

Danh Nguyen Cong

PRACTICAL TRAINING

LOGGING SYSTEM

Technology and Communication

2020

ACKNOWLEDGEMENT

First and foremost, I would like to express my unending gratitude to my parents, whom

despite all my flaws and shortcomings, have kept supporting me throughout the year.

Secondly, I would like to thank my teachers at VAMK. It has only been for their advice

and training that allow me to progress in my studies.

Thirdly, I wish to thank Mr. Maximilian Schwarzmüller and Mr. Neil Cummings from

whom I learn to use Angular and EF Core.

Finally, I would like to thank community on platforms such as Stack Overflow, GitHub,

Gitter, Discord where I have spent countless hours on in order to complete this project.

Sincerely, thank you.

Vaasa, November 10, 2019

Nguyen Cong Danh

VAASAN AMMATTIKORKEAKOULU

Information Technology

ABSTRACT

Author Nguyen Cong Danh

Title Practical Training Logging System

Year 2019

Language English

Pages 70

Name of Supervisor Ghodrat Moghadampour

The objective of this thesis was to develop a program for students to log their practical

training experience and working hours. This information can be used to calculate ob-

tainable credit units during their training, while also help in writing practical training re-

ports.

The application includes two layers. A Client where the user interacts with the possible

operations, such as registering contract detail, adding new work diary, tallying working

hours. This client was built for Android and Windows computers, using common web

technologies at its core, such as HTML, TypeScript, CSS along with modern developing

frameworks, such as Ionic Framework and Angular.

Reinforcing the Client is the API layer where logic and methods for communicating

with the database of the application is found. The API layer allows the Client applica-

tions to read entries from the databases, adding new items, such as a new work diary

and work hours and modifying existing data, such as the user information. Built using

C#, with support from Entity Framework, this layer was programed following the repos-

itory pattern, which allows the application to be detached from Entity Framework in the

future as needed.

The project created an application that allows students to log information during their

practical training period and calculating the credit units a student can get for their work-

ing hours. The program was tested with Android as a native application and Window

computer with Google Chrome.

Keywords Ionic Framework, Angular and Entity Framework

TABLE OF CONTENTS

1. INTRODUCTION .. 1

1.1. OBJECTIVES ... 2

2. TECHNOLOGIES ... 3

2.1. ANGULAR .. 3

2.2. IONIC ... 3

2.3. NODE PACKAGE MANAGER ... 4

2.4. QUILLJS ... 5

2.5. NGX-QUILL .. 5

2.6. NGX-PIPES .. 5

2.7. DATE-FNS ... 6

2.8. ENTITY FRAMEWORK .. 6

2.9. JSON WEB TOKEN .. 7

2.10. AUTOMAPPER ... 8

3. APPLICATION DESCRIPTION ... 9

3.1. GENERAL DESCRIPTION ... 9

3.2. QUALITY FUNCTION DEPLOYMENT ... 9

3.3. USE CASE DIAGRAM .. 11

3.4. REPOSITORY PATTERN AND CLASS DIAGRAM FOR SERVER-SIDE API 12

3.4.1. Repository Pattern .. 13

3.4.2. Class Diagram .. 13

3.5. SEQUENCE DIAGRAM ... 17

3.5.1. Register Sequence Diagram.. 17

3.5.2. Login Sequence Diagram ... 18

3.5.3. Editing Contract Information Sequence Diagram 19

3.5.4. Editing Work Diary Sequence Diagram ... 20

3.5.5. Adding New Work Session Sequence Diagram ... 21

3.5.6. Removing Work Session Sequence Diagram .. 22

4. DATABASE AND GUI DESIGN .. 24

4.1. DATABASE ... 24

4.2. GUI DESIGN .. 25

5. IMPLEMENTATION .. 35

5.1. GENERAL STRUCTURE OF THE PROJECT ... 35

5.1.1. Ionic Application .. 35

5.1.2. Server-side EF Core API .. 36

5.2. IMPLEMENTATION OF THE IONIC CLIENT ... 37

5.2.1. Authentication .. 38

5.2.2. Navigation Menu .. 40

5.2.3. User Action Notification .. 40

5.2.4. ContractInfo Page ... 41

5.2.5. ContractInfoEdit Page .. 42

5.2.6. WorkDiary Page ... 43

5.2.7. WorkDiaryEdit Page... 45

5.2.8. TimeSheet Page .. 48

5.2.9. TimeSheetDetail Component ... 49

5.2.10. Preventing Accidental Page Navigation with CanDeactivate 51

5.2.11. Setting up API endpoint address .. 53

5.3. IMPLEMENTATION OF THE SERVER-SIDE API ... 53

5.3.1. Models .. 53

5.3.2. Automapper .. 54

5.3.3. Repository and DataContext ... 55

5.3.4. Controllers .. 57

6. TESTING .. 59

6.1. REGISTERING AS A NEW USER ... 59

6.2. EDITING CONTRACT INFORMATION .. 60

6.3. ADDING NEW WORK DIARY .. 61

6.4. EDITING AND REMOVING EXISTING WORK DIARY CARD 63

6.5. ADDING NEW WORK SESSION: .. 65

6.6. DELETING WORK SESSIONS. .. 67

7. CONCLUSIONS ... 69

REFERENCES ... 70

LIST OF FIGURES AND TABLES

Figure 1. Working with Ionic. /4/ .. 4

Figure 2. Sample of a decoded JWT. /11/ ... 7

Figure 3. Use case diagram. ... 12

Figure 4. Repository Pattern. ... 13

Figure 5. Diagram for DataContext ... 14

Figure 6. AuthRepository .. 14

Figure 7. UserActionRepository .. 15

Figure 8. AuthController ... 15

Figure 9. TimeMarkController .. 16

Figure 10. UsersController .. 16

Figure 11. WorkDiaryController ... 17

Figure 12. User register Sequence Diagram .. 18

Figure 13. Login Sequence Diagram. .. 19

Figure 14. Editing contract information Sequence Diagram ... 20

Figure 15. Adding, removing and editing work diary Sequence Diagram 21

Figure 16. Adding new work session Sequence Diagram ... 22

Figure 17. Removing work session Sequence Diagram. ... 23

Figure 18. ER diagram ... 24

Figure 19. Login form ... 25

Figure 20. Sign up form ... 26

Figure 21. ContractInfo desktop page ... 26

Figure 22. ContractInfoEdit desktop page ... 27

Figure 23. ContractInfo android page .. 28

Figure 24. ContractInfoEdit Android page .. 29

Figure 25. Navigation menu on Android ... 30

Figure 26. WorkDiary page ... 31

Figure 27. WorkDiaryEdit desktop page ... 31

Figure 28.WorkDiary Android page .. 32

Figure 29. WorkDiaryEdit Android page .. 33

Figure 30. TimeSheet desktop page .. 33

Figure 31. Timesheet Android page .. 34

Figure 32. Basic Ionic Application Structure .. 35

Figure 33. Client structure ... 36

Figure 34. Server-side API structure ... 37

Figure 35. Successful registration ... 59

Figure 36. Error during registration with message .. 60

Figure 37. Successfully redirected with contract information updated 61

Figure 38. Filling in the form with predefined template ... 62

Figure 39. New work diary card added ... 62

Figure 40. WorkDiaryEdit loaded with previously input data 63

Figure 41. Removal confirmation .. 64

Figure 42. Modified work diary card ... 65

Figure 43. Selecting the date ... 66

Figure 44. New work session with total hours and credit unit calculated 67

Figure 45. Removed work session with all information re-calculated 68

LIST OF SNIPPETS

Code Snippet 1. Simple property binding and interpolation with Angular... 3

Code Snippet 2. Adding checkbox components, with property binding using Ionic... ... 4

Code Snippet 3. Reverse a string using pipe... .. 6

Code Snippet 4. Quickly comparing different time .. 6

Code Snippet 5. Adding new entity to database using Entity Framework... 6

Code Snippet 6. Map user.Info to a similar InfoDto object with selected properties... .. 8

Code Snippet 7. AuthGuard placed on “contractinfo” page. .. 38

Code Snippet 8. AuthService validating login status. ... 38

Code Snippet 9. Implementation of AuthService and its methods. 39

Code Snippet 10. LoggedInGuard placed on Auth page ... 39

Code Snippet 11. Implementation of log out as a service. .. 39

Code Snippet 12. Implementation of navigation menu. .. 40

Code Snippet 13. Generate a toast .. 41

Code Snippet 14. Resolver return an observable of type ContractInfo. 41

Code Snippet 15. Implementation of the UserService and its function. 42

Code Snippet 16. Reactive Form Input Field with validation. 42

Code Snippet 17. Validate and submit new information. ... 43

Code Snippet 18. List of WorkDiary. ... 44

Code Snippet 19. Methods to manage the list of WorkDiary. 45

Code Snippet 20. ngx-quill configuration. .. 46

Code Snippet 21. Adding new work diary. ... 47

Code Snippet 22. Editing existing work diary. ... 48

Code Snippet 23. Adding new session. ... 49

Code Snippet 24. Methods implemented in TimeMarkService. 49

Code Snippet 25. Using and binding child component. .. 49

Code Snippet 26. Formatting data input. .. 50

Code Snippet 27. Sending total hour back to the main page. 50

Code Snippet 28. Removing work session. ... 51

Code Snippet 29. PreventUnsavedChanges guard and its alert function. 52

Code Snippet 30. Applying canDeactivate guard to the page. 52

Code Snippet 31. Environment setting. ... 53

Code Snippet 32. User model .. 53

Code Snippet 33. WorkDiary model. .. 54

Code Snippet 34. Automapper profile... 55

Code Snippet 35. Verify user. ... 55

Code Snippet 36. Registering new user and create password hash. 56

Code Snippet 37. Retrieve user work session. .. 56

Code Snippet 38. AuthController implementation of login. ... 57

Code Snippet 39. Implementation of add and update diary. ... 58

LIST OF ABBREVIATIONS

API Application Programing Interface

SPA Single Page Application

CLI Command Line Interface

Dto Data Transfer Object

GUI Graphical User Interface

SDK Software Development Kit

JSON JavaScript Object Notation

IDE Integrated Development Environment

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

CSS Cascading Style Sheets

SASS Syntactically Awesome Style Sheets

URL Uniform Resource Locator

NPM Node Package Manager

JWT Json Web Token

HMAC Hash-based Message Authentication Code

RSA Rivest-Shamir-Adleman

ECDSA Elliptic Curve Digital Signature Algorithm

1

1. INTRODUCTION

1.1. Background and motivation

Many students are doing practical training as part of their degree programmes every

year. At the end of the training, they are expected to turn in a report detailing the

workflow and experience earned in the working environment. With how busy the

situation can be, not everyone is able to keep their thought in good collection. This

fuels the need to have a platform where notes can be kept in an organized way for

future references.

The program is needed to help students log in their work experience during their

practical training period. As many students only work on their reports near the end

of their training, there can be a problem where students do not remember clearly

what their job was during the early periods. In form of work diary cards, the appli-

cation allows students to write in the content of their tasks, includes pictures for the

reports.

The program also provides questions that teachers want to get in a practical training

report, which can guide students on what information to include in the report. The

program also helps calculating the number of credit units the student is qualified

for at the end of the training period.

Due to the widespread use of mobile devices, the application can be made to be

both a web and mobile application. This will allow students easy access to their

data to make quick and simple editions. This is especially useful for when the stu-

dent only needs to add, remove or modify work hours. The mobile application also

helps in cases where desktops are not immediately available, such as when working

outdoor in the field.

2

1.2. Objectives

The project should have user friendly interfaces for users to manage working notes

and timesheet, allowing rich documents to be submitted and saved. The client

should be responsive, easy to navigate, secured with authentications, and being able

to work as a native application on Android.

The backend API should have reliable security mechanism in place to prevent un-

authorized access request.

3

2. TECHNOLOGIES

2.1. Angular

Angular, also known as “Angular 2+” is a TypeScript-based open-source web ap-

plication framework led by the Angular Team at Google, community of individuals

and corporation /1/.

Comparing to other popular solutions, such as React, Angular offers many ad-

vanced out-of-the-box features, such as two-way databinding, services and depend-

ency injection, routing, and http request. Bring both advantages and disadvantages

to the development process. An example of how Angular uses two-way databinding

and interpolation is demonstrated in the code snippet below /2/.

<!-- Bind button disabled state to `changed` property -->

<!—Label for the button is “Button label 2”-->

<button [disabled]="changed">Button label {{ 1+1 }}</button>

Code Snippet 1. Simple property binding and interpolation with Angular.

Angular is still being actively maintained and improved. While major versions of

the framework are published approximately biannualy, most of the underlying code

remain similar to older version, making changes easily upgradable.

For this project, Angular 8 was used, with support of third-party components.

2.2. Ionic

Ionic is an open-source SDK for hybrid mobile application development. Originally

released in 2013 for AngularJS and Apache Cordova, the framework was re-built

and released as a set of web component, which allows the user to choose any user

interface framework, such as Angular, Vue.js or React. It can also be used as a

standalone package.

Ionic allows developing hybrid mobile, desktop, and progressive web applications

based on modern familiar web technologies, such as CSS, HTML, and SCSS.

4

<ion-checkbox disabled="true"></ion-checkbox>

<ion-checkbox color="primary"></ion-checkbox>

<ion-checkbox color="secondary"></ion-checkbox>

<ion-checkbox color="danger"></ion-checkbox>

Code Snippet 2. Adding checkbox components, with property binding using Ionic.

Mobile applications can be built and distributed as a normal native application with

these technologies by utilizing Cordova or Capacitor /3/.

Figure 1. Working with Ionic. /4/

Ionic 4 is the latest major version of Ionic, and is the version used for this project.

2.3. Node Package Manager

Node package manager (NPM) is a package manager for JavaScript programming

language. Consisting of a command line client and an online database of packages,

it allow dependencies to be installed and managed straightforwardly, removing the

5

overhead of handling external libraries manually, thus minimizing human error dur-

ing development /5/.

2.4. Quilljs

Quill is an open source editor built for modern web. Quill is modular and customi-

zable where many of its features can be removed if they are not required by the

project. Documents created from Quill are in the Delta format, which can also be

parsed into formats such as plain text, JSON or HTML.

Quilljs includes many common functionalities of a modern rich text editor, such as

adding bold, italic, underscore, setting text size and fonts, adding list items, embed-

ding URL to strings, adding images and videos. /6/.

2.5. ngx-quill

ngx-quill is a third-party open source Angular module for Quilljs. It is currently

frequently updated and maintained by user killercodemonkey. ngx-quill allow de-

velopers to work with Quilljs as an Angular module, rather than a regular JavaScript

extension. This includes calling for Quilljs as a component in the html template

with the <ngx-quill> tag and binding it with attributes, such as any other Angular

components./7/.

2.6. ngx-pipes

ngx-pipes is a third-party open source library consisting of custom pipes for Angu-

lar that are commonly used. These pipes can also be used as injectable and used in

components or services. These pipes allow the quick modification of variable dis-

played on the Html. Some of the functions of ngx-pipes include trimming strings,

reversing, filtering and sorting arrays, doing minor mathematical operation, such as

taking average and square roots, comparing strings, numbers and objects and re-

turning Booleans on conditions.

6

<p>{{'foo bar' | reverse }}</p>

<!-- Output: "rab oof" -->

Code Snippet 3. Reverse a string using pipe.

2.7. date-fns

date-fns is a light weight, simple, yet comprehensive JavaScript library consisting

of toolset for manipulating JavaScript dates. It allows various changes to date time

objects, such as adding, subtracting, getting a specific date, getting week numbers,

and comparing different time marks. /8/.

// Compare 11 February 1987 and 10 July 1989:

var result = compareAsc(new Date(1987, 1, 11), new Date(1989, 6, 10))

//=> -1

Code Snippet 4. Quickly comparing different time.

2.8. Entity Framework

Entity Framework, or more commonly known as EF Core, is a set of technologies

in ADO.NET that support the development of data-oriented software applications.

It enables developers to work with data in form of objects and properties, without

having to concern with the underlying database.

Developers can work at a higher level of abstraction when dealing with data and be

able to create and maintain data-oriented applications with less code than traditional

applications /9/.

public class UserActionRepo: IUserActionRepo {

 private readonly DataContext context;

 public void Add<T>(T entity) where T : class{

 this.context.Add(entity);

}

};

Code Snippet 5. Adding new entity to database using Entity Framework.

While the latest version is EF Core 3, EF Core 2 is used to develop this application.

7

2.9. Json Web Token

JSON Web Token is an open standard that allows data to be securely transmitted

between parties as a JSON object. This data can be used to send authentication

detail, and possible small, confidential, yet critical information. JWTs can be signed

using a secret (with the HMAC algorithm) or a public and private key pair using

RSA or ECDSA /10/.

In this application, we use a secret key encrypted with HMAC algorithm for au-

thentication purpose.

Figure 2. Sample of a decoded JWT. /11/

A token can also carry additional information in its payload, but one must exercise

caution doing so as the data is not secured.

8

2.10. AutoMapper

AutoMapper is a third-party library built to help automate mapping one object to

another during development. As these types of code are long and unnecessarily

complex to write, this library will bootstrap the process and minimize human er-

rors.

var infoToReturn = this.mapper.Map<InfoDto>(user.Info);

Code Snippet 6. Map user.Info to a similar InfoDto object with selected proper-

ties

9

3. APPLICATION DESCRIPTION

3.1. General Description

The main requirement of the application is to be able to register work experience of

a user during their practical training periods. The application should then communi-

cate with a remote database to store such information. A native Android application

should also be included along with a web application. The client and API of the

application must include the following features:

• Client:

Display information of the practical training contract, working log, worked

time. The user is able to save rich documents with appropriate text, image

media files, URLs timesheet in appropriate formatting.

• Server-side API

Allow communication from the client side with operations, such as creating

a new user, managing contract information, working logs, add and remove

user worked time. The API must prevent unauthorized access to all user

data.

3.2. Quality Function Deployment

Base on the priorities, the requirements of the application can be divided into three

different parts: must-have, should-have and good-to-have. Must-have features are

the main requirements that the application should be able to accomplish to be con-

sidered a success. Should-have and good-to-have features are features that are ad-

ditional for better user experience and future development of the application.

10

3.2.1. Must-have requirements

The must-have requirement of the application are listed below:

• Client application:

o Registering as a new user.

o Signing in and out of the application.

o Displaying the information of the contract, the user working diary,

the user worked sessions.

o Editing contract information.

o Adding and removing worked sessions and working logs.

• Server-side API:

o Allowing signing in and out of the client application.

o Distributing tokens for future authenticating attempts.

o Preventing unauthorized user to access data from the API.

o Editing contract info.

o Add and remove work time and diary upon client request.

3.2.2. Should-have requirements

The should-have requirements of the application are listed below:

• Client application:

o Editing past working diary with more detailed information.

11

o Adding loading screen during tasks requiring server communication.

o Displaying messages indicating the result of the client when com-

municating with the API for better user experience.

• Server-side API:

o Allow editing past working diary with new information.

o Storing account password in a secured and encrypted way as a fail-

safe mechanism in an event of a database breach.

3.2.3. Nice-to-have requirements

The nice-to-have requirements of the application are listed below

• Client application

o Responsive UI

o Calculate total working hours.

o Ask for use confirmation when leaving the page if the application

detects there is unsaved input to prevent accidental loss of data.

o Calculate the number of credit units the user can get from the total

working hours

3.3. Use Case Diagram

The use case diagram for the client application is presented below.

12

Figure 3. Use case diagram.

From the use case diagram, the student can get their contract information, work

diaries and work sessions. These actions also include the option to remove, edit or

add new information. All operation requires the user to be authenticated by logging

in and registering an account with the application prior.

3.4. Repository Pattern and Class Diagram for Server-side API

The repository pattern and class diagram for the server-side API are introduced in

this chapter.

13

3.4.1. Repository Pattern

This application follows the repository pattern.

Figure 4. Repository Pattern.

Benefits of repository pattern includes:

• The repository pattern minimizes repeating query logic

• Allows the application to be decoupled from persistence framework

• All database queries are centralized for the ease of code management

The classes that expose the possible operations to the client application from the

server side are called the controllers. These controllers interact with the interfaces

defined in the repository interface, which then continue to use the framework-spe-

cific implementations to access and modify the database. This allows any future

development, if required, to separate the rest of the application from Entity Frame-

work.

3.4.2. Class Diagram

The following diagram demonstrates the functions included within DataContext.cs

file.

14

Figure 5. Diagram for DataContext

• DataContext is responsible for scaffolding the database with predefined

models. Inheriting DbContext class that comes with Entity Framework Core allows

it to query and save instances of entities to the database.

For tasks related to authenticating the users, the solutions are implemented in

AuthRepository.cs file:

Figure 6. AuthRepository

• This repository is responsible for logging and creating new users. It also

handles checking creating hashes that are used to securely store the password in the

database.

15

For user related activities, methods are defined in UserActionRepository.cs

Figure 7. UserActionRepository

• Generic methods, such as Add(), Delete(), SaveAll() are responsible for up-

dating entities within the database

• Dedicated methods, such as GetUser(), GetTimeMarks() or GetTimeMark-

ById() are used by the API controllers

Controller files are responsible for connecting the API URLs into the correct oper-

ation. The functions of these controller are described in the diagrams below.

Figure 8. AuthController

AuthController allows users to register and login into the application. The login

method will also set a JWT token which allows the user to access the application

without additional login until they are logged out

16

Figure 9. TimeMarkController

TimeMarksController allow users to add new, remove and modified existing time-

sheet entries. If any errors occur when handling the request, the application will

return an error message indicating what failure has occurred during the process.

Figure 10. UsersController

UsersController returns user information with GetUser() and GetContractById()

method. Any requests to modify such information will also be handled by this con-

troller

17

Figure 11. WorkDiaryController

WorkDiaryController allows access to existing work diary with the GetDiaries()

and GetDiaryById() method. The need to add, update, or remove the work diaries

will also be handled here.

In the Helpers folder, there are two classes named Extensions and AutoMapperPro-

file. These classes offer no standalone method and are used as configuration for

error handling AutoMapper respectively.

3.5. Sequence Diagram

In this section we discuss the flow of the application, by using sequence diagrams:

3.5.1. Register Sequence Diagram

The following diagram describe how the registration is handled:

18

Figure 12. User register Sequence Diagram

Firstly, the user enters a new account information. The application will send a re-

quest to create a new user upon user submitting the form. The server-side API will

then start to validate the data input and will either register the new account to the

database or give back an error message to the client. The application will then au-

tomatically log in and redirect to the landing page.

3.5.2. Login Sequence Diagram

The sequence diagram in Figure 13 demonstrates the procedure involved in login

of users.

19

Figure 13. Login Sequence Diagram.

In order to login into the application, the user needs to submit a form with the ap-

plication. The client will send a request to the server-side API asking for validation

for the input. If the account information is valid, it proceeds to redirect the user to

the landing page or shows an error message informing the user of invalid input.

3.5.3. Editing Contract Information Sequence Diagram

In order to manage contract information, the user needs to navigate to the contract-

info page, which also serves as the landing page of the application.

20

Figure 14. Editing contract information Sequence Diagram

Pressing the Edit button will further redirect the user to another page where data is

presented as an easily editable form. Upon submit, the form will send a request to

the API. Validations are in place to ensure user input appropriate data. The appli-

cation will then redirect the user back to contract-info upon successful save or show

an error message to user upon failure.

3.5.4. Editing Work Diary Sequence Diagram

To manage new work diaries, the user navigates to the work-diary page and presses

the appropriate button indicated for each operation. This will redirect the user to the

work-diary-edit page where the user can work on the work diary.

21

Figure 15. Adding, removing and editing work diary Sequence Diagram

Upon submission, the client will request the server-side API to add, remove or edit

an entry of work diary. The user will be redirect to the work-diary upon successful

save or shown an error message upon failure.

3.5.5. Adding New Work Session Sequence Diagram

Figure 16 below illustrates the step the user can take to add or remove work diary

to their account.

22

Figure 16. Adding new work session Sequence Diagram

As shown in Figure 16, the user navigates to the timesheet page, and submits the

appropriate time. This information will be sent to the API to validate and save to

the database. Upon successful addition, the timesheet within the page will be re-

freshed to reflect the change. An error message will be shown in case of an error.

3.5.6. Removing Work Session Sequence Diagram

Figure 17 below demonstrates the process of removing the user’s work sessions.

23

Figure 17. Removing work session Sequence Diagram.

The steps required to remove a work session is simple. The user navigates to the

timesheet page, presses the X icon located on top of the card containing the work

session, and triggers the delete action. Upon a short confirmation prompt, the client

will request the API to remove the work session and send back the result. Upon

success, the timesheet will be updated, or display an error message upon failure.

24

4. DATABASE AND GUI DESIGN

The database and graphical user interface used in the application are discussed in

this chapter.

4.1. Database

The application utilizes MySQL as its database. The server-side API can also be

customized to use different sources of database by adding appropriate database

providers in Startup.cs file.

Figure 18. ER diagram

• As shown on the ER diagram, the User table and its primary key ID are

connected to all remaining table.

• The ContractInfo table has a one-to-one relationship with the User table.

This means one user can only have one contract information at any time. Its

UserId attribute is a foreign key connecting to ID attribute from the User

table.

• The TimeMark table and the WorkDiary table have many- to- one relation-

ship with the User table. Their UserID attributes are connected to the ID

attribute from the User table as a foreign key. This translates to one user

25

being able to have multiple TimeMarks (or work session), and multiple

WorkDiaries at the same time.

4.2. GUI Design

The first page when a new user lands on the application will be the authentication

page, where the user can either login as an existing user, or register a new account.

Figure 19. Login form

Login into the application require a username and password pair. The “LOGIN”

button is unclickable until both text fields are filled. If a user is new to the applica-

tion, they can sign up to the application with the “SWITCH TO SIGNUP” button

26

Figure 20. Sign up form

The previous figure demonstrates how “sign ups” are handled. “Login” and “Sig-

nup” share a single page with an identical form consisting of two input fields:

“Username” and “Password”.

Figure 21. ContractInfo desktop page

27

There is a link to a switch between the two modes for the user to authenticate. The

registration process is kept at minimum requirements, offering new users a seam-

less way to gain access to the application. The UI is identical on the desktop and

Android versions of the client application.

Additional information of the user can be supplemented subsequently in “contract-

info-edit” page as shown in Figure 22 and Figure 24 located below.

Figure 22. ContractInfoEdit desktop page

The “ContractInfo” page shown in Figure 21 allows the user to review the current

information of their contract. This page also serves as the landing page of the ap-

plication. Information can be edited using the “edit” button that is linked to “Con-

tractInfoEdit” page. Once users have finished editing the information within the

available fields, the user can save the data using the “save” button, or cancel the

changes using the “cancel” button. Both buttons will redirect the user back to “Con-

tractInfo” page.

28

Figure 23. ContractInfo android page

There is a slightly different view of the application on the Android version, as

demonstrated by the figure below.

29

Figure 24. ContractInfoEdit Android page

As shown in the figure, the fields containing the data are arranged as a column in

contrast to the desktop version. The user can scroll to the information on a mobile

phone and take advantage of the available space to work adequately with devices

with small screens. However, the UI of the application remains very similar across

the platforms.

Navigation to other pages can be done with the side panel located to the left of the

application. This menu is hidden on the Android version and can be accessed by

sliding the panel in from the left. Figure 25 below demonstrates how this panel will

look on a mobile phone.

30

Figure 25. Navigation menu on Android

The work diary (Figure 26) can be viewed and registered in the “WorkDiary” and

“WorkDiaryEdit” respectively.

Previously registered work diaries are arranged as panel within “WorkDiary” page

and can be deleted with the “X” icon or edited with the “Pen” icon located on top

of the panels.

A new work diary can be added by pressing the “Plus” icon situated on top of the

work diary page.

31

Figure 26. WorkDiary page

On the “WorkDiaryEdit” page (Figure 27), the user can register the title of the work

diary.

Figure 27. WorkDiaryEdit desktop page

The text editor of the page supports rich document and support operations, such as

bold, italic, list, URL, font type, and image. The user can also select from a list of

32

predefined templates containing common questions that are needed to make a good

practical training report.

The Android version applies minimal changes to the “WorkDiary” page, allowing

better interaction with the application on smaller screens, as shown in Figure 28.

Figure 28.WorkDiary Android page

As WorkDiary pages on Android (Figure 29), the WorkDiaryEdit page is also very

similar to its desktop counterpart.

33

Figure 29. WorkDiaryEdit Android page

A new work session can be added on the “TimeSheet” page where the application

will automatically calculate the total working hours and credit units from user input.

The application removes thirty minutes from any work sessions that are six-hour

long or more as time as a lunch break.

Figure 30. TimeSheet desktop page

Time inputs are in form of date and time picker. The date picker is limited to the

current date as upper limit, and up to five years in the past as a lower limit.

34

Figure 31. Timesheet Android page

As with the previous pages, small changes are made to accommodate smaller screen

on Android.

35

5. IMPLEMENTATION

5.1. General Structure of the Project

This chapter gives a general overview of the implementation of the application.

5.1.1. Ionic Application

This section discusses the structure of the Ionic client application

Figure 32. Basic Ionic Application Structure

By default, Ionic Framework and node generate environment files to help with the

developing process. All application code is located in the “src” folder

36

Figure 33. Client structure

Under the “src” directory, there are the main files that support the application. “In-

dex.html” is the entry point of the application. Ionic with the Angular support will

automatically convert components in the Angular team, or pages in the Ionic term

into a SPA. “app” is the main component that binds all the smaller components,

such as “auth”, “contract-info”, “timesheet” and “work-diary” together, some of

which can be used to bind smaller component together. Directories whose names

start with an underscore, such as “_guards” contain utility classes that can be used

across the application.

5.1.2. Server-side EF Core API

This section discusses the structure of the server-side API.

37

Figure 34. Server-side API structure

• By default, EF Core CLI generates “Properties”, “bin” and “obj” directory,

“appsettings.json”, “Program.cs” and “Startup.cs”, containing the configuration of

the basic API.

• “Controllers” directory is home to the API controllers which handle the ac-

cess point for the outer application to connect with the server.

• “Data” directory contains repository implementations which interact with

the database.

• “Dtos” directory contains DTO that hand data across the application.

• “Helpers” directory contains utility classes.

• “Models” directory contains models, from which EF Core will base on to

implement the database.

5.2. Implementation of the Ionic Client

This section discusses the implementation of the Ionic client application.

38

5.2.1. Authentication

The user is denied access to the application until a successful authentication. This

is done by placing a similar guard on all the routes to the application except for the

“auth” page.

{

 path: 'contract-info',

 loadChildren: './contract-info/contract-info.module#ContractInfoPageModule',

 canActivate: [AuthGuard],

 resolve: { contractinfo: ContractInfoResolver }

 },

Code Snippet 7. AuthGuard placed on “contractinfo” page

“AuthGuard” relies on the “AuthService” to check if the user has a valid JWT to-

ken, then returns a Boolean which decide if the user is authenticated.

 loggedIn() {

 const token = localStorage.getItem('token');

 return !this.jwtHelper.isTokenExpired(token);

 }

 Code Snippet 8. AuthService validating login status

On “auth” page, the user can login and register. These operations are handled by

the “AuthService” which will send an http request to the API to validate the request.

“AuthService” utilizes a third-party library to decode a JWT token.

 login(model: any) {

 return this.http.post(this.baseUrl + 'login', model).pipe(

 map((response: any) => {

 const user = response;

 if (user) { //if user exist

 localStorage.setItem('token', user.token);

 this.decodedToken = this.jwtHelper.decodeToken(user.token);

 }

 })

);

39

 }

 register(model: any) {

 return this.http.post(this.baseUrl + 'register', model);

 }

Code Snippet 9. Implementation of AuthService and its methods

Once the user has successfully logged in, there is a guard on the “Auth” page to

prevent the user from accidentally accessing the authenticating form again using

canActivate from Angular.

 {

 path: 'auth',

 loadChildren: './auth/auth.module#AuthPageModule',

 canActivate: [LoggedInGuard]

 },

Code Snippet 10. LoggedInGuard placed on Auth page

Upon the user logging out of the application, the token containing authenticating

information will be removed. This will also redirect the application to the “Auth”

page. This is implemented as a service in AuthService and called from app.compo-

nent.ts. Additional log out implementation will be discussed in section 5.2.10.

 logOut() {

 const currentRouteConfig = this.router.config.find(f => f.path ===
this.router.url.substr(1));

 if (this.router.url !== 'contract-info-edit' && !this.router.url.includes('work-di-
ary-edit') && this.router.url !== '') { //log out from these routes are implemented
later

 this.implementLogOut();

 this.router.navigate(['/auth']);

 }}

 implementLogOut() {

 localStorage.removeItem('token');

 this.menuCtrl.enable(false);

 this.toaster.message('Logged out');

 }

Code Snippet 11. Implementation of log out as a service

40

5.2.2. Navigation Menu

Entries on the navigation menu are generated using a loop from a predefined object

consisting of the text, icon and URL of the entry which are then bonded to the prop-

erties of the HTML element. This navigation menu is placed in the “app” compo-

nent to ensure that the user is able to access the navigation from any point of the

application.

 <ion-menu-toggle auto-hide="false" *ngFor="let p of appPages">

 <ion-item [routerDirection]="'root'" [routerLink]="[p.url]">

 <ion-icon slot="start" [name]="p.icon"></ion-icon>

 <ion-label>

 {{p.title}}

 </ion-label>

 </ion-item>

 </ion-menu-toggle>

Code Snippet 12. Implementation of navigation menu

5.2.3. User Action Notification

On any user interaction which requires access to the API, a notification which is

called toast in this application is a display, informing the user of the result.

These toasts are generated from the “ToasterService” as a service to be injected to

other components.

 private async generateToaster(message: string, type: string) {

 let color: string;

 switch (type) {

 case 'success': {

 color = 'success';

 break;

 }

 case 'error': {

 color = 'danger';

 break;

 }

41

 case 'warning': {

 color = 'warning';

 break;

 }

 case 'message': {

 color = 'secondary';

 break;

 }

 }

 const toast = await this.toastCtrl.create({

 message,

 duration: 2000,

 position: 'bottom',

 color,

 animated: true

 });

 toast.present();

 }

Code Snippet 13. Generate a toast

5.2.4. ContractInfo Page

User contract information is delivered to the page using a resolver called “Con-

tractInfoResolver”, which ensures that the information is available on the page and

is always up-to-date.

 resolve(): Observable<ContractInfo> {

 return this.userService.getContractByUserId(this.authService.decodedTo-
ken.nameid).pipe(

 catchError(error => {

 this.toaster.error('Problem retrieving your data');

 this.router.navigate(['/contract-info']);

 return of(null);

 })

);

 }

Code Snippet 14. Resolver return an Observable of type ContractInfo

42

This resolver in turn collects the information from the “UserService” with the au-

thentication information received from “AuthService”.

 getUser(id): Observable<User> {

 return this.http.get<User>(this.baseUrl + 'users/' + id);

 }

 getContractByUserId(id): Observable<ContractInfo> {

 return this.http.get<ContractInfo>(this.baseUrl + 'users/contractbyid/' + id);

 }

 updateUserContractInfo(id: number, contractInfo: ContractInfo) {

 return this.http.put(this.baseUrl + 'users/contractbyid/' + id, contractInfo);

 }

Code Snippet 15. Implementation of the UserService and its function

5.2.5. ContractInfoEdit Page

Angular Reactive Form is used in the ContractInfoEdit page to allow the validation

of user inputs. On submit, the page will inspect, and forward changes made to the

data using “UserService”. Upon completion, the user will be navigated to the “Con-

tractInfo” page with the updated information, and a “ToasterService” will informs

the user if the operation was successful

 managerPhoneNumber: new FormControl(this.contractinfo.manager-
PhoneNumber),

 managerEmail: new FormControl(this.contractinfo.managerEmail, {

 validators: [Validators.email]

 }),

 studentName: new FormControl(this.contractinfo.studentName, {

 validators: [Validators.required]

 }),

Code Snippet 16. Reactive Form Input Field with validation

 if (JSON.stringify(this.contractinfo) === JSON.stringify(this.newCon-
tractInfo)) {

 loadingEl.dismiss();

 this.toaster.message('No changes detected.');

43

 this.form.reset(this.contractinfo);

 this.router.navigate(['contract-info']);

 } else {

 this.userService.updateUserContractInfo(this.authService.decodedTo-
ken.nameid, this.newContractInfo).subscribe(next => {

 loadingEl.dismiss();

 this.toaster.success('Successfully update your contract.');

 this.form.reset(this.newContractInfo);

 this.router.navigate(['contract-info']);

 }, error => {

 loadingEl.dismiss();

 this.toaster.error(error);

 });

 }

Code Snippet 17. Validate and submit new information

5.2.6. WorkDiary Page

The log of work diary is made up of a list of cards containing ID, header, and last

modified time of the diaries. This list is generated from an array of type “WorkDi-

ary” using Angular “for” loop. The size of each card is bonded to a variable called

“numberOfCol”, which allows future customization on how many cards there can

be in a row.

<ion-row *ngFor="let dList of formattedDiaryList ">

 <ion-col *ngFor="let d of dList" size-Xs='12' [sizeMd]="12 / numberOfCol">

 <ion-card class='diaryCard'>

 <ion-card-header>

 <ion-card-title>

 <ion-grid>

44

 <ion-row>

 <ion-col>{{d.header}}</ion-col>

 <ion-col>

 <ion-button fill='clear' color='danger' (click)='re-
moveDiary(d.id)'

 class='ion-float-right'>

 <ion-icon name="close"></ion-icon>

 </ion-button>

 <ion-button fill='clear' color='primary' class='ion-float-right'

 [routerLink]="['/work-diary-edit', d.id]" routerLinkActive =
"router-link-active">

 <ion-icon name="create"></ion-icon>

 </ion-button>

 </ion-col>

 </ion-row>

 </ion-grid>

 </ion-card-title>

 </ion-card-header>

 <ion-card-content>

 Modified: {{d.lastEdited}}

 </ion-card-content>

 </ion-card>

 </ion-col>

</ion-row>

Code Snippet 18. List of WorkDiary

Due to the page entanglement with the WorkDiaryEdit page, there is a need for data

to be fetched and updated directly from the route, similarly to the ContractInfo page,

while also having a way to fetch new data independently. The solution for this is

illustrated in Code snippet 11 below, along with the method the page needs to re-

move registered work diaries.

 ngOnInit() {

 this.route.data.subscribe(data => { //subscribe and get information from the
route

 this.diaryList = data.diaries;

 this.formatWorkDiaryList(this.diaryList);

 });

45

 }

 fetchDiary() { //fetch new data

 this.workDiaryService.getDiariesFromUser(this.authService.decodedTo-
ken.nameid).subscribe(data => {

 this.diaryList = data;

 this.formatWorkDiaryList(this.diaryList);

 }, error => {

 this.toaster.error('Failed to fetch data.');

 });

 }

 removeDiary(id: number) {

 this.alertService.confirmAlert('You sure you want to delete this?', () => {

 this.workDiaryService.deleteDiary(this.authService.decodedToken.nameid,
id).subscribe(() => {

 this.toaster.success('Diary removed.');

 this.fetchDiary();

 }, error => {

 this.toaster.error('Failed to remove diary.');

 });

 });

 }

 formatWorkDiaryList(diaryList: WorkDiary[]) {

 this.formattedDiaryList = this.chunkPipe.transform(

 this.reversePipe.transform(diaryList), this.numberOfCol

);

 }

Code Snippet 19. Methods to manage the list of WorkDiary

5.2.7. WorkDiaryEdit Page

“WorkDiaryEdit” contains an Angular Reactive Form, from which the user can in-

put information of the work diary. The main editor is a ngx-quill component which

was configured to allow predefined form to be patched in the main input.

 @ViewChild('editor', {

 static: true

 }) editor: QuillEditorComponent;

 config = {

46

 toolbar: {

 container:

 [

 ['bold', 'italic', 'underline', 'strike'],

 ['blockquote', 'code-block'],

 [{ header: 1 }, { header: 2 }],

 [{ list: 'ordered' }, { list: 'bullet' }],

 [{ script: 'sub' }, { script: 'super' }],

 [{ indent: '-1' }, { indent: '+1' }],

 [{ direction: 'rtl' }],

 [{ size: ['small', false, 'large', 'huge'] }],

 [{ header: [1, 2, 3, 4, 5, 6, false] }],

 [{ color: [] }, { background: [] }],

 [{ font: [] }],

 [{ align: [] }],

 ['link', 'image'] ,

 ['clean']

], }};

 onTemplateChange(template) {

 this.editorForm.get('title').setValue(template);

this.editorForm.get('content').patchValue(JSON.stringify(predefinedForms.get-
FormContent(template).content));

 this.editor.quillEditor.setSelection(this.editor.quillEditor.getLength(), 0, 'api');

 }

Code Snippet 20. ngx-quill configuration

Depending on from which entry point the user accesses the page, the application

will use a dedicated method to add a new work diary or edit an existing work diary

with a diary ID provided by the route. This ID does not require a resolver to access

and can be seen directly on the URL.

Upon successful add or edit, the user will be directed to “WorkDiary” page with

newly updated information.

 addNewDiary() {

 this.loadingCtrl.create({

 message: 'Updating your info...',

47

 keyboardClose: true

 }).then(

 loadingEl => {

 loadingEl.present();

 const today = new Date();

 const dd = String(today.getDate()).padStart(2, '0');

 const mm = String(today.getMonth() + 1).padStart(2, '0'); // January is 0!

 const yyyy = today.getFullYear();

 const newDiary: WorkDiary = {

 header: this.editorForm.get('title').value,

 content: this.editorForm.get('content').value,

 lastEdited: mm + '/' + dd + '/' + yyyy

 };

 this.workDiaryService.addDiary(this.authService.decodedToken.nameid,
newDiary).subscribe(() => { //calling method from the workDiaryService to add new
entry

 loadingEl.dismiss();

 this.toaster.success('New entry added.');

 this.editorForm.reset();

 this.router.navigate(['/work-diary']);

 }, error => {

 loadingEl.dismiss();

 this.toaster.error('Failed to add new entry.');

 this.toaster.error(error);

 });});}

Code Snippet 21. Adding new work diary

 editDiary() {

 this.loadingCtrl.create({

 message: 'Updating your info...',

 keyboardClose: true

 }).then(

 loadingEl => {

 loadingEl.present();

 const today = new Date();

 const dd = String(today.getDate()).padStart(2, '0');

 const mm = String(today.getMonth() + 1).padStart(2, '0');

 const yyyy = today.getFullYear();

 const newDiary: WorkDiary = {

48

 header: this.editorForm.get('title').value,

 content: this.editorForm.get('content').value,

 lastEdited: mm + '/' + dd + '/' + yyyy

 };

this.workDiaryService.updateDiaryEntry(this.authService.decodedTo-
ken.nameid, this.diaryId, newDiary).subscribe(() => { //calling service to mod-
ify entry

 loadingEl.dismiss();

 this.toaster.success('Entry updated.');

 this.editorForm.reset();

 this.router.navigate(['/work-diary']);

 }, error => {

 loadingEl.dismiss();

 this.toaster.error('Failed to update entry.');

 });});}

Code Snippet 22. Editing existing work diary

5.2.8. TimeSheet Page

The “TimeSheet” page is divided into two parts.

The first part includes main inputs from which the user can pick the correct date

and time. These inputs are made with the Angular Form Module and Ionic date-

time picker. Calculation done with the DateTime value from these input uses the

third-party library Date-Fns.

addTimemark() {

 if (this.date !== undefined && this.startTime !== undefined && this.endTime !==
undefined) {

 if (compareAsc(new Date(this.endTime), new Date(this.startTime)) > 0) {

 const newTimeMark: TimeMark = {

 startMark: format(new Date(this.date), 'yyyy-MM-dd') + ' ' + format(new
Date(this.startTime).setSeconds(0), 'HH:mm:ss'),

 endMark: format(new Date(this.date), 'yyyy-MM-dd') + ' ' + format(new
Date(this.endTime).setSeconds(0), 'HH:mm:ss'),

 };

 this.timeMarkService.addTimeMark(this.authService.decodedToken.nameid,
newTimeMark).subscribe(() => { // calling service to add new time entry

 this.fetchData(); // update the timesheet list displayed on the page.

 this.toaster.success('New entry added.');

49

 this.router.navigate(['/timesheet']);

 });

 } else { this.toaster.error('Invalid time input'); }

 } else { this.toaster.error('Invalid time input'); }}

Code Snippet 23. Adding a new session

Upon entering the view the user’s work session information is fetched with the

“TimeMark” service.

getTimeSheetByUserId(id): Observable<TimeMark[]> {

 return this.http.get<TimeMark[]>(this.baseUrl + 'users/' + id + '/timemarks');

 }

 deleteTimeMark(userId: number, id: number) {

 return this.http.delete(this.baseUrl + 'users/' + userId + '/timemarks/' + id);

 }

 addTimeMark(userId: number, timemarks: TimeMark) {

 return this.http.post(this.baseUrl + 'users/' + userId + '/timemarks', time-
marks);

 }

Code Snippet 24. Methods implemented in TimeMarkService

The result data will be passed onto the child component embedded within the page

called “TimeSheetDetail”. This allows the component to generate the list of work

sessions for the parent page.

<app-timesheetdetail *ngIf="timesheet" [timesheet]="timesheet"

 (totalHrsCalculated)="totalHrsCalculated($event)"></app-timesheetdetail>

Code Snippet 25. Using and binding child component

5.2.9. TimeSheetDetail Component

The “TimeSheetDetail” component is responsible for formatting the input received

from the API and displaying the information in a readable format. This is done in

the “formatRawTimeMark” function.

 formatRawTimeMark(timeMark: TimeMark[]) { //format the data into displayable
form

 this.formattedTime = [];

50

 timeMark.forEach(time => {

 let workTime = differenceInMinutes(new Date(time.endMark), new
Date(time.startMark));

 if (workTime >= 6 * 60) {

 workTime = differenceInMinutes(new Date(subMinutes(new
Date(time.endMark), 30)), new Date(time.startMark));

 }

 this.formattedTime.push({

 id: time.id,

 date: format(new Date(time.startMark), 'yyyy-MM-dd'),

 startTime: format(new Date(time.startMark), 'HH:mm'),

 endTime: format(new Date(time.endMark).setSeconds(0), 'HH:mm'),

 workHrs: workTime.toString()

 });

 this.formattedTime.sort((a, b) => { //sort the list in order

 if (a.date < b.date) {

 return -1;

 } else if (a.date > b.date) {

 return 1;

 } else {

 if (a.startTime < b.startTime) {

 return -1;

 } else if (a.startTime > b.startTime) {

 return 1;

 } else {

 return 0;

 }

 }

 });

 });

Code Snippet 26. Formatting data input

The component will trigger an event back to the parent page when it has finished

calculating total work hours.

this.totalHrs = this.calculateTotalHrs(this.formattedTime);

this.totalHrsCalculated.emit(this.formatTotalHrsReturn(this.totalHrs));

Code Snippet 27. Sending total hour back to the main page

51

Removing a work session is a handled by “removeTimeMark” function, using the

“TimeMark” service

removeTimeMark(id: number) {

 this.alertService.confirmAlert('You sure you want to delete this?', () => {

 this.timeMarkService.deleteTimeMark(this.authService.decodedToken.nameid,
id).subscribe(() => { //calling the service to remove timesheet

 this.timesheet.splice(this.timesheet.findIndex(tm => tm.id === id), 1);

 this.toaster.success('Timemark removed.');

 this.ngOnChanges();

 }, error => {

 this.toaster.error('Failed to remove timemark.');

 });

 });

 }

Code Snippet 28. Removing work session

5.2.10. Preventing Accidental Page Navigation with CanDeactivate

Additional guards are applied on the “ContractInfoEdit” and “WorkDiaryEdit”

page. These guards are similar and will prevent any navigation attempt when de-

tecting changes without a prior saving made. The guards are also responsible for

logging out users from the “ContractInfoEdit” and “WorkDiaryEdit”.

canDeactivate(page: ContractInfoEditPage, currentRoute: ActivatedRouteSnap-
shot,

 currentState: RouterStateSnapshot, nextState?: RouterStateSnap-
shot): boolean|Promise<boolean> {

 if (page.form.dirty) {

 return this.sendAlert().then(result => {

 if (nextState.url === '/auth') { //if attempting to log out.

 if (result) {

 this.authService.implementLogOut();

 }

 }

 return result;

52

 });

 } else if (!page.form.dirty) {

 if (nextState.url === '/auth') {

 this.authService.implementLogOut();

 }

 }

 return true;

 }

 async sendAlert() { //confirmation alert when trying to navigate with dirty forms

 return new Promise<boolean>(async (resolve) => {

 const alert = await this.alertCtrl.create({

 message: 'Are you sure? Unsaved changes will be lost',

 buttons: [{

 text: 'Cancel',

 handler: () => {

 resolve(false);

 }

 }, {

 text: 'Confirm',

 handler: () => {

 resolve(true);

 }

 }]

 });

 await alert.present();

 });

 }

Code Snippet 29. PreventUnsavedChanges guard and its alert function

const routes: Routes = [

 {path: '',

 component: ContractInfoEditPage,

 canDeactivate: [PreventUnsavedChanges]

 }];

Code Snippet 30. Applying canDeactivate guard to the page

53

5.2.11. Setting up API endpoint address

The API end point addresses are stored in “environment.ts” for the development

mode and “environment.prod.ts” for the production mode. These files are located

under the “environment” directory. The API address esstored in these files are used

across the application.

 export const environment = {

 production: true,

 apiUrl: 'http://localhost:5000/api/'

};

Code Snippet 31. Environment settings

5.3. Implementation of the Server-side API

This section discusses the implementation of the backend API.

5.3.1. Models

Model classes located under the “Models” directory form the structure of the appli-

cation database. The relationship of the table “User” is demonstrated by designating

the “User” model to have properties of other models as their types, such as “Time-

Mark” and “WorkDiary” model. In turn, these models are required to have the prop-

erty of type “User” and property “UserId” as a foreign key.

 public class User

 {

 public int Id { get; set; }

 public string Username { get; set; }

 public byte[] PasswordHash { get; set; }

 public byte[] PasswordSalt { get; set; }

 public ContractInfo { get; set; }

 public ICollection<TimeMark> TimeMarks { get; set; }

 public ICollection<WorkDiary> WorkDiaries { get; set; }

 }

Code Snippet 32. User model

54

 public class WorkDiary

 {

 public int Id { get; set; }

 public string Header { get; set; }

 public string Content { get; set; }

 public string LastEdited { get; set; }

 public User { get; set; }

 public int UserId { get; set; }

 }

Code Snippet 33. WorkDiary model

5.3.2. Automapper

Automapper is a third-party library which automatically maps properties between

objects. Configuration is required for Automapper to operate correctly. This cor-

rection is called AutomapperProfile.

public class AutoMapperProfile : Profile

 {

 public AutoMapperProfile()

 {

 CreateMap<User, UserInfoDto>();

 CreateMap<ContractInfo, ContractInfoForUserDto>();

 CreateMap<ContractInfoForUserDto, ContractInfo>()

 .ForMember(c => c.Id, opt => opt.Ignore())

 .ForMember(c => c.User, opt => opt.Ignore())

 .ForMember(c => c.UserId, opt => opt.Ignore());

 CreateMap<TimeMark, TimeMarksForUserDto>();

 CreateMap<TimeMarksForUserDto, TimeMark>()

 .ForMember(tm => tm.Id, opt => opt.Ignore())

 .ForMember(tm => tm.User, opt => opt.Ignore())

 .ForMember(tm => tm.UserId, opt => opt.Ignore());

 CreateMap<WorkDiary, WorkDiaryDto>();

 CreateMap<WorkDiaryDto, WorkDiary>()

 .ForMember(wd => wd.Id, opt => opt.Ignore())

 .ForMember(wd => wd.User, opt => opt.Ignore())

 .ForMember(wd => wd.UserId, opt => opt.Ignore());

55

 CreateMap<MiniWorkDiaryDTO, WorkDiary>()

 .ForMember(wd => wd.Id, opt => opt.Ignore())

 .ForMember(wd => wd.User, opt => opt.Ignore())

 .ForMember(wd => wd.Content, opt => opt.Ignore())

 .ForMember(wd => wd.UserId, opt => opt.Ignore());

 CreateMap<ContractInfo, User>()

 .ForMember(u => u.Id, opt => opt.Ignore())

 .ForMember(u => u.Username, opt => opt.Ignore())

 .ForMember(u => u.PasswordHash, opt => opt.Ignore())

 .ForMember(u => u.PasswordSalt, opt => opt.Ignore())

 .ForMember(u => u.TimeMarks, opt => opt.Ignore())

 .ForMember(u => u.WorkDiaries, opt => opt.Ignore())

 .ForMember(u => u.ContractInfo, opt => opt.MapFrom(ci => ci));

 }

}

Code Snippet 34. Automapper profile

5.3.3. Repository and DataContext

Under the “Data” directory there are the repositories and data context of the appli-

cation.

“DataContext.cs” is responsible for scaffolding the database for the application.

There are two repositories supporting the application. “AuthRepository.cs” con-

tains methods to verify the user account, registering a new user and creating a pass-

word hash to protect the password in the database.

public async Task<User> Login(string username, string password)

 {

 var user = await this.context.Users.FirstOrDefaultAsync(x =>x.Username ==
username);

 if (user == null)

 return null;

 if (!VerifyPasswordHash(password, user.PasswordHash, user.PasswordSalt))

 return null;

 return user;}

Code Snippet 35. Verify user

56

public async Task<User> Register(User, string password)

 {

 byte[] passwordHash, passwordSalt;

 CreatePasswordHash(password, out passwordHash, out passwordSalt);

 user.PasswordHash = passwordHash;

 user.PasswordSalt = passwordSalt;

 await this.context.Users.AddAsync(user);

 await this.context.SaveChangesAsync();

 return user;

}

private void CreatePasswordHash(string password, out byte[] passwordHash, out
byte[] passwordSalt)

 {

 using(var hmac = new System.Security.Cryptography.HMACSHA512()) {

 passwordSalt = hmac.Key;

 passwordHash = hmac.ComputeHash(System.Text.Encoding.UTF8.Get-
Bytes(password));

 }

}

Code Snippet 36. Registering new user and create password hash

UserActionRepository contains methods which are used to access, add and remove

entities from the user, such as a work diary and contract info.

public async Task<IEnumerable<TimeMark>> GetTimeMarks(int userId)

 {

var timemarks = await this.context.TimeMarks.Where(tm => tm.UserId ==
userId).ToListAsync();

 return timemarks;

 }

 public async Task<TimeMark> GetTimeMarksById(int tmId)

 {

 var timemark = await this.context.TimeMarks.Where(tm => tm.Id ==
tmId).FirstOrDefaultAsync();

 return timemark;

}

Code Snippet 37. Retrieve user work session

57

5.3.4. Controllers

Controllers are the end point of the API where remote clients can access and re-

quest, update, and add new resources.

“AuthController” allows the client to log in and register a new user

[HttpPost("login")]

public async Task<IActionResult> Login(UserForLoginDto userForLoginDto)

{

var userFromRepo = await this.repo.Login(userForLoginDto.Username, userFor-
LoginDto.Password);

 if (userFromRepo == null)

 return Unauthorized();

 var claims = new[]

 {

new Claim(ClaimTypes.NameIdentifier, userFromRepo.Id.ToString()),

 new Claim(ClaimTypes.Name, userFromRepo.Username)

 };

 var key = new SymmetricSecurityKey(Encoding.UTF8

 .GetBytes(this.config.GetSection("AppSettings:Token").Value));

Varcreds = new SigningCredentials(key, SecurityAlgorithms.HmacSha512Signa-
ture);

 var tokenDescriptor = new SecurityTokenDescriptor{

 Subject = new ClaimsIdentity(claims),

 Expires = DateTime.Now.AddDays(1),

 SigningCredentials = creds

 };

 var tokenHandler = new JwtSecurityTokenHandler();

 var token = tokenHandler.CreateToken(tokenDescriptor);

 return Ok(new

 {

 token = tokenHandler.WriteToken(token)

 });}

Code Snippet 38. AuthController implementation of login

58

“UsersController”, “TimeMarkController” and “WorkDiaryController” provide

methods to operate on user information, such as a work diary and work session.

 [HttpPost]

public async Task<IActionResult> AddNewWorkDiary(int userId, WorkDiaryDto
workDiaryDto)

 {

 if (userId != int.Parse(User.FindFirst(ClaimTypes.NameIdentifier).Value))

 {return Unauthorized();}

 var newDiary = this.mapper.Map<WorkDiary>(workDiaryDto);

 var userFromRepo = await this.repo.GetUser(userId);

 userFromRepo.WorkDiaries.Add(newDiary);

 if (await this.repo.SaveAll())

 return NoContent();

 throw new System.Exception("Adding work diary failed on save");

 }

 [HttpPost("{id}")]

public async Task<IActionResult> UpdateWorkDiary(int userId, int id, WorkDi-
aryDto newWorkDiaryDto)

 {

 if (userId != int.Parse(User.FindFirst(ClaimTypes.NameIdentifier).Value))

 {return Unauthorized();}

 var user = await this.repo.GetUser(userId);

 if (!user.WorkDiaries.Any(wd =>wd.Id == id)) return Unauthorized();

 var diaryFromRepo = await this.repo.GetDiaryById(id);

 var oldDiary = user.WorkDiaries.Where(wd => wd.Id == id);

 this.mapper.Map(newWorkDiaryDto, user.WorkDiaries.FirstOrDefault(wd
=> wd.Id == id));

 if (await this.repo.SaveAll())

 return NoContent();

 throw new System.Exception("Updating work diary failed on save");

}

 Code Snippet 39. Implementation of add and update diary

59

6. TESTING

6.1. Registering as a New User

• Testing steps:

Go to the application, click the “Switch to signup” button. Fill all the fields

and click “SIGNUP”.

• Expected result:

If the registration process is done successfully, the application will redirect

the user onto the “contract-info” page. Actual result:

Figure 35. Successful registration

In case of an error occurring during the process, an error message will be shown.

60

Figure 36. Error during registration with message

The message will include the reason why the error happened.

6.2. Editing contract information

• Testing steps:

On “contract-info” page click “EDIT”, and fill the form provided.

Click “SAVE”

• Expected result:

Get redirected to the “contract-info” page with newly updated information

• Actual result:

61

Figure 37. Successfully redirected with contract information updated

If the quest is completed without any error, a message will be shown to inform the

user.

6.3. Adding new Work Diary

• Testing steps:

Navigate to the “Work diary” page. Click the plus icon on the title bar. Once

navigated to “work-diary-edit”, fill in the form and submit by pressing

“SAVE”. A predefined template is available by using the “Templates” se-

lect box

Click “SAVE”

62

Figure 38. Filling in the form with predefined template

• Expected result:

Upon saving, the page will automatically navigate to the “WorkDiary” page,

and a new work diary card will be added.

• Actual result:

Figure 39. New work diary card added

A new diary card was added and can be modified or removed in the future.

63

6.4. Editing and Removing Existing Work Diary Card

• Testing steps:

Press the pen icon to edit the card information. The page will navigate to

“WorkDiaryEdit” loaded with previously registered information.

Figure 40. WorkDiaryEdit loaded with previously input data

Click “SAVE” to save and get directed to the “WorkDiary” page.

Press the X button to remove a “WorkDiary” card. Confirming with the

popup by clicking “Confirm”.

64

Figure 41. Removal confirmation

• Expected result:

 The card should be modified with new information after the edition.

The removed card will be deleted from the page and the database.

Upon saving, the page will automatically navigate to “WorkDiary” page,

and a new work diary card will be added.

• Actual result:

65

Figure 42. Modified work diary card

The modified card will also log the date on which the card was modified.

6.5. Adding New Work Session:

• Testing steps:

Click the Timesheet icon from the side panel and navigate to “TimeSheet”

page.

Select the date with starting and ending time as new work session.

66

Figure 43. Selecting the date

Click “ADD NEW”

• Expected result:

A new card will be added with appropriate data. The application should also

calculate the total work hours and credit units.

Thirty minutes will be automatically reduced from work sessions spanning

more than six hours.

• Actual result:

67

Figure 44. New work session with total hours and credit unit calculated

6.6. Deleting Work Sessions.

• Testing steps:

Click the X button on the work session card.

Click confirm from the popup

• Expected result:

The work session should be removed.

Total work hours and credit unit should be updated automatically.

• Actual result:

68

Figure 45. Removed work session with all information re-calculated

69

7. CONCLUSIONS

The project has developed an application which can be used on desktop using con-

ventional internet browser, while also being able to work as a native Android ap-

plication. Aiming to help student writing a more comprehensive practical training

report, this application can help students registering important experience during

their training period. It allows students to log in the details of their practical training

periods, calculating the number of credit units that the working period is worth. The

frontend application and the backend application are developed individually, so

they can both be used and further developed independently.

During the developing process, some of the more prominent challenges were find-

ing the correct framework that fit the requirements of the project to have an Android

application along with a web application, technical difficulties that came from

working with the technologies, such as working with JWT token, error that came

from version conflict between ngx-quill and Ionic, ensuring data is available for the

client application before a route is loaded, and difficulties that come from working

with the difference between Ionic and Angular.

As with many applications, the project can be further improved upon.

Some suggestions for future development if the application include exporting the

timesheet into other popular file format, such as PDF, xlsx, docx. When connected

to the school system, student information can be automated to have all information

regarding the student filled in the application database beforehand. The work diary

can also be condensed into a single rich text document that can be submitted to the

responsible supervisor of the student as the practical training report to be graded.

70

REFERENCES

/1/ Angular (web framework). Accessed 07.11.2019.

https://en.wikipedia.org/wiki/Angular_(web_framework)

/2/ Angular Architecture. Accessed 07.11.2019.

https://angular.io/guide/architecture

/3/ Ionic (mobile app framework). Accessed 07.11.2019.

https://en.wikipedia.org/wiki/Ionic_(mobile_app_framework)

/4/ Angular. The complete guide by Maximilian Schwarzmüller. Accessed

07.11.2019.

https://www.udemy.com/course/the-complete-guide-to-angular-2/

/5/ Npm (software). Accessed 07.11.2019.

https://en.wikipedia.org/wiki/Npm_(software)

/6/ Quill. Accessed 07.11.2019.

https://quilljs.com/

/7/ ngx-quill. Accessed 07.11.2019.

https://www.npmjs.com/package/ngx-quill

/8/ date-fns. Accessed 07.11.2019.

https://date-fns.org/

/9/ Entity Framework. Accessed 07.11.2019.

https://en.wikipedia.org/wiki/Entity_Framework

/10/, /11/ JSON Web Tokens. Accessed 07.11.2019.

https://jwt.io /

https://en.wikipedia.org/wiki/Angular_(web_framework)
https://angular.io/guide/architecture
https://en.wikipedia.org/wiki/Ionic_(mobile_app_framework)
https://www.udemy.com/course/the-complete-guide-to-angular-2/
https://en.wikipedia.org/wiki/Npm_(software)
https://quilljs.com/
https://www.npmjs.com/package/ngx-quill
https://date-fns.org/
https://en.wikipedia.org/wiki/Entity_Framework

