

Shahid Mahmood

SOFTWARE DEFINED RADIO FOR

WIRELESS SENSOR &COGNITIVE

NETWORKS

Faculty of Information Technology

2011

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Degree Programme in Information Technology

ABSTRACT

Author Shahid Mahmood

Title Software Defined Radio for Wireless Sensors & Cognitive

 Networks

Year 2011

Language English

Pages 68

Name of Supervisor Gao Chao

Software Defined Radio is a communication system where major parts of the sig-

nal processing are done with the help of software compare to the application spe-

cific hardware. This kind of system consists of computer, a radio frequency front-

end and Analog-to-Digital Converter and Digital-to-Analog Converter. Software

Defined Radio modifies new protocols which are flexible and quick to deploy [1].

The ComNet department at Aalto University is exploring the feasibility of using

Software Defined Radio for sensor and cognitive networks. The aim is to develop

a flexible platform for verifying the customized MAC and PHY layer protocols

and algorithms.

The aim of this project is to integrate the SDR nodes into our wireless sensor net-

work test-bed that uses Sensinode [2] sensor nodes. Our SDR nodes are com-

prised of USRP2 hardware [3] and GNU radio [4] software. The Sensinode nodes

are IEEE 802.15.4 compliant and use CC2420/CC2431 [5] transceiver. Provided

the SDR nodes can be integrated into the sensor network without any loss of per-

formance, it will give us the opportunity to enhance the functionality of the net-

work by integration of new PHY layer algorithms and techniques such as interfer-

ence cancellation [6], network cooperation and spectrum sensing for interference

avoidance.

This thesis focuses on understanding the Software Defined Radio components

(GNU Radio and USRP2), architecture of the operating system, signal processing

blocks, creating the desired application-specific scenarios, installation and con-

figuration of the SDR in Linux environment, integration of IEEE 802.15.4 stan-

dard into SDR, and configuring the SDR to enable communication with existing

sensor networks platform.

A Software Defined Radio running IEEE 802.15.4 was configured as a receiver

and it received IEEE 802.15.4 packets from an existing sensor platform. The task

was successfully completed and detailed report is in results.

Keywords Learning, stimulation, teaching methods

LIITE 2 1(68)

CONTENTS

ABSTRACT

1 INDRODUCTION .. 10

1.1 Background Information .. 10

1.2 Working Environment of the Project .. 11

1.3 Purpose of the Project... 11

1.4 Objectives of the Project .. 11

1.5 Outline ... 12

2 PROJECT DESCRIPTION .. 13

2.1 Cognitive Radio ... 13

2.1.1 History of Cognitive Radio ... 13

2.1.2 Definition of Cognitive Radio ... 14

2.1.3 Types of Cognitive Radio ... 15

2.1.4 Software Defined Radio .. 16

2.2 GNU Radio .. 18

2.2.1 Background of GNU Radio ... 18

2.2.2 Introduction of GNU Radio ... 18

2.2.3 GNU Radio Packages ... 21

2.2.4 A Hello World Example Application .. 22

2.2.5 GNU Radio Companion .. 24

2.3 Universal Software Radio Peripheral .. 26

2.3.1 USRP .. 26

2.3.2 USRP2 .. 30

2.4 ZIGBEE and IEEE 802.15.4 ... 33

2.4.1 Zigbee Application ... 33

2.4.2 IEEE 802.15.4 Standard .. 35

2.4.3 802.15.4 ISM Band Co-Existence ... 37

2.5 Micro Series Sensinode .. 38

2.5.1 U100 Micro.2420 .. 38

2.5.2 U600 Micro.usb .. 40

2.5.3 NanoStack .. 41

LIITE 2 2(68)

2.6 GNU Radio For Multichannel Monitoring .. 42

2.6.1 Wireshark ... 44

3 IMPLEMENTATION OF THE PROJECT .. 46

3.1 Installation & Configuration ... 46

3.1.1 Installation & Configuration of GNU RADIO 46

3.1.2 Installation & Configuration of USRP2 50

3.1.3 Installation & Configuration of IEEE 802.15.4 Ucla_Zigbee_Phy

code Examples. .. 50

3.1.4 Installation of Python-Numeric Package 54

3.2 Test-Bed Platform – Hardware and Operating System 55

3.3 Analysing Ucla_Zigbee_phy Code Examples with IEEE 802.15.4

Standard 55

3.4 Experimental Setup .. 57

4 TEST, RESULTS AND ANALYSYS ... 60

4.1 Test of GNU Radio .. 60

4.2 Test of USRP2 ... 61

4.3 Test of IEEE 802.15.4 Ucla_Zigbee_phy code Examples 62

4.4 Test of Communication between USRP2 and Sensinode....................... 62

5 CONCLUSION ... 63

REFERENCES .. 64

LIITE 2 3(68)

ACKNOWLEDGEMENT

This Bachelor thesis is the most challenging project i have done during my studies

at Vaasa University of Applied Sciences.

First of all, I would like to thank Almighty God, the most merciful, the most be-

neficent for his guidance and blessings in making this thesis successful.

I would like to express my deep gratitude to my supervisor Gao Chao for his time,

detailed and constructive comments, feedback and for his important support

throughout this project.

I am heartily grateful to Aamir Mahmood, ComNet department of Aalto Univer-

sity, who was always helpful by all the means to complete this project.

I would like to thanks to my beloved Mother from the bottom of my hearts for

her unconditional love and support, i would also like to thanks all of my friends

and families who help me in any way during my stay in Vaasa. Last but certainly

not least I would like to thanks my wife for all the support she given me during

this time.

Vaasa, 14, June 2011.

Shahid Mahmood.

LIITE 2 4(68)

ABBREVIATIONS

ADC Analog-to-Digital Converter

AFH Adaptive Frequency Hopping

AP Access Point

CIC Cascade Integration Comb

CLI Command Line Interface

ComNet Communication and Networking

CPLD Programmable Logic Device

CR Cognitive Radio

CRA Cognitive Radio Architecture

DAC Digital-to-Analog Converter

DDC Digital Down Converter

DFS Dynamic Frequency Selection

DUC Digital Up Convertor

FCC Federal Communications Commission

FCF Frame Control Field

FCS Frame Check Sequence

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

FTDI Future Technology Device International

LIITE 2 5(68)

GigE Gigabit Ethernet

GMSK Gaussian Minimum Shift Keying

GPL General Public License

GRC GNU Radio Companion

GUI Graphic User Interface

HDTV High Definition Television

IF Intermediate Frequency

IP/UDP Internet Protocol/User Datagram Protocol

ISM Industrial Scientific and Medical Band

LR-WPAN Low Rate Wireless Personal Area Network

LQI Link Quality Indicator

MAC Media Access Control Layer

MCU Micro Controller Unit

MIMO Multiple-Input/Multiple-Output

MPDU MAC Protocol Data Unit

NIC Network Interface Card

OFDM Orthogonal Frequency Division Multiplexing

OSI Open System Interconnection

PAN Personal Area Network

PC Personal Computer

LIITE 2 6(68)

PDA Personal Digital Assistant

PER Packet Error Rate

PHY Physical Layer

POS Personal Operating Space

PPDU Physical Protocol Data Unit

PSK Phase Shift Keying

PU Physical Unit

QAM Quadrature Amplitude Modulation

RF Radio Frequency

SDR Software Defined Radio

TPC Transmitter Power Control

USA United State of America

VHF/UHF Very High Frequency/Ultra High Frequency

WLAN Wireless Local Area Network

WRAN Wireless Regional Area Network

USRP Universal Software Radio Peripheral

LIITE 2 7(68)

LISTS OF PICTURES, GRAPHS AND TABLES

Figure 1: Functional Cognitive Radio Architecture p.15

Figure 2: Basic Architecture of SDR p.16

Figure 3: SDR using GNU Radio, USRP2 & DB p.17

Figure 4: Block Diagram of GNU Radio Components p.19

Figure 5: GNU Radio Modules p.20

Figure 6: GRC Components p.25

Figure 7: USRP together with Daughter-boards p.27

Figure 8: Features of USRP p.27

Figure 9: USRP Block diagram and USRP Digital down Convertor p.28

Figure 10: USRP sending and received application block diagram p.29

Figure 11: Features of USRP2 p.30

Figure 12: USRP2 operation with GNU Radio block diagram p.31

Figure 13: USRP2 and FPGA of USRP2 p.32

Figure 14: Frequency range of several USRP/USRP2 DB p.32

Figure 15: 802.15.4 PHY parameters p.33

Figure 16: Zigbee Applications p.34

Figure 17: Zigbee Application in Home environment p.34

Figure 18: IEEE 802.15.4 chip rates the modules produce p.36

Figure 19: IEEE 802.15.4 Packet Frame Layout p.36

LIITE 2 8(68)

Figure 20: IEEE 802.15.4 and WLAN Spectrum Overlap p.37

Figure 21: Micro.2420 node p.39

Figure 22: Block diagram of Micro.usb p.40

Figure 23: Micro.usb node p.41

Figure 24: Architecture of NanoStck p.42

Figure 25: USRP2 capture 5 channels p.43

Figure 26: GNU Radio IEEE802.15.4 Multichannel Demodulator p.43

Figure 27: Wireshark internal structure p.45

Figure 28: GNU Radio through Synaptic Package Manager p.46

Figure 29: Installation with Synaptic Package Manager Example p.47

Figure 30: Commands for updating installed GNU Radio p.47

Figure 31: GNU Radio downloads link p.48

Figure 32: GNU Radio through Other software p.48

Figure 33: Installation of GNU Radio and its companion p.49

Figure 34: Updating installed GNU Radio p.49

Figure 35: Installation of SVN Program p.50

Figure 36: Downloading IEEE802.15.4 Ucla_Zigbee_phy examples p.51

Figure 37: Installation IEEE802.15.4 Ucla_Zigbee_phy examples p.51

Figure 38: Installation Error 1 p.52

Figure 39: Installation error 1 solved p.52

LIITE 2 9(68)

Figure 40: Installation Error 2 p.53

Figure 41: Installation error 2 solved p.53

Figure 42: Installation error 3 solved p.54

Figure 43: Import Numeric error p.54

Figure 44: Import Numeric error solved p.54

Figure 45: Error can’t open USRP p.56

Figure 46: Experimental setup diagram p.58

Figure 47: IEEE 802.15.4 received packets. p.59

Figure 48: GNU Radio Test output p.60

Figure 49: USRP2 not connected test output p.61

Figure 50: USRP2 connected test output. p.61

Figure 51: IEEE 802.15.4 packets received on USRP2 p.62

LIITE 2 10(68)

1 INDRODUCTION

1.1 Background Information

The conventional radio transceivers are hardwired with application specific signal

processing blocks and the programmability of encoding and modulation is limited

and inflexible due to the hardware constraints. On the other hand, Software De-

fined Radio (SDR) overcomes these constraints imposed by standard-specific

hardware. The idea of SDR is to move the hardware-software boundary as close to

the antenna as possible [1]. The ideal Software Defined Radio would have an an-

tenna sampled by an ADC and the rest is done in software, turning radio hardware

design problems into software problems. The fundamental characteristic of soft-

ware radio is that software defines the transmitted waveforms, and software de-

modulates the received waveforms. Implementation of modulation and demodula-

tion is done using software instead of dedicated circuits. Leveraging extra pro-

grammability at the physical layer, the system can handle different radio signals

without changing hardware.

Wireless sensor networks consist of small, battery-powered, sensor-equipped em-

bedded devices that communicate wirelessly using an on-board low power radio.

Sensor networks enable numerous surveillance, monitoring, and other applica-

tions. Similarly, the Cognitive Radios enable to share the spectrum, usually un-

derutilized, with the primary user. For this purpose the Cognitive Radios must be

able to learn the environment and utilize the spectrum whenever primary is absent

or the interference to the primary is kept tolerable. The current research commu-

nity is very active in exploring the new ideas which can enhance the performance

of the existing standards. The validation of these concepts and ideas require a

flexible and programmable solutions and the SDR is seen as the most appropriate

prototyping platform.

LIITE 2 11(68)

1.2 Working Environment of the Project

The project work was carried out at Department of Communications and Net-

working (ComNet) at Aalto University, School of Science and Technology.

ComNet department at Aalto University is actively participating in projects such

as Cognitive Radio, Wireless Sensor Networks and 3G/4G wireless networks on

inter-disciplinary and industrial levels. It gives an opportunity to the students to

work very close to the current state-of-the-art research problems.

1.3 Purpose of the Project

The ComNet is exploring the feasibility of using Software Defined Radio for sen-

sor and cognitive networks. The objective is to prepare a flexible platform for

validating the customized MAC and PHY layer protocols and algorithms. For this

purpose, the first step is the compatibility validation of the existing wireless sen-

sor platform with the software defined radio

The existing sensor platform hardware is limited in its processing power, memory

and hardware interfaces for external environmental sensors. Moreover, the con-

ventional design of the (Sensinode) sensor nodes involves hardwiring of applica-

tion-specific signal processing blocks and the programmability of the innovative

modulation and coding techniques as well as the environment sensing and learn-

ing of the environment is quite limited. Therefore, the integration of the existing

standard into the GNU Radio will not only validate its performance but also it will

pave the way to future enhancements and large scale network establishment.

The programmable and flexible platform is replacement of the standard-specific

hardware’s. This will give the opportunity to the researchers to quickly validate

their innovative concepts and solutions.

1.4 Objectives of the Project

 learn the architecture of an open source Software Defined Radio and the

signal processing blocks

LIITE 2 12(68)

 Integrate the IEEE 802.15.4 standard into the GNU Radio

 Perform the compatibility tests of GNU Radio with the existing sensor

platform such as Sensinode Micro/Nano nodes

1.5 Outline

This thesis consists of five main chapters, and each chapter is subdivided into fur-

ther sections. This thesis begins with an overview of the background information.

Moreover purpose and objectives of this work have been presented and an outline

briefly presenting the contents of the study. The second chapter which is project

description is mostly covered the theoretical parts of the thesis. This chapter de-

scribes Cognitive Radio history, its types and also define Software Defined Radio,

brief description of GNU Radio which is software component of SDR, brief de-

scription of the architecture of USRP/USPR2 which are the hardware components

of SDR, description and application of Zigbee and IEEE 802.15.4 standard, intro-

duction of Sensinode and there features as well as some detail of capturing IEEE

802.15.4 multiple-channels with SDR system. The third chapter describes how the

project is physical implemented, starting form installation and configuration of

software and hardware components of SDR into the system and ends on develop-

ing a communication between existing Sensinode platform and SDR platform.

Comments of test results and final conclusions are finally inserted in chapters

fourth and fifth respectively.

LIITE 2 13(68)

2 PROJECT DESCRIPTION

2.1 Cognitive Radio

2.1.1 History of Cognitive Radio

Joseph Mitola and Maguire officially introduced the Cognitive Radio paradigm

[7], which has a built –in programmable and optimized new wireless system. In

his dissertation, Mitola described this innovative approach in wireless system as

follows:

“The term Cognitive Radio (CR) identifies the point at which wireless Personal

Digital Assistants (PDA) and the related networks are sufficiently computational-

ly intelligent about radio resources and related computer-to-computer communica-

tions to detect user communications needs as a function of use context, and to

provide radio resources and wireless services most appropriate to hose needs.” [8]

After Mitola officially work, different countries departments of regulatory found

that most of the radio frequency spectrum was used ineffectively. In December

2003, Federal Communication Commission (FCC) advised regulation that would

consider Cognitive Radio to apply opportunistic spectrum sharing [9]. After that

some of the cognitive feature has been included in wireless standards. The First

one is IEEE 802.11K standard, which is updated version of the IEEE 802.11 stan-

dard for radio resource management. IEEE 802.11K provides (measurement or

sensing) information. This information include noise histogram report, channel

load report and station statistic report and used as well to increase the progress of

traffic distribution within a network. Devices like Wireless Local Area Network

(WLAN) prefer to connect to the Access Point (AP) that provides strongest sig-

nals. This type of strategic arrangement some time causes one Access Point (AP)

to be overloaded and others to be underutilized. In 802.11K standard, if the AP

which has the strongest signal is overloading to its full capacity, then wireless de-

vice will connect to some other AP which is underutilized. Despite of that the

wireless device receives the weaker signal the overall network is working more

efficiently. The second example is Bluetooth. In Bluetooth standard Adaptive

LIITE 2 14(68)

Frequency Hopping (AFH) is added to avoid interference with other wireless

technologies in the 2.4 Ghz unlicensed radio spectrum [10]. Thus IEEE 802.11

b/g devices, Bluetooth, Cordless telephones and Microwave ovens can use the

same 2.4 GHz wireless frequencies. Because of the sensing algorithms used by

AFH it determine if there are any other devices present in the Industrial Scientific

and Medical (ISM) radio bands and decide whether to avoid them. AFH avoid

taking frequencies which are already being used by WLAN. The third example is

IEEE 802.22 standard which formed in 2004 and based on Cognitive Radio for

Wireless Regional Area Networks (WRAN). This WRAN system operates on the

VHF/UHF bands which are currently assigned for TV broadcasting services as

well as wireless microphones. Practically WRAN system is able to sense the spec-

trum, identify unused TV channels and use these channels to supply broadband

services for fixed wireless subscribers. [11-12].

2.1.2 Definition of Cognitive Radio

A radio type who has the ability to aware of its environment and decide intelli-

gently about its operations based on that predefined information.

Cognitive Radio changes its behavior and operations to accomplish its objectives

within the technologies like Software Defined Radio, adaptive radio [13].

Mitola Radio is a full Cognitive Radio (CR) which is fully reconfigurable device.

It cognitively acquires itself to its local environment. Cognitive Radio (CR) has

potential to supply greater benefits to telecommunication systems. Cognitive Ra-

dio discovers unused portion within the spectrum and bypass the interference with

the PU, and communicate to a network in its preferred protocols. So it is intelli-

gent enough to bypass over-crowding spectral. Cognitive Radio has the ability

which can improve spectrum access and communication services. Cognitive Ra-

dio also has the ability to work as a bridge between two systems, it receive signal

in one format and transmit it to another mode. CR amends spectrum management

that is changing dynamically the operating frequency with the help of Dynamic

Frequency Selection (DFS). One important feature of CR is Transmitter Power

Control (TPC) it grand permission to transmission at the allowable limits when it

LIITE 2 15(68)

is essential. It decreases the power in mobile device when it is in airport for safety

reason. [14]

2.1.3 Types of Cognitive Radio

Cognitive Radio has two main types. The first type is (Mitola radio) where all the

parameter are under consideration in a wireless network. [7]. the second type is

(WRAN) where only radio frequency spectrum is considered [15]. Cognitive Ra-

dio also classified in terms of parts of the spectrum available.

 Licensed Band

These are the bands which are sold by license and used by Cognitive Radio.

IEEE802.22 develops a standard for (WRAN) that will work in spectrum of un-

used television channels [16].

 Unlicensed Band

These are the bands which only used unlicensed parts of the radio frequency spec-

trum. IEEE 802.15 develops a standard for Bluetooth and WLAN [17]. The func-

tional Cognitive Radio Architecture (CRA) is shown in Figure 1.

 Figure 1: Functional Cognitive Radio Architecture (CRA) [14]

LIITE 2 16(68)

2.1.4 Software Defined Radio

The ideal SDR is where software pieces and not the hardware devices take care of

the signal to extract information. Such a system is consisting of computer or some

embedded device. In SDR system Analog-to-Digital and Digital-to-Analog Con-

verter converts signals to and from Radio Frequency front-end and modulation,

demodulation, mixing and filtering done by the software rather than electronic

devices. SDR has a RF front-end which has the capacity to access more than 2.5

GHz for supporting different kind of communication services. In SDR instead of

installing extra circuitry to handle different kind of radio signals, we just load ap-

propriate software. It can be an AM radio at one instance and next instance it can

be a wireless data receiver or may be a HDTV set. A Software Defined Radio

could remove the drawbacks of current radios [18]. The basic architecture of SDR

is shown in Figure 2.

Figure 2: Basic architecture of SDR

A universal SDR structure with the specific software (GNU Radio) and hardware

(USRP2) is shown in figure 3.The structure of Software Defined Radio has three

parts. The left one build the RF frontend of the hardware assist as interface to the

analog RF domain. In the second part, the intelligence of the hardware part is ap-

plied, forming the interface between the digital and making the interface between

the digital and the analog world. In the third part, the whole signal processing is

done-fully designed in software.

In the first part which is situated on the left side of the Figure 3. This analog RF

signal can be received or transmitted over antennas. The upper path marks the re-

ceive path (Rx) and the lower path is marks the transmitter (Tx). Both parts can

LIITE 2 17(68)

operate automatically. The operational frequency range is varying from DC to 5.9

GHz, depending on the available daughter-boards for USRP2. These daughter-

boards which form the RF frontend of USRP2 are connected to USRP2 mother-

board. On the motherboard of USRP2, an Analog to Digital Converter (ADC)

samples the received signal and converts it to digital samples depending on the

ADCs dynamic range of 14 bit (100MS/s) USRP2. These digital samples are then

transferred to the FPGA and processed with Digital down Converters (DDC) to

meet the exactly requested output frequency and sample rate.

The digital samples from ADC are mixed down to the desired IF by being multip-

lied with sine respectively cosine function resulting in the, I and Q path. The fre-

quency is generated with Numerically Controlled Oscillator (NCO) which synthe-

sizes a discrete time, discrete amplitude waveform within the FPGA. Afterwards a

decimation of the sampling rate is performed by an arbitrary decimation factor N.

The sampling rate (fs) divided by N results in the output sample rate, send to host

by Gigabit Ethernet. Using 4 byte complex samples (16-bit I and 16-bit Q) and

respecting the Nyquist criterion leads to usable (complex) spectral bandwidth of 8

MHz for Gigabit Ethernet in USRP2. GNU Radio framework controls the further

signal processing capabilities. GNU Radio is an open source framework, provid-

ing various pre-assembled signal processing blocks for waveform creation and

analysis in the software radio development.

In the transmit path, the same procedure is done vice versa using Digital up Con-

verter (DUC) and Digital-to-Analog Converters [19].

Figure 3: Block diagram SDR using GNU Radio, USRP2, and daughterboard.

LIITE 2 18(68)

2.2 GNU Radio

2.2.1 Background of GNU Radio

The GNU Radio project was started by Eric Blossom, an electric engineer in early

2000. Eric Blossom and his development colleague Matt Ettaus created an ad-

vanced software infrastructure to explore software radio. The motivation came for

this software development that he wanted to design software based HDTV receiv-

er. This software was developed as a reaction to the restriction on hardware re-

ceivers in the broadcast flag legislation that time within the USA. The main idea

behind the GNU Radio development was to turn all the Hardware problems into

software problems and take the software as close to the antenna as possible. The

GNU Radio project founder, Richard Stallman liked Eric Blossom idea and they

agreed to take the project under GNU aegis 34. Eric Blossom and his colleague

developed a project and turned an ordinary computer into a quality radio receiver.

They made it possible that with the combination of appropriate software modules

they can develop a non-commercial radio receiver. GNU Radio developed only

for radio amateurs but the interest of more and more researchers made GNU Ra-

dio more sophisticated. Now quite many developers affirm GNU Radio test-bed

platform. GNU Radio support various Modulations (QAM, OFDM, GMSK,

PSK), Signal processing technics (Filters, Equalizers, FFTs, Timing Recovery),

and error corrections codes (Viterbi, Reed Solomon, Turbo codes) etc. GNU Ra-

dio runs under several operating systems like Linux, Debian, Fedora, Gentoo,

Mandriva, SuSE, Ubuntu, Mac OS X, NetBSD, and Windows [20].

2.2.2 Introduction of GNU Radio

GNU Radio is an open source development toolkit which when combined with

low cost RF hardware allows constructing radios, and it turns hardware problems

into software problems. GNU Radio provides tons of libraries of signal processing

blocks written in C/C++ programming language and the glue to tie it all together

for building and deploying Software Defined Radio. These blocks are widely used

in real time implementation of SDR and wireless communication research. The

programmer builds a radio by creating a graph where vertices are signal

LIITE 2 19(68)

processing blocks and edges defined the data flow between them. The signal

processing blocks are implemented in C++ and the graphs are constructed and run

in Python. Python supply a user friendly frontend environment to the developer to

write routines in a rapid way. In GNU Radio some of the blocks have only input

ports and some has only output posts. They work as data source and sink within

the graph. The sources are used to read from a file or ADC and sink that write to a

file, DAC or Graphical display. More than 100 blocks come with the GNU Radio

and it is also possible to write new blocks [21]. The connections of GNU Radio

component are shows in Figure 4.

Figure 4: Block Diagram of GNU Radio Components

The development of GNU Radio can be done using Object Oriented Approach

and Procedural Approach Depending on the complexity of the problem. Here are

some modules available in the current release of GNU Radio which shown in Fig-

ure 5 [22].

LIITE 2 20(68)

Figure 5: GNU Radio Modules [22]

GNU Radio is not very useful unless it has attached some hardware to interact

with real world. It supports much different hardware, like sound card, and many

different RF front-ends to received different bands of the telecommunication spec-

trum. The most commonly used one is Universal Software Radio Peripheral

(USRP). The more detail about USRP will cover in Section 2.3.

LIITE 2 21(68)

2.2.3 GNU Radio Packages

The packages which required for compiling various parts of GNU Radio on Ub-

untu are:

Development Tools (need for compilation)

 g++

 git

 make

 autoconf, automake, libtool

 sdcc (from “universe”; 2.4 or newer)

 guile (1.6 or newer)

 ccache (not required, but recommended if you compile frequently)

 Liberaries (need for runtime and for compilation)

 python-dev

 FFTW 3.X (ffw3, fftw3-dev)

 cppunit (libcppunit and libcppunit-dev)

 Boost 1.35 (or later)

 libusb and libusb-dev

 wxWidgets (wx-common) and wxPython (python-wxgtk2.8)

 python-numpy (via python-numpy-ext) (for SVN on or after 2007-May-

28)

 ALSA (alsa-base, libasound2 and libasound2-dev)

LIITE 2 22(68)

 Qt (libqt3-mt-dev for versions earlier than 8.04; version 4 works for 8.04

and later)

 SDL (libsdl-dev)

 GSL GNU Scientific Library (libgsl0-dev >= 1.10 required for SVN trunk,

not in binary repositories for 7.10 and earlier)

 Swing (1.3.31 or newer required)

 Edgy or previous: requires installation from source

 Feisty or newer: use the standard package install (swig)

 QWT and QWT PLot3d liberaries (optional for QT Gui)

 Polyphase Filter Bank examples

 For the examples in gnuradio-examples/python/pfb to work it is important

to install python-scipy, python-matpoltlib, and python-tk

Other useful packages:

 doxygen (for creating documentation from source code)

 octave (from "universe") [22]

2.2.4 A Hello World Example Application

The “Hello World” program in GNU Radio of dial_tone.py is found in the direc-

tory <top gr dir>/gnuradio-example/python/audio/. In GNU Radio this application

generate US dial tone and playing it using a computer sound card. The dial tone is

generated by sine waves; one of them is used left channel and the other one used

right channel of the sound card.

Hello World Example Python code:

#! /usr/bin/env python

LIITE 2 23(68)

from gnuradio import gr

from gnuradio import audio

def build_graph ():

 sampling_freq = 48000

 ampl = 0.1

 fg = gr.flow_graph () # get empty flow graph

 # Instantiate source and sink blocks

 src0 = gr.sig_source_f (sampling_freq,

 gr.GR_SIN_WAVE, 350, ampl)

 src1 = gr.sig_source_f (sampling_freq,

 gr.GR_SIN_WAVE, 440, ampl)

 dst = audio.sink (sampling_freq)

 # connect the blocks

 fg.connect ((src0, 0), (dst, 0))

 fg.connect ((src1, 0), (dst, 1))

 return fg

if __name__ == '__main__':

 fg = build_graph ()

 fg.start ()

 raw_input ('Press Enter to quit: ')

LIITE 2 24(68)

 fg.stop ()

A flow graph is produced to hold the blocks and connection between them. The

two sine waves are generated by the gr.sig_source_f calls. The f suffix shows the

source produces floating numbers. One of the two sine waves is at 350 Hz, and

the other one is at 440 Hz. Together, they sound like a US dial tone. The audio

sink creates a sink and writes the input to the sound card. It carries one or more

streams of floats in the range as its input. The three blocks are connected together

using the connect() method of the flow graph. The connect() method carry two

parameters, one of them is source endpoint and other one is destination endpoint

and creates a connection from source to the destination. An endpoint has two

components: a port number and signal processing block. The port number defines

which input or output port of the specified block is to be connected. In the general

form, an endpoint is represented as a python tuple like this: (block, port_number).

When the port_number is zero, the block may be used alone. For example these

following expressions are equivalent:

fg.connect ((src1, 0), (dst, 1))

fg.connect (src1, (dst, 1))

Once we get the built graph. We start it. The start() method forks one or more

threads to run the computation described by the graph and returns control imme-

diately to the caller. In this case, the software waits for any keystroke [18].

2.2.5 GNU Radio Companion

Since programming on GNU Radio is a hard process, due to its command line in-

terface. Josh Blum from Johns Hopkins University developed a graphical inter-

face called GRC. It permits users to interact with signal processing blocks of

GNU Radio in a way similar to Simulink or Labview. In the process of complet-

ing its designed interface GNU Radio was taken in to mind and cover over 150

blocks from the GNU Radio project. Integration of GNU Radio blocks are done

manually into GRC through Descriptive python definitions. The definitions are so

LIITE 2 25(68)

flexible, and it permits multiple GNU Radio blocks to group into a single GRC

super block. The GRC components are shown in Figure 6.

Figure 6: GRC components

Flow Graph: It Interconnect the signal processing blocks, GRC has a scrollable

window to place and connect different signal blocks.

Parameters: Parameters make influence to a function of a signal block. For Exam-

ple, a parameter can be a gain, a flag, or a sampling rate. Parameters are displayed

below its label for a signal block.

Connections: A connection links an input and output socket. The representation of

connections is done by drawing a line between the two sockets. Connections must

be between matching data types, including vectors.

Signal Blocks: All of the processing is done by signal block in a flow graph. For

example, a signal block can be a source, an address, a filter or a sink. The repre-

sentation of signal blocks in GRC is as a rectangular blocks. Each block has a la-

bel that points the list of parameters and name of the block.

LIITE 2 26(68)

Sockets: The inputs and outputs of the signal block are called sockets. Each signal

block has a certain amount of sockets link up with it. For example, an adder has

one output socket and two input sockets. A small rectangle attached to a signal

block is representing a socket. The socket has a label indicating its function. Usu-

ally labels are named as “in” or “out”. Some other labels which indicate a vector

type named as “vin” or “vout”. Sockets are also coloured to point their data type.

For example, Red for float, Yellow for short, Blue for complex, Green for int, and

Purple for byte.

Variables: They hold a number which is available to all components in the flow

graph. They have two purposes. First one is, parameters can use a variable to

share values. Second one is, Variable can also have a range (min and max) affili-

ated with them. While the flow graph is running, variable with ranges can be dy-

namically changed [23].

2.3 Universal Software Radio Peripheral

2.3.1 USRP

The Universal Software Radio Peripheral, (USRP) is an integrated circuit board

that allows together with daughter boards, creation of a Software Defined Radio

using any computer with an USB 2.0 port. Different types of plug-on daughter-

boards permit the USRP to be used on different radio frequency bands. Now a

days daughter-boards operating from DC (logic zero) to 5.9 GHz are available

[21].

The USRP has been developed by Matt Ettus and his development team at Etters

Research. There are quite many hardware available to interface GNU Radio alto-

gether with electromagnetic spectrum but the USRP has become the standard one.

The entire schematics design of the USRP is open source altogether with firm-

ware, drivers and even FPGA and daughter-board designs. A USRP board setup

consists of one mother board and up to four daughter-boards which is shown in

Figure 7 [24].

LIITE 2 27(68)

Figure 7: USRP together with Daughter-boards

The USRP motherboard has up to four 12-bit, 64M sample/sec ADCs, four 14-bit,

128M sample/sec DACs, and million gates, Filed programmable Gate Array

(FPGA) and a programmable USB 2.0 controller. USRP motherboard supports

four daughter-boards, two is used for receiving and two is used for transmitting.

The daughter-boards containing the RF front ends. The Main features of USRP

are shown in Figure 8 [25].

Figure 8: Features of USRP [25]

LIITE 2 28(68)

One USRP can received and transmit on two antennas in real time. The creation

of MIMO (Multiple Inputs, Multiple Outputs) system is possible when all sam-

pling clocks and local oscillators are fully coherent. FPGA provide a platform

where high sampling rate processing is done and host computer provide a plate

form for low rate sampling. The two Digital down Converters (DDCs) which are

mounted onto the board mix, filter, and decimate (from 64M samples /s) incoming

signals in the FPGA. The two Digital up Converters (DUCs) interpolate to the

baseband signals to 128MS/s before translating them to the selected output fre-

quency. USRP daughter-boards provide integrated RF front-ends platform. The

USRP daughter-boards accommodate up to two transmit and two receive for RF

I/O. The block diagram of USRP is shown in Figure 9 [21].

Figure 9: USRP Block diagram and USRP Digital down Convertor

The received analog radio signal enters the system through antenna which is con-

nected to either A or B side of the daughter-board. On the daughter-board the sig-

nal is amplified and fed into a mixer which moves the desired frequency band

down to Intermediate Frequency which is acceptable for ADC. This mixing proc-

ess is known as down conversion which is shown in figure 9. The signal then en-

ters the ADC interface module that converts the signal into digital samples. The

ADCs sample at a rate of 64MS/s. The samples data width is 12bits. For each of

the two daughter-boards there is one dual channel ADC is available. These can be

used as two separate real channels but normally used in parallel for complex sam-

pling. These digital samples then send to FPGA where further down conversion is

LIITE 2 29(68)

take place and digital samples decimate to 32MS/s. And finally, the signal go

through the RX buffer module where they get interleaved into a 16 bit value and

send to the PC through USB bus.

Figure 10: USRP received path block diagram and USRP sending and received

application block diagram [21-27]

The transmit path is very similar to the receive path, the data comes as a 16 bit

complex pair of signals I, Q from USB and fed into the FPGA through TX buffer

module. In the FPGA the signal is raise to a rate of 32MS/s with the help of Cas-

caded Integrator Comb (CIC) unit, which is the necessary input rate of the DAC.

The DAC is configured for complex sampling and can’t be used to transmit four

real channels simultaneously but it can be possible to make changing into the con-

figuration of GNU Radio and USRP. The bus runs at 64MHz between FPGA and

two ADC/DAC codecs and on it two 32 MS/s streams of samples are multiplexed.

The AD 9862 interpolated the signal by factor of 4, and then up converted to an

Intermediate Frequency. For the transmit case no up conversion is done in FPGA.

Instead it is done in the AD9862. This Intermediate Frequency finally converted

to an analog signal. The block diagram of received and transmit path is shown in

Figure 10.

The USRP is bounded to 32 MB/s when transferring data over USB2 link. This

means in order to keep a constant steam of samples at least a factor of 8, decima-

tion is required. This can be done by initializing parameters when interfacing with

USRP using GNU Radio. A minimum decimation of 8 of 64 MS/s gives us 8

MS/s (complex samples), which is equal to sampling window of 8 MHz. This

LIITE 2 30(68)

window gives us the chance to cover 2 (IEEE 802.15.4) channels at once in the

2.4 GHz band. Because of this limitation we choose USRP2 for multi-channel de-

coding [28].

2.3.2 USRP2

In May 2009, a new version of Universal Software Radio Peripheral (USRP) in-

troduced and named USRP2. USRP2 is also open source hardware and all sche-

matics and components information can be downloaded from the manufacturer

website. USRP2 contains Field Programmable Gate Array (FPGA), Gigabit

Ethernet controller, SD card slot, MIMO expansion slot with 8 LED indicators

and daughter-boards which are connected over FPGA in the form of RF trans-

ceiver. SD card holds the driver for USRP2 motherboard and RF transceiver. 5V,

6A DC power is required to turn on the USRP2. The expansion MIMO port al-

lows multiple USRP2 systems: it’s possible to connect together more USRP2 to

form fully coherent multiple antenna systems for MIMO with as many as 8 anten-

nas. The main features of USRP2 are shown in Figure 11 [25].

Figure 11: Features of USRP2 [25]

The received analog signal is enters into the system through antenna which is

connected to the daughter-board. RF transceiver in the form of daughter-board

fetches the signal and converts it to Intermediate Frequency (IF) around Direct

LIITE 2 31(68)

Current (DC) using Digital down Converter (DDC). This IF signal then fed to

ADC. USRP2 holds 14-bit ADC converter supply 100MS/s sampling rate. These

digital samples then send to FPGA. FPGA further down convert the remaining

frequency and data rate conversion. After processing the signal, FPGA send the

resulted signal to Gigabit Ethernet controller which passes it over to the computer

where with the help of GNU Radio rest of the signal processing tasks are per-

formed. The receiver and transmitter block diagram of USRP2 is shown in Figure

12.

Figure 12: USRP2 operation with GNU Radio block diagram [29]

The transmission path is very similar to the receiver path, firstly Gigabit Ethernet

controller of the host computer transfer the input parameters to USRP2. This re-

ceived complex signal is Digital up Converted to IF signal by the (DUC) and

transferred it to DAC. The DAC transfer the IF converted signal to the daughter-

board which is RF transceiver where it is converted to RF signal and transmitted

over the air. The FPGA and USRP2 are shown in Figure 13 [29].

LIITE 2 32(68)

Figure 13: USRP2 and FPGA of USRP2 [25].

The USRP2 is used for multi-channel decoding. In USRP2 ADCs capacity is

changed and now capable of 14-bit 100MS/s, and DACs is changed as well and

now capable of 16-bit 400MS/s, and Gigabit Ethernet (GigE) is added instead of

USB2. Gigabit Ethernet has the capacity to transfer data rate of 125MB/s which is

equivalent to 30MS/s. When we decimation signal at rate of 4, USRP2 gives us

sampling window of 25MHz. This window can cover 5 consecutive IEEE

802.15.4 channels in the 2.4 GHz band. In ISM band in total 16 channels available

but with the help of USRP2 it is a good start to utilized 5 channels to seeing the

power of SDR. AS the technology improves, SDR will capable to sample the en-

tire 16 channels of ISM band. Daughter-boards available for USRP/USRP2 are

shown in Figure 14 [25].

Figure 14: Frequency range of several USRP/USRP2 daughter-boards [25]

LIITE 2 33(68)

2.4 ZIGBEE and IEEE 802.15.4

The IEEE 802.15.4 standard specifies the Physical Layer and Medium Access

Control Layer of a Low Rate Wireless Personal Area Networks (LR-WPAN) for

multiple Radio Frequency (RF) bands, including 868 MHz, 915MHz, and 2.4

GHz. The hardware for network communication is Physical Layer and Medium

Access Control Layer is representing to the data link layer of the Open System

Interconnection (OSI) reference model. Its main goal is to make a low data rate

protocol for low power applications. Low power consumption can be achieved by

allowing a device to sleep, only waking into active mode for brief periods. Ena-

bling such low duty cycle operation is at the heart of the IEEE802.15.4 standard.

The Zigbee Alliance constructed on top of the IEEE 802.15.4 protocols by further

specifying the higher layers of the stack and releasing the Zigbee protocol. IEEE

802.15.4 parameters are shown in Figure 15 [31].

Figure 15: IEEE 802.15.4 PHY parameters [30]

2.4.1 Zigbee Application

The Zigbee Alliance design and create products for home and industrial use. The

Wireless sensor network is a key technology for several applications like home

automation, building control, energy saving and automobile monitoring. These

devices can transmit sensor data, sensor health, commands, and update wirelessly.

Devices from different manufacturer can inter operate to each other by following

LIITE 2 34(68)

Zigbee standards. Zigbee technology enable two way communications, with the

help of this technology consumer is not only able to monitor and keep track of

domestic utilities usage but able to feed it to computer system for data analysis.

The Zigbee applications are shown in Figure 16 [32].

Figure 16: Zigbee Applications [30].

The West Technology Research solution issued a report that Zigbee chipsets into

the home automation segment annul shipment is exceed 339 million units and

showed in light switches, fire and smoke detectors, thermostats, appliances in the

kitchen, video and audio remote controls, lands capping and security systems.

Figure 17: Zigbee Application in Home environment [30].

LIITE 2 35(68)

One of the Zigbee technology examples is home control centre which is shown in

Figure 17. The central console combined data of room light, humidity, tempera-

ture, and air movement. The room control system can automatically control lights,

blinds, and air conditioning of the home with the help of available data. In future

more energy efficient homes and building can be built with the help of this tech-

nology where rooms need to kept optimal lighting and temperature with minimal

amount of resources [32].

2.4.2 IEEE 802.15.4 Standard

The new IEEE 802.15.4 standard, defines the specification of Physical Layer

(PHY) and Medium Access Control sublayer (MAC) for low data rate wireless

connectivity within the devices which use minimal power and operate in the Per-

sonal Operating Space (POS) of 10 meters or less. A device use either 64 bit IEEE

address or a 16 bit short address during the association procedure in an IEEE

802.15.4 network, and can accommodate up to 64k (2power 16) devices. There

are two different network topologies (Star topology and peer to peer topology)

that are useful for wireless network. In the star topology a single node is selected

as a coordinator of Personal Area Network (PAN). All other nodes which are link

to this network must communicate through the coordinator. It is possible that node

as a coordinator of PAN has more computing resources and may be mains pow-

ered and other linked node probably battery powered. This kind of setup is used in

home automation applications where there is a central control point. In peer to

peer topology model, there is still a coordinator but in this topology every node

can communicate to its neighbouring nodes within a reception range. This is a

complicated mesh network topology and used in industrial production, inventory

tracking [31].

The Wireless communication under IEEE 802.15.4 operates in three license free

ISM frequency bands. In 2.4 GHz band 16 channels (start from channel number

11 and go to channels number 26) are allowed and it hold data rates of 250Kb/sec,

in 915 MHz band 10 channels (start from channel number 0 and go to channel

number 10) are allowed and it hold data rate of 40kb/sec, and in 868 MHz band

LIITE 2 36(68)

only one channels is allowed and it hold data rate of 20kb/sec. So in total there are

27 channels are allowed in 802.15.4. These channels are spaced 5 MHz apart with

a spectral widow of 2 MHz. The block diagram of 2.4 GHz of IEEE 802.15.4 cor-

responding bit/symbol/chip/ rate is shown in Figure 18 [21].

Figure 18: Block diagram of 2.4 GHz of IEEE 802.15.4 corresponding

bit/symbol/chip rates the modules produce [21]

The 2.4 GHz IEEE 802.15.4 band has seen major developed because of its avail-

ability worldwide. After the general introduction about IEEE 802.15.4 now the

discussion is more focus on 2.4 GHz band because this band is used in this pro-

ject. This band has a transmission data rate 250kbit/s. First transmitted data is

converted into 4 data symbols, than it is spread according to 32 bit sequence at a

rate of 2 MChip/s. The Offset Quadrature Phase Shift Key than modulated these

chipping sequence and the result of the signal is sent out centred at the channel

frequency.

Figure 19: IEEE 802.15.4 (PHY & MAC Layer) Packet Frame Layout [21]

LIITE 2 37(68)

A Physical Protocol Data Unit (PPDU) contains synchronized header, a frame

length field and the MAC Protocol Data Unit (MPDU). The IEEE 802.15.4 packet

has a maximum MPDU size of 127 bytes. MPDU consist of Frame Control Field

(FCF), sequence number, address field, frame payload, and finally the Frame

Check Sequence (FCS). The field before payload holds metadata regarding the

contents of payload. The FCS is ensuring the integrity of the data. The IEEE

802.15.4 (PHY & MAC Layer) packet frame layout is shown in Figure 19 [21].

2.4.3 802.15.4 ISM Band Co-Existence

The 2.4 GHz band which is part of Industrial Scientific and Medical (ISM) band.

Many different communication standards use this unlicensed part of spectrum.

Some of the common technologies which use this band are IEEE 802.15.1 (Blue-

tooth), IEEE 802.15.4 (Zigbee), and IEEE 802.11b/g used by Wireless Local Area

Networks (WLAN) [32].

Figure 20: IEEE 802.15.4 and WLAN Spectrum Overlap [32]

These technologies work in the same communication spectrum and resulting over-

lapping bands. The number of different wireless technologies reasonably concerns

about interference in the unlicensed 2.4 GHz ISM band. The Figure 20 shows the

overlap between WLAN and Zigbee. The WLAN devices have much higher

power output as compare to IEEE 802.15.4 nodes. The IEEE 802.15.4 channels

experience significant frame loss that was centred within 7 MHz of the WLAN

channel. The longer packet has a higher Packet Error Rate (PER) as they are

LIITE 2 38(68)

longer in size and have more chance of corruption because of the interference. A

number of solutions are advised for IEEE 802.15.4 to continue operating despite

of possible communication spectral interference. All of these solutions require

channel hopping which advice to move channel that the LR-WPAN is running on

to a channel that has less interference [33].

A more adopted approach is Cognitive Radio approach. The PAN Coordinator

will sense the current communication spectrum and then make the decisions to

change channels based on the measurements. Maintaining the LR-WPAN while

still hopping channels becomes the difficult part of applying these protocols [32].

2.5 Micro Series Sensinode

The cc2420 is a single-chip 2.4 GHz IEEE 802.15.4 RF transceiver designed for

low power and low voltage wireless applications at the data rate of 250kbps.

2.5.1 U100 Micro.2420

Micro.2420 is the core of Micro Series node. It is a fully operational communica-

tion node which has accessible connectors for easy sensor and UI element opera-

tion. It runs on 2 NiMH batteries and also run on bus supplied 3.3v power. It inte-

grates TI MSP430 microcontroller with a Chipcon 802.15.4 radio which has a ca-

pacity of 100 m transmit range. This radio offers ad hoc communication with a

wide variety of topologies at 250kbps data rate.

The main functional blocks of Micro.2420 are the Microcontroller (MCU), pro-

grammable logic device (CPLD), radio transceiver and the power supply which is

battery powered. The MCU has 10kB of ram and 256kB of FLASH memory. It

can be programmed by using Micro series devel module D100 or the USB pro-

grammer A100. These programs can sport both JTAG and bootstrap programming

modes. The hardware of Micro.2420 also supports MSP430 self-programming

where MCU programs its own FLASH memory. An external 4Mbit serial FLASH

memory is connected to MCU. It can be used to store measurement data. The pur-

pose of CPLD is to connect the Micro.2420 system together as well as routes reset

LIITE 2 39(68)

and clock signals and generates the select signals for the modules. The RF system

consists of TI cc2420 RF transceiver, RF matching circuitry and antenna [34]. The

Micro.2420 node is shown in Figure 21.

Figure 21: Micro.2420 node [35]

 The features of Micro.2420 are given below [35]:

 Powerful MSP430 microcontroller including 10kB RAM and 256kB

FLASH memory, running at 8Mhz.

 Multiple 12 bit ADC and two 12 bit DAC.

 Chipcon cc2420 802.15.4 RF transceiver with 250kbps data rate

 4 Mbit serial data FLASH memory

 On-board antenna and optional connector for an external antenna.

 Expandable by adding other micro modules.

 Low power consumption, available modes are ultra-low power sleep and

idle.

 Each module has a unique ID number

LIITE 2 40(68)

 Case connector with 8 digital/analogue IOs.

 RoHS compatible

 3.3V operation, minimum battery voltage 1.5V

 Has support for running on 2 NiMH batteries

 Sleep mode current <50uA

 Operating current <25mA

2.5.2 U600 Micro.usb

The Micro.usb modules give the opportunity to Micro Sensinode that it can inter-

face its node with for example a PC, provide a serial connection over USB for de-

bugging, supplies power to the stack, and enables programming the microcontrol-

ler. The Micro.usb can be used with a rechargeable battery, which charged him

when the node is powered by USB. The block diagram of Micro.usb is shown in

Figure 22.

Figure 22: Block diagram of Micro.usb [36]

Micro.usb widely supported FTDI USB chip, and has drivers in all the major op-

erating systems. When connected to PC, the FTDI driver provides a serial port to

the Sensinode which can be used with a terminal for debugging or control pur-

poses, or with the NanoStack PC tools [34]. The Micro.usb node is shown in Fig-

ure 23.

LIITE 2 41(68)

Figure 23: Micro.usb node [36]

The features of Micro.usb are given bellow [36]:

 USB serial adapter for the Sensinode Micro Series

 Used FTDI USB chip solution

 Drivers available for Linux, OS X, and Windows

 Full speed USB device data rate of 1MB/s

 The USB bus charges 2 NiMH batteries

 Enables bootstrap programming of the Micro.2420 over USB

 Each module has a unique ID number

 RoHS compatible.

2.5.3 NanoStack

NanoStack is built upon a stable, portable real-time operating system called

FreeRTOS. NanoStack is a flexible 6LoWPAN protocol stack for wireless sensing

and control using power devices with full IEEE 802.15.4 implementation. The

LIITE 2 42(68)

architecture of NanoStack framework which is shown in Figure 24 is design to

runs on the embedded wireless nodes, drivers and tools for accessing the wireless

nodes from a PC.

Figure 24: Architecture of NanoStck

NanoStack is built-in radio chip drivers for TI cc2420 and cc2430 radios. These

radios apply part of the IEEE 802.15.4 standard in hardware and the rest of the

IEEE 802.15.4 standard is applied inside NanoStack. The nRoute Protocol is used

to communicate between a host PC and serial device which allow access to the

local sensor network for network monitoring, system diagnosis and data collection

[37].

2.6 GNU Radio for Multichannel Monitoring

There are quite many different packet analysing tools are available. There types

vary in a way that how many number of channels they can capture and the types

of visualization they can produce.

In the interest of exploring IEEE 802.15.4 demodulation and modulation with

SDR, Thomas Schmid created a block for GNU Radio. This implementation for

single channel worked and this block design can be adapted to multiple channels

implementation.

After extending the Schimed work multichannel packet capture solution was im-

plemented. The USRP2 is chosen over the USRP because it has the capability to

sample a spectral window which contains 5 channels as compare to USRP which

has capability of 2 channels. GNU Radio was used to demodulate the packet and

LIITE 2 43(68)

separate the sampling window into the different channels. Decimating at a factor

of 4, the USRP2 streams 25 MS/s over the GigE link. When putting the USRP2 in

the middle of a centre channel which is shown in Figure 25, it is possible to cap-

ture 5 IEEE 802.15.4 channels. These samples enter the GNU Radio block which

is shown in Figure 26. The incoming samples coming from USRP2 are transfer

into a power squelch block. This squelch block limit the amount of processing

which host computer has to perform by dropping all signals which do not pass

threshold strength in dB. It is necessary to turn this squelch filter just above the

noise level to make sure incoming packets are not dropped. These samples then

forward parallel to 5 software based DDCs. The work of these DDCs to translate

the signal by a frequency offset. After the translation, these blocks down-sample

and low pass filter the signal to select a narrow band. These blocks translate the

signal by different amount corresponding to the centre of the desired frequency.

These samples are then decimated by factor of 5 and low pass filtered to a 2 MHz

windows [32].

Figure 25: USRP2 capture 5 channels. Centre frequency is denoted by fc [32]

Figure 26: Architecture of GNU Radio IEEE802.15.4 Multichannel Demodulator

[32]

LIITE 2 44(68)

At the output of DDCs, samples are produced a rate of 5MS/s. It is necessary to

resample these samples at the rate of 4MS/s because IEEE 802.15.4 demodulation

block requires 2 samples per chip and IEEE 802.15.4 standard has chipping rate

of 2MChip/sec. This is done by rational resampler block and these samples at

4MS/s are sent to IEEE 802.15.4 demodulator. The IEEE 802.15.4 specification

specifies that the Link Quality Indicator (LQI) must range from 0 to 255 and

should relate to the relative signal quality of the channels. On TI cc2420 trans-

ceiver chips, LQI is calculated by averaging the chip correlation value of 8 con-

secutive symbols.

In GNU Radio LQI is implemented by summing the number of matched chip with

in the first 8 symbols after the SFD is detected because each symbol is framed of

32 chips then adding 8 symbols the maximum sum of it is 256. The result then

prepended to the demodulated packet. This demodulated packets then forwarded

to a packet received callback exiting GNU Radio architecture. This callback then

forwards the packet in a libcap format to a buffer. The libcap is a packet capture

format that can be read by Wireshark and able to support multiple channels [32].

2.6.1 Wireshark

Wireshark is real-time network packet analyser software and is releases under the

General Public License (GPL). It means Wireshark can be used on multiple com-

puters without worrying about license fees. Because of GPL license, addition of

new protocols to Wireshark is open and anyone can add new protocol and built

into the source code. Wireshark provides packet dissection, packet capture, open /

save captured data packets, import / export packet data, filter specific packet, sup-

port Linux and Windows, support GUI & CLI and various statistical reports.

The Figure 27 shows the overview of Wireshark architecture. GTK2 library is

handling all the Graphical User Interface (GUI) such as input and output. The core

block works as backbone; it attaches all the blocks together. Wiretap is dealing

with captured files and many other formats. Capture block is used to capture data

from network interface and it works with capture engine Dumpcap. Winpcap /

Libpcap are an open source packet capture platform dependent libraries, which

LIITE 2 45(68)

has the capture filter engine as well. These libraries are separate from the Wire-

shark package. Libpcap can capture packets through Network Interface Card

(NIC). The Epan block of the figure contains the logic of packet dissection

method. Protocol-Tree block keeps the protocol information of the captured data

file. Dissector block opens the captured packets and handoff it to different dissec-

tors to analyse the different parts of the data packet. For example, an incoming

IEEE 802.15.4 packet can be dissected by physical layer dissector, then handed

off to Media Access Control (MAC) layer dissector and then handed off to an

IEEE 802.15.4 (Zigbee) protocol dissector.

Figure 27: Wireshark internal structure [32]

Wireshark supports the dissection of MAC Protocol Data Unit (MPDU) of an

IEEE 802.15.4 (Zigbee) packet. The support of IEEE 802.15.4 was added to

Wireshark project in 2008 that enhanced Wireshark capabilities to dissect MPDU

and recognize the fields inside the MPDU such as FCS, sequence number,

addresses and payload data. Since Wireshark has a variety of built-in packet

analysis features and provides support for IEEE 802.15.4 makes Wireshark best

packet analyser software [32].

LIITE 2 46(68)

3 IMPLEMENTATION OF THE PROJECT

Once the theory about the SDR software architecture, USRP2 hardware architec-

ture as well as IEEE 802.15.4 standard and Zigbee gone through, the project setup

needs to be created. The implementation of project is subdivided into four parts:

3.1 Installation & Configuration

 Installation & Configuration of GNU Radio.

 Installation & Configuration of USRP2.

 Installation & Configuration of IEEE 802.15.4 Ucla_Zigbee_phy Code

Examples.

 Installation of Python-Numeric Package.

3.1.1 Installation & Configuration of GNU RADIO

GNU Radio installation on any recent Ubuntu is easy and two different ways are

given below:

Figure 28: Installation of GNU Radio through Synaptic Package Manager

The first and easiest way to install GNU Radio is through “synaptic package man-

ager” which is shown in Figure 28. Write gnuradio into synaptic package manager

search and click onto search tab then it searched all the required gnuradio pack-

LIITE 2 47(68)

ages. After selecting and mark the gnuradio packages which are shown in Figure

29, click Apply tab and it downloaded and installed GNU Radio onto Ubuntu.

Figure 29: Installation with Synaptic Package Manager Example

For Ubuntu 10.04 the following command line scripts which is shown in Figure

30, installed all the required dependencies but before running make ensure that the

optional repositories are enabled in “Software Sources”.

Figure 30: Commands for updating installed GNU Radio [22]

The second and prefers way to install GNU Radio stable release is go to

www.gnuradio.org copy and add these two links (shown in Figure 31) into Sys-

tem > Administration > Software Sources > Other software tab.

http://www.gnuradio.org/

LIITE 2 48(68)

Figure 31: GNU Radio download link [22].

Figure 32: Downloading GNU Radio through Other software

After adding these links into other software tab which is shown in Figure 32, it

asked reload and when reload applied it downloaded GNU Radio stable release.

When Applied “sudo aptitude update” command into terminal prompt which is

shown in Figure 33, it started update the downloaded GNU Radio and installed it

LIITE 2 49(68)

and applying “sudo aptitude install gnuradio gnuradio-companion” onto command

prompt installed libraries and examples which were needed by GNU Radio.

Figure 33: Installation of GNU Radio and its companion

For Ubuntu 10.04 the following command line scripts which is shown in Figure

34, installed all the required dependencies but before running make ensure that the

optional repositories are enabled in “Software Sources”.

Figure 34: Commands for updating installed GNU Radio [22]

LIITE 2 50(68)

3.1.2 Installation & Configuration of USRP2

The USRP2 connect to the laptop gigabit Ethernet card through CAT6 cable

which has RJ-45 jack at both ends. The USRP2 is different from its Predecessor, it

need certain configuration at Linux terminal to work with GNU Radio. First the

drivers of USRP2 were updated with XCVR2450. USRP2 communicates at

IP/UDP layer. The default IP address for USRP2 is 192.168.10.2 and for making

it work with a laptop, the laptop should assigned an IP address in the same subnet.

When there is no IP address assigned to USRP2 then it communicate with laptop

using UDP broadcast packets, so it is important to turn off the firewall before

making connection with USRP2 [22].

3.1.3 Installation & Configuration of IEEE 802.15.4 Ucla_Zigbee_Phy code

Examples.

GNU Radio combined with USRP2 to computing with the CC2420 radio found in

Sensinodes. IEEE 802.15.4 Ucla_zigbee_phy code examples were needed which

were developed by Thomas Schmid and later updated by Lesile Choong and

Sanna Leidelof. For downloading Ucla_Zigbee_Phy code examples, first installed

“SVN” program through typing “sudo apt-get install subversion” command into

terminal prompt (shown in Figure 35) which was needed to download

Ucla_Zigbee_phy code examples.

Figure 35: Installation of SVN Program

After installation of SVN program, the following link (svn co

https://www.cgran.org/cgran/projects/ucla_zigbee_phy/trunk ucla_zigbee_phy)

entered into terminal prompt which is shown in Figure 36, and it downloaded

Ucla_Zigbee_Phy code examples [38].

https://www.cgran.org/cgran/projects/ucla_zigbee_phy/trunk

LIITE 2 51(68)

Figure 36: Downloading IEEE802.15.4 Ucla_Zigbee_phy code examples

For Installation of IEEE 802.15.4 Ucla_Zigbee_Phy code examples, first went to

ucla_zigbee_phy directory and then entered “./bootstrap && ./configure &&

make” into terminal prompt which is shown in Figure 37, it started installing

Ucla_Zigbee_phy code examples [38].

Figure 37: Installation of IEEE802.15.4 Ucla_Zigbee_phy code examples

During the installation the first error we faced was “unable to find gnuradio.i”

which is shown in Figure 38, and the installation terminated.

LIITE 2 52(68)

Figure 38: Installation Error 1.

The file which is needed “gnuradio.i” is situated into directory

“usr/include/gnuradio/swing” and the path which is written in Makefile is

“usr/local/include/gnuradio/swig”, so we changed the path manually into Makefile

by entering “ucla_zigbee_phy/src/lib pico Makefile” command into terminal

prompt which is shown in Figure 39.

Figure 39: Installation error 1 solved

LIITE 2 53(68)

After solving the first error it is necessary to go back to the ucla_zigbee_phy di-

rectory and entered “sudo make install” command into terminal prompt which

started to install Ucla_Zigbee_Phy code examples. After some further installation

second error came saying that “stdio” was not declared in the

“ucla_cc1k_correlator_cb.cc” file and installation terminated. The Error 2 is

shown in Figure 40.

Figure 40: Installation Error 2

To solved this error, the “# include <stdio.h>” was manually entered into the file

by entering “ucla_zigbee_phy/src/lib pico ucla_cc1k_correlator_cb.cc” command

into terminal prompt which is shown in Figure 41.

Figure 41: Installation error 2 solved

After solving the second error it is necessary to go back to the ucla_zigbee_phy

directory and started installation again with the help of “sudo make install” com-

mand. After some further installation of IEEE 802.15.4 Ucla_Zigbee_phy code

examples, faced a third error that “ucla_blks” was not found. This ucla_blks di-

rectory is situated in “/usr/local/lib/python2.6/dist-packages/gnuradio/ucla_blks”

but for the completion of IEEE 802.15.4 Ucla_zigbee_phy code examples installa-

tion this directory was needed in “/usr/lib/python2.6/dist-packages/gnuradio/” so

LIITE 2 54(68)

copy this directory with the help of entering the “cp –r

/usr/local/lib/python2.6/dist-packages/gnuradio/ucla_blks /usr/lib/python2.6/dist-

packages/gnuradio/” command into terminal prompt which is shown in Figure 42,

it copy the ucla_blks directory to the required place.

Figure 42: Installation error 3 solved

After solving the third error no further error came and installation of IEEE

802.15.4 Ucla_zigbee_phy code examples are successfully done.

3.1.4 Installation of Python-Numeric Package

To run IEEE 802.15.4 Ucla_Zigbee_phy code examples it is necessary to install

python-numeric package before running examples otherwise it gave error “import

error: No module named Numeric”. The numeric error is shown in Figure 43.

Figure 43: Import Numeric Error

Open synaptic package manager and write python-numeric package and click on

search then it found the package which selected and installed through synaptic

package manager which is shown in Figure 44.

Figure 44: Import Numeric error solved

LIITE 2 55(68)

All the installation and configuration were completed which was needed for the

communication with Sensinode test-bed platform.

3.2 Test-Bed Platform – Hardware and Operating System

Keeping the following points in mind the test-bed is developed and various com-

ponents of the test-bed were chosen:

 It should allow changes in the experimental setup

 The adapting functionality to experiment needs and modification of sys-

tem parameters are possible.

 The produced results are reliable.

The test-bed is built up with laptop (Intel Core 2 Duo) that is running Linux-based

operating system, Ubuntu 10.04. Ubuntu provides several setup customizations

and a set of open source tools and APIs for modifications in the experimental

setup.

The hardware which is used for this test-bed is USRP2 combined with daughter

board (XCVR 2450 Transceiver) and GNU Radio, it used for multi-channel de-

coding. Its ADCs capacity is 14-bit 100MS/s, and DACs capacity is 16-bit

400MS/s, and Gigabit Ethernet capacity is 125MB/s which is equivalent to

30MS/s. When we decimation signal at rate of 4, USRP2 gives us sampling win-

dow of 25MHz. This window can cover 5 consecutive IEEE 802.15.4 channels in

the 2.4GHz band. In ISM band the total 16 channels available but with the help of

USRP2 it is a good start to utilized 5 channels to seeing the power of SDR.

3.3 Analysing Ucla_Zigbee_phy Code Examples with IEEE 802.15.4 Standard

After completed installation of ucla_zigbee_phy code examples, we open code

files of cc2420_txtest.py (Transmitter), cc2420_rxtest.py (Receiver), and

ieee802_15_4_pkt.py in python and check them that they were meeting the IEEE

802.15.4 standard. The code files were created by Thomas Schmid and later modi-

LIITE 2 56(68)

fied by Leslie Choong and Sanna Leidelof. In the file “ieee802_15_4_pkt” packet

structure of IEEE 802.15.4 is defined according IEEE 802.15.4 standard.

When we opened code files of cc2420-txtest.py (Transmitter), cc2420_rxtest.py

(Receiver) and try to understand them we found that the installed code files are

not updated and they are written for USRP which was the precious version of

USRP2. When we tried to run Receiver example code with the help of python on

USRP2 it didn’t work and gave the RuntimeError: can´t open USRP which is

shown in Figure 45. We already checked that our USRP2 is working before run-

ning this example.

Figure 45: Error can’t open USRP

So we know that we need to update these code files for USRP2. We tried to look

that if someone already updated these code files onto internet and after a bit strug-

gle we were able to found updated version of Receiver code file from “The Uni-

versity of UTAH weblink” and the updated version of Transmitter code file from

a discussion forum where Sanna leidelof upload the file. After downloading and

updating these files our cc2420_txtest.py code file for transmitter and

cc2420_rxtest.py code file for receiver is ready.

After updating these codes file we run cc2420_txtest.py code file which was for

transmitter with the help of python and we found that it was working fine and

sending IEEE 802.15.4 packets through USRP2. Now our transmitter is ready for

LIITE 2 57(68)

transmit signal through USRP2 to existing Sensinode test-bed platform but when

we tried to run cc2420_rxtest.py code file which is for receiver then it found

USRP2 but later it gave error that chan_802_15_4 attribute not found .

We look through cc2420_rxtest.py code file and tried to found this problem but

couldn’t found and the code seem ok so we know that the problem was not into

this file, so we went through ieee802_15_4.py code file which was also ok and

then ieee802_15_4_pkt.py code files and found that the chan_802_15_4 class

which was needed for cc2420_rxtest.py code file is missing. This

ieee802_15_4_pkt.py code file with up gradation of missing part was also found

on “The University of UTAH weblink”. After downloading and updating the

ieee802_15_4_pkt.py code file we run cc2420_rxtest.py code file with the help of

python it worked and saying waiting for packets.

Now our platform was ready to receive and transmit IEEE 802.15.4 packets

through USRP2 to existing Sensinode platform.

3.4 Experimental Setup

The physical setup of the test-bed is shown in Figure 46. One laptop was config-

ured and connected through gigabit Ethernet card with USRP2 running Linux-

based operating system, Ubuntu 10.04 as well as GNU Radio and IEEE 802.15.4

Ucla_zigbee_phy code examples install on it and the other laptop is configured

and connected through USB 2.0 with Sensinode running Linux-based operating

system, Ubuntu 10.04.

LIITE 2 58(68)

Figure 46: Experimental setup diagram

We transmit IEEE 802.15.4 packets on channel 15 from Sensinode test-bed plat-

form and received it on USRP2 test-bed platform by running receiver file

“cc2420_rxtest.py” code into python. The IEEE 802.15.4 packets are successfully

received on USRP2 test-bed platform which showed that USRP2 test-bed plat-

form was compatible and ready to communicate with existed Sensinode test-bed

platform. IEEE 802.15.4 received packets are shown in Figure 47.

root@tkk-laptop:/home/tkk/ucla_zigbee_phy/src/examples#

./cc2420_rxtest.py

Enabled Realtime

cordic_freq = 2.425G

data_rate = 2M

samples_per_symbol = 2

usrp_decim = 25

>>> gr_fir_fff: using SSE

802_15_4_pkt: waiting for packet

received packet

checksum: 27663, received: 12058

/usr/lib/python2.6/dist-

packages/gnuradio/ucla_blks/ieee802_15_4_pkt.py:280: DeprecationWarning:

integer argument expected, got float

 self.callback(ok, msg_payload, self.chan_num)

802_15_4_pkt: waiting for packet

received packet

checksum: 10783, received: 26890

802_15_4_pkt: waiting for packet

received packet

checksum: 42559, received: 58666

LIITE 2 59(68)

802_15_4_pkt: waiting for packet

received packet

checksum: 23804, received: 8169

802_15_4_pkt: waiting for packet

received packet

checksum: 15642, received: 32271

802_15_4_pkt: waiting for packet

received packet

checksum: 63274, received: 46143

802_15_4_pkt: waiting for packet

received packet

checksum: 19449, received: 2284

802_15_4_pkt: waiting for packet

received packet

checksum: 33225, received: 49884

802_15_4_pkt: waiting for packet

received packet

checksum: 30651, received: 13486

802_15_4_pkt: waiting for packet

received packet

checksum: 54050, received: 36919

802_15_4_pkt: waiting for packet

received packet

checksum: 45486, received: 62139

802_15_4_pkt: waiting for packet

received packet

checksum: 64895, received: 48746

802_15_4_pkt: waiting for packet

received packet

checksum: 43838, received: 59435

802_15_4_pkt: waiting for packet

received packet

checksum: 20989, received: 4840

802_15_4_pkt: waiting for packet

received packet

checksum: 56797, received: 40648

802_15_4_pkt: waiting for packet

received packet

checksum: 39885, received: 55512

802_15_4_pkt: waiting for packet

received packet

checksum: 1980, received: 17577

802_15_4_pkt: waiting for packet

received packet

checksum: 35740, received: 51337

802_15_4_pkt: waiting for packet

received packet

checksum: 12315, received: 29454

802_15_4_pkt: waiting for packet

received packet

checksum: 64043, received: 47422

802_15_4_pkt: waiting for packet

received packet

Figure 47: IEEE 802.15.4 received packets.

LIITE 2 60(68)

4 TEST, RESULTS AND ANALYSYS

During the implementation of each task, it is necessary to test it before proceed to

the next tasks. The tests are divided into four parts:

 Test of GNU Radio

 Test of USRP2

 Test of IEEE 802.15.4 Ucla_Zigbee_phy code examples

 Test of communication between USRP2 and Sensinode

4.1 Test of GNU Radio

First GNU Radio test has to been done to make sure that it is install and working

properly. To do this we run a small program in Python:

Here is what should get with wx, which proves that GNU Radio is working prop-

erly and shown in the Figure 48.

Figure 48: GNU Radio Test output.

LIITE 2 61(68)

4.2 Test of USRP2

The working of USRP2 can be test with following two commands:

1. Applying “find_usrps” command into terminal prompt will give one of

these two results. USRP2 is not connected; the display is shown in Figure

49.

Figure 49: USRP2 not connected test output

USRP2 is connected the display will be

00:50:c2:85:32:95 hw_rev = 0xo400

2. Applying “usrp2_fft.py” command into terminal prompt will show this

graph if USRP2 is connected. The graph is shown in Figure 50.

Figure 50: USRP2 connected test output.

LIITE 2 62(68)

4.3 Test of IEEE 802.15.4 Ucla_Zigbee_phy code Examples

The installation and working of IEEE 802.15.4 Ucla_zigbee_phy code examples

can be test by running transmitter and receiver examples into python. When run

“cc2420_txtest.py” into python, it starts transmitting IEEE 802.15.4 packets

through USRP2 and when run “cc2420_rxtest.py” into python, it starts receiving

IEEE 802.15.4 packets and if packet is not available it start saying waiting for the

packet.

4.4 Test of Communication between USRP2 and Sensinode

To test the communication between existing Sensinode platform and USRP2 plat-

form, we transmitted IEEE 802.15.4 packets from Sensinode and received it to

USRP2 by running “cc2420_rxtest.py into python. It shows onto the screen that

packets are receiving. The IEEE 802.15.4 received packets are shown in Figure

51.

Figure 51: IEEE 802.15.4 packets received on USRP2

LIITE 2 63(68)

5 CONCLUSION

ComNet department at Aalto University is working on Sensinode platform. This

platform is limited in its processing power, memory and hardware interface for

external environment sensor, so ComNet is exploring the feasibility of using

Software Defined Radio for sensor and cognitive networks.

In this thesis, the purpose of exploring GNU Radio is that to use it for wireless

network platform. GNU Radio is a sophisticated and rich programming environ-

ment. GNU Radio together with USRP2 is a low cost platform with huge imple-

mentation flexibility and support.

The Main goal of this project was to develop a Software Defined Radio platform

running with IEEE 802.15.4 and to make sure it communicates with existing

Sensinode platform. This has been achieved by developing a Software Defined

Radio platform on a Laptop running Ubuntu 10.04 operating system following

with the installation of GNU Radio, USRP2, and IEEE 802.15.4 Ucla_zigbee_phy

code examples. This Software Defined Radio was configured as a receiver and the

existing Sensinode platform was configured as a transmitter. The IEEE 802.15.4

packets were transmitted from existing Sensinode platform and successfully re-

ceived on Software Defined Radio platform.

This Software Defined Radio platform setup is a first step towards inquiring

Software Defined Radio techniques for wireless sensor networks and low power

communication protocols such as IEEE 802.15.4. It permits to discover problems

and differences with which one has to deal in order to use Software Defined Radio

solutions as they exist today as well as give the opportunity to the researchers to

quickly validate their innovative concepts and solutions.

LIITE 2 64(68)

REFERENCES

[1]: D. Saha, D. Grunwald, and D. Sicker, “Wireless innovation through software

radios,” SIGCOMM Comput. Commun. Rev., vol. 39, no. 1, pp. 62–67, 2009

Available in www-form:

<URL:http://delivery.acm.org/10.1145/1500000/1496102/p62-

aha.pdf?ip=193.166.120.39&CFID=28337591&CFTOKEN=27239160&__acm__

=1307881994_a6e6b489bca680ab3baf712217c6ff4c>

[2]: Siensinode co Ltd “Sensinode Micro Series and NanoStack” Available in

www-form:

<URL:http://www.sensinode.com/ >

[3]: Ettus Research LLC “USRP/USRP2 from Ettus research LLC” Available in

www-form:

<URL:http://www.ettus.com/>

[4]: GNU Radio community “GNU Radio for Software Defined Radio” Available

in www-form:

<URL:http://gnuradio.org/redmine/wiki/gnuradio>

[5]: Chipcon productions “2.4 GHz IEEE 802.15.4/ Zigbee-ready RF transceiver”

Texas Instruments. Available in www-form:

<URL:http://focus.ti.com/lit/ds/symlink/cc2420.pdf>

[6]: David Wetherall “Taking the sting out of Carrier Sense: Interference Cancel-

lation for Wireless LANs” University of Washington. Available in www-form:

<URL:http://www.seattle.intel-research.net/pubs/sic-mobicom.pdf>

http://delivery.acm.org/10.1145/1500000/1496102/p62-aha.pdf?ip=193.166.120.39&CFID=28337591&CFTOKEN=27239160&__acm__=1307881994_a6e6b489bca680ab3baf712217c6ff4c
http://delivery.acm.org/10.1145/1500000/1496102/p62-aha.pdf?ip=193.166.120.39&CFID=28337591&CFTOKEN=27239160&__acm__=1307881994_a6e6b489bca680ab3baf712217c6ff4c
http://delivery.acm.org/10.1145/1500000/1496102/p62-aha.pdf?ip=193.166.120.39&CFID=28337591&CFTOKEN=27239160&__acm__=1307881994_a6e6b489bca680ab3baf712217c6ff4c
http://www.sensinode.com/
http://www.ettus.com/
http://gnuradio.org/redmine/wiki/gnuradio
http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://www.seattle.intel-research.net/pubs/sic-mobicom.pdf

LIITE 2 65(68)

[7]: Joseph Mitola III and Gerald Q.Maguire, "Cognitive Radio: Making software

Radios More Personal," IEEE Personal communications, August 1999. Available

in www-form:

<URL:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=788210&userT

ype=&tag=1>

[8]: Joseph Mitola, "Cognitive Radio: An Integrated Agent Architecture for Soft-

ware Defined Radio," in Royal Institute of Technology (KTH) Sweden: Royal In-

stitute of Technology (KTH), 2000, pp. xi, 313 p.

[9]: Fcc, "Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum

Use Employing Cognitive Radio Technologies" in 2003. Available in www-form:

<URL:http://www.cs.ucdavis.edu/~liu/289I/Material/FCC-03-322A1.pdf>

[10]: Bluetooth Sig, "Specification of the Bluetooth system, Master Table of Con-

tents and Compliance Requirements," Nov 2004. Available in www-form:

<URL:http://netlab.cs.ucla.edu/wiki/files/btv12.pdf>

[11]: IEEE 802.22 Wrieless Ran, "Functional requirements for the 802.22 WRAN

standard," IEEE 802.22- 05/0007r46, Oct 2005

[12]: Yonghong Zeng and Ying-Chang Liang, "Covariance Based Signal Detec-

tions For Cognitive Radio" Institute for Infocomm Research, A*STAR, IEEE

2007. Available in www-form:

<URL:http://www1.i2r.a-star.edu.sg/~yhzeng/Zeng-DySAPN-2007.pdf>

[13]: "IEEE Standard Definitions and Concepts for Dynamic Spectrum Access:

Terminology Relating to Emerging Wireless Networks, System functionality, and

Spectrum Management," IEEE Communications Society, vol. IEEE Std 1900.1

TM, September 2008.

[14]: Aldo Buccardo “A Signal Detector for Cognitive Radio System” 11, 2010

University of Gävel.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=788210&userType=&tag=1
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=788210&userType=&tag=1
http://www.cs.ucdavis.edu/~liu/289I/Material/FCC-03-322A1.pdf
http://netlab.cs.ucla.edu/wiki/files/btv12.pdf
http://www1.i2r.a-star.edu.sg/~yhzeng/Zeng-DySAPN-2007.pdf

LIITE 2 66(68)

[15]: Simon Haykin and Life Fellow, "Cognitive Radio: Brain-Empowered Wire-

less communications," IEEE Journal in communications, Feb 2005.

[16]: IEEE 802 group “IEEE 802.22 working group on Wireless Regional Area

Networks” Available in www-form:

<URL:http://ieee802.org/22/ >

[17]: IEEE 802.15 task group “IEEE 802.15 WPAN (TG2)” Available in www-

form:

<URL:http://ieee802.org/15/pub/TG2.html >

[18]: GNU operating system community “Exploring GNU Radio” Available in

www-form:

<URL:http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html>

[19]: Matthias Fähnle “SDR with GNU Radio and USRP2 hardware frontend,

setup FM/GSM application” 02, 2010 Hochschule Ulm University of Applied

Sciences. Available in www-form:

<URL:http://www.hsulm.de/opus/volltexte/2010/27/pdf/SDR_GNURadio_USRP

_Feb2010.pdf>

[20]: Norton Quinn Wired “GNU Radio Opens an Unseen World”. Available in

www-form:

<URL:http://www.wired.com/science/discoveries/news/2006/06/70933?currentPa

ge=1>

[21]: Thoms Schmid “GNU Radio 802.15.4 En-and Decoding” 2006. Available in

www-form:

<URL:http://nesl.ee.ucla.edu/fw/thomas/thomas_project_report.pdf>

[22]: GNU Radio community “GNU Radio modules” Available in www-form:

http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
http://www.hsulm.de/opus/volltexte/2010/27/pdf/SDR_GNURadio_USRP_Feb2010.pdf
http://www.hsulm.de/opus/volltexte/2010/27/pdf/SDR_GNURadio_USRP_Feb2010.pdf
http://www.wired.com/science/discoveries/news/2006/06/70933?currentPage=1
http://www.wired.com/science/discoveries/news/2006/06/70933?currentPage=1
http://nesl.ee.ucla.edu/fw/thomas/thomas_project_report.pdf

LIITE 2 67(68)

<URL:http://gnuradio.org/redmine/wiki/gnuradio>

[23]: Joshknows community “Exploring GRC” Available in www-form:

<URL:http://www.joshknows.com/grc>

[24]: GNU Radio community “Exploring USRP for Software Defined Radio”

Available in www-form:

<URL:http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html#usrp>

[25]: Ettus Research LLC “USRP/USRP2 Datasheets” Available in www-form:

<URL:http://www.ettus.com/download>

[26]: Ettus Research LLC “Exploring USRP2 for Software Defined Radio” Avail-

able in www-form:

<URL: http://www.ettus.com/orderpage.html, 2009.>

[27]: Sriram Sanka “Communication between Wireless Sensor Devices and GNU

Radio” Available in www-form:

<URL:http://academic.csuohio.edu/yuc/mobile09/gaurav.pdf>

[28] Carl Ingemarsson “Hardware evalution platform based on GNR Radio and

USRP” University of Linköping. Available in www-form:

<URL:http://liu.diva-portal.org/smash/record.jsf?pid=diva2:218764>

[29]: Adnan Aftab “Spectrum Sensing Trough Implementation of USRP2” School

of Computing, Sweden. Available in www-form:

<URL:http://www.seamist.se/com/mscee.nsf/attachments/webbinder_pdf/$file/we

bbinder.pdf>

[30]: Elaheh Rahmani “Zigbee/IEEE 802.15.4” 05, 2005 University of Tehran.

Available in www-form:

http://gnuradio.org/redmine/wiki/gnuradio
http://www.joshknows.com/grc
http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html#usrp
http://www.ettus.com/download
http://www.ettus.com/orderpage.html
http://academic.csuohio.edu/yuc/mobile09/gaurav.pdf
http://liu.diva-portal.org/smash/record.jsf?pid=diva2:218764
http://www.seamist.se/com/mscee.nsf/attachments/webbinder_pdf/$file/webbinder.pdf
http://www.seamist.se/com/mscee.nsf/attachments/webbinder_pdf/$file/webbinder.pdf

LIITE 2 68(68)

<URL: http://ece.ut.ac.ir/silab/erahmani/local/pp01.pdf>

[31]: Jianling Zheg “A Comprehensive Performance Study of IEEE 802.15.4”

Available in www-form:

<http://www-ee.ccny.cuny.edu/zheng/papers/paper1_wpan_performance.pdf>

[32]: Leslie Choong “Multi-Channel IEEE 802.15.4 Packet Capture Using Soft-

ware Defined Radio” University of California. Available in www-form:

<URL:http://nesl.ee.ucla.edu/fw/thomas/leslie_choong_multichannel_ieee802154.

pdf>

[33]:http://www.jennic.com/files/support_files/JN-AN-

1079%20Coexistence%20of%20IEEE%20802.15.4%20In%20The%202.4GHz%

20Band-1v0.pdf>

[34]: Sensinode Co Ltd “Micro Hardware Manual” Available in www-form:

<URL:http://www.ee.oulu.fi/~ikram/microseries/sensinode-manual-hw.pdf>

[35]: Sensinode Co Ltd “Micro.2420 U100 datasheet” Available in www-form:

<URL:http://www.ee.oulu.fi/~ikram/microseries/sensinode-datasheet-U100R2-

20070923.pdf>

[36]: Sensinode Co Ltd “Micro.usb U600 datasheet” Available in www-form:

<URL: http://www.alldatasheet.com/datasheet-pdf/pdf/187781/ETC2/U600.html>

[37]: Sensinode Co Ltd “NanoStack Manual” Available in www-form:

<Sensinode NanoStack Manual v1.0.1.pdf>

[38]: Trac integrated SCM & Project Management “IEEE 802.15.4 Uc-

la_Zigbee_phy Code Examples” Available in www-form:

<URL: https://www.cgran.org/wiki/UCLAZigBee#HowToRun>

http://ece.ut.ac.ir/silab/erahmani/local/pp01.pdf
http://www-ee.ccny.cuny.edu/zheng/papers/paper1_wpan_performance.pdf
http://nesl.ee.ucla.edu/fw/thomas/leslie_choong_multichannel_ieee802154.pdf
http://nesl.ee.ucla.edu/fw/thomas/leslie_choong_multichannel_ieee802154.pdf
http://www.jennic.com/files/support_files/JN-AN-1079%20Coexistence%20of%20IEEE%20802.15.4%20In%20The%202.4GHz%20Band-1v0.pdf
http://www.jennic.com/files/support_files/JN-AN-1079%20Coexistence%20of%20IEEE%20802.15.4%20In%20The%202.4GHz%20Band-1v0.pdf
http://www.jennic.com/files/support_files/JN-AN-1079%20Coexistence%20of%20IEEE%20802.15.4%20In%20The%202.4GHz%20Band-1v0.pdf
http://www.ee.oulu.fi/~ikram/microseries/sensinode-manual-hw.pdf
http://www.ee.oulu.fi/~ikram/microseries/sensinode-datasheet-U100R2-20070923.pdf
http://www.ee.oulu.fi/~ikram/microseries/sensinode-datasheet-U100R2-20070923.pdf
http://www.alldatasheet.com/datasheet-pdf/pdf/187781/ETC2/U600.html
https://www.cgran.org/wiki/UCLAZigBee#HowToRun

