but became an open source at SourceForge in January

2007. (http:/ /www.answers.com/topic/ transaction-processing-over-xml)

Nicola research group indicate a comparing with other benchmark recording the XML
benchmark requirements in their work. After analyse, they demonstrate the result of compar-
ing. They try to find the solution to meet more XML benchmark requirements. The following

is a short conclusion about their result and their goal to reach.

They believe that two separate XML benchmarks are required, one is data-centric scenario and

other is document-centric. TPoX models a data-centric scenario. Many data centric XML ap-

2

http://www.answers.com/topic/xquery

plications deal with million to billions of relatively small XML document, but only TPoX
defined multi-document tests scale from million to billions of XML documents. Rest of them
they only touch the low end required scale. XML document often required to use flexibility,
i.e change formats, business forms and other type’s documents. In TPoX they address data
variability by using a complex real-world XML Schema (FIXML, financial information ex-
change markup language). FIXML defines thousands of optional elements and attributes but
only a very small subset appears in any given instance document. TPoX allows multi-user tests
and make the isolated assessment of database performance much easier. Recording to the
read/write workload, the TPoX defines a2 mixed workload of 30% writes and 70% reads
which reach a higher level to stress all database system components. Except XPathMark, Only
TPoX uses namespaces. This meets the real world applications” demands. The schema valida-
tion is required in XML applications and it efficiently affects the performance. TPoX requires
the schema validation as a mandatory operation. Other benchmarks they might allow schema
validation but none of them requires a mandatory operation. TPoX allow the multiple docu-
ment types and joins for XML applications. Of the other benchmarks, only XBench includes

such a join and only one. (Nicola, Kogan, Schiefer 2007a, 2)

Base on the work of the Nicola research group, in my thesis, I will use the TPoX benchmark
as the test tool to analyse the XML indexes. I will use the queries which Nicola research group
already defined. I will run the queries in different conditions to compare the work of XML
indexes on columns. The purpose of the work is to observe how the XML indexes on col-

umns efficiently affect the queries performance.

2 TPoX overview

Nicola research group state that TPoX is an application-level XML database benchmark based
on a financial application scenario. It is mainly used to assess the performance of XML data-
base system focusing on XQuery, SQL / XML, XML storage, XML indexing, XML Schema
validation, XML update, logging, concurrency, etc. From various financial application models,
they selected online brokerage& trading because it is an important application. It is easily un-

derstood by both benchmark participants and database users. (http://tpox.sourceforge.net/)

TPoX consists of the following parts:
— XML Schemas for all document types used in the benchmark. including a FIXML schema;

— A set of transactions to be run on the generated data.

3

— A toolset for XML data generation to efficiently generate millions of XML documents
with well-defined value.

— A workload driver used to perform user-defined load, and collect and print test results; it
can be customized through configuration files.

— Documentation description TPoX implementation details and how to use the document.

The TPoX benchmark was carefully designed and implemented. TPoX reaches a certain tech-

nical requirements such as portability, simplicity, and scalability.

(http:/ /tpox.sourceforge.net/) This chapter shows you an overview of TPoX. It will bring

some understanding on how TPoX benchmark works.

2.1 TPoX data and XML schema

TPoX data model is based on the trading scene in the financial system and it uses FIXML to
model some of its data. It consists of two business entities: customers and brokerage firms.
(Nicola, Kogan, Schiefer 2007b, 2) Figurel below gives an overview of TPoX application sce-

nario.

/—-\/”‘\, <

{ Customers 5 » Close acoount 'VE’NpOindb
" »Create acoount »Quote
' » Stock Search »Buy

Y. »Acoountprofie »Sell

~

_— N
»Determine trading volume /" \: PR
»Find most active customers < Brokerag_e.E———j
»Determine trading fees {1 ouse LA
= e

Figure 1. TPoX application scenario (An XML database benchmark)

The scenario presents a simplification of a real-world brokerage application. The customers
buy and sell securities through the order. According to the customer requests, the brokers
process transactions. The core of the system is a database to support XML features; its per-

formance determines the performance of the application. (Figurel.)

The following figure shows the main logical data entities of TPoX relations and the corre-
sponding schema. Each customer has 1 or more accounts. Each account could have 1 or more

orders. Per order could buy or sell one warrants security each time for one account. Each war-

rant security can have 1 or more security holdings, which means that the warrant security can
be purchased by multiple accounts; similarly, each account may include one or more of the

Holdings. Each warrants security can exist in a number of orders or a number of holdings.

Order | 1 Security
FIXML :
CustAcc.xsd (41 XSD files) Security.xsd

Figure 2. TPoX Entities and XML Schemas (A Transaction Processing Benchmark)

From the figure 2, we could see that TPoX’s data entities are represented by three XML
schemas. For each customer there is one XML document (CustAcc.xsd) that includes personal
data and information about his accounts and holdings. The size of CustAcc is between 4KB
and 20KB. Orders are represented using FIXML 4.4. FIXML is an industry standard XML
schema for trade-related messages such as buy or sell orders. The size of the order document
is between 1KB to 2 KB. Order document have many attributes and a high ratio of notes to
data. Security documents represent the majority of US-traded stocks, bonds and funds using
actual security symbols and names. Their size ranges between 3KB and 10KB. The three doc-
ument collections are interrelated with each other. For example, Order documents contain
security symbols and account numbers that exist in the security and the CustAcc documents.
(Nicola, Kogan, Schiefer 2007a, 4). In TPoX, the database size can be ranged from extra small
to extra-extra large depending on the number of Order and CustAcc documents. In my testing
part, I will use extra small or small size database because of the limit of computer storage

space.

2.2 TPoX transactions and workload

The TPoX benchmark execution has two stages: stage 1 performs concurrent inserts to popu-

late the database and maintain all desired indexes at the same time. Stage 2 performs a multi-

5

user read/write workload on the populated database, with 70% queries and 30% write opera-
tions including inserts, updates and deletes combined. Both stages are executed in the work-
load driver. (Nicola, Kogan, Schiefer 2007a, 4) The TPoX framework is very extensible and it
can be use to define several different sets of transactions for the different purposes. A mixed
workload consists of inserts, deletes, updates and queries. The queries are expressed in
XQuery which can be embedded in SQL, e.g. through the use of SQL/XML functions.
(http:/ /tpox.sourceforge.net/ WorkloadDriverUsage_v2.0.pdf) The way to process the pet-
formance testing for TPoX is to execute the transaction specified by user. TPoX provides
basic transaction templates, which are stored in TPoX/WorkloadDriver/DB2/. The user can
modify or add the necessary implementation transactions. Every transaction is defined in the
file of its own. It could consist of one or a number of statements. Each statement is terminat-
ed by “%”. The transaction templates can include parameters as shown below, including as
“|1” The generation rules are provided by the load profile. The implementation of the test is
generated by the parameter maker. In my testing part, I will execute the query testing on the
workload and I will document the test process. Those queries will be referenced in the appen-

dix part.

2.2.1 Insert, update, delete

In FIXML, the insert/update/delete transactions can be used in the following observations:

— Customer accounts are updated to reflect trades (execution of orders), but not necessarily

immediately after every order.

— New orders arrive continuously, old order get pruned from the system eventually and at the

same rate (many order inserts, many order deletes).
— Security prices are updated regularly during a business day (updates).
— The turnover of a customer is low (few CustAcc inserts and few CustAcc deletes).

— The number of securities remains fixed (no delete or insert of securities).

(http:/ /tpox.sourceforge.net/ WorkloadDriverUsage_v2.0.pdf)

Table 1. TPoX insert & update transactions (A Transaction Processing Benchmark)

Transaction Business Scenario Result

Insert 1: A customer places a new Insert a new Order document in the

order to buy or sell a securi- | collection of order documents.

ty

Insert 2: A new customer signs up Insert a new CustAcc document in
for online brokerage the collection of CustAcc docu-

ments.

Delete 1: An order is cancelled or For a given order id, delete the cor-
archived responding Order document

Delete 2: A customer closes all of his | For a given customer id, delete the
account and terminates corresponding CustAcc document
business

Updatel: A customer decides to close | For a given account number, update
one of his/her accounts the corresponding CustAcc docu-
[delete subtree] ment by removing the

Account from the CustAcc docu-
ment, unless it’s the customer’s last
and only account.

Update2: A customer opens (another) | For a given customer id, update the
account [insert/append sub- | corresponding CustAcc document
tree] by appending a new

”Account” subtree to the list of ac-
counts in the CustAcc document,
unless this would exceed the
Maximum of number of accounts
per customer (currently seven).

Update3: The price of a security For a given security symbol, replace
changes [simple value up- the values of the following elements
date] in the corresponding

Security document: “LastTrade”,
“Ask”, “Bid”.
Update4: Processing by the brokerage | For a given order id, replace the

house updates an order [val-

ue update]

value /FIXML/Otdetr/@SolFlag
with “Y”” or “N” (choose
randomly), and the value of
“/FIXML/Order/Instrmt/(@Stc
with a value randomly picked from

this list of characters:

661,9’7327”. . ',7’9)”7’A7),)’B7”’)C9),. . ..,’,J)"

der gets executed [value
update, delete/replace sub-

tree]

Update5: A previously placed buy For a given account number, securi-
order gets executed [value ty symbol, and quantity: if the Cus-
update, add/replace subtree] | tAcc document already

contains a holding of the given secu-
rity in the given account, increase
the value of the element
“quantity”.

Update 6: A previously placed sell or- | For a given account number, [securi-

ty symbol,| and quantity: if the given
(sell-) quantity is equal

or greater than the “quantity” in the
corresponding “Position” in the
CustAcc document, delete

that “Position” subtree from the

given account.

Table 1 gives an overview about the insert/update/delete transactions. Business scenario and

result of each transaction can be found from the table. (Table 1)

2.2.2 Queries

In Nicola work, they defined seven core queries for a transaction processing workload. The

Queries notation will be shown in the appendix. Below is an explanation for the Queries

transaction. I will do the experiment test for the queries. I will build up XML indexes and run

some queries performance testing on TPoX workload. I will compare the result and find out

how XML index is useful for improving the benchmark performance in queries part.

Table 2. TPoX OLTP queries (A Transaction Processing Benchmark)

Q Query Name CustAcc | Security | Order | Characteristic

1 get_order X Return full order doc-
ument without the
FIXML root element

2 get_security X Return a full security
document

3 customer_profile X Extract 7 customer
elements to construct
a new profile docu-

ment

4 search_securities X Extract elements from
some securities, based

on 4 predicates

5 account_summary X Construction of an

account statement

6 get_security_price X Extract the price of a
security
7 customer_max_order | x X Join CustAcc & Order

to find the largest or-
der from a certain cus-

tomer

Table 2 lists the seven queries of the TPoX benchmark, the database tables accessed, and the

characteristics of the queries. The actual TPoX queries are listed in Appendix 1.

2.3 TPoX workload driver and documentation

Workload driver is a lightweight Java application that spawns 1 to n concurrent threads. Each
thread simulates a user that connects via JDBC to the database and submits a stream of trans-
actions without thinking times. All transactions and their weight are described in workload
description file which is input to the workload driver. Load description file used to control
the load-driven implementation; it tells the driver to carry the load configuration and how to
achieve one of the affairs of the parameters. Some examples of the load description files are
located in the TPoX / WorkloadDriver / properties. Load description file to specify the direc-
tory that contains the template or explicitly pointed out that the list of templates to be execut-
ed. (Nicola, Kogan, Schiefer 2007a, 4) The below figure 3 is an example of workload descrip-

tion file.

NumCfTransactions = 4

tl = myqueries/listSecurities.xqgr
wl = 50
pl|l = file|input/security types.txt

tz myqueries/getCustomerProfile.xgr
w2 = 20

p2|l = uniform|2000-4000

pZ2|2 = uniform|5000-20000

t3 = myqgueries/listOrders.xgr

w3 = 15
t4 = myqueries/customized.xgr
wd =153

Figure 3. Sample of workload description file

NumOfTransactions specify the number of transactions contained in the template. t1 is the
name of the template. w1 is the weight of the transaction. If a weight is specified, then all the
transactions should be assigned the right value, and the total transaction weight value should
be 100, otherwise there must be some errors; the role of the weight is that, if the user specifies
the test time for the 100s, then under this load, t1 will be taken 50% in the whole implementa-

tion process which is 50s.

T1 * p1 is the generation rule for the parameter in transaction t1. Parameter maker will gener-
ate the value according to the rule generated in the test execution process. pl | 1 indicates
that the first argument in the first transaction. p2 | 1 indicates first argument in the second
transaction. p2 | 2 indicates second parameter in the second transaction. pl | 1 shows that

the first parameter randomly selected from a file. After"|"

, it shows the address of the file; p2
| 1 shows that in the transaction 2, the first parameter 1 Integer parameter random integer
uniformly distributed from the distribution 2000-4000. If the second transaction in the state-

ment that "... where $ doc / num = | 1", then "| 1" will be presented by a random number

from 2000-4000.

3 Testing using TpoX

3.1 Installing TPoX

10

This research is done with my laptop. I download the virtual machine. In the virtual machine
I have TPoX package there. The following structure is the TPoX package. The newest TPoX
version package could be found and downloaded from the website
http://sourceforge.net/projects/tpox/files/. After extracting the file, we can see the folder

structure under the TPoX.

; TPoX.w2.0

; TPoX
datagen
DEZ2
documentation
generatedAML
PSS0L
Oracle
sample_documents
schemas

. WorkloadDrirver

Figure 4. TPoX folder structure

Following is a short description for each folder’s function.

— Datagen : test data generation tools;

DB2, MSSQL, Oracle: used to test a specific database-related documents;

Generated XML: used to store the generated XML files;

— Schemas: test used schema file;

WorkloadDriver: is load driver folder, TPoX main program is located here.

3.2 Preparing Testing

3.2.1 Download testing data

In my testing, I installed the Window XP visual machine on my laptop and installed the DB2

and TPoX package in the visual machine. The testing data are already installed in the whole

package. In case if you don’t have available test data, usually you could just go to

11

http://tpox.sourceforge.net/ to download the testing data. The data is generated by datagen
by XXS standards. If you need more test data, you could run separately datagen to generate
test data which match your testing criteria.

You could just unzip the file after downloading the data, then copy the data and put them
under generated XML.

TPoX/generatedXML/XXS/custacc/batch-[1-7]
TPoX/generatedXML/XXS/order/batch-[1-7]

TPoX/generatedXML/XXS/security

TPoX/generatedXML/XXS/account/batch-1

3.2.2 Performance test

Now I will demonstrate couple query performance test examples after setting up some of the
load TPoX description file. First of all ensure the Classpath contains the following Class or Jar
Packages:

db2jcc.jar

db2jcc_license_cisuz.jar (or any other db2_jcc_license *. jar file)
TPoX/WorkloadDriver/plugins/commons-cli-1.0.jar

TPoX /WorkloadDriver / classes

TPoX/DB2/classes

I do the performance test under the folder of TPoX/WorkloadDriver. In order to tun a query
test we have to set the correct java classpath on the command prompt window. The following
tigure will show how I set up the path.

»JDocumentsz and Settings>~Tiko>E:
»od TPoHs
S\IPoR>CD “TPod“WorkloadDriver

»TPoX“WorkloadDriver>*REM Run zome gquery tests using 5 wsers and 58 tranzaction
suser:

»TPoX“WorkloadDriver>java —classpath .;C:~IBM-~SQLLIB-java>dh2jcc4.jar;GC=~IBH~5
QLLIB~javassglj.=zip:; G~ IBM~SQLLIB~bhin ; C:~IBM~SQLLI B~ javascommon . jar:E:~TPoi-lork
loadDriver~pluginsscommons—cli—1_0.jar;E:\TPoa“WorkloadDriversclazzses ;E:“TPoX~DB
Esclasses WorkloadDriver —d tpox —w propertiessguerdiesz.xml —u 5% —tr 58
The WorkloadDriver program is running...

Figure 5. Path setting on command prompt window for query testing

12

Figure 5 indicates the path setting when I do the query test on the workloadDriver. I in-
stalled the test template queries.xml in the folder properties under the workloadDriver. The

queries.xml file includes seven queries. I present them as a reference in the appendix.

— I perform the first test on the command prompt window. The test is referring to 5 concur-
rent users, 50 transactions for each user. The following figures are the snapshot of the

working status and testing result is showed in the snapshot of the statistics.

mmand Prompt

The following arguments are used C(user ids/password omitted):
—-d tpox —uw 5 —w propertiessgqueries.xml —tr 5

Longest connection time: 13 seconds
Workload execution starting datestime: Thu Feb B3 16:44:A1 EET 2@i1
Workload execution finishing datestime: Thu Feb 83 i16:44:A3 EET 2811
Morkload execution elapsed time: 2 seconds

STATISTICS OUER THE COMPLETE RUN:
e SYSTEM WORKLOAD STATISTICS sewx

Name Type Count Total Time
Min Time (s> Max Time (s> Avg Time

get_order_sglxml Q 45 B.22
a.68 1 1 e a.88

get_security_sqglxml 28
8,88 a.81 B.88

customer_profile_sqglxml 32
8,88 a.az2 a.68a

search_securities_sqglxml 33 bh.84
a.88 a.79 B.21

account_summary_sglxml] 19 1.86

- a.83
get_security_price_sglxml Q 37
8,88 5 1 e a.81

customer_max_order_sglxml Q 36
a.68 A,.45 A.83

e SYSTEM THROUGHPUT aee

@.a5
a.16

a.27
a.91

The throughput iz 7580 transactions per minute ¢125.08 per second).

The outputsoutput2Bll_@2_A3_1643 directory contains the files output.txt
and stats.txt (as well as stats_per_user.txt,. if the verhosity level

is 1 or 2. and userl.txt. etc.. if the verhosity level is 2>.
Additionally. it contains comment.txt if —c option was used.

E:~TPo¥~WorkloadDriver>

Figure 6. Query test for 5 concurrent users and 50 transactions per users

STATISTICS OVER THE COMPLETE RURM:

WHE OSYSTEM WORKLOAD STATISTICS ®H¥

Tr. # HName Type Count %-age Total Time =3 Min Time (s) Max Time (=) Avg Time (s)
1 get_order_sglxml Q 45 18,00 0,22 0,00 0,13 0,00
2 get_security_sglxml Q 28 11,20 0,05 0,00 0,01 0,00
3 customer_profile_sqlxml Q 32 12,80 0,10 0,00 0,02 0,00
4 search_securities_sglxml Q 33 13,20 G, 84 0,00 0,79 0,21
5 account_summary_sglxml Q 39 15,60 1,06 0,00 0,42 0,03
G get_security_price_sglxml Q 37 14,80 0,27 0,00 0,13 0,01
7 customer_max_order_sgqlxml Q 36 14,40 0,51 0,00 0,45 0,03

WHE SYSTEM THROUGHPUT %

The throughput is 7500 transactions per minute (125,00 per second).

Figure 7. Statistics of the query test result for 5 concurrent users 50 transactions per user

13

Figure 6 is the transaction result on the workloadDriver. Figure 7 is a statistics result which is
created by TPoX under the folder WorkloadDriver/output/output2011_02_03_1643 after

running the query test.

— The second test is referring to 50 users and 50 transactions for each user. The testing struc-

ture and result are showed in the following figures.

E:~TPoi“MWorkloadDriver>java —classpath .;C:>~IBMNEQLLIB-javasdb2jccd. jar;C:IBH\E
QLLIB-javassglj.zip;C:~IBM~EQLLIBxhin; IBM~SQLLIB~javascommon . jar; E:xTPoXsWork
loadDriverspluginsscommons—cli—1.8. jar; E:\TPod \UWorkloadDriver~classes ;E:~TPoX\DBH
2 classes WorkloadDriver —d tpox —w properties queries.xml —-u 58 —t» 58

The UorkloadDriver program is running...

The following arguments are used {user id/password omitted):
—d tpox —u 5@ —w properties/gueries.xml —tr 58

Longest connection time: 5 seconds
Workload execution starting datestime: Thu Febh 83 17:14:29 EET 2811
Workload execution finishing datestime: Thu Febh 83 17:14:35 EET 2811
Workload execution elapsed time: 6 seconds

STATISTICS OQUER THE CGOMPLETE RUNM:
= SYSTEM WORKLOAD STATISTICS xx=

Name Type Count Total Time
Min Time (=) Hax Time (=2 flug Time (=)
387

get_ovrder_sglxml Q 17,12
8,88 a.
get_security_sqglxml 33 15.16
8,88 -
customer_profile_sgqlxml 35 14.26
a.88 a.24

search_securities_sgqlxml 20.67
a. 88 8,26

account_summary_sglxml Q 15.76
a. 88 -
get_security_price_sglxml Q 17,68
a,. 88 8,25

customer_max_order_sglxml Q 18,67
8,88 8.25

e SYSTEM THROUGHPUT s

The throughput iz 25880 transactions per minute (416.67 per second).

The outputsoutput2Bil B2 A3_1714 directory contains the files output._txt
and stats.txt <as well as stats_per_user.txt,. if the verhosity level

iz 1 or 2. and uwserl.txt,. etc., if the verbosity level iz 23,

Additionally,. it contains comment.txt if —c¢c option was used.

E:\TPox“WorkloadDriver>
[p——]

Figure 8. Query test for 50 concurrent users and 50 transactions per users

STATISTICS OVER THE COMPLETE RURM:

WHE SYSTEM WORKLOAD STATISTICS %W

Tr. #Mame Type Count ¥-age Total Time (=) Min Time (s) Max Time (=) Avg Time (s)

1 get_order_sglxm] Q 387 15,48 17,12 a, 00 0,286 0,04

2 get_security_sqlxml Q 333 13,32 15,16 0,00 0,25 0,05

3 customer_profile_sglxm] Q 358 14,32 14,26 0,00 0,24 0,04

4 search_securities_sglxml Q 350 14,36 20,67 0,00 0,26 0,06

5 ACCOoUnt_summary_scl=m] Q 368 14,72 15,76 0,00 0,26 0, 04

] get_security_price_sqlxml Q 357 14,28 17,68 0,00 0,25 0,05
customer_max_order_sqlxml Q 338 13,52 10,67 0,00 0,25 0,03

WHH SYSTEM THROUGHPUT ¥

The throughput is 25000 transactions per minute (416,67 per second).

Figure 9. Statistics of the query test result for 50 concurrent users 50 transactions per user

Figure 8 is the transaction result on the workload. Figure 9 is a statistics result which is created

under the folder WorkloaDriver/output/output2011_02_03_17:13 after running the query
14

test. These two tests just show how I run the query test on the WorkloadDriver. I will run

more tests in chapter 5.
4 Building of XML Index

In DB2 9, the pureXML provides intelligent and rich features for storing and working with
XML documents. One of them is the indexing feature that can index over XML columns and
return result sets from XQuery and SQL/XML. (Nicola, Kumat-Chattetjee 2010, 174) Index
is the way to speed up finding and accessing data. They are used normally to improve query
performance. In this chapter, I will introduce the pureXML index features and how to use the

XML indexes to improve the performance and how to create indexes on XML column.
4.1 XML index type

In DB2 9 pureXML guide, there is a detailed introduction of three XML indexes: XML re-
gions index, XML column path index, Index on an XML column. The following figure shows
how XML indexes work in DB2.

DB2 XML Indexes

INX objects :
XML column indexes XML path indexes (XPTH)

pattern (XVIL) - Coding of Path types

pattern (XV||_

y v Y

[unique]

logical

physical

Table

XML [xmL]
(path, value)
=> (RID, doc, (region,node)) row |dog |dag XML
RID regions
index (XRGN)
DAT object INX object
I x / I q

4-32 kB “

region pages

in XDA object ‘
(tablespace) ‘

Figure 10. XML indexes structure in DB2 (From teacher’s handout)

The figure 10 illustrated how the XML indexes work. The table with two XML columns is

maintained in a DAT object. The XML column in this table doesn’t contain the actual XML

15

documents but only the logical pointers to them, because the XML documents can be too
big to fit into a relational row on a single page. There are three types of indexes in figure 10:
XML regions indexes, XML path indexes, XML column indexes. I will explain these three

types’ indexes separately in the following section.

411 XML regions index

XML regions index stores the locations of each XML document that is stored in XML storage
in DB2.9. XML regions index is created automatically by DB2 9 when the first XML column
is created or added to a table. Even the table has multiple XML columns only one XML re-
gions index is created. (http://www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf 20006,
174-175) Every regions index is identified by the value XRGN in the column INDEXTYPE
and it is recorded in SYSCAT.INDEXES. (Nicola, Kumar-Chatterjee 2010, 34) The XML
regions index captures how an XML document is divided up internally into regions, which are
sets of nodes within a page. (publib.boulder.ibm.com) By default, XML documents are stored
in the XDA object. If a table has multiple XML columns, all of them share the same XDA
object. When a document tree does not fit on a single page, DB2 automatically and transpar-
ently breaks the tree into multiple subtrees, which are called regions. Each region is then
stored on a separate XDA page so a single document can span many pages. On the other
hand, if the documents are much smaller than the page size, multiple regions (documents) can
be stored on a single page so that no space is wasted. The key aspect of physical database de-
sign is the page size of a table space. The lower the number of regions per XML document the
better the performance. The number of regions per documents depends on the page size
(4KB, 8KB, 16KB, or 32KB). The large the page size of the table space the lower the number
of regions per document. (Nicola, Kumar-Chatterjee 2010, 34) The accessing to XML docu-
ments stored in XML storage always goes through XML regions index. The XML regions
index provides a logical mapping of those regions so that the document data can be retrieved
from the XML data pages. The document ID and version ID in the XML data descriptor are
used to do an index look-up in the regions index.

(http:/ /www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf, 175.) In the TPoX bench-
mark, there are three tables: ORDER, SECURITY, and CUSTACC. Each table has one XML

regions index and those regions index can not be dropped.

4.1.2 XML column path index

16

The XML column path index is system-generated for each XML column created or added to
the table. It is recorded in SYSCAT.INDEXES. The XML path index is shown as XPTH in
SYSCAT.INDEXES.INDEXTYPE. If a table with two XML columns is created, there is one
XML regions index, but two XML column path indexes generated by DB2.9. XML column
path index maps paths to path IDs for each XML column. The XML column path index is
used to improve index access performance during queries.

(http:/ /www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf, 175-176.) In the TPoX

benchmark, the path index is created by system itself for each table.

4.1.3 Index on an XML column

XML regions index and XML column path indexes are internal indexes which are associated
with XML column. These indexes are not recognized by any application programming inter-

face that returns index metadata. (publib.boulder.ibm.com)

Comparing with these two types of indexes, Index on an XML column is distinct from them.
Index on an XML column is an index created over an XML column. It is used for users to
enhance performance of XQuery and SQL/XML. XML index is created as B-tree index and
stored in the same place as relational indexes are stored. We can define multiple XML indexes
for one XML column. At same time we must be careful for creating indexes on XML column,
because it may cost to decrease the performance for INSERT, UPDATE, and DELETE, as
indexes also take spaces. We should only create indexes that are really needed.

(http:/ /www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf, 176.) When we create an in-
dex on an XML column, two indexes are actually created, a logical index and a physical index.
The logical index contains the XML pattern information specified in the CREATE INDEX
statement. The physical index has DB2 generated key columns to support the logical index
and contains the actual index value. The user works with an index on an XML column at the
logical level for the CREATE INDEX and DROP INDEX statements. Processing of the
underlying physical index by DB2 is transparent to the user. The logical index has the index
name specified in the CREATE INDEX statement and has the index type XVIL. The physi-
cal index has a system generated name and has the index type XVIP.

(http:/ /www.redbooks.ibm.com/redbooks/pdfs/sg247315.pdf, 181-182.) In my experiment
part, I will create indexes on XML column and also I will present the index result table which

will show all indexes and types including logical index and physical index.

17

4.2 Creating index on an XML column

When creating an XML index, the certain fields are required:

Index name: specify the name of XML index.

Table and column names: specify which XML column is indexed

XMLPATTERN: specify the node we want to index.

Data type: Specify SQL data type for XML index.

The following shows the CREATE INDEX statement structure for an XML index.

CEEATE INDEX — index-name »
L UNIQUE J
ON table-name (xml-column-name)l — »
GENERATE KEY USING XMLPATTERN xmlpattern——s»
AS SQL VARCHAR (integer)
VARCHAFR (HASHED)__ |
DOUBLE
DATE
TIMESTAMP

Figure 11. Structure of CREATE INDEX on XML column (DB2 9 pureXML Guide)

Figure 11 shows the most relevant part of the CREATE INDEX statement syntax for XML
indexes. The UNIQUE keyword in the statement is to enforce uniqueness across and within
all XML documents stored in a single XML column (Nicola, Kumar-Chatterjee 2010, 364). In
my experiment part, I will use the CREATE INDEX sentence to create few indexes on XML
column for tables ORDER, CUSTACC, and SECURITY. The screen script will be demon-

strated.

5 Experiment part

5.1 Test background and plan

In my experiment part, I will try to find out how the XML index influences the TPoX bench-
mark performance. In Nicola’s work, they already built some basic indexes on the tables. I will
try to find out how those indexes influence the query performance. All testing will be run on a

virtual machine. General information of testing background is as following figures.

18

Sygtem:
Microzoft Windows <P
Frofeszional
Werzion 2002
Service Pack 2

Reqistered to;

HaagaHelia
BR274-640-6315364-23349

Computer:
Intel[R] Pentium{R] Dual CPU
T2330 (= 1.60GHz
1.60GHz, 300 MB of RakM

Figure 12. Virtual xp system information

apsten | ype FAiob-bazed FL

Processar w86 Family & Model 15 Stepping 13 Genuinelt
BIOS Werzion/D ate American Megatrends [nc. 080002, 22.2. 2008
SMBIDS Yersion 2.3

Windows Directory AT DO

Sygtem Direchany CoWwAM DWW S apetem 32

Boot Device WDewicehHarddiskW olurme

Locale nited States

Hardware Abstraction Layer Yersion = "5.1.2600.2180 [=pzp_sp2_rtm. 040
Ilzer Mame VIRTUAL=PTiko

Tirme Zone FLE Standard Time

Total Phyzical Memony B4,00 ME

Awailable Physical Memorny 351,51 MB

Total Wirtual Mermory 200 GB

Ayveailable Wirkual Memorny 1.96 GB

Fage File Space 1 022,30 MB

Page Filz C:hpagefile. suz

Figure 13. Processor information of virtual machine

Windows Vista™ Home Premium
Intel(R) Pentium(R) Dual CPU T2330 @ 1.60GHz

2,00 GBE RAM
Mobile Intel(R) 965 Express Chipset Family
Computer Name: JOY

Figure 14. Host window vista system information

The following table is a test plan. The table illustrates how the tests are planned and what pur-

poses they have.

19

Table 3. Test Plan
Test contents Method Purpose
5.2 | Test the single query | First test Q1 with created To observe how a single index
Q1 performance indexes on XML column on XML column (OR-
without any created (ORDER_ID) on table DER_ID) influences the sin-
indexes on XML col- | ORDER gle query(Q1) on single table
umns and with some | Second test Q1 without (ORDER)
created indexes on created indexes on XML
XML columns on column on table ORDER
table ORDER Third compare the test re-
sult
5.3 | Test the single query | First test Q7 with created To observe how single index
performance Query7 | indexes on XML column (OR-
with some created (ORDER_ACCOUNTID, | DER_ACCOUNTID&CUST
indexes and without | CUSTACC_ID) ACC_ID) on XML column
created indexes on Second test Q7 by drop- affects the single query (Q7)
XML columns on ping the index OR- performance executed with
table OR- DER_ACCOUNTID two joined tables ORDER
DER&CUSTACC &CUSTACC_ID separately | and CUSTACC.
Third compare the test re-
sult
5.4 | Test the single query | First test Q4 with created To observe how the single
Q4 performance with | indexes on XML col- index on XML column influ-
the created indexes umn(SEC_SECTOR, ences the single query perfor-
on XML columns SEC_PE, SEC_YIELD) mance including multiple
and performance Second test Q4 by separate- | created indexes on XML
after separately drop- | ly dropping single index column in single table SECU-
ping single index (SEC_SECTOR, SEC_PE, | RITY
SEC_SECTOR, SEC_YIELD)
SEC_PE, Third compare the test re-
SEC_YIELD on sult
table SECURITY
5.5 Query performance First test Q1-Q7 perfor- To observe how the created

20

test on TPoX work-
loadDriver with cre-
ated indexes on XML

column and by drop-

mance on wotrkload with
created indexes on XML
column

Second test Q1-Q7 per-

indexes on XML column in-
fluence the whole throughout
and CPU utilization in the

query performance.

ping certain indexes formance on workload after

on XML column dropping certain indexes on
XML column
Third compare the test re-

sult

The test plan shows how I will process the test systematically. I will demonstrate the test in

the following sections following the plan.

5.2 Test on Q1 with and without the created index ORDER_ID

Before the test, I need to set up the certain environment. Performance of a query can be
evaluated using DB2 explain tools which will give cost estimate of the query in special DB2
timeron units and report of the access plan of the query providing information on optimizer
selected indexes for steps of the access plan. In order to use the visual explain tool, I have to
create first the explain tables manually by using the script EXPLAIN.DDL. So I go to the
directory sqllib\misc and write the command “db2 —tf EXPLAIN.DDL”. The explain tables
are created with a schema of the current DB2 user name. This allows me to control who can
use and share the tables. Now I can start my testing generating the access plans into the ex-
plain tables, and reporting the plans in textual format by the command-line tool “db2exfmt”.
5.2.1 Test on Q1 with created indexes ORDER_ID

In this test, I built up one index on XML column of table ORDER which Nicola suggested in
the TPoX benchmark. I use command monitor to issue the following command:

— create unique index order_id on order(ODOC) generate key using xmlpattern 'declare de-

fault element namespace "http://www.fixprotocol.org/FIXMIL-4-

4";/FIXML/Otdetr/@ID' as sql varchar(15) COLLECT STATISTICS %

21

create unigque index order id on order (0DOC) generate key using xzmlpattern
'declare default element namespace "http: /S fwmr. fixprotocol . org/FIXML-4-4" ; /FIXMNLOrder /AID'
as s9ql warchar (15} COLLECT STATISTICE %

Figure 15. Create index ORDER_ID command

— Run runstats on table tiko.order to update statistics. (this command updates statistics about
the physical characteristics of a table and the associated indexes) Figure 16 shows how to

run 2 RUNSTATS command on the table ORDER.

RUMNSTATS ON TAELE TIEOD.ORDER%

RUMSTATS ON TAELE TIEO.ORDER
DEZ0O0OOOI The BUMASTATES commatd completed successfually.

Figure 16. RUNSTATS command

After running the command, I check the index result of table ORDER by issuing command
- SELECT indname, TABNAME, INDEXTYPE FROM SYSCAT.INDEXES
WHERE TABNAME="'ORDER'.

IMDMARE % | TABMAME % | INDEXTYPE =
SEL10021412193... |ORDER WREN
SEL10021412193... |ORDER %PTH
QORDER_ID QRDER L
SEL110316185135... |ORDER P

Figure 17. Indexes on table ORDER with created index on XML column (ORDER_ID)

From the figure 17, we can see there are 4 different types and totally 3 indexes here

XRGN (XML Regions index), XPTH (XML column paths index), XVIL (Logical index on an
XML column), XVIP (Physical index on an XML column). From the theory explanation part,
we know XRGN and XPTH are created by system automatically. XVIL and XVIP are those
indexes created by issuing the CREATE command. From chapter 4.2, we know that indexes
on an XML column are only the indexes which we created over an XML column. So from the

above table, we can see the index which I created is ORDER_ID.

Then I run the Q1 on the command window. I use the command “db2 connect to tpox” to
connect to database. I put the query in “c:\temp\Q1.txt”. Then I write the command “db2 —

td% -f c:\temp\Q1.txt” to run the Q1. The query content is described in the figure 18.

22

SELECT HEMIQUERY
it

'declare namespace o="http. ~<www.{izprotocol org-FIXML-4-4":

for $ord in $Sodoc-o:FIXML
return $ordso:Order

FPASSIHG odoc AS "odoc”

)
FRCH order
WHERE XMLEXISTS

‘declare namespace o="http: < wwy. {izprotocol org-FIXMIL-4-4";
Sodocso: FIEMLo: Order[@ID=5%1d]

'PASSING odoc AS "odoc". cast (P as warchar(l0)) as "i14"
)

=

Figure 18. Q1 on XML file

After the command is run successfully, I use command “de2exfmt —d tpox -1” to report the

execution plan for the query. The following is the access plan from the execution plan.

MRNATIS F AN

Total Cost: 22,7652
Query Degree: 1
ROWS
RETURN
C 1
Cost
1
0,931034
NLJOIN
2)
22,7652
3
===\
0,931034 1
ANLIOIN GRPBY
C 3 ¢ 9
15,1936 7,57106
2 1
===\ |
1 0,931034 0,972
FETCH KSCAN XSCAN

C 4 ¢ 8 (10
7,62392 7,56966 7,57073
1 1 1

frmmmtmmn
1 250
RIDSCN TABLE: TIKO
(5 ORDER
0,0541239 Q6
0

|
1
SORT

C 8
0,0532729
0
|

1
XISCAN
¢ 7
0,0512718
0
|
250
XMLIN: TIKO

ORDER_ID
Q6

Figure 19. Access plan of Q1 with created indexes (ORDER_ID) on table ORDER

23

In order to interpreter the nodes of the access plan in figure 19, there are five lines and three
numbers in each node which we need to understand. The number above each operator name
(return, nljoin, grpby, tbscan, xscan) is the estimated number of rows produced by the opera-
tor. Next two numbers are the estimated cost of the operation in timerons and the estimated
number of I/Os the operator will perform. As an example, Figure 20 provides explanation for

a step node in the access plan:

1 Estimated number of rows returned by the operator
XISCAN Operator name
] Unique identifier of the operator
0, 0312718 Estimated cost of the operator
0 Estimated /O cost of the operator

Figure 20. Explanation of access plan in DB2 (DB2 pureXML cookbook, page405)

Now Let us see how the access plan above in figure 19 described the query Q1 execution. The
elements of the access plan are read from the bottom up, and from left to right. In step 7, the
index scan XISCAN probes the index with the path-value pair (/Order/@ID) and returns the
row identifiers (RIDs) for the documents to the sort operation in step 6. The RID scan will
build a list of the pages calling the prefetchers to retrieve the pages into the buffer pool and
passes the row IDs to the fetch operator. The fetch operation in step 4 can then fetch and
process the pages because they should already be in the buffer pool. For each row fetched, the
NLJOIN passes a document pointer to the XSCAN operator, which processes the corre-
sponding XML document. It evaluates the predicate on ORDER. Then it is passed to the
nested loop join (NLJOIN) in step 3. The nested loop join (NLJOIN) then accesses the inner
table. Then each element is passed up through the NLJOIN operator to the RETURN opera-
tor. The RETURN operator returns the result set to the calling application. A return result of

execution plan could be seen from the following figure:

Plan Details:

1) RETURN: (Return Result)

Cumulative Total Cost: 22,7652
Cumulative CPU Cost: 128890
cumulative I/0 Cost: 3
Cumulative Re-Total Cost: 15,1918
Cumulative Re-CPU Cost: 108524
Cumulative Re-I/0 Cost: 2
cumulative First Row Cost: 22,7648
Estimated Bufferpool Buffers: 4

Figure 21. Execution return result of Q1 with created index ORDER_ID on table ORDER

24

From the above figure 21, we can see the plan details of the returned performance results. It
explains all details including total cost, CPU cost and I/O cost after running the Q1 under the

index ORDER_ID which I created.

Now I run the query test on TPoX workloadDriver to observe the test result from work-
loadDriver for 100 concurrent users and 50 transactions per user. The following figure shows

the result.

The following arguments are uszed Cuser idspassword omitted):
—d tpox —uw 188 —w propertiessguerdies.xml —tr 58

Longest connection time: 7 seconds
Workload execution starting datestime: Tho Febh 24 1%:25:5%1 EET 2811
Workload execution finishing datestime: Thu Feb 24 19:26:19 EET 2811
llorkload execution elapsed time: 27 seconds

STATISTICS OVER THE COMPLETE RUH:
= SYSTEM WORKLOAD STATISTICES e

i Mame T ype Count Total Time
Min Time (s> Max Time <s2 Avg Time (s>
get_order_sglxml q 765 152 .57
. B8 B 87 A.268

Figure 22. Test result of Q1 on workloadDriver with created index ORDER_ID

STATISTICS QVER THE COMPLETE RUN:
W SYSTEM WORKLOAD STATISTICS vo¥

Tr. #Name Type Count %-age Total Time €5 win Time () Max Time (s) Avg Time (s)
1 get_order_sglanl Q. 765 15,30 152,57 0,00 0,8 0,20

Figure 23. Statistics of the test result with created index ORDER_ID

5.2.2 Test on Q1 without created index ORDER_ID

In this test, first part is that I want to see the query performance for Q1 when there are no any

created indexes on XML column on the table ORDER.

— I dropped the indexes which Nicola already built up by issuing command “Drop index

ORDER_ID” as presented in figure 24.

DROP INDEX OFDER_ID%

DEOP INLEX ORDER_ID
DEZ000OI The 20L command completed successfully.

Figure 24. Snapshot of dropping ORDER_ID

25

— After dropping the index, we can check the current indexes from SYSCAT.INDEXES as
the figure 25; there are only region index and path index on the table ORDER.

DM AME 2| TABMNAME 2 | INDEXTYPE =
SoL10021412195. [ORDER WRIGH
SaL10021412195.. [ORDER ¥PTH

Figure 25. Indexes on table ORDER without created indexes on XML column

Then I start to run the Q1 again on the command window by issuing the following command.
— CAIBM\SQLLIB\BIN>db2 -td% -f ¢:\temp\Q1.txt

— CA\IBM\SQLLIB\BIN>db2exfmt -d tpox -1

After running the command, system populates a new execution plan for Q1 without any cre-

ated index on XML column as figure 26.

Access Plan:

Total Cost: 1915,44
Query Degree: 1

Rows
RETURN
¢ 1

Cost

1/0

I
0,931034
NLIOIN
(2
1915,44
253
f-———- +-——- \
0,931034 1
ANLIOIN GRPEY
(3 ¢ __6)
1907, 86 7,57106
252 1

I
250 0,00372414 0,972
TBSCAN XECAN XECAN
¢ 4y 5 (7
15,4479 7,56966 7,57073
2 1 1

I
250

TABLE: TIKO
ORDER
Q6

Figure 26. Access plan of Q1 without created indexes on XML column on table ORDER

Starting at the bottom of the access plan, we see that the base table accessed for this query is
the TIKO ORDER, and it has a cardinality of 250 rows. When no suitable indexes are defined
on the ORDER table, the ORDER table is accessed by the TBSCAN operator. The TBSCAN

reads all rows from the table. The NLJOIN operator connects the TBSCAN with an XSCAN.
26

For each row, the NLJOIN operator passes a pointer to the corresponding XML document
to the XSCAN operator. This tells the XSCAN which XML documents to operate on. Then
each name element is passed up through the NLJOIN operator to the RETURN operator.
The RETURN operator returns the result set to the calling application. A return result of exe-

cution plan could be seen from the following figure:

Plan Details:

1) RETURN: (Return Result)

cumulative Total Cost: 1915,44
Cumulative CPU Cost: 4,16674a+006
Cumulative I/0 Cost: 253
Cumulative Re-Total Cost: 1915,43
Cumulative Re-CPU Cost: 4,16352e+006
cumulative Re-I/0 Cost: 253
cumulative First Row Cost: 1915,43
Estimated Bufferpool Buffers: 62503

Figure 27. Execution return result of Q1 without created indexes on table ORDER

The figure 27 shows a return result. It is a part of the execution plan. From the result, we can
see how much total cost, CPU cost and I/O cost it takes to execute the Q1 without any creat-

ed indexes on XML column on table ORDER.

Then I run the query test on TPoX workloadDriver to observe the result for 100 concurrent

users and 50 transactions per user.

The following arguments are used (user id-/password omitted):
—d tpox -u 188 -w properties/queries.xml —tr 58

Longest connection time: b seconds
starting datestime: Thu Feb 24 19:48:13 EET
finizhing datestime: Thu Feb 24 19:48:55% EET
Workload execution elapsed time: 41 seconds

STATISTICS OUER THE COMPLETE RUN:
www SYSTEM WORKLOAD STATISTICE www

Name Tupe Total Time
Min Time <=2 Max Time <=z L4
get_order_sglxml Q 765 323.77

Figure 28. Test result of Q1 on workloadDriver without created XML index on ORDER

STATISTICS OVER THE COMPLETE RUM:
WHH SYSTEM WORKLOAD STATISTICS WhW

Tr, #hame Type count %-age Total Time (s) Min Time (s) Max Time {s) Mg Time (s)
1 get_order_sglan] o 765 3,30 323,77 0,01 1,60 04

Figure 29. Statistics of the test result without created XML index on ORDER

27

From the figure 29, we can see the statistics result after running the query testing on the

TPoX workloadDriver. I will compare this result with the first test in the next section.

5.2.3 Test result comparison

Comparing the results of these two tests, one is with created indexes on XML column and
another one is without created indexes on XML column. We can see how the created indexes
on XML column work dramatically for the Q1. From the following table 4, we see after creat-
ing the index, the query works much faster comparing to the statement without created index-
es. AS the index ORDER_ID significantly reduces the number of rows fetched from the ta-

ble. It efficiently saves CPU cost and I/O cost during the query execution process.

Table 4. Difference of return result between two tests (figure21 &figure 27)

Return Result Without cre- | With created indexes
ated index Order_id
cumulative total cost 1915,44 22,7652

cumulative CPU cost | 4,16674e+006 | 128890

cumulative I/O cost 253 3

The following table shows the difference of Q1 performance test result on TPoX workload

driver between with created indexes and without created indexes on XML column on table

ORDER.

Table 5. Difference of Q1 performance test result on TPoX with and without created indexes

on XML (figure 22 & figure 28)

Get_order_sqlxml | Total Time | Avg Time | Max Time | Min Time

With index 152,57 0,20 0,87 0,01

Without index 323,77 0,42 1,60 0,00

From table 5, we see the difference with the two tests. After setting up the index (OR-
DER_ID) on XML column on table ORDER, the Q1 performance is faster almost 1 time

than without the index on XML column according to the figure.

28

5.3 Test on Q7 with and without created indexes on the joined table

In this test, I am going to test Q7 of Nicola. The purpose of this test is to observe how the
created indexes on XML column affect the query performance which is executed with the
joined tables (ORDER & CUSTACC). The following figure shows query content which you
could find also from Appendix page.

SELECT DECIMAL (CAST(MAX(price) AS INTEGER), 15, 2) AS maxprice
FROM
(SELECT XMLCAST (XMLOUERY(

declare default element namespace "http://www.Tixprotocol.org/FIXML-4-4";

Tet forderprice := $odoc/FIXML/Order /Orddty/2Cash
return f$orderprice

PASSING odoc AS "odoc™) AS DOUEBLE) AS price
FROM custacc, order

WHERE *MLEXISTS

8

declare namespace c="http://tpox-benchmark. com/custacc”;
fcadoc/c:Customer [@id=%id]"’
PASSING cadoc AS "cadoc™, cast (7 as double) as "id"

J
AND XMLEXISTS
{

declare default element namespace "http:,//www.Fixprotocol.org/FIXML-4-4";
declare namespace c="http://tpox-benchmark.com/custacc"”;

fodoc/FIXML Order [@Acct=%fcadoc/c:Customer /C: AcCcounts,/c: Account,/@aid/fn:string(.)]

PASSING cadoc AS "cadoc™, odoc AS "odoc™)
1 AST
%

Figure 30. Q7 on XML file
5.3.1 Test on Q7 with created indexes

First I run Q7 with indexes created by Nocola’s group on XML column in tables ORDER and
CUSTACC, presented in the following figure 31:

create index order_accountid on order(0D0C) generate key using xmlpattern
'declare default element hamespace "http:/wmw. fixprotocol. org/FIXNL-4-4"; /FLEML/Order f@ACct '
as sgl varchar(l&) COLLECT STATISTICS %

create unique index order id on order{0DOC) generate key using xmlpattern
'declare default element namespace "http: ffwmmr fixprotocol org/FIXML-4-4"; /FIXML/Order /I
as =gl warchar(lL) COLLECT STATISTICS %

create unique index custacc id on custacci{CADOC) generate key using xmlpattern
'declare default element namespace "http://tpox-benchmark. confoustace”; fCustoner /@id’
as =gl double %

create unique index custacc accountid on custace (CADOC) generate key using xmlpattern
'declare namespace c="http:/ tpox-benchmark. com/custacc";fo:Custoner /o hocounts /o Aocount /@id’
as sgl warchar(lb) %

Figure 31. Create indexes on table ORDER & CUSTACC
29

The following figures show the index results of two tables after the command executed.

IMCNAME 1| TABNAME s | moExTveE 2 |
5aL100214121852050 ORDER RGN
SaL100214121952330 ORDER KPTH
ORDER_ACCOUNTID ORDER L
SEL100214122112800 ORDER IR

ORDER D ORDER KWL
SaL110222183122210 ORDER IR

Figure 32. Indexes result on table ORDER with the created indexes on XML column

IMDMARE = | TABMAME = | INDEXTYPE = |
SEAL10021412195.. [CUSTACC RGN

SEL10021 412195, [CUSTACC WPTH

CUSTACC_|D CUSTACC WL
SEL10021412211 .. [CUSTACC AP
CUSTACC_ACCO.. |[CUSTACC WL
SELT1030121423.. [CUSTACC AP

Figure 33. Indexes result on table CUSTACC with the created indexes on XML column

Now I run the query test:

— Irun Q7 on command window with the command “db2 —td% -f c:\temp\Q7.txt”

— I populate the execution plan with the command “ db2exfmt —d tpox -1”

An access plan where the created indexes on XML column on both tables (ORDER & CUS-
TACC) are used is shown in the following figure.

30

Access Plan:

Total Cost:
Query Degree:

0, 783267
ML JIOIN
[
22,7783
3
e
1 0,763267
FETCH KSCAN
L5 L9
7,623592 15,1t34
1 z
P
1 250
RIDSCN TADLLC: TIKO
&) CUSTACC
0,0541239 03
0
I
1
SORT
[7
0,0532729
0
|
1
KISCAN
{ 8]
0,0512718
0
|
L0
¥MLIN: TIKO
CUSTACC_ID
Q3

47,2454
1
ROWS
RETURMN
L 13
Cost
I,/0
I
1
G PEY
Co oz
47 2442
6,22549
|
0,484354
KLIOIN
L3
47,244
&,22549
————————————— "\._
0,8353366
HLJIOIN
(10}
16,9034
2,749
i
1,2254% 0,518459
FETCH KSCAN
117 { 15)
7,62422 74,5718
1 1
f=======\
1,225490 230
RIDSCHN TADLLC: TIKO
{127 ORDER.
0,054286 a4
0
|
1,22549
S0RT
137
0,0534343
0
|
1,22549
XISCAN
L 14)
0,0512718
o
|
20
XMLIM: TIKO
ORDER_ACCOUNTID
04

Figure 34. Access plan for Q7 with created indexes on table ORDER & CUSTACC

Figure 34 shows the access plan that is obtained after creating indexes on two tables: ORDER

and CUSTACC. Again, we read the execution plan from the lower-left corner. The XISCAN

operator probes the index with the path-value pair (/Customer/@id /) on table CUSTACC.

At same time, another XISCAN operator probes the index with the path-value pair

(/Ordet/@Acct) on table ORDER. These two XISCAN operators work together and one for

each table. They find the row I

Ds of the documents that match their own predicates. After

fetching on both tables, for each row fetched, the NLJOIN passes a document pointer to the

XSCAN operator, which processes the corresponding XML document. After each table get its

own result set, then they join together and another NLJOIN operator to process the corre-

sponding document then return a final result.

31

1> RETURH: <Return

Cumulative

Cumulative
Cumulative
Cumulative
Cumulative
Cumulative

Result>
Total Cost:
CPU Cost:
I-0 Cost:

Re-Total Cost:

Re—CPlU Cost:
Re-I-0 Cost:

47,2454
273224
6.22549
15,2546
333551

47,2447
6,.2254%

Cumulative First Row Cost:
Eztimated Bufferpool Buffers:

Figure 35. Return result for Q7 with created indexes on table ORDER&CUSTACC

Figure 35 shows a return result of the execution which is under two created indexes OR-

DER_ACCOUNTID and CUSTACC_ID.

5.3.2 Test on Q7 by dropping the index

Now I try to drop one index ORDER_ACCOUNTID from table ORDER to observe the
query execution and see how the index ORDER_ACCOUNTID affects the execution.
I drop the index ORDER_ACCOUNTID but keep the indexes in the table CUSTACC. The

following figure shows the drop command.

DROP INDEX ORDER ACCOUNTIL
DEEZOOOO0TI The 2QL command completed successfully.

Figure 36. Snapshot of dropping ORDER_ACCOUNTID

After dropping the index, the index result is as the following figure:

IO ARE = | TABMAME % | INDEXTYPE =
SEL100214121335... |ORDER HRIGR
SEL100214121335... |ORDER *FTH
CRDER_ID CRDER WL
SEL11030710114... [ORDER WP

Figure 37. Indexes result after dropping ORDER_ACCOUNTID

[FDMARAE % | TABNAME % | INDEXTYPE =
SEL100214121935.. [CUSTACC KRN
SEL100214121935.. [CUSTACC XPTH
CUSTACC_ID CUSTACC WAL
SEL1002141 2211 .. JCUSTACC WP
CUSTACC_ACCO... |CUSTACC WL
SEL11030121423. |CUSTACC WP

Figure 38. Indexes result table on CUSTACC
32

From figure 38, we can see I didn’t change indexes on table CUSTACC. Now I try to observe

the query testing after dropping ORDER_ACCOUNTID in order to find out how an index

influence transaction through two tables. Now I run the query again with same command on

command window.

— Irun Q7 on command window with the command “db2 —td% -f c:\temp\Q7.txt”

— I populate the execution plan with the command “ db2exfmt —d tpox -1”

After running the command I got the new access plan for Q7 as the following figure 39.

Access Planm:

Total Cost: 1939, 45
Query Degree: 1
Rows
RE TURH
¢ 13
Cost
Lo
|
1
GRPEY
4 23
1939, 45
fEE
0 ,464954
ML JOIHN
4 33
1939, 45
258
S ey
233,28 0,0020FEE5
ML IO IN TESCAN
4 43 7
1908 ,4 22,8068
252 3
e R |
250 0,93312 O, MI26T
TESCAN XS CAN TEMRP
{ 5 { &8 { B
1L.,4479 7, EFIE 22,7EGE
IE 1 |3
250 O, MI26T
TAELE : TIKO MLIOIN
OROER { al
04 22,773
3
=
1 D, 73267
FETCH X5CAN
{ 100 { 14)
F,62392 1c,1:544
1 2
e]
1 20D
RIDSCH TAELE: TIKOQ
113 U STADC
0, 05481239 23
o
|
1
SORT
Co12)
0, 0532729
o
|
1
HISCAN
{13
0, 512715
o
|
250
XML IN:! TIKO
CUSTACC_ID
o3

Figure 39. Access plan for Q7 after dropping index ORDER_ACCOUNTID

33

From the access plan, we can see there is only one index CUSTACC_ID in the whole execu-
tion process. We can see the difference comparing with the first test. Because I dropped the
index ORDER_ACCOUNTID on XML column from table ORDER, so the table scanner
(TBSCAN) on table ORDER has to scan all 250 rows. It takes much more time to scan all
tables. The total costs is 19006, 4 timerons to read through ORDER table. Comparing with the
previous test, when using the index ORDER_ACCOUNTID, it only takes 16, 9034 total time
to read the table ORDER. We could see the total cost is increased about 100 times after
dropping ORDER_ACCOUNTID. On the other hand we could say after using OR-
DER_ACCOUNTID index, the query execution is faster than before about 100 times accord-
ing to the timeron unit. Since there is an efficient saving on CPU cost and I/O cost. The fol-

lowing figure 40 shows a return result. Which also indicates the CPU cost and I/O cost.

Plan Details:

1> RETURN: <Return Result)

Cumulative Total Cost: 1939 .45
Cumulative CPU Cost: b.19141e+866
Cumulative [0 Cost: 256
Cumulative Re—Total Cost: 1287 .67
Cumulative Re—CPU Cost: 5 .99%63e +866
Cumulative Re-I-0 Cost: 252
Cumulative First Row Cost: 1939 .45

Estimated Bufferpool Buffers: 625683

Figure 40. Return result for Q7 after dropping index ORDER_ACCOUNTID

Now I will run Q7 by dropping CUSTACC_ID to observe how the index CUSTACC_ID

affects the query performance.

DROP INDEX CUSTACC ID
DEEZO0OOOI The 2Q0L command completed successfiully.

Figure 41. Snapshot of dropping CUSTACC_ID

The following figure 42 shows an access plan for Q7 where the index CUSTACC_ID on table
CUSTACC was dropped.

34

Access Plan:
Total Cost: 3820,95
Query Degree: 1

ROows
RETURMN
P 1)
Cost

1,0

I

1
GRPEY
P2
3820,35
504,225

I
0,454954
NLIOIN
L3
3820,95
504,225

! kY
0,7632E7 0,6535366
MLIOIN MLIOIN
C 4] ¢ 7]
3804,05 18,9034
502 Z,22549
Jempmm, sty
250 0,00305307 1,2254% 0,51845%
TESCAN KSCAN FETCH XSCAN
5] { &) i B8] [12)
15,4479 i5,1544 77,6242z 7,5718
z z 1 1
fmm—t———=t,
250 1,22543 250
TAELE: TIKO RIDSCN TAELE: TIKO
CUSTACC) ORDER.
Q3 0,054286 Q4
0

I
1,22549
SORT

107
0,0534349
o

1,22549
KISCAN
117
0,0512718
0
I
250
¥MLIN: TIKO
ORDER_ACCOUNTID
04

Figure 42. Access plan for Q7 after dropping index CUSTACC_ID

From the result, we can see the table scanner has to read through whole CUSTACC table after

dropping CUSTACC_ID. TBSCAN takes about 15, 4479 timerons to read all 250 rows from

the table CUSTACC. For each row the NLJOIN operator passes a pointer to the correspond-

ing XML document to the XSCAN operator. For each document, the XSCAN operator

traverses the document tree, evaluates the predicates, and extracts the element if the predicate

are satisfied. Each element is passed up through the NLJOIN operator to the RETURN oper-

ator. Here the XSCAN takes about 15, 1544 timerons to traverse the document tree on CUS-

TACC table. The NLJOIN operator takes about 3804, 05 timerons to finish its work. Com-

35

paring the test with CUSTACC_ID, The NLJOIN only takes about 22, 7783 timerons to get
the job done, which is how the index CUSTACC_ID works for the query performance.
Following figure is a return result. I will compare the result with the previous tests in the next

section.

FPlan Details:

1> RETURM: <RHeturn Hesult>
Cumulative Total Cost: 3824.95
Cumulative GPU Cost: 1,.36233e+887
Cumulative 1.0 Cost: LA4,225
Cumulative Re-Total Cost: 3813.38
Cumulative Re-CPU Cost: 1.26028=0A07
Cumulative Re-I-0 Cost: 583,225
Cumulative First Row Cost: 3828.95
Estimated Bufferpool Buffers: 125804

Figure 43. Return result for Q7 after dropping index CUSTACC_ID

5.3.3 Test result comparison

Now let us compare the return result of these two tests to see how the index OR-

DER_ACCOUNTID and CUSTACC_ID had affection on the execution of Q7.

Table 6. Difference of return result between three tests (figure43, 40, and 35)

Return Re- | Without OR- Without CUS- With both created index-
sult DER_ACCOUNTID | TACC_ID index es
index
cumulative | 193945 3820,95 47,2454
total cost
cumulative | 6,19141e+006 1,36233e+007 273224
CPU cost
cumulative | 256 504,225 06,22549
I/0 cost

From the table 6, we can see the big difference between three results. When the query is exe-
cuted with both created indexes (ORDER_ACCOUNTID&CUSTACC_ID), the total cost is
only 47, 2454, which is much less than the cost after dropping index ORDER_ACCOUNTID
(1939, 45) and CUSTACC_ID (3820, 95). On the other hand, comparing the total cost after
dropping ORDER_ACCOUNTID and CUSTACC_ID, we see after dropping CUS-
TACC_ID, the total cost is more than after dropping ORDER_ACCOUNTID, Which means

36

the CUSTACC_ID index has a more weight on affecting the query performance. Next ques-
tion is why the CUSTACC_ID had more affection on the query performance. From my study,
the document size has an influence on the work. According to the Nicola’s research, the
CUSTACC documents are between 4KB and 20KB in size and the Orders are between 1KB
to 2KB. Therefore, it will cost more timeron to execute the table CUSTACC than ORDER.
So the indexes on XML column in table CUSTACC have a more weight on affecting the que-

ry performance.

5.4 Test on Q4 by reducing created indexes on table SECURITY

In this test, I am going to test Q4 on SECURITY table. The single query is executed with 3
created indexes on XML column on single table. First I test the Q4 with all created indexes
which Nicola suggested. Then I test by dropping one index each time to observe the query
execution plan. I will record the test step by step. I try to analyse and find out how each index
influences the query performance. The following figure 44 is the query content. Also you will

find it in appendix page.

SELECT XMLQUERY

‘declare default element namespace "http://tpox-benchmark.com/security"”;
for $sec in $sdoc/Security
return
<Security=
1$sec/symbol}
{$sec/Name}
{$sec/SecurityTypel}
i1$sec/securityInformation//Sector}
{%sec/PE}
1¥sec/vield}
</Security=

PASSING sdoc AS "sdoc”

FROM security
WHERE XMLEXISTS

‘declare default element namespace "http://tpox-benchmark.com/security";
$sdoc/security[securityInformation,/*/sector=3sector and

PE[. >=%pel and . <3pe2] and vield=%yield]’

PASSING sdoc AS "sdoc”, cast (7 as varchar{25)) as "sector",

cast (7 as double) as "pel", cast (7 as double) as "pe2", cast (7 as double) as "yield"

Figure 44. Q4 on XML file

5.4.1 Test on Q4 with created indexes

Here are the indexes which Nicola group already built up on table SECURITY. I run the fol-

lowing command to build up the indexes on SECURITY table according to Nicola’s sugges-

tion.

37

create index sec sector on security(SDOC) generate key using xulpattern
'declare dafault element nemespace "http://tpox-benchmark. com/security";/Security/SecurityInfornation//Sector!

as syl varchar(zf) %

create index sec PE on security(SDOC) generate key using xulpattern
'declare default element namespace "http://tpox-benchmark. cow/security";/Security/IR'
as sl double §

create index sec Tield on security(SDOC) generate key using xulpattern
'declare dafault element nemespace "http://tpox-benchwark. cow/zecurity";/Security/Tield'
as syl double &

Figure 45. Create indexes on table SECURITY

The following figure 46 shows the indexes result after I run the command on command edi-
tor.
— SELECT indname, TABNAME,INDEXTYPE FROM SYSCAT.INDEXES

WHERE TABNAME='SECURITY"

SEL1002141 2195, |SECURITY KRG
SEL1002141 2195, |SECURITY *PTH
SEC_YIELD SECURITY KWL
SEL1103531 7093574 |SECURITY KR
SEC_PE SECURITY KWL
SEL110531923554 ... |SECURITY KR
SEC_SECTOR SECURITY KWL
SEL11031620500... |SECURITY KR

Figure 46. Indexes result table of SECURITY after creating indexes on XML column

Then I run the Q4 on command window by issuing “db2 —td% -f c¢:\temp\ Q4. txt”” and
“db2exfmt —d tpox -17. After I run these commands then I get the execution plan for Q4. So
the following figures are the access plan and return result for Q4. From the access plan, we
can see the query was executed under 3 created indexes: SEC_SECTOR, SEC_PE and
SEC_YIELD. The return result shows the details of the execution including CPU, I/O cost.

38

Access Plan:

Total Cost: 22,88
Query Degree: 1
Rows
RETUR.M
¢ 1)
Cost
I/0
|
1,56149e-006
MLIOIN
2]
ZZ,88
3
S to---- !
1,561492-006 1
ANLIOIN GRPBY
(3 (12)
15,3075 7,5719
2 1
i |
0,418333 3,73263e-00&6 ©0,93696
FETCH XKSCAN FILTER
i 4 {11} { 13)
7,73787 7,56965 7,57157
1 1 1
foomtmm=\ |
0,418333 250 0,976
RIDSCN TAELE: TIKO HECAN
53 SECURITY { 14)
0,168422 Q7 T,57071
0 1
|
0,418333
SORT
&)
0,167571
0
|
0,4183233
EXAhD
0,165696
0
Fommm - Fommm - +
20,8333 25,1 50
XISCAN HKISCAN XKISCAN
8] i =3 100
0,0512718 0,0512718 0,0512718
0 0 0
| | |
250 250 250
KMLIN: TIKO HMLIN: TIKO HMLIN: TIKO
SEC_SECTOR SEC_PE SEC_YIELD
a7 a7 ar

Figure 47. Access plan for Q4 after creating indexes on SECURITY

The access plan in figure 47 contains three XISCAN (XML index scans) operators, one for
each XML predicate. The IXAND operator uses these XISCAN to alternately probe into the
three indexes to efficiently find the row IDs of the documents that match the predicates. The
FETCH operator then only retrieves these rows. These row IDs are sorted to remove dupli-
cates (if any) and to optimize the subsequent I/Os to the table. For each row fetched, the
NLJOIN passes a document pointer the XSCAN operator, which processes the correspond-
ing XML document. For each document, the XSCAN operator traverses the document tree,
evaluates the predicates, and extracts the element if the predicates are satisfied. The each ele-

ment is passed up through the NLJOIN operator to the RETURN operator. The RETURN

39

operator returns the result set to the calling application. The following figure 48 shows a re-

turn result including CPU cost and I/O cost.

1> RETURM: <Return Result>

Cumulative Total Cost: 22.88
Cumulative CPU Cost: 382455
Cumulative I-0 Cost: 3
Cumulative Re-Total Cost: 15,3866
Cumulative Re-CPU Cost: 282187
Cumulative Re-I1-0 Cost: 2
Cumulative First Row Cost: 22,8723
Estimated Bufferpool Buffers: 4

Figure 48. Return result for Q4 with created indexes on table SECURITY

The following figure shows the query testing on the TPoX workload. We can see the Q4 per-
formance.

The following arguments are used C(user id spassword omitted):
—d tpox —u 108 —w propertiessgueries.xml —tr 56

Longest connection time: b seconds
Workload execution starting datestime: Mon Feb 28 15:26:83 EET 2811
Workload execution finishing datestime: Mon Feb 28 15:26:18 EET 2811
orkload execution elapsed time: 14 seconds

STATISTICE OUER THE COMPLETE RUM:
wxx SYSTEM WORKLOAD STATISTICS e

Hame Tupe Count Total Time
Hin Time (52 Hax Time (s2 i

get_order_sglxml Q A

8,88 A, 46

get_security_sglxml Q
a.88 -

customer_profile_sglxml Q ? 84.13
a.88 a.47

search_securities_sglxml Q@ 115.73
a.88 a.74

account_summary_sglxml Q 85.38
8,88 a.41

get_security_price_sglxml Q 88.28
8,88 a.43

customer_max_order_sglxml Q 62 .81
8,88 A.35

o SYSTEM THROUGHPUT e

83,45

The throughput iz 21428 transzactions per minute (357,14 per second).

Figure 49. Query test on TPoX for 100 concurrent users and 50 transactions per user

5.4.2 Test on Q4 by dropping the indexes

Now I reduce the indexes to run the test again.

First part, I drop the index SEC_SECTOR.

40

[EYRETTITTN TN NN T W Uy N i Y

DROT INDEX sec_sectord

DROT INDEX zec_sector
DEZO00O00I The 50L cowmatd completed successfully.

Figure 50. Snapshot of dropping SEC_SECTOR

Now we can see the index SEC_SECTOR was dropped from the result table from the follow-

ing figure 51.

MO ARAE % | TABMAME = | INDEXTYPE $|
SEL1002141 2195, |[SECURITY R
SEL1002141 2195, |[SECURITY *PTH
SEC_PE SECURITY WL
SEL11041209222 . |SECURITY WP
SEC_YIELD SECURITY WL
SEL11041209243 . |SECURITY WP

Figure 51. Index result table of SECURITY after dropping index SEC_SECTOR

I run the test again on the command window to get execution plan for Q4.

Access Plan:

Total Cost: 53,2615
Query Degree: 1

Rows
RETURN
(1)

Cost

I/0

I
1,56143%e-006
NLJIOIN

[2]
53,2615
7,02
f=——— fo————— Y
1,561492-006 1
ANLIOIN GR.FPBY
3] 11)
45,589 7,5719
6,02 1
it sl |
5,02 2,11052e-007 0,93696
FETCH HSCAN FILTER
[47 { 10) 127
7,58333 7 ,5E365 7,57157
1 1 1
Pt sl |
5,02 250 0,976
RIDSCH TABLE: TIKO HECAN
S SECURITY ¢ 1)
0,117114 ar 7,57071
0 1
|
5,02
SORT
C 6]
0,116263
0
|
5,02
IxARD
¢ 7
0,112194
0
- +-————- kY
25,1 50
HISCAN HISCAMN
i 8) i 2]
0,0512718 0,05127158
o u}
| |
250 250
HMLIN: TIKO XMLIN: TIKO
SEC_PE SEC_YIELD
= ar

Figure 52. Access plan for Q4 after dropping indexes SEC_SECTOR on SECURITY
41

Figure 52 shows the access plan is obtained after dropping index SEC_SECTOR. The only
difference is access plan contains two XISCAN operators. The IXAND operator uses these
two XISCAN:Ss to alternately probe into the two indexes to efficiently find the row IDs of the
documents that match both predicates. The rest of the query execution works as in the previ-
ous plan in figure 47. Following figure 53 is a return result after the RETURN operator re-

turns the result set to the calling application.

Plan Detail=s:

1> RETURM: <Return Result>

Cumulative Total Cost: £3.2615
Cumulative CPU Cost: 287727
Cumulative I-0 Cost: 7.82
Cumulative Re-Total Cost: 45 . 6866
Cumulative Re—-CPU Cost: 265292
Cumulative Re-I1-0 Cost: 6,82
Cumulative First Row Cost: 53.26H7

Estimated Bufferpool Buffers: 28 .20004

Figure 53. Return result for Q4 after dropping indexes SEC_SECTOR on table SECURITY

Second part, now I only drop index SEC_YIELD.

DROP INDEX SEC_TIELD:

DROP INDEX SEC_YIELD
DEZO0000I The 250L command completed successfully.

Figure 54. Snapshot of dropping SEC_YIELD

Now we can see the index SEC_YIELD was dropped from the result table from the following

figure 55.

INDMAME = | TAEMNAME = | INDEXTYFE = |
SOL10029 41 2195 [SECURITY HRGH

SOL10029 41 2195 [SECURITY WFTH

SEC_SECTOR SECURITY WL

SOL1104 209184 ... [SECURITY WP

SEC_PE SECURITY WL

SOL11044 209222 [SECURITY WP

Figure 55. Index result table of SECURITY after dropping index SEC_YIELD

I run the test again on the command window to get execution plan for Q4.

42

Access Plan:

Total Cost: 31,0584
Query Degree: 1
ROws
RETUR.M
¢ 1
Cost
I,/0
I
1,56149e-006
NLIOIN
C2)
31,0884
4,09167
S t-——=—= kY
1,56149e-006 1
ANLIOIN GR.FEY
3] { 11)
23,5159 7,571%
3,09167 1
Pttt st
2,09167 7,485272-007 0,93696
FETCH XSCAN FILTER
[£ 10] { 12)
7,68275 7,5 6965 7,57157
1 1 1
===\ !
2,09167 250 0,976
RIDSCHN TABELE: TIKO KSCAN
57 SECURITY (12}
0,112237 a7 7,57071
0 1
I
2,09167
SORT
&)
0,111446
0
I
2,09167
IHAND
0,108903
0
f-—- t-————= M
20,8333 25,1
HKISCAN HISCAN
8] 3]
0,0512718 0,0512718
0 0
I I
250 250
XMLIM: TIKD XMLIM: TIKO
SEC_SECTOR SEC_PE
a7 a7

Figure 56. Access plan for Q4 after dropping indexes SEC_YIELD on SECURITY

Figure 56 shows the access plan is obtained after dropping index SEC_YIELD. The access
plan contains two XISCAN operators. The IXAND operator uses these two XISCANSs to
alternately probe into the two indexes to efficiently find the row IDs of the documents that
match both predicates. The rest of the query execution works as in the previous plan in figure

47. Following figure 57 is a return result after the RETURN operator returns the result set to

the calling application.

43

Plan Details:

1> RETURM: <Return Resultl>

Cumulative Total Cost: 31,8884
Cumulative CPU Cost: 235838

Cumulative I.-0 Cost: 4. 82167
Cumulative Re-Total Cost: 23.5146
Cumulative Re—CPU Cost: 214179

Cumulative Re-I-0 Cost: 3.89216"%
Cumulative First Row Cost: 31,8877

Ezstimated Bufferpool Buffers: ?.37587

Figure 57. Return result for Q4 after dropping indexes SEC_YIELD on table SECURITY

Third part, now I drop the SEC_PE

DROP INDEX SEC_TPE%

DROP INDEX SEC_PE
DEZ0000I The 250L command completed successfully.

Figure 58. Snapshot of dropping SEC_PE

MO ARAE = | TABMAME % | INDEXTYPE =
SEL1002141 2195, |SECURITY KRR

SEL1002141 2195, |SECURITY *PTH
SEC_SECTOR SECURITY WL
SEL11041209154 ... |SECURITY KR

SEC_YIELD SECURITY KWL
SEL11041209154 ... |SECURITY KR

Figure 59. Index result table of SECURITY after dropping index SEC_PE

I run same command to get the access plan for Q4 as the figure 60:

44

Access Plan:

Total Cost:
Query Degree:

46,8005
1

Rows
RETURN

C

13

Cost
I/0

1,56149e-006
NLIJOIN

L2
46,8005
6,16667
i t------ N
1,56149e-006 1
ANLIOIN GR.PEY
L2 Lo11)
23,228 7,5713
5, 16667 1
F=mmm =ty |
4,1666 3,747562-007 0,93696
FETCH HSCAN FILTER
¢ 4 10) ¢ 12)
7,68777 7 ,569365 7,57157
1 1 1
J=mmtm— I
4,16667 250 0,976
RIDSCN TAELE: TIKO HSCAN
53 SECURITY ¢ 13)
0,116067 Q7 7,57071
0 1
|
4,16667
SORT
[y
0,115216
u}
|
4,16667
IXAND
¢ 7
0,111637
o
f-—- t-———- kN
20,8232 5O
XISCAN XISCAN
8) 9)
0,0512718 0,0512718
o o
I I
250 250
XMLIN: TIKO XMLIN: TIKO
SEC_SECTOR SEC_YIELD
Q7 7

Figure 60. Access plan for Q4 after dropping indexes SEC_PE on SECURITY

Figure 60 shows the access plan is obtained after dropping index SEC_PE. The access plan
contains two XISCAN operators. The rest of the query execution works as in the previous
plan in figure 47. Following figure 61 is a return result after the RETURN operator returns

the result set to the calling application.

Plan Details:

1> RETURH: <Return Result>
Cumulative Total Cost: 46 . 88485
Cumulative CPU Cost: 272913
Cumulative I-0 Cost: 6,.1666"
Cumulative Re-Total Cost: 3?7.226
Cumulative Re-CPU Cost: 251886
Cumulative Re-I-0 Cost: L.1666%
Cumulative First Row Cost: 46,7997
Estimated Bufferpool Buffers: 20,3611

Figure 61. Return result for Q4 after dropping indexes SEC_PE on table SECURITY

45

5.4.3 Test result comparison

Now I will compare the test results with a table 7. Comparing the test results, we can see the
difference after dropping SEC_SECTOR, SEC_PE and SEC_YIELD. From the table, we
also can recognize that the weight of affecting the performance for each index is different.
The SEC_SECTOR has a heaviest effect on performance. The SEC_PE has a less effect on
performance. The SEC_YIELD has the least effect on performance.

Table7. Difference of return result between four tests (figure 53, 57, 61 and 48)

Return After dropping | After drop- After drop- With three cre-
result SEC_SECTOR | ping ping SEC_PE | ated indexes
index SEC_YIELD | index
index
cumulative | 53,2615 31,0884 46,8005 22,88
total cost
cumulative | 287727 235038 272913 302455
CPU cost
cumulative | 7,02 4,09167 0,16667 3
I/0 cost

Now I compare the result with two query tests on the TPoX workloadDriver. We can see the
Q4 running statement before and after dropping the index SEC_SECTOR. The performance
is better when using the index SEC_SECTOR. After dropping the index SEC_SECTOR, the

Q4 performance turned to be slower.

46

The following arguments are used {(user id/password omitted>:
—d tpox —uw 108 —w propertiessgueries.xml —tr 5@

Longest connection time: b seconds
lorkload execution starting datestime: Mon Feb 28 15:26:83 EET 2811
llorkload execution finishing datestime: Mon Feb 28 15:26:18 EET 2811
Workload execution elapsed time: 14 seconds

STATISTICS OUER THE COMPLETE RUMN:
s SYSTEM WORKLOAD STATISTICS sosse

Tr. # Hame Total Time

L] Min Time €s)> Max Time <32 i

il get_ovrder_sglxml Q 87.18
8,88 A.46

2 get_security_sglxml Q 83 .45
8,88 a.43

3 customer_profile_sglxml Q 84.13
8,88 a.47

) search_securitiez_=sglxml Q 115,73
a.88 a8.74

o account_summary_sglxml Q 85.38
8,88 a.41

i get_security_price_sglxml Q 88.28
a.88 a.43

7 customer_max_order_sglxml Q 62 .81
a.88 a.35

e SYSTEM THROUGHPUT sese

The throughput iz 21428 transactions per minute ¢357.14 per secondl.

Figure 62. Query test on TPoX for 100 concurrent users and 50 transactions per user before

dropping index

Longest connection time: 6 seconds
llorkload execution starting datestime: Mon Feb 28 15:34:37 EET 20611
Workload execution finishing datestime: Mon Febh 28 15%:34:54 EET 2811
Workload execution elapsed time: 16 zeconds

STATISTICS OUER THE COMPLETE RUM:
o SYSTEM WORKLOAD STATISTICS o

Tr. # Mame Total Time
LE Min Time (=D Max Time (=) i
il get_order_sglxml] 186,23
a.86 @.60a
get_security_sglxml Q 114,83
8,684 -
customer_profile_sglxml q ? 25,61
a.6a a.57
Q

zearch_securities_sglxml 168,27

account_summary_sglxml] 78.87

get_security_price_sglxml Q 118,97
a.80 1.11

customer_max_order_sglxml Q 78,88
8,88 a.58

wxx SYSTEM THROUGHPUT sexe

2
3
4
a.08 1.29
=
6
7

The throughput iz 18758 transactions per minute (312,50 per second).

Figure 63. Q4 test on TPoX for 100 concurrent users and 50 transactions per user after drop-

ping index SEC_SECTOR

47

Table 8. Difference of the performance result between before and after dropping the index

SEC_SECTOR

Search_securities_sqlxml | Total Time | Avg Time Max Time | Min Time
With three indexes 115,73 0,16 0,74 0,00
dropping SEC_SECTOR | 168,27 0,23 1,29 0,00

5.5 Query test on TPoX with & without created indexes on XML column

In this testing, I will test the query from Q1-Q7 under the condition with created indexes on
XML column and without created indexes on XML column in three tables for different con-
current users and 50 transactions. The test is to observe how the created indexes on XML

column influence the whole throughout and CPU utilization in the query performance.

5.5.1 Query test on TPoX workload with created indexes

First I observe the test with indexes which Nicola built up. The indexes for different table are

listed as the following:

IO ARAE = | TABMAME = | INDEXTYPE =
SEL1002141 2193, |SECURITY W RGN
SEL1002141 2195, |SECURITY *PTH
SEC_SECTOR SECURITY L
SEL11041211220... |SECURITY P
SEC_PE SECURITY L
SEL11041 209222 . |SECURITY P
SEC_YIELD SECURITY L
SEL11041209245... |SECURITY P
SECEYMBOL SECURITY L
SEL11041211291 ... |SECURITY P

Figure 64. Indexes on table SECURITY with created indexes on XML column

f| TABRAME = | INDEXT*PE = |
SEL100214121935.. |[ORDER RGN
SEL100214121935.. |[ORDER WPTH
CRDER_ACCOUN... |[ORDER L
SEL11022514434 .. |[ORDER P
CRDER_ID CRDER L
SEL11022514434 .. |[ORDER P

Figure 65. Indexes on table ORDER with created indexes on XML column

48

| TABMNAME = | INDEXT*PE =

SEL100214121935.. |(CUSTACT RGN
SEL100214121935.. |(CUSTACT WPTH
CUSTACC_ID CUSTACT L
SEL10021412211 . JCUSTACT WP
CUSTACC_ACCO.. |(CUSTACC L
SEL11022314570.. (CUSTACT WP

Figure 66. Indexes on table CUSTACC with created indexes on XML column

Now I run the query test on the command window.

—d tpox —u 25 —w propertiessgueries.xml —tr 5@

Longest connection time: 2 seconds
llorkload execution starting datestime: Tue Mar 81 22:18:23 EET 2811
Workload execution finishing datestime: Tue Mar A1 22:18:3@ EET 2811
Workload execution elapsed time: ? seconds

STATISTICS OUER THE COMPLETE RUM:
=xx SYSTEM WORKLOAD STATISTICS »ex=

Tr. # Hame Total Time

(s> Min Time (s> Max Time (52 i

1 get_order_sglxml q 11.685
A, 88 a.32

2 get_security_sglxml Q 8,78
A.88 .23

3 customer_profile_sglxml Q 18,75
8.88 a.35

4 search_securities_sglxml @ 18,74
A.88 a.38

5 account_summary_sglxml Q g.12
6.80 a.31

i get_security_price_sglxml Q ?.7?
8.88 a.36

7 customer_max_order_sglxml Q 641
A.88 B.26

= SYSTEM THROUGHPUT sese

The throughput iz 18714 transactions per minute <178.57 per second>.

Figure 67. Query test on workload for 25 users 50 transactions with created indexes

49

Command Prompt

—d tpox —u 5@ —w propertiessguerdies.xml —tr 58

Longest connection time: 3 seconds

Workload execution starting datestime: Tue Mar 81 22:28:58 EET 2011
Workload execution finishing datestime: Tue Mar 81 22:29:84 EET 2011

lorkload execution elapsed time: 13 seconds

STATISTICS OVER THE COMPLETE RUN:
e SYSTEM WORKLOAD STATISTICS seex

Tr. # Name Tupe Count
LE3 Min Time <=s2 Max Time €52 i
il get_order_sqglxml Q
A.88 a,.91
2 get_security_sglxml Q
A.88 a.96
3 customer_profile_sqglxml Q
8.88 a8.93
4 search_securities_sqlxml §
8,688 1.18
5 account _summary_sglxml Q
8,688 @,.85
6 get_security_price_sglxml Q
A.aa =
7 customer_max_order_sqglxml Q
A.8a A.67

= SYSTEM THROUGHPUT sex=

Total Time
43,68
48,78
37.34
55.69
37.18
41 .55
3f.24

The throughput iz 11538 transactions per minute (192,31 per second>.

Figure 68. Query test on workload for 50 users 50 transactions with created indexes

he following arguments are used fuser idspassword omitted>:

—d tpox —u ?% —w propertiess/queries.xml —tr 5

Longest connection time: 5 seconds

Jorkload execution starting datestime: Tue Mar 81
Jorkload execution finishing datestime: Tue Mar 81
Jorkload execution elapsed time: 18 zeconds

STATISTICS OVER THE COMPLETE RUM:
SYSTEM WORKLOAD STATISTICS aoex

Hame
Min Time (s> Max Time <=
get_order_sglxml V]
B.9a 8,69
get_security_sglxml
a.69a o
customer_profile_sqglxml
8,86 .58
gearch_securities_sqglxml
A.8@ 1,33
account_summary_sglxml Q

Ll

get_security_price_sglxml Q
a. 88 B.61

customer_max_order_sglxml Q
8.88 8.59

SYSTEM THROUGHPUT sesex

22:84:25% EET
22:84:36 EET

2811
2811

Total Time
45,72
41,99
42.13
64,63
42 . @5
40.58
28,17

Figure 69. Query test on workload for 75 users 50 transactions with created indexes

50

Command Prompt

The following arguments are wused fuser id/password
—d tpox —u 188 —w propertiessgueries.xml —tr 5@

Longest connection time: 1? =zeconds
lorkload execution starting datestime: Tue Mar A1 22:32:-4@ EET 2811
llorkload execution finishing datestime: Tuwe Mar 81 22:32:54 EET 2811
lorkload execution elapsed time: 14 zeconds

STATISTICS OVER THE COMPLETE RUN:
= SYSTEM WORKLOAD STATISTICS sexe

Tr. # Mame T ype Count " Total Time

L Min Time <s2> Max Time <=2 Avg Time <=z

il get_order_sglxml q ? 83.19
a.806 8,44

2 get_securdity sglxml qQ 1683.55
a. 088 B.67

3 customer_profile_sglxml Q 79,87
8. 88 8.53

4 search_securities_sqglxml Q 145 922
8. 88 8,96

o account_summary_sglxml Q 80,33
8,86 8,46

b get_security_price_sglxml Q 29,55
6,88 a.78

4 customer_max_order_sglxml Q L6.49
B8.88 a.47

% GYSTEM THROUGHPUT asese

Figure 70. Query test on workload for 100 users 50 transactions with created indexes

Read-only Workload, XML Queries

Quetries/sec

—e— Queries fs ec|

wWCPU
Utilization

100%
50%

0 26 &0 [£+] 100

Figure 71. Read-only workload XML queries throughput with created indexes

Figure 71 illustrates the query throughput (left y-axis) as well as the CPU utilization (right y-
axis) when the concurrent users are 25, 50, 75 and 100 (x-axis). The query throughput in-
creased with the number of the concurrent users as the CPUs were better utilized. On the

other hand, the throughput will show a decrease level when the CPU capacity exhausted. The

51

result is coinciding with Nicola’s result. Only difference is the queries throughput amount per
second. Since the work environment and system storage in my computer is much less. You

could find the value details of the above figure in the following table 9.

Table 9. Value of read-only workload XML queries throughput with created indexes

25 50 75 100
Queries/sec 178,57 192,31 375 357,16
%CPU Utiliza- | 24,87 35,28 39,74 41,26
tion

5.5.2 Query test on TPoX workload by dropping created indexes

Now I drop the indexes on three tables. I only leave one unique index on every table. The

result lists are as the below tables:

IO ARAE = | TABMAME = | INDEXTYPE =
SEL1002141 2195, |SECURITY W RGN

SEL1002141 2195, |SECURITY *PTH

SECSYMBOL SECURITY L

SEL1002141 2211 .. |SECURITY P

Figure 72. Indexes on table SECURITY without created indexes on XML column

IO ARE % | TABMAME = | INDEXTYPE S |
SEL10021412193... |ORDER KRN
SEL10021412193... |ORDER XPTH
QRDER_ID CRDER WL
SEL11022514434... |ORDER WP

Figure 73. Indexes on table ORDER without created indexes on XML column

IO ARE = | TABMAME % | INDEXTYPE = |
SEL100214121935.. |CUSTACC HRGM
SEL100214121935.. |CUSTACC *FTH
CUSTACC D CUSTACC L
SEL1002141 2211 ... JCUSTACC WP

Figure 74. Indexes on table CUSTACC without created indexes on XML column

Now I run the query test on the command window again.

52

—d tpox —uw 25 —uw propertiessqueries.xml —tr 5B

Longest connection time: 4 zeconds
Workload execution starting datestime: Tue Mar 81
Workload execution finishing datestime: Tue Mar @1
orkload execution elapsed time: 17 seconds

STATISTICS OUER THE COMPLETE RUMN:
= SYSTEM WORKLOAD STATISTICS wsex

Tr. # Name

(e Min Time (=) Max Time (=2

1 get_order_sglxml
a.88 a.68

2 get_security_sglxml Q
6.88 1.81

3 customer_profile_sglxml V]
8,88 a.8%7

<4 zsearch_securities_sglxml Q
A.a3 4,88

5 account_summary_sglxml Q
A.88 A.66

b get_security_price_sglxml Q
8. 88 1.83

7 customer_max_order_sglxml Q
A.88 2.29

= SYSTEM THROUGHPUT e

15:34:25
15:34:42

EET 2811
EET 2811

The throughput is 4411 transactions per minute (73.53 per second).

Total Time
18,67
13.74
16.47
187.15
16.32
18.@5
35.81

Figure 75. Query test on workload for 25 users 50 transactions without created indexes

—d tpox —u 5@ —w propertiessgueries.xml —tr S@

Longest connection time: 8 zeconds
starting datestime: Tue Mar A1
finishing datestime: Tue Mar 81
Workload execution elapsed time: 29 seconds

STATISTICS OUER THE COMPLETE RUM:
e SYSTEM WORKLOAD STATISTICS e

Hame
Hin Time <s> Hax Time <s)
get_order_sglxml
8,88 1.41
get_security_sglxml V]
a. 88 1.37
customer_profile_sglxml Q
a.88 2.69
search_securities_sglxml G
account _summary_sglxml q
8.80 2.94
get_security_price_sglxml Q
a. 88 =
customer_max_order_sglxml Q
a.81 2.94

e SYSTEM THROUGHPUT sewe

15:43:21

EET 2811

15:43:58 EET 2811

The throughput is 5172 transactions per minute €86.21 per second).

Total Time
61,25
52,71
118,87
217.27
125.33
49,34
161.99

Figure 76. Query test on workload for 50 users 50 transactions without created indexes

53

The following arguments are used fuser idAspassword omitted>:
—d tpox —u Y5 —w propertiesSgueries.xml —tr 58

Longest connection time: 6 seconds

lorkload execution starting datestime: Tue Mar 81 15:55:41 EET 2811
Workload execution finishing datestime: Tue Mar A1 15:56:24 EET 2A11

Workload execution elapsed time: 43 seconds

STATISTICS OUER THE COMPLETE RUM:
=xx SYSTEM WORKLOAD STATISTICS »ex=

Tr. I Mame Type Count
LD Min Time <sz2> Hax Time (sa i

1 get_order_sglxml
A. 88 1.99

2 get_security_sglxml Q
#.88 1.98

3 customer_profile_sglxml Q
A.88 1.9

4 search_securities_sglxml Q
a.8a3 7.23

o account_summary_sglxml q
a.88 1.98

b get_security_price_sglxml G
6.80 1.98

7 customer_max_order_sglxml Q
A.81 L.13

= SYSTEM THROUGHPUT =2

The throughput iz 5232 transactions per minute (87_21 per second).

Total Time
154,63
148,21
132,79
651,72
131,77
125.67
192,38

Figure 77. Query test on workload for 75 users 50 transactions without created indexes

he following arguments are used Cuser id-spassword omitted>:
—d tpox —u 188 —w propertiessqueries.xml —tr 58

Longest connection time: 22 zeconds
Jorkload execution starting datestime: Tue Mar 81 15:51:55 EET 2811
Jorkload execution finishing datestime: Tue Mar 81 15:52:48 EET 2811
Jorkload execution elapsed time: 52 zeconds

STATISTICE OUER THE COMPLETE RUM:
SYSTEM WORKLOAD STATISTICS sex=

Mame
Min Time <=s2> Max Time (s>
get_order_sqglxml Q
8. 868 2.18
get_security_sglxml Q
8.80 1.48
customer_profile_sglxml Q
8.868 3.25
search_securities_sglxml Q
B.83 3.47
account_summary_sglxml Q
B.868 3.83
get_security_price_sglxml Q
B.868 1.52
customer_max_order_sglxml Q
A.ai 4,82

SYSTEM THROUGHPUT s

he throughput is 5767 transactions per minute (?6,.15 per second).

Total Time
289.98
216,45
391.86
814,75
348,27
223.52
378,96

Figure 78. Query test on workload for 100 users 50 transactions without created indexes

54

Read-only workload, XML Queries

Queries/sec
120
100 100% | —+— Querie
Isec
80 a0%
60 60% %CPU
Utilizati| *
40 40% on

20 20%

0
0 25 50 [100

Number of concurrent usetrs

Figure 79. Read-only workload XML queries throughput by reducing the created indexes

Figure 79 illustrates the queries throughput for the different concurrent users by reducing
certain indexes. The measurement method is same as the figure 71. Comparing with figure 71,
we can see the throughput is much less and CPU utilization is a bit higher. Similarly, in both
figures, the query throughputs increased with the number of the users as the CPU were better

utilized. More, you could find the value details of the above figure in table 10.

Table 10. Value of read-only workload XML queries throughput without created indexes
25 50 75 100

Queries/sec 73,53 86,21 87,21 96,15
%CPU Utilization | 20,48 33,75 | 46,58 | 47,91

5.5.3 Test result comparison

From the above figures, we could see the difference between two tests. After building up the
indexes, the throughputs for different concurrent users per second were increased about 3-4
times. The entire figures give a proof how the indexes on XML columns affect and improve

the query performance on TPoX benchmark workload.

55

5.6 Summary of the tests

The aim of first test was to examine the single query Q1 performance without any created
indexes on XML columns and with some of created indexes on XML columns in the single
table ORDER. To observe the query performance on TPoX workload the test was performed
under the condition with and without the index ORDER_ID. As shown in table 4, the result
clearly indicates, that the ORDER_ID dramatically affect the performance. Thus, the test
simply gives a proof that a created index on XML column can improve query performance

much fast.

The goal of second test was to monitor the single query performance Q7 with some of created
indexes and without those created indexes on XML columns in the joined table OR-
DER&CUSTACC. The test was processed by populating three access plans in order to ob-
serve how the created indexes on XML column affect the query performance within a joined
table. One of the plans is with created indexes ORDER_ACCOUNTID & CUSTACC_ID.
Another one is after dropping one index ORDER_ACCOUNTID. The third one is after
dropping index CUSTACC_ID. The comparing result table displays how single index affect
the query performance in a joined table. A short analysis was also executed, showing that the
CUSTACC_ID has a more weight on affection the query performance. This suggests that the

document size might have an effect.

Third test was to test the single query Q4 performance with three created indexes on XML
columns (SEC_SECTOR, SEC_PE, and SEC_YIELD) also after separately dropping those
indexes on table SECURITY. The target of test is to observe how the multiple created index-
es on XML columns affect the query performance in a single table. A comparison of the re-
sults obtained from the runs were made and demonstrated in the table 7. The data exhibit that
the multiple indexes created on XML column in the single table have different effect on query
performance with the most affection seen by the SEC_SECTOR. In addition, the SEC _PE
has more affection on the query performance comparing to SEC_YIELD. Furthermore, a
short analysis was also carried out to explore why these three created indexes have different

affection on the query performance.

Forth test was to examine multi-user query performance on the TPoX workloadDriver under
the condition with created indexes on XML column and by reducing certain created indexes.

A series of multi-user query tests were performed using the seven queries. The workload for

56

25, 50, 75, 100 concurrent users were executed. After each run, the performance was
demonstrated by the figure that indicates how the throughputs were increased with the num-
ber of users as the CPUs were better utilized. The results from all runs were further compared.
From two performance structures, the throughputs were increased about three times with

more created indexes on XML columns.

6 Conclusion

The series of tests show how the indexes on XML columns affect the query performance.
More specified, the thesis presented a set of tests and examines to show how XML indexes are
used to avoid table scans and provide high query performance based on the TPoX bench-
mark. In the theory part, I gave an explanation about three types of XML indexes. The index-
es on XML columns are illustrated by the structures and moreover how the indexes on XML
columns affect the query performance was demonstrated in my experiment part. The results

from experiment part are shown in the summary.

In conclusion, from my tests and case studies, I realized that the indexes on XML columns
indeed have huge affections on the XML database performance. Especially in modern market,
there are a lot of demands on XML database applications. For instance, finance, banking and
stock marketing... The topic how to improve the application performance is always to be
considered as an important issue. Moreover, how to build up XML indexes becomes a key
point to improve the XML database performance. The XML indexes are essential for high
query performance, but their usage for query evaluation depends on how the query predicates
are formulated. In DB2, the new query operators allow DB2 to generate execution plans for
SQL/XML and XQueties. The optimizer can decide to not use an index even if it could be
used. According to my project plan and time schedule, I didn’t put much research on how to
create the more effective indexes on XML columns. This might be a work for future study. 1
do hope my thesis and study could give a brief report on XML indexes in the DB2 pureXML

and it may bring some basic understanding on the topic.
Acknowledgement

I want to thank Dr. Nicola from IBM on his explanations to my questions on TPoX and

XML index implementation in DB2 pureXML.

57

Bibliography

Answers.com 2010.Transaction Processing over XML.URL:

http:/ /www.answers.com/topic/ transaction-processing-over-xml.Quoted:15.12.2010.

Bohme. T, Rahm.E. 2001. XMach-1: A Benchmark for XML Data Management. Proceedings
of German database conference BTW2001. pp. 264-273.

Franceschet.M. 2005. XPathMark — An XPath benchmark for XMark generated data. Interna-
tional XML database Symposium (XSYM). pp. 129-143.

IBM 2007. DB2 9 pureXML Guide. URL:
http:/ /www.tedbooks.ibm.com/redbooks/pdfs/sg247315.pdf. Quoted: 18.02.2011.

IBM 2009. Other database objects associated with XML columns. URL:
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.
xml.doc/doc/c0024071.html. Quoted: 08.02.2011.

Kogan. I, Nicola.M. 2009. Transaction Processing over XML (TPOX) Benchmark: Workload
Driver Overview and Usage. URL:
http://tpox.sourceforge.net/ WorkloadDriverUsage_v2.0.pdf. Quoted: 26.02.2011.

Nicola. M, Kogan. I and Schiefer. B. 2007a. An XML Transaction Processing Benchmark.
Proceedings of the 2007 ACM SIGMOD. pp. 1-12.

Nicola. M, Kogan. I, Schiefer. B. 2007b. An XML Database Benchmark: Transaction Pro-
cessing over XML (TPoX). URL: http://tpox.soutceforge.net/. Quoted: 13.12.2010.

Nicola. M, Kumar-Chatterjee. P. 2010. DB2 9 pureXML Cookbook. IBM Press. United

States.

Schmidt. A, Waas. F, Kersten. M. L, Carey. M. J, Manolescu. I and Busse. R 2002. XMark: A
Benchmark for XML Data Management. International Conference on Very Large Data Bases

(VLDB). pp. 974-985.

58

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.xml.doc/doc/c0024071.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/index.jsp?topic=/com.ibm.db2.luw.xml.doc/doc/c0024071.html

Yao. B, Ozsu. M. T, and Keenleyside. J]. EEXTT 2002 and DiWeb 2002. XBench — A Family
of Benchmarks for XML DBMSs. pp. 162-164.

59

Appendices
Appendix 1. TPoX QUERIES

This appendix presents the code of the queries of the TPoX Benchmark. The percentage

characters (%) at the end of queries need to be configured as the statement terminator.

Q1: get_order

SELECT XMLQUERY

(

'declare namespace o="http://www.fixprotocol.org/ FIXML-4-4";
for $ord in $odoc/o:FIXML

return $ord/o:Order

PASSING odoc AS "odoc"

)

FROM order

WHERE XMLEXISTS

(

'declare namespace o="http://www.fixprotocol.org/FIXML-4-4";
$odoc/0:FIXML/0:Order[@ID=$id]

"PASSING odoc AS "odoc", cast (? as varchatr(10)) as "id"

)
%

Q2: get_security

SELECT XMLQUERY

(

'declare default element namespace "http://tpox-benchmark.com/security";
for $sec in $sdoc/Security

return $sec

PASSING sdoc AS "sdoc"

)
FROM security

WHERE XMLEXISTS

60

(V
declare default element namespace "http://tpox-benchmark.com/security";
$sdoc/Security[Symbol=$sym]

'

PASSING sdoc AS "sdoc", cast(? as varchar(10)) as "sym"

)
%o

Q3: customer_profile
SELECT XMLQUERY
(
'declare default element namespace "http://tpox-benchmark.com/custacc";
for $cust in $cadoc/Customer
return
<Customer_Profile CUSTOMERID="{$cust/@id}">
{$cust/Name}
{$cust/DateOfBirth}
{$cust/Gender}
{$cust/CountryOfResidence}
{$cust/Languages}
{$cust/Addresses}
{$cust/EmailAddresses}
< /Customer_Profile>'
PASSING cadoc AS "cadoc"
)
FROM custacc
WHERE XMLEXISTS
(
'declare default element namespace "http://tpox-benchmark.com/custacc";
$cadoc/Customer|[@id=$id]'
PASSING cadoc AS "cadoc", cast (? as double) as "id"

)
%

61

Q4: search_securities
SELECT XMLQUERY
(
'declare default element namespace "http://tpox-benchmark.com/security";
for $sec in $sdoc/Security
return
<Security>
{$sec/Symbol}
{$sec/Name}
{$sec/SecurityType}
{$sec/Securitylnformation/ /Sector}
{$sec/PE}
{$sec/Yield}
</Security>

PASSING sdoc AS "sdoc"

)

FROM security

WHERE XMLEXISTS

(

'declare default element namespace "http://tpox-benchmark.com/security";
$sdoc/Security[SecurityInformation/*/Sector=$sector and PE[. >=$pel and . <§pe2] and
Yield>$yield]'

PASSING sdoc AS "sdoc", cast (? as varchar(25)) as "sector", cast (? as double) as "pel", cast
(? as double) as "pe2", cast (? as double) as "yield"

)
%

Q5: account_summary

SELECT XMLQUERY

(

'declare default element namespace "http://tpox-benchmark.com/custacc";
for $cust in $cadoc/Customer

return

<Customer> {$cust/@id}

62

{$cust/Name}
<Customer_Securities>
{
for $account in $cust/Accounts/Account
return
<Account BALANCE="{$account/Balance/OnlineActualBal}"
ACCOUNT_ID="{$account/@id}">
<Securities>
{$account/Holdings/Position/Name}
</Securities>
</Account>
b
</Customer_Securities>
</Customer>

PASSING cadoc AS "cadoc"
)

FROM custacc

WHERE XMLEXISTS

(

'declare default element namespace "http://tpox-benchmark.com/custacc";
$cadoc/Customer|[@id=$id]'
PASSING cadoc AS "cadoc", cast (? as integer) as "id"

)
%

QG6: get_security_price

SELECT XMLQUERY

(

'declare namespace s="http://tpox-benchmark.com/security";
for $sec in $sdoc/s:Security

return

<print>The open price of the security "{$sec/s:Name/text()}" is
{$sec/s:Price/s:PriceToday/s:Open/text()} dollars

</ptint>

63

'

PASSING sdoc AS "sdoc"

)

FROM security

WHERE XMLEXISTS

(

'declare namespace s="http://tpox-benchmark.com/security";
$sdoc/s:Security[s:Symbol=$sym]

'

PASSING sdoc AS "sdoc", cast (? as varchar(10)) as "sym"

)
%

Q7: customer_max_order

SELECT DECIMAL(CASTMAX (price) AS INTEGER), 15, 2) AS maxprice
FROM

(SELECT XMLCAST(XMLQUERY/(

declare default element namespace "http://www.fixprotocol.org/FIXMIL-4-4";
let $orderprice := $odoc/FIXML/Order/OrdQty/ @Cash

return $orderprice

PASSING odoc AS "odoc") AS DOUBLE) AS price

FROM custacc, order

WHERE XMLEXISTS

(

'

declare namespace c="http://tpox-benchmark.com/custacc";
$cadoc/c:Customer|@id=$id]'
PASSING cadoc AS "cadoc", cast (? as double) as "id"

)
AND XMLEXISTS

(

'

declare default element namespace "http://www.fixprotocol.org/ FIXMIL-4-4";

64

declare namespace ¢="http://tpox-benchmark.com/custacc";
$odoc/FIXML/Otrdet[@Acct=$cadoc/c:Customer/c:Accounts/c:Account/ @id/ fn:string ()]
PASSING cadoc AS "cadoc", odoc AS "odoc")

)AST

%

65

