

 Test-driven development

 Weikko Aejmelaeus

 Arcada University of Applied Sciences

 Information technology

 Helsinki 2009

 2

Utlåtande (Skrivs av handledaren och granskaren)

 3

DEGREE THESIS

Arcada

Degree Programme: Information technology

Identification number: 2513

Author: Weikko Aejmelaeus

Title: Test-driven development

Supervisor: M.Sc. Magnus Westerlund

Commissioned by: Suunto Oy

Abstract:

In this thesis, a literature survey of TDD, and an evaluation of two different unit test

frameworks for standard C++ was done.

The theoretical part examined test-driven development (TDD) from a developer’s point of

view with the objective to learn how the method works in practice and what difficulties

there are to adopt it. The approach is to write the test before the code to be tested. The

programmer writes the test and is using a unit test framework. It appeared that tests are

written and executed frequently. Adaptation of the method proved to be difficult, since it

is radically different from the traditional methods, where tests are written after the

implementation.

In the practical part of the thesis two unit test frameworks for standard C++ was

evaluated, CppUnit and Boost.Test. The learning from the theoretical part formulated the

evaluation criteria to contain minimal amount of steps to add new tests and easy test

execution. xUnit is an architecture description of unit test frameworks, which is

implemented in most modern programming languages. In the evaluation it appeared that

the evaluated framework that implements the xUnit architecture is not optimal for C++.

Keywords: Test-driven development (TDD), Test design, C++ unit test

framework, TDD adoption, CppUnit, Boost.Test

Number of pages: 47

Language: English

Date of acceptance: 15.5.2009

 4

EXAMENSARBETE

Arcada

Utbildningsprogram: Informationsteknik

Identifikationsnummer: 2513

Författare: Weikko Aejmelaeus

Arbetets namn: Testdriven utveckling

Handledare: M.Sc. Magnus Westerlund

Uppdragsgivare: Suunto Oy

Sammandrag:

I detta slutarbete gjordes en litteraturstudie av testdriven utveckling (TDU) och en

utvärdering av två olika testramverk för standard C++.

Den teoretiska delen undersökte testdriven utveckling (TDU) från en programmerares

synvinkel med målet att lära sig hur metoden fungerar i praktiken och vilka svårigheter det

finns att anamma den. Metoden går ut på att testen skrivs innan koden som ska testas.

Programmeraren skriver testerna och har till sin hjälp ett testramverk. Det framkom att

man frekvent skriver nya tester och att de körs ofta. Att anamma metoden är svårt

eftersom den skiljer sig radikalt från de traditionella metoderna, där testerna skrivs efter

implementationen.

I den praktiska delen av slutarbetet utvärderades två testramverk för standard C++,

CppUnit och Boost.Test. Kunskaperna från den teoretiska delen användes till att skapa

utvärderingskriterierna. De fokuserar på att det skall vara så enkelt som möjligt att lägga

till nya test samt att de skall vara enkla att köra. xUnit är en arkitekturbeskrivning för

testramverk som implementerats till de flesta moderna programmeringsspråken.

Evalueringen visade att testramverket som implementerade xUnit arkitekturen inte är

optimalt för C++.

Nyckelord: Test-driven development (TDD), Test design, C++ unit test

framework, TDD adoption, CppUnit, Boost.Test

Sidantal: 47

Språk: Engelska

Datum för godkännande: 15.5.2009

 5

TABLE OF CONTENTS

1. Introduction ... 9

1.1. History .. 9

1.2. Background .. 10

1.3. Objectives ... 10

1.3.1. Theoretical .. 10

1.3.2. Practical... 10

1.4. Limitations ... 11

2. Test-driven development .. 11

2.1. The TDD Cycle .. 12

2.2. Writing tests ... 15

2.3. Refactoring ... 16

2.4. Design... 17

2.4.1. Test doubles .. 19

2.5. xUnit architecture ... 19

2.5.1. Assertions .. 20

2.5.2. Test case .. 20

2.5.3. Test fixture .. 20

2.5.4. Test suite ... 21

2.5.5. Test organization ... 21

2.6. TDD patterns .. 21

2.6.1. Four-Phase Test .. 22

2.6.2. Faking It .. 22

2.6.3. Obvious Implementation ... 22

2.6.4. Triangulation ... 23

2.6.5. Delta Assertion.. 23

2.6.6. Anti-patterns ... 23

2.7. Tools ... 23

2.7.1. Test coverage .. 24

2.7.2. Mock objects ... 24

2.8. Adopting TDD.. 24

2.8.1. Adopting tools and techniques .. 25

 6

2.8.2. Adopting TDD .. 25

2.8.3. TDD adaptation pitfalls... 26

3. Test framework evaluation ... 27

3.1. Requirements and evaluation criteria ... 27

3.2. CppUnit .. 29

3.2.1. CppUnit simple test... 29

3.2.2. CppUnit fixture usage ... 30

3.2.3. CppUnit test suite .. 31

3.2.4. CppUnit helper macros ... 32

3.2.5. CppUnit IDE integration ... 33

3.3. Boost.Test ... 34

3.3.1. Boost.Test simple test ... 35

3.3.2. Boost.Test fixture usage.. 35

3.3.3. Boost.Test test suite .. 36

3.3.4. Boost.Test IDE integration ... 37

3.4. Test framework evaluation conclusion .. 39

3.4.1. Recommendation .. 41

4. Discussion ... 41

4.1. Criticism ... 41

4.2. Software quality ... 41

4.3. Unit test framework evaluation .. 42

4.4. Further development .. 43

4.5. Conclusion .. 43

REFERENCES ... 45

 7

ABBREVATIONS

TDD Test-driven development

GUI Graphical user interface

IDE Integrated development environment

C++ A general purpose programming language

STL Standard Template Library

XP Extreme Programming

 8

ACKNOWLEDGEMENTS

I would like to thank my teachers at Arcada, thesis supervisor M.Sc. Magnus Westerlund

for help and guidance in the writing process and M.Sc. Hanne Karlsson for final

polishing and valuable feedback. I would also like to thank my colleagues at Suunto for

help and reviewing, especially M.Sc. Jyrki Uusitalo for making it possible to write about

this topic. Last but not least I would like to thank my fiancé for her support.

Weikko Aejmelaeus

Vantaa 15.5.2009

 9

1. INTRODUCTION

Test-driven development (TDD) or test-first programming is a software development

method that is often used in agile software development processes. The idea is that the

tests are written before the code that is tested. The developer works in small steps, using a

unit test framework that provides rapid response to small changes (Beck, 2003:x).

A unit test framework provides mechanisms for running tests. Thus the test writer can

concentrate on writing the test specific logic (Meszaros, 2007:298). The xUnit

architecture is a unit test framework architecture that is ported to most current

programming languages (Hamill, 2005:18).

Scrum both is an iterative and incremental development process that includes a skeleton

which defines roles and routines within a project (ScrumAlliance, 2009). When it is

applied to software development, agile methods are used. In scrum the customer becomes

a part of the development team (Wikipedia, 2009c).

1.1. History

Agile methods started to evolve in the mid-1990s. Before that software was developed

with focus on careful project planning and extensive design and documentation. In small

and medium sized projects this approach leads to a large overhead and bureaucracy. In

agile development methods two to four week iterations are used. The goal for each

iteration is to deliver working software. Each iteration is carefully planned, including

analysis, design, coding and testing. (Sommerville, 2004:396).

Specifying inputs and outputs before programming the specific implementation is not

new in software development. TDD is based on this idea. TDD has its origin in Extreme

Programming (XP) that is an agile software development process created by Kent Beck

in year 2000 (Sommerville, 2004:398).

 10

1.2. Background

This thesis is written for Suunto Oy. Suunto is a leading Finnish manufacturer of sports

instruments for a variety of training, diving and outdoor sports. Suunto’s team for PC -

and Web software has introduced Scrum as their process for software development. TDD

is one method that is planned to be used in the software development process.

1.3. Objectives

This thesis is divided into two main parts, one theoretical and one practical. The

theoretical part is a literature survey of the topic where literature and scientific articles are

used. The practical part is to evaluate unit test frameworks for the C++ programming

language. The gained knowledge from the theoretical part will be used as a base for

creating the evaluation criteria.

1.3.1. Theoretical

One objective is to learn how TDD is done in practice, with focus on how the method can

increase the quality of written code. This includes understanding of how test are written,

how unit test frameworks are functioning and what patterns can be used when practicing

TDD.

The TDD method is radically different from the traditional way to create software;

therefore yet another objective is to illustrate with the literature survey what is required of

the team and the individual developer to practice TDD. What are the most common

pitfalls? How can these be avoided?

1.3.2. Practical

There are many different unit test frameworks for standard C++. But none of them is a de

facto standard, Java has JUnit or C# .NET has NUnit. The xUnit architecture is built on

an object oriented programming paradigm, but C++ is a multi-paradigm language that

allows usage of free functions that are not members of a class. Is the xUnit architecture

optimal for an automated C++ unit test framework, or is a solution using C-style free

 11

functions a better alternative? Two different unit test frameworks will be selected for

evaluation, one xUnit oriented and one that utilize free functions. The evaluation result

will be a recommendation for a standard C++ unit test framework selection. The gained

knowledge from the thesis theoretical part will be used to create evaluation criteria for the

comparison.

1.4. Limitations

This thesis will not describe agile processes in general; it focuses on TDD and its

methods. The tests are described from a unit test perspective which verifies that all

different elements of the system work as the developer intended.

2. TEST-DRIVEN DEVELOPMENT

In an overview of the literature in the field of agile testing, the terms TDD and test-first

programming stands out. TDD used to be called test-first programming as an opposite of

traditional development were tests usually were written after the code it is testing (Beck,

2003:203).

In traditional software development models the tests are written after the code is

implemented, in other words test-last. This does not drive the design of the code to be

testable. Even if the code is designed with testability in mind, the chance is low that it

will be, without modifying the production code (Meszaros, 2007:32). When tests are

written before the code it tests the development is driven by the software requirements

and specifications. If test are written after the implementation there is a risk that tests are

written to satisfy the implementation, not the requirements (Elssamadisy, 2008:176).

When practicing TDD the tests are written by the developer. The tests are so called white,

or glass box tests, which mean that the developer knows the internal logic of the tested

component (Wohlin, 2005:159).

 12

The goal with TDD is to get clean code that works and to get a predictable development

process. When the TDD method is used new code can only be written if it has an

automated test that has failed. Duplication must be eliminated. This gives a cyclic process

that Beck describes as the TDD mantra – red/green/refactor. (Beck, 2003:ix-x).

 Red – Write a little test that doesn’t work, and perhaps doesn’t even compile at

first.

 Green – Make the test work quickly, committing whatever sins necessary in the

process.

 Refactor – Eliminate all of the duplication created in merely getting the test to

work.

The first step is to write a new test and see it fail. The failure is important, since in that

way it can be verified that the test actually works when the correct implementation is

done. In step two when getting the test to pass the test itself and the implementation is

verified. In the third step the new code is refactored, duplication and other possibly bad

solutions are removed.

Refactoring is defined as “behavior-preserving transformation” which means that the

code is restructured without changing its external functionality. This can be done with the

test as support and verification that no functionality has changed during the refactoring.

(Astels, 2003).

2.1. The TDD Cycle

This part will focus on explaining and describing the TDD cycle and working rhythm. It

will be illustrated with a simple calculator application that can perform a multiplication

operation with integers. TDD enables taking small steps when needed. In this simple

example where the implementation is obvious the steps appear unnecessary small, but

when complex functionality is developed, being able to take small steps can be essential

(Beck, 2003:9).

 13

The example will illustrate a failing test, a fake implementation and a gradually

developed implementation. It will be programmed using C++ and the Boost.Test unit test

framework, which is presented more in detail in chapter 3.

One of TDD’s basic rules is that no code is allowed to be written before there is a failed

automated unit test to test the functionality. The first step is to create a test for a

calculator that supports multiplication (see example 2.1).

Example 2.1. Test of multiplication

CalculatorTest.cpp

#define BOOST_TEST_MODULE calculator test

#include <boost/test/unit_test.hpp>

#include "Calculator.h"

BOOST_AUTO_TEST_CASE(testMultiplication)

{

 Calculator c;

 BOOST_CHECK_EQUAL(c.multiply(3, 5), 15);

}

Since the calculator class is not yet implemented the test will not compile. The compiler

informs that the class Calculator cannot be found and that the function multiply is

undefined. The next step is to get the test to compile in the simplest way possible. To do

this the Calculator class is added and the multiply function is implemented. The

simplest implementation in this case is to return 0 (see example 2.2). With this

implementation the test compiles but fails, which is a wished result since it gives a

concrete way to measure failure and success (Beck, 2003:5).

Example 2.2. The calculator class implemented in the simplest way possible.

Calculator.h

class Calculator

{

public:

 int multiply(int term_lhs, int term_rhs)

 {

 return 0;

 }

};

 14

The next step is to get to the green state, i.e. to get the test to pass. This should be done in

the easiest way possible. In this case it would be to fake the result and return the

hardcoded value 15 (see example 2.3). It is obvious that this is not the correct

implementation, but in this way it is verified that the test works.

Example 2.3. The fake implementation for the calculator test

Calculator.h

...

 int multiply(int term_lhs, int term_rhs)

 {

 return 15;

 }

...

In the previous step the green state in the TDD cycle was reached. The next step is to

refactor the code to get the correct implementation. This is done by gradually introducing

variables to do the multiplication. In example 2.4 one of the terms are included in the

calculation.

Example 2.4. Refactored implementation for the calculator test

Calculator.h

...

 int multiply(int term_lhs, int term_rhs)

 {

 return term_lhs * 5;

 }

...

In the previous example one hardcoded value was changed to a variable. When

hardcoded values are driven out of the implementation it can be done by adding

additional tests. This technique is called triangulation, see example 2.5. When the new

test is added the test fails and the correct implementation has to be programmed.

Example 2.5. Additional calculator test

CalculatorTest.cpp

...

BOOST_AUTO_TEST_CASE(testMultiplication2)

{

 Calculator c;

 BOOST_CHECK_EQUAL(c.multiply(7, 7), 49);

}

...

 15

This part described the TDD working cycle and rhythm. It was shown how the test can be

written before the actual implementation. The example was very simple and the small

steps would not be necessary for such a trivial problem. When there is a obvious

implementation it can be implemented directly. Tests were frequently added and executed

during the development in the TDD cycle. In the example several TDD patterns such as

Fake It and Triangulation was used. TDD patterns are described in chapter 2.6.

The tests that the TDD process produces is a low-level design documentation of the

system. It is written in a language that programmers understand. When tests are executed

regulary it is assured that the documentation stays up-to-date (Martin, 2007:32).

2.2. Writing tests

By writing the tests first, the requirements are supported. The developer must analyze the

requirements before any code can be written. When applying this practice the design is

driven by the requirements and no unnecessary code is written (Elssamadisy, 2008:179).

Simple things such as plain set and get functions do not require explicit unit tests, they

are considered robust enough. But if they contain any built in logic that for example

needs initialization; a test is in its place (Hamill, 2005).

An automated unit test is supposed to be run in isolation, that means that the tests should

not be dependent on other tests or the order the tests are executed. Tests should not

require access to external components such as database communication, network

communication or a computers file system. The tests should not require any manual

configuration before they are executed, for example editing a configuration file (Feathers,

2007:3). Tests that are created with the isolation principle in mind tend to be more

loosely coupled and cohesive (Beck, 2003:125).

Test should be written to verify one piece of functionality. These tests are called single-

condition tests. When tests are written in this way defects are easier to pinpoint in the

source code. Unit test frameworks aborts a test function if an assertion fails. If a test

 16

verifies several pieces of functionality the test will not be executed completely if a test

fails in the beginning (Meszaros, 2007:353-357).

The tests should execute fast, otherwise they will not be run often enough. If the whole

suite of tests takes longer than 10 minutes to execute, there is a risk that developers won’t

run all tests before checking in modifications (Beck, 2003:194; Elssamadisy, 2008:170).

Written tests should be easy to read and understand. The intent of the test should be as

clear as possible. Therefore the tests should contain evident data. The expected and actual

result should be included in the test case if possible and their relationship should be as

apparent as possible (Beck, 2003:130). In example 2.6 two similar tests assertions are

presented. In the later the expected result is made evident and the relationship between

the actual and expected result is apparent.

Example 2.6. Evident data in test cases

CalculatorTest.cpp

...

BOOST_AUTO_TEST_CASE(testMultiplication)

{

 Calculator c;

 BOOST_CHECK_EQUAL(c.multiply(39, 17), 663);

 // Expected data made evident

 BOOST_CHECK_EQUAL(c.multiply(39, 17), (39 * 17));

}

...

Test code should be treated as production code. The same rules of good design apply to

both test code and to production code. Test code should be refactored when needed and

duplication should be eliminated, just as production code (Elssamadisy, 2008:170).

2.3. Refactoring

Refactoring is defined as “behavior-preserving transformation”. This process contains

elimination of duplication, simplification of complex logic and clarification of unclear

code. This covers everything from changing variable names to divide or unify a large

hierarchy. Refactoring is done in small steps (Kerievsky, 2005:9).

 17

Code that has symptoms of low quality or bad design is referred to as code that smells.

Examples of this can be duplication, a class or function that is to large or a class that

depends on the implementation details of another class (Wikipedia, 2009 b).

Refactoring is an important part of TDD. When a test is written and the green stage is

achieved in the TDD cycle the next action is refactoring. To get to the green stage the

simplest possible solution was used, this may contain duplication or other smells in the

code. In the refactoring stage of the TDD cycle, duplication is the first thing to be

eliminated. Duplication means that the same thing is expressed in two or more places in

the code, and if one of them is changed, all others must change too (Hunt, Thomas,

2000:27).

The working process in TDD can be divided into two modes, coding and refactoring.

When coding is practiced new functionality is added to the system. When refactoring is

done, no new functionality is added. To get to the green stage in the TDD cycle the

coding mode is active. After that it switches to refactoring (Astels, 2003:17).

Regression in a software perspective means that a working computer program is set to a

non working state. Regression happens when changes are made that introduces defects in

the functionality (Koskela, 2008:28). Refactoring can trigger regression. The test harness

that is created when developing with TDD can be used to perform regression testing.

2.4. Design

With a waterfall software development approach each activity is a separate process. One

activity is finished and then the development goes to the next stage (Sommerville,

2004:9). For a traditional software development method these activities usually are

design, implementation and unit testing.

Upfront design means that complexity is built into the design to accommodate changes in

the requirements. The agile community believes that the gained benefits are outweighed

by the cost. The increased complexity in the design is harder to learn and understand. It is

also more difficult to exercise maintenance on complex code. In addition to this it is hard

 18

to foresee what, and if any, changes on the requirement that is going to appear

(Elssamadisy, 2008:199).

TDD is not a testing technique; it is a way of designing and developing software (Janzen,

Saiedian, 2008:77). The process creates an exhaustive test harness that is supporting

software design as an ongoing activity. When requirements change, the design is adopted

to fit the new specifications and solve the current problem. One condition to have a

changing design is to refactor the existing code, which means that the code is modified to

fit the current requirements. The refactoring is enabled by having automated unit tests

(Elssamadisy, 2008:272).

When a test is written before the implementation the developer is forced to think in a

perspective of usability and testability of the program. By writing the tests first a program

is designed to be easier to use and testable (Martin, Martin, 2006:32).

There are several factors that can be used to measure software design; these are code size,

complexity, coupling and cohesion.

 Code size, measured as lines of code per module.

 Complexity, cyclomatic or conditional complexity of code is measured by the

number of linearly independent paths through a program (Wikipedia, 2009d).

 Coupling, measured by the degree of which modules in a program is dependent on

each other (Wikipedia, 2009 e).

 Cohesion, when software is designed with modules that have one single

responsibility (Miles, Pilone, 2007:161).

A study (Janzen, Saiedan, 2008:77-84) suggests that TDD can improve the quality of

software design. The code size is smaller when practicing TDD, therefore the code is

easier to understand. Complexity is reduced and classes and methods are less complex

when TDD is used, compared to a test-last development method. The study could not

show how the impact of coupling is affected when using TDD, the conclusion was that

 19

this issue needs more studies. TDD produces smaller, but more coupled classes, though

the coupling seems to be of a good kind with a high degree of abstraction and flexibility.

Cohesion is hard to measure; the study could not show that TDD produces code with a

higher degree of cohesion. It is worth to point out that the study is a quasi-experiment,

which means that the development teams where not randomly assembled.

2.4.1. Test doubles

When a class is not dependent on other classes testing is generally a straight forward task.

But when the tested class is dependent of other classes the options are to test the

dependent classes together, or to isolate the test class with a so called test double

(Elssamadisy, 2008:125).

Different types of test doubles are called stubs, fakes and mocks. A stub implementation

is the simplest possible implementation of an interface. The methods return hardcoded

values. A fake implementation is one step more advanced than a stub; the methods can

have some logic built in. A fake can be seen as an alternative implementation of an

interface. A mock object can be configured for interaction with other objects or to return

certain values. Mock objects can be generated with a framework or manually (Koskela,

2008:144).

2.5. xUnit architecture

In this sub-chapter the xUnit architecture is described. The xUnit is a unit test framework

architecture that supports automated tests. The framework architecture is a de facto

standard for unit test tools and is ported to several programming languages. Different

implementations share the same basic framework architecture.

The primary way to work with the framework is to create a test class that is derived from

the framework’s TestCase class. The most important concepts of the architecture are

assertion, test case, test fixture and test suite. An assertion is a true-false statement that is

used in the actual test. The test case is a class that can contain one or more test methods.

 20

A test fixture is used to handle initialization and cleanup of the test environment. The test

suite is used to collect several test cases for execution.

2.5.1. Assertions

One goal with automated unit testing is that the tests are self checking, that means that no

manual intervention is needed to interpret the test results. This is achieved with assertions

(Meszaros, 2007:362). Assertions return success or failure, thus the result can be

interpreted by a computer. The most common asserts are those that takes one expression

and evaluates it, and those that takes two values and compares them (Beck, 2003:157).

2.5.2. Test case

The TestCase class is one of the most used classes when working with a xUnit

framework. When a test class is created it is derived from the TestCase. In the test class

test functions are implemented (Astels, 2003:66). Test functions are of void type, which

means that no value is returned. The naming convention normally has test as pre- or

postfix, for example testSomething or someTest.

2.5.3. Test fixture

A test fixture is used is to create a test environment where tests can be run in a well

known repeatable way (Wikipedia, 2009 a). The xUnit framework architecture uses

setup and teardown functions that are implemented in the test class.

An in-line setup can be used in each test method to initialize a needed precondition. But

when there are several tests that use the same initialization the setup code can be moved

to a fixture. The needed variables are set as members in the test class. With this approach

variable initialization does not have to be copy pasted from one function to another. If a

used interface changes, the change is made to only one place (Beck, 2003:158-159).

Test fixtures supports that tests are run in isolation. For each test method the setup

function is called upon before execution and teardown afterwards. In this way each test is

guaranteed to be run from a clean table (Hammil, 2005:28).

 21

2.5.4. Test suite

A test suite is used to execute several tests in the same test run. When a test class derived

from the TestCase class is executed all its test method are invoked. Test classes and

suites can be added to suites. In this way larger hierarchies of tests can be built and

executed (Hammil, 2005:29).

2.5.5. Test organization

When using a xUnit-architecture based unit test framework tests can be organized in

different ways. One common way is to use one test case class per tested class. Then all

test methods belongs to the test class. With this approach the test methods share the same

fixture. This can be a problem if the tests require different fixtures. One solution is to use

an in-line fixture setup for each test method. But this can result in test code duplication

and complicated tests. Another solution is to use the one test case per fixture approach

(Meszaros, 2007:618).

The one test case per fixture pattern is used when test are organized based on

commonality of the desired fixture. When this way of organizing test cases is used the

tests methods can be made simpler and focus on the test since they are using the same

fixture setup method (Meszaros, 2007:632).

Tests can also be organized into one test case class per feature. This can be used if a test

case class has many test methods. Rearranging the tests into one test case class per

feature can give an better overview of the tests. This approach is also used for system

testing with automated tests. One variation of this test organization pattern is to have one

test case class per method (Meszaros, 2007:625).

2.6. TDD patterns

This chapter presents patterns that are used when writing tests and practicing TDD. A

pattern is a way to describe best practices and solutions in a way that others can reuse

these experiences (Sommerville, 2004:421).

 22

2.6.1. Four-Phase Test

The Four-Phase Test pattern is used to structure a test in a way that it is obvious what is

tested.

 Setup, the tested component is set in the state that is required to make the test.

 Exercise, the actual interaction is done.

 Verify, measures if the desired outcome was achieved in the exercise phase.

 Teardown, cleanup is done if needed.

When tests are composed with these phases identified it is easier for a reader to determine

what behavior the test is verifying (Meszaros, 2007:358). A variation of this pattern is the

3A pattern. The three steps are: Arrange – create some objects, Act – stimulate them and

Assert – check the results (Beck, 2003:97).

2.6.2. Faking It

When TDD is practiced, the green state for the tests is preferred, i.e. the tests should pass.

When an implementation is hard to find the test can stay in the red state for a longer time.

To prevent this state the Faking It pattern could be used. When this approach is used a

hardcoded constant is returned. Then the correct implementation is gradually developed,

changing hardcoded values to variables (Beck, 2003:151).

2.6.3. Obvious Implementation

When the implementation to get a written test to pass is clear and obvious the Obvious

Implementation pattern can be used. That means that the correct implementation is

written directly, instead of creating the implementation in several steps. When using this

pattern a bigger step can be taken than usually. If the obvious implementation fails the

code should immediately be removed and then be rebuilt taking small steps (Koskela,

2008:105).

 23

2.6.4. Triangulation

The Triangulation pattern can be used to gradually narrow down the space for the correct

solution. Constants that are introduced with the Fake It pattern are gradually replaced by

writing tests that push the development towards the correct implementation (Koskela,

2008:104).

2.6.5. Delta Assertion

If an exact state of the tested component is hard to obtain, the Delta Assertion pattern can

be used. When using a delta assertion, a snapshot of relevant parts is recorded from the

tested components current state, after that the testing action is exercised. The verification

is done based on the difference of the result and the taken snapshot. This approach allows

the test to be less dependent on the data that already exist in the tested component

(Meszaros, 2007:485).

2.6.6. Anti-patterns

An anti pattern is a commonly occurring solution to a problem that has negative

consequences (Brown, et al. 1998:7). Indicators of bad tests (Beck, 2003:194).

 Long setup, if the setup to make an assertion is very long the used objects are

probably too big and needs to be split.

 Setup duplication, if a common place can not be found for common setup code,

then there are probably too many objects that are intertwined.

 Long running tests, when tests take a long time to execute it indicates that there is

a problem with the design that needs to be corrected.

2.7. Tools

The most used tool when practicing TDD is the automated unit test framework. This sub-

chapter will focus on what other programming tools there are available that can support

the TDD process.

 24

2.7.1. Test coverage

Test coverage or code coverage is a way to measure how thoroughly written automated

unit tests exercise the production code’s statements, branches and expressions (Koskela,

2008:40).

A test coverage tool can be used to measure how well the production code is covered by

the tests. One thing to pay attention to when using this tool is that it does not tell anything

about the quality of the written tests (Elssamadisy, 2008:171).

2.7.2. Mock objects

A mock object framework can be used to dynamically generate objects of a given

interface. These objects can then be configured dynamically before usage. Functions can

be set up to return a given value. The object can also be configured to observe the tested

components behavior. This is done by registering expected functions calls from the tested

component. If these function calls are not done, the test fails (Meszaros 2007:544).

An example of a mock object framework for Java is EasyMock. When creating a mock

object with EasyMock it is in recording mode. In recording mode the object can be

configured with return values for functions. Expected function calls including expected

parameters from the tested component can also be configured. To get the mock in action

the frameworks replay function is called with the mock as parameter. Then the mock

starts to watch and record how the tested component interacts with it. When all test

functionality is exercised the mock can be passed to the frameworks verify function that

fails the test if the expected collaboration with the tested component was not achieved

(Koskela, 2008:118).

2.8. Adopting TDD

This sub-chapter will focus on what is required from the individual developer and the

team to adopt TDD. The most common pitfalls and how they are avoided are discussed in

the TDD adaptation pitfalls sub-chapter. Taking on a new software development

 25

technique is not an easy task, especially when it radically differs from the current way of

working (Koskela, 2008:436).

Writing the tests before the implementation is radically different than the traditional test-

last method. To change the way a professional software engineer, with possibly decades

of experience, work is not an easy process, it will take time (Koskela, 2008:443).

2.8.1. Adopting tools and techniques

To adopt TDD it is required from the developer to learn a new software development

technique and at least one new tool. The new tool that is mandatory is the unit test

framework.

Learning a new tool or technique reduces the productivity and quality in the beginning.

There is a effort of learning and understanding new ideas and to see how they fit the

current development environment. The first project where the new tool or technique is

used the developers are less effective, which makes the project to take a longer time than

usual. The actual benefit of a new idea is not gained until the learning curve is overcome.

It is difficult to say in general terms how long the learning curve is going to be. But the

greater benefit in the end, the longer the learning curve is. The length of the learning

curve and the greatness of the benefit can be estimated by asking someone already using

or performing the same tool or technique. The specialist’s answer has to be critically

evaluated, since the person can be a zealot or salesman who wants to promote a certain

product (Glass, 2003:23-24).

2.8.2. Adopting TDD

For adopting TDD Elssamadisy points out a significant reduction of development speed.

The first two months the loss can be 50 percent for a new project and up to 75 percent for

a project with legacy code that was not written with testing in mind. (Elssamadisy,

2008:180). It will take two to six months for the developers to learn writing automated

unit tests in a way that it becomes a habit and the benefits are seen (Elssamadisy,

2008:167).

 26

Pair programming is an agile software development method that has its origins in XP. It

means that two persons work together on a single computer (ExtremeProgramming.org,

1999). This method can be used to ease the team’s learning curve. It is easier to be

disciplined with writing tests when working together with some one else (Elssamadisy,

2008:168).

It is required from the team that disbeliefs are set aside for at least two months. To learn

TDD without external training is hard. The team can be sent on external seminars or

training courses. It is also highly recommended to bring in external expertise. This person

should have practical experience of the TDD method and should be able to teach the team

with a hands-on approach for example through pair programming (Elssamadisy,

2008:180-181).

In a case study of an agile software development team (Cunningham et al, 2004:19) the

difficulties of using TDD is discussed. The data was collected with a questionnaire that

was a part of the study. There were major obstacles of unit test and TDD usage.

Developers found it hard to practice TDD on the complex parts of the system and to write

tests for all pieces of source code. Limitations of existing unit test frameworks were also

a problem. GUI applications are hard to test. Developers tended to abandon writing unit

tests during deadline pressure, it was more important to complete all features and to

deliver the promised functionality.

2.8.3. TDD adaptation pitfalls

It is required that the whole team is committed when starting TDD. If one person breaks

the tests it is much easier for other to do so also. The developers must be used to fix tests

that are broken, even in code that some one other has written and in a part of the system

that is not familiar. To do this the team must use collective code ownership (Elssamadisy,

2008:170).

Programmers prefer programming in favor of testing and tend to write incomplete test

that only tests happy scenarios. Therefore critical parts of the system that is hard to test

can get poorly written tests (Sommerville, 2004:404).

 27

The adoption must be seen positive by the developers, the benefit must be clear. If the

software development team does not realize why TDD can be useful the adaption will

probably fail (Koskela, 2008:436).

3. TEST FRAMEWORK EVALUATION

One of the goals of this thesis is to evaluate unit test frameworks for the C++

programming language. There is no de facto standard unit test framework for standard

C++ as with other programming languages; Java has JUnit and C# .NET has NUnit.

The evaluated unit test frameworks are CppUnit and Boost.Test. Both of them are

licensed as free software. The CppUnit was chosen since it is presented as the main C++

port of the xUnit-architecture. At the company Boost libraries are already used and they

are found robust and useful, therefore the Boost.Test unit test framework is also

evaluated.

3.1. Requirements and evaluation criteria

The PC software projects in the company are divided into two parts, the business and

application logic-layer and the GUI layer. The GUI layer is built with Borland C++

Builder 6. The business and application logic layer is built with Microsoft Visual Studio

2008.

It is the business and application logic layer that is going to be unit tested. The unit test

framework shall be integrated into Microsoft Visual Studio 2008. The test should run

automatically when a project is compiled or built. It should be possible to have a setting

that makes the build fail if a unit test fails. The framework should be able to produce

relevant output for the compilers output screen. If a test fails an error message should be

reported to the output screen in the same way as a compile warning or error.

As shown in chapter 2.1 the TDD cycle requires that test are written frequently. The tests

should be easy to write. When writing tests the focus should be on testing, not coding the

 28

tests (Meszaros, 2007:27). Thus it should be easy to setup a test environment for a unit

and easy to add new tests.

Fixtures can help to reduce test code duplication and tests can be run in isolation. One

evaluation criteria is fixture support.

The TDD cycle requires frequent test execution. If the tests are hard to run there is a risk

that the developer is tempted to skip the tests and hoping that the changes did not break

anything in the existing code (Koskela, 2008:29). None of the evaluated frameworks are

commercial products with explicit built in support for Visual Studio integration.

Therefore one evaluation criteria is that the unit test framework supports IDE integration

and that the tests can easily be executed.

The evaluation criteria:

 Minimal amount of steps to setup tests for a unit.

 Minimal amount of steps to add a test.

 Fixture support.

 IDE integration and easy test execution.

The unit test framework evaluation will be done writing unit tests to a simple class

representing a person, shown in example 3.1. The frameworks are presented with

examples of writing the easiest possible test, use test fixtures, use test suites and how to

configure IDE output and integration.

 29

Example 3.1. The class Person

Person.h

class Person

{

public:

 Person(const std::string & name, const int age) :

 m_name(name), m_age(age) {}

 const std::string & getName() { return m_name; }

 const int getAge() { return m_age; }

private:

 const std::string m_name;

 const int m_age;

};

3.2. CppUnit

CppUnit was chosen for evaluation since it is presented as the C++ port of the xUnit-

architecture in Hammil’s Unit Test Frameworks. It also is the most downloaded C/C++

unit testing tool on opensourcetesting.org (Aberdour, 2009).

CppUnit is open source and licensed under GPL (GNU General Public License). The

framework is port of Java’s JUnit into C++. It uses the architecture of the xUnit model.

The implementation details are C++ specific; it uses templates and STL (Standard

Template Library). C macros are used for easing repetitive tasks. The framework

supports output in an IDE friendly way and through a GUI component for usage in an

MFC or Qt development environment. (Hammil, 2005:70-72).

3.2.1. CppUnit simple test

The easiest way to write a unit test with CppUnit is to create a unit test class that is

derived from the framework’s TestCase and override the runTest() function. The

implementation will throw an exception if an assertion fail, see Example 3.2.

 30

Example 3.2. Person simple test

PersonTest.cpp

#include "cppunit/TestCase.h"

#include "Person.h"

class PersonTest : public CppUnit::TestCase

{

public:

 PersonTest(const std::string & name) : CppUnit::TestCase(name)

 {

 //

 }

 void runTest()

 {

 Person person("Bjarne", 40);

 CPPUNIT_ASSERT(person.getName() == "Bjarne");

 }

};

int main()

{

 try

 {

 PersonTest test("PersonTest");

 test.runTest();

 std::cout << "Test success" << std::endl;

 return 0;

 }

 catch (...)

 {

 std::cout << "Test failure" << std::endl;

 return 1;

 }

}

3.2.2. CppUnit fixture usage

A test fixture can be used to setup a test environment for the different tests. This is done

by deriving the test class from CppUnit’s TestFixture class. The fixtures instance

variables can be created and prepared in the setUp function. The teardown function

cleans up after the tests are executed. To run the tests a TestRunner is used. The simplest

way to run a test is to create a TestCaller object. The test caller objects parameters are

the test name and the address of the test function to be executed. The test caller object is

added to the runner with the addTest function. See example 3.3.

 31

Example 3.3. Person fixture test

PersonFixtureTest.cpp

#include "cppunit/TestCase.h"

#include "cppunit/ui/text/TestRunner.h"

#include "cppunit/TestCaller.h"

#include "Person.h"

class PersonFixtureTest : public CppUnit::TestFixture

{

public:

 void setUp()

 {

 m_person = new Person("Bjarne", 40);

 }

 void teardown()

 {

 delete m_person;

 }

 void testName()

 {

 CPPUNIT_ASSERT("Bjarne" == m_person->getName());

 }

private:

 Person * m_person;

};

int main()

{

 CppUnit::TextUi::TestRunner runner;

 runner.addTest(

 new CppUnit::TestCaller<PersonFixtureTest>

 ("testName", &PersonFixtureTest::testName));

 if (runner.run())

 return 0;

 else

 return 1;

}

3.2.3. CppUnit test suite

A test suite can be used to run several tests at once. This is done by adding the suite

method to the test class. In the suite, test callers are added. When the suite is added to the

test runner, all tests in the suite are executed, see example 3.4. A test suite can also

contain other suites, in that way larger tests can be managed. (Feathers & Lepilleur,

2008).

 32

Example 3.4. Person suite test

PersonSuiteTest.cpp

...

void testAge()

{

 CPPUNIT_ASSERT(40 == m_person->getAge());

}

static CppUnit::Test * suite()

{

 CppUnit::TestSuite * personSuite =

 new CppUnit::TestSuite("PersonTestSuite");

 personSuite->addTest(new CppUnit::TestCaller<PersonSuiteTest>(

 "testName", &PersonSuiteTest::testName));

 personSuite->addTest(new CppUnit::TestCaller<PersonSuiteTest>(

 "testAge", &PersonSuiteTest::testAge));

 return personSuite;

}

...

int main()

{

 CppUnit::TextUi::TestRunner runner;

 runner.addTest(PersonSuiteTest::suite());

 if (runner.run())

 return 0;

 else

 return 1;

}

3.2.4. CppUnit helper macros

To manually create suites is a highly repetitative task. The framework has helper macros

that can be used to create the suite function. A test suite is created with the test class

name as parameter to the CPPUNIT_TEST_SUITE macro. The test functions are added with

the CPPUNIT_TEST macro. Test names are created from the test class name combined with

the test function name. The test suite declaration is then ended with the

CPPUNIT_TEST_SUITE_END() macro. See example 3.5

 33

Example 3.5. Test suite helper macros.

PersonTestMacroHelper.cpp

...

#include "cppunit/extensions/HelperMacros.h"

...

CPPUNIT_TEST_SUITE(PersonTestMacroHelper);

CPPUNIT_TEST(testName);

CPPUNIT_TEST(testAge);

CPPUNIT_TEST_SUITE_END();

...

A test factory registry can be used to automatically register a test suite. The advantages of

this is that the test suites do not have to be registered separatly to the runner, it also

reduces compilation bottlenecks when all test file headers don’t need to be included by

the file containing the main method (see example 3.6).

Example 3.6. Test factory registry

PersonTestMacroHelper.cpp

...

CPPUNIT_TEST_SUITE_REGISTRATION(PersonTestMacroHelper);

Runner.cpp

#include "cppunit/ui/text/TestRunner.h"

#include "cppunit/extensions/TestFactoryRegistry.h"

int main()

{

 CppUnit::TextUi::TestRunner runner;

 CppUnit::TestFactoryRegistry & registry =

 CppUnit::TestFactoryRegistry::getRegistry();

 runner.addTest(registry.makeTest());

 if (runner.run())

 return 0;

 else

 return 1;

}

3.2.5. CppUnit IDE integration

A post-build event can be added in the project settings. This makes the project build to

fail if an executed test fails. In Microsoft Visual Studio 2008 a post-build event is added

in the project configuration, $(TargetPath) variable is added to the Command Line

property. In example 3.7 the test runner is configured with the frameworks

 34

CompilerOutputter to create the output in a compiler compatible format. In that way it is

possible to directly access a code line where a test failed, in the same way as with a

warning or error from the compiler output (see example 3.8).

Example 3.7. Compiler compatible output configuration.

Runner.cpp

...

runner.setOutputter(

 new CppUnit::CompilerOutputter(&runner.result(), std::cout));

...

Example 3.8. Test output to the IDE output window

------ Build started: Project: CppUnitTest, Configuration: Debug Win32

Compiling...

PersonTestMacroHelper.cpp

Runner.cpp

Generating Code...

Linking...

Embedding manifest...

CppUnit

.F.

c:\thesis\cppunittest\persontestmacrohelper.cpp(21) : error : Assertion

Test name: PersonSuiteTest::testName

assertion failed

- Expression: "Kalle" == m_person->getName()

Failures !!!

Run: 2 Failure total: 1 Failures: 1 Errors: 0

Project : error PRJ0019: A tool returned an error code from "CppUnit"

Build log was saved at

"file://c:\Thesis\CppUnitTest\Debug\BuildLog.htm"

CppUnitTest - 2 error(s), 0 warning(s)

========== Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped

3.3. Boost.Test

The Boost.Test framework was chosen for evaluation since the development organization

is currently using the Boost libraries and has found them very good and useful.

The Boost.Test unit test framework is a part of Boost C++ source libraries. It is licensed

under the Boost License, which encourages commercial and non-commercial usage. The

architecture does not follow the xUnit model that uses test classes that has their member

functions as test functions. In Boost.Test the test functions are free functions that are

 35

registered to the unit test framework for execution. The framework uses macros to

generate code needed for test execution. Assertions are used to perform the actual tests.

3.3.1. Boost.Test simple test

The simplest way to create a test is to use the BOOST_AUTO_TEST_CASE macro. It takes the

test case name as parameter. The definition of BOOST_TEST_MODULE generates a test

module initialization function and main function implementation, see example 3.9.

Example 3.9. Simple test

PersonTestSimple.cpp

#define BOOST_TEST_MODULE personExample

#include <boost/test/included/unit_test.hpp>

#include "Person.h"

BOOST_AUTO_TEST_CASE(test_personName)

{

 Person person("Bjarne", 40);

 BOOST_CHECK(person.getName() == "Bjarne");

}

3.3.2. Boost.Test fixture usage

In the xUnit architecture fixtures are implemented in the test class, variables are class

members and the setup and teardown functions are used for initialization and cleanup.

With Boost.Test a fixture is implemented as a separate fixture class or struct. The setup

and teardown functionality is implemented in the constructor and destructor. This is a

natural way to implement it in the C++ programming language. The test using a fixture

has access to all of the fixtures public and protected members, a struct data type has all

it’s members as public, so often it is used as the fixture data type. The fixture is

implemented with the fixture variables as member fields. When using a fixture the

BOOST_FIXTURE_TEST_CASE macro can be used. It takes the test name and the fixture

name as parameters. Within the test the fixtures public and protected member variables

are directly accessible, see example 3.10. (Rozental, 2007).

 36

Example 3.10. Fixture test

PersonTestFixture.cpp

...

struct PersonFixture

{

 PersonFixture()

 {

 m_person = new Person("Bjarne", 40);

 }

 ~PersonFixture()

 {

 delete m_person;

 }

 Person * m_person;

};

BOOST_FIXTURE_TEST_CASE(test_personName, PersonFixture)

{

 BOOST_CHECK(m_person->getName() == "Bjarne");

}

3.3.3. Boost.Test test suite

Test suites are used to build hierarchies of tests. The BOOST_TEST_MODULE is the master

suite when executing tests. A test suite is declared with the macro

BOOST_AUTO_TEST_SUITE that takes the suite name as parameter. The suite is ended with

BOOST_AUTO_TEST_SUITE_END. Tests that are not inside a suite are executed with the

master test suite, see example 3.11. When a suite is declared a fixture can be assigned to

the whole suite. This is done with the BOOST_FIXTURE_TEST_SUITE macro that takes the

suite name and the fixture name as parameters. When this approach is used normal test

cases have the suite fixture’s public and protected members accessible.

 37

Example 3.11. Test suite usage

PersonTestSuite.cpp

...

BOOST_FIXTURE_TEST_SUITE(personTestSuite, PersonFixture)

BOOST_AUTO_TEST_CASE(test_name)

{

 BOOST_CHECK_EQUAL(m_person->getName(), "Bjarne");

}

BOOST_AUTO_TEST_SUITE_END()

BOOST_AUTO_TEST_CASE(test_random)

{

 BOOST_MESSAGE("Random person test");

}

BOOST_FIXTURE_TEST_SUITE(personTestSuite, PersonFixture)

BOOST_AUTO_TEST_CASE(test_age)

{

 BOOST_CHECK_EQUAL(m_person->getAge(), 40);

}

BOOST_AUTO_TEST_SUITE_END()

The tests in a suite can be divided to several locations in the source code. When they are

executed the order is the same as they are implemented, except if a test case belongs to an

earlier declared suite, see example 3.12 for execution output details.

Example 3.12. Suite hierarchy output

Test suite "masterPersonSuite" passed with:

 2 assertions out of 2 passed

 3 test cases out of 3 passed

 Test suite "personTestSuite" passed with:

 2 assertions out of 2 passed

 2 test cases out of 2 passed

 Test case "test_name" passed with:

 1 assertion out of 1 passed

 Test case "test_age" passed with:

 1 assertion out of 1 passed

 Test case "test_random" passed

3.3.4. Boost.Test IDE integration

In Microsoft Visual Studio 2008 the test execution results can be directed to the compiler

output window. This is done by adding a post build event to the project configuration.

 38

The failing tests’ error messages are formatted for the compiler output, thus the error

messages can be used to find the failing tests in the source code such as with compiler

warnings and errors (See example 3.13)

Example 3.13. Boost test framework compiler output

Build started: Project: BoostTestEvaluation, Configuration: Debug Win32

Compiling...

PersonTestSuite.cpp

Linking...

Embedding manifest...

Performing Post-Build Event...

Running 3 test cases...

c:/thesis/boosttestevaluation/persontestsuite.cpp(24): error in

"test_name": check m_person->getName() ==

"Kent" failed [Bjarne != Kent]

Build log was saved at

"file://c:\Thesis\BoostTestEvaluation\Debug\BuildLog.htm"

BoostTestEvaluation - 1 error(s), 0 warning(s)

======= Build: 0 succeeded, 1 failed, 0 up-to-date, 0 skipped =======

 39

3.4. Test framework evaluation conclusion

The result is presented in the table below (see table 1) and as text where each evaluation

criteria and result is discussed more in detail. When a decision is made it is important to

be able to aggregate different qualities and properties of the evaluated object. When a

table is used the information that is the base for the decision is easily foreseen (Höst et al,

2006:74).

Table 1. Unit test frame work evaluation result

Unit test framework

evaluation

CppUnit Boost.Test

Minimal amount of steps to

setup tests for a unit

Implement test class, test

function, main and

instantiate test runner.

Steps: 4

Implement free test function

and define main. Steps: 2

Minimal amount of steps to

add a test

Implement test function to

test class, function

registration to test suite.

Steps: 2

Implement free test

function. Steps: 1

Fixture support Yes, xUnit architecture

style, test class as fixture

Yes, Implemented as class

or struct, can be used from

any test

IDE integration and easy

test execution

CompilerOutputter has to

be added to runner to get

clickable compiler output

Yes, by default

 40

Minimal amount of steps to setup tests for a unit

To setup tests with CppUnit a test class is created and the tests are implemented as

member functions. Then a main function has to be added and a test runner instantiated.

With the Boost.Test framework a free test function can be written and the runner that

declares a main function can be created with a define statement.

Minimal amount of steps to add a test

CppUnit includes two steps. The test function is added to the test class, and then the

function is registered to the test suite. With Boost.Test it is only one step, adding the test

function.

Fixture support

Both CppUnit and Boost.Test supports fixtures. With CppUnit a fixture is implemented

following the xUnit architecture. The test class acts as the fixture, initialization and

cleanup are done by implementing setup and teardown functions in the test class. With

the Boost.Test framework a fixture is created with a fixture class, the initialization and

cleanup is done in the constructor and destructor. The fixture class can then be assigned

to separate test functions, or all test functions within a test suite. The Boost.Test

framework has a key advantage when using fixtures. Within a test unit several fixtures

can be declared and used by the test functions. With CppUnit the test class is the fixture,

when a new fixture is needed a new test class has to be created.

IDE integration and easy test execution

IDE integration with Microsoft Visual Studio 2008 is supported by both unit test

frameworks. A build can be set to fail if a test fails by adding a post build event. The test

result output can be directed to the compiler output window with failing tests reported in

the same way as compiler warnings and errors. With CppUnit a CompilerOutputter has to

be added to the test runner for correct compiler output.

 41

3.4.1. Recommendation

The recommendation based on evaluation results is that Boost.Test unit test framework is

more suitable for testing in a C++ development environment than CppUnit. The

Boost.Test unit test framework requires less steps to setup a testing environment. The

usage of fixtures in combination with free test functions is more flexible than using the

test class as a fixture.

4. DISCUSSION

Test-driven development is one of the hardest agile methods to adopt (Elssamadisy,

2008:181). The way of working is radically different from the traditional test-last

approach. It is hard to adopt the technique to write the tests before the actual

implementation. The tests themselves are not easy to write either; it requires a lot of

practice. The question “what are good test?” is as hard to answer as “what is good code?”

4.1. Criticism

When studying literature about TDD the method is praised and presented as a highly

working solution. The method is presented in theory with fairly simple examples, but

there is a question of how it works in practice in a real software development project.

The TDD method presents a way to develop and design software. The design is described

as an ongoing activity that is developed incrementally. This could work in a relatively

small project that uses a well known platform. But it does not solve large scale design for

a project with many modules divided into several layers. In this case some degree of

upfront design and ahead planning is needed.

4.2. Software quality

The test harness that is created when developing with TDD enables refactoring. When it

is possible to refactor, new features and functionality can be added to a software product.

Once a software project with poorly written unit tests is extended with new functionality

 42

without changing the design to fit the new requirements the code base will become fragile

over time. This will result in that the developer does not dare to make bigger changes

with the risk that something else in the system breaks. Quick and dirty bandage solutions

are added to the system when implementing new functionality and fixing bugs, increasing

the design debt. A stock phrase in software development circles is that “If it ain’t broke,

don’t fix it”. This approach to software development is the beginning of the end to a

software product. When developing with TDD the test harness can be used for regression

testing. This means that changes can be made in the design to adopt new features, which

lengthens a software products lifetime. This an important business value in means of

quality to market and costs.

Feedback is important when developing software. The earlier the development team can

get feedback on the developed software the better it can react. When testing is made

manually by a testing department the cycle for finding and repairing a bug becomes

unnecessary long. The TDD process creates and maintains an exhaustive test harness

which can help to find bugs early in the development cycle. This does not mean that

testing by a testing department is not needed. The software needs system testing in a real

environment. Professional tester’s tests are focused on trying to break the software, which

is needed, since developers tend to write tests that are verifying that the software works.

Unit tests will never find all the bugs, but it certainly can help to discover many of them

in a early stage of the development. In this way the tests performed by the testing

department can focus on finding the bugs related to system testing. The testing cycle can

be shortened, which has a clear business value in means of time to market.

4.3. Unit test framework evaluation

The objectives for the practical part were to evaluate unit test frameworks for C++ and to

examine if the xUnit architecture is optimal for a C++ environment. To create the

evaluation criteria the theoretical part of the thesis was used. The TDD cycle presented in

chapter 2.1 showed that tests where frequently added and executed. Therefore one

important measurement in the evaluation was that tests could be added with as few steps

as possible. It was showed in chapter 3 that the framework using free functions had fewer

 43

steps to setup tests for a unit and adding new tests. It also had more flexible usage of

fixtures than the xUnit port framework.

One advantage of using a xUnit-architecture based unit test framework is that it can be

easier to adopt for developers that has knowledge of automated unit testing from other

programming languages, where a xUnit-architecture based test framework is used.

4.4. Further development

This thesis focused on the TDD process from a unit test point of view, i.e. to verify that

software modules work as the programmer intends. The next step would be to write

automated acceptance tests. Those are written from a customer point of view and are

intended to verify that the system works as specified. This is black box testing, which

means that the tests does not know, and does not care about the underlying

implementation. The acceptance tests could be written in collaboration with the testing

team and the product owner. This requires a software design that is built in layers, where

the business logic parts of the system could be accessed without the GUI. There are tools

that support automated acceptance tests.

FitNesse is an acceptance testing framework. The software development team including

process owner, testing department and software developers can collaboratively define

acceptance tests. The tests are written in a non technical language in table format,

specifying the input data and expected output. The link between the table data and system

under test is implemented by the software developers (FitNesse, 2009).

The automated unit tests could be included in a nightly build server or a continuous

integration server. In that way the tests would always be executed when the software is

built.

4.5. Conclusion

The conclusion is that the unit tests created as a part of TDD is a powerful tool that

should be used. It increases software quality in a way that has concrete business value. To

fully adopt TDD and to use it as a design and development method is proved to be

 44

difficult since it is radically different from the traditional way to develop software. The

adoption would require the will and understanding from each individual developer. It

would also need support from the management since the developers would be less

effective during the time it takes to overcome the learning curve.

TDD has potential and should be seriously evaluated in practice in a way that the possible

benefit of the method could be measured. In chapter 2.8.2 the time to adopt the method is

pointed out to be between two to six months. The evaluation time should be at least

within this scope. It could be arranged as part of a project and be done by developers that

want to test the method. The results of the evaluation could then be discussed with the

development team and software project stakeholders on a seminar or workshop like

event.

 45

REFERENCES

Aberdour, Mark. 2009. Opensourcetesting.org. Retrieved 23.1.2009 [www]

http://www.opensourcetesting.org/unit_ada.php

Astels, David. 2003. Test-driven development, a practical guide. Prentice Hall. ISBN: 0-

13-101649-0

Beck, Kent. 2003. Test-driven development by example. Addison-Wesley. ISBN: 0-321-

14653-0

Brown, William J. Malveau, Raphael C. McCormic III, Hays W. Mowbray, Thomas J.

1998. AntiPatterns, Refactoring Software, Architectures, and Projects in Crisis. John

Wiley & Sons, Inc. ISBN: 0-471-19713-0

Cunningham, Lynn. Layman, Lucas. Williams, Laurie. 2004. Motivations and

Measurements in an Agile Case Study.

Elssamadisy, Amr. 2008. Agile Adoption Patterns, A roadmap to Organizational Success.

Addison-Wesley. ISBN: 0-321-51452-1

ExtremeProgramming.org. 1999. Pair programming. Retrieved 18.3.2009 [www]

http://www.extremeprogramming.org/rules/pair.html

Feathers, Michael. 2007. API Design as ifUnit Testing Mattered. Object Mentor, Inc.

Retrieved 26.2.2009 [www]

http://www.objectmentor.com/resources/articles/as_if_unit_testing_mattered.pdf

Feathers, Michael & Lepilleur, Baptiste. 2009. CppUnit Cookbook. Retrieved 27.1.2009

[www] http://cppunit.sourceforge.net/doc/lastest/cppunit_cookbook.html

FitNesse. 2008. Retrieved 1.4.2009 [www] http://fitnesse.org/

http://www.opensourcetesting.org/unit_ada.php
http://www.extremeprogramming.org/rules/pair.html
http://www.objectmentor.com/resources/articles/as_if_unit_testing_mattered.pdf
http://cppunit.sourceforge.net/doc/lastest/cppunit_cookbook.html
http://fitnesse.org/

 46

Glass, Robert L. 2003. Facts and Fallacies of Software Engineering. Addison Wesley.

ISBN: 0-321-11742-5

Hamill, Paul. 2005. Unit Test Frameworks. O’Reilly Media Inc. ISBN: 0-596-00689-6

Hunt, Andrew. Thomas, David. 2000. Addison Wesley Longman, Inc. ISBN: 0-201-

61622-X

Höst, Martin. Regnell, Björn. Runeson, Per. 2006. Att genomföra examensarbete.

Studentlitteratur. ISBN: 91-44-00521-0

Janzen, David S. Saiedan, Hossein. 2008. Does Test-Driven Development Really

Improve Software Design Quality? I: IEEE Software, March/April. p. 77-84.

Koskela, Lasse. 2008. Test Driven, Practical TDD and Acceptance TDD for Java

Developers. Manning Publications Co. ISBN: 1-932394-85-0

Kerievsky, Joshua. 2004. Refactoring to Patterns. Addison-Wesley. ISBN: 0-321-21335-

1

Martin, Robert C. 2007. Professionalism and Test-driven Development. I: IEEE

Software, May/June. p. 32-36.

Martin, Robert C. Martin, Micah. 2006. Agile principles, patters, and practices in C#.

Pearson Education, Inc. ISBN: 0-13-185725-8

Meszaros, Gerard. 2007.xUnit Test Patterns, Refactoring Test Code. ISBN: 0-13-149505-

4

ScrumAlliance. 2009. What Is Scrum? Retrieved 13.3.2009 [www]

http://www.scrumalliance.org/learn_about_scrum

Sommerville, Ian. 2004. Software Engineering, seventh edition. Addison-Wesley. ISBN:

0-321-21026

http://www.scrumalliance.org/learn_about_scrum

 47

Rozental, Gennadiy. 2007 a. Per test case fixture, Boost.Test documentation. Retrieved

19.2.2009 [www] http://www.boost.org/doc/libs/1_38_0/libs/test/doc/html/utf/user-

guide/fixture/per-test-case.html

Wikipedia. 2009 a. Test fixture. Retrieved 10.2.2009 [www]

http://en.wikipedia.org/wiki/Test_fixture

Wikipedia. 2009 b. Code smell. Retrieved 11.2.2009 [www]

http://en.wikipedia.org/wiki/Code_smell

Wikipedia. 2009 c. Scrum. Retrieved 10.3.2009 [www]

http://en.wikipedia.org/wiki/Scrum_(development)

Wikipedia. 2009 d. Cyclomatic complexity. Retrieved 26.3.2009 [www]

http://en.wikipedia.org/wiki/Cyclomatic_complexity

Wikipedia. 2009 e. Coupling. Retrieved 26.3.2009 [www]

http://en.wikipedia.org/wiki/Coupling_(computer_science)

Wohlin, Claes. 2005. Introduktion till programvaruutveckling. Studentlitteratur. ISBN:

91-44-02861-X

http://www.boost.org/doc/libs/1_38_0/libs/test/doc/html/utf/user-guide/fixture/per-test-case.html
http://www.boost.org/doc/libs/1_38_0/libs/test/doc/html/utf/user-guide/fixture/per-test-case.html
http://en.wikipedia.org/wiki/Test_fixture
http://en.wikipedia.org/wiki/Code_smell
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://en.wikipedia.org/wiki/Coupling_(computer_science)

