

Lauri Niemi

Cloud Solutions in Non-software

Company

Metropolia University of Applied Sciences

Bachelor of Engineering

Information Technology

Bachelor’s Thesis

8 March 2020

 Tiivistelmä

Author

Title

Number of Pages

Date

Number of Pages

Date

Lauri Niemi

Cloud Solutions in Non-software Company

32 pages

8 March 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Software Engineering

Instructors

Esa Ravantti, IT Manager

Janne Salonen, Principal Lecturer

In this study, a cloud solution was created for a company that does not mainly produce soft-

ware. The study was based on the documentation created by the service provider and the

experience gained from the user perspective. The solution is made for Ramirent Finland and

is based on the needs of the company.

The thesis generally describes the different services of the cloud solution in order to be fa-

miliar with different services when designing a new platform. As the main outcome of the

study, guidance was provided on deploying a cloud solution and, in the case of Ramirent,

modifying an existing solution to fit best practices.

As a result, it was found that it is difficult for a small development team to make architectural

changes. As a result, it is advisable to spend sufficient time developing a good solution when

deploying the platform. These architectural challenges are typically encountered on experi-

mental platforms.

Keywords AWS, cloud solution, cloud computing, cloud architecture

 Tiivistelmä

Tekijä

Otsikko

Sivumäärä

Päivämäärä

Lauri Niemi

Pilivipalveluratkaisut yrityksessä, joka ei pääasiallisesti tuota

ohjelmistoja

32 sivua

08.03.2020

Tutkinto insinööri (AMK)

Tutkinto-ohjelma Tieto- ja viestintätekniikka

Ammatillinen pääaine Software Engineering

Ohjaajat

IT manager Esa Ravantti

Tutkintovastaava Janne Salonen

Insinöörityössä luotiin pilvipalveluratkaisu yritykselle, joka ei pääasiassa tuota ohjelmistoja.

Työn pohjana käytettiin palvelun tarjoajan luomaa dokumentaatiota sekä käyttökokemuksen

myötä syntynyttä kokemusta ratkaisun kokonaisuudesta. Ratkaisu on tehty Ramirent Finlan-

dille ja se pohjautuu yrityksen tarpeisiin.

Työssä kuvailtiin yleisesti pilvipalveluratkaisun eri osa-alueita, jotta ratkaisua suunnitelta-

essa uuden alusta erinimiset palvelut olisivat tuttuja. Työn pääasiallisena tuotteena luotiin

ohjeistus pilvipalveluratkaisun käyttöönotosta, sekä Ramirentin tapauksessa olemassa ole-

van ratkaisun muokkaamisesta parhaiden käytäntöjen mukaiseksi.

Lopputuloksena todettiin, että arkkitehtuuri muutosten tekeminen on vaikeaa pienellä kehi-

tystiimillä. Tämän tuloksena alustaa käyttöönottaessa on suositeltavaa käyttää riittävästi

aikaa hyvän ratkaisun kehittämiseen. Tämän kaltaiset arkkitehtuuriset haasteet kohdataan

tyypillisesti juuri kokeilumielessä aloitetuilla alustoilla.

Avainsanat AWS, pilvipalvelu, pilviprosessointi, pilviarkkitehtuuri

Contents

1 Introduction 1

2 Cloud Solutions 2

2.1 Cloud Servers 2

2.2 Database 3

2.3 Storage 3

2.4 Content Distribution 4

2.5 Access Management 4

3 Current Status of Cloud Solution 4

3.1 Applications 5

3.2 Control of Environment 8

3.3 Other Platforms 8

4 Cloud Solution for Ramirent 9

4.1 Organizations and Accounts 10

4.2 Cost Allocation 11

4.4 Security 11

4.5 Owner 12

4.6 Root Account Email and Name 13

4.7 Sandbox Account 13

4.8 Standards for Processes 13

4.9 Microsoft Azure 22

5 Results 23

6 Conclusion 24

References 25

List of Abbreviations

AWS Amazon Web Services

IAM Identity and Access Management

REST Representational State Transfer

S3 Simple Storage Service

ERP Enterprise Resource Planning

PWA Progressive Web Application

API Application Programming Interface

EC2 Elastic Compute Cloud

HTML Hypertext Markup Language

CSS Cascading Style Sheets

RDS Relational Database Service

1

1 Introduction

Many companies operating in more traditional industries have now started to develop

their own digital solutions. Some companies build up a development team and others

buy custom solutions outsourced. Nevertheless, the outcome is the same. They need an

easy and cost-efficient way to create, publish and maintain the digital solutions to cus-

tomers or employees.

In the present project an example case was made to a company that does not produce

software as their main product. The project was commissioned by Ramirent Finland Oy.

Ramirent Finland Oy is a leading Finnish service company in equipment rental for con-

struction and other industries. Ramirent Finland is part of Ramirent Group which is now

owned by a French family company Loxam.

Ramirent has started to create their digital solutions for optimizing internal processes

and customer needs. Ramirent has multiple platforms for applications and multiple plat-

form owners. Amazon Web Services, shortly AWS is fully managed by Ramirent Finland.

Beside AWS, Ramirent has locally hosted servers, Enkora hosted services and Microsoft

Azure cloud service, which is the newest comer. Azure is partly managed by Advania

and partly by Ramirent Finland.

The scope of the project was restricted to Ramirent Finland’s case with a small develop-

ment team focusing mainly on AWS. As a result of this project it is expected to see im-

proved security, cost allocation and maintainability of applications. More uniform and

controlled access to solutions helps to debug issues and maintain overall security and

reliability.

2

2 Cloud Solutions

Cloud solutions are a selected set of available cloud services provided by cloud service

providers such as Amazon Web Services or Google Cloud Computing. Cloud solutions

consist of cloud architecture in one or more cloud platforms. There are as many cloud

solutions as there are cloud users.

The most recognizable names on the cloud service providers are Amazon Web Services,

Microsoft Azure and Google Cloud Engine. Amazon Web Services (AWS) is currently

the leading cloud platform. AWS has over million customers around the world and its

almost 200 different cloud services are trusted. [1]

Below are introduced the most commonly and widely used services. These services can

be used in different scopes ranging from mobile app to machine learning task. In May

2019 AWS has 169 products to offer and AWS is far ahead everyone else [2]. This huge

variety of different services can be overwhelming but here are the most important ones.

2.1 Cloud Servers

Cloud servers can be roughly divided into two different types. Those are traditional serv-

ers that run around the clock and trigger-based functions that run on demand. On de-

mand functions are a cost-efficient way to build a wide range of cloud computing service

that can be triggered various ways. Triggers can be change in database, traditional

REST call, change in storage or by some other cloud service. Traditional servers are

great and cost-efficient when the use is heavy, and the processing need is continuous.

In the AWS infrastructure on demand functions are called Lambda functions and tradi-

tional servers are called Elastic Cloud Compute or EC2. [1]

Lambda functions are an easy and cost-efficient way to solve event-based processing.

Functions can be written in Node.js, Java, Python, Go, C#, Ruby or PowerShell [3]. Ex-

ample use cases where Lambda functions could be used are simple REST services or

data processing on background.

3

Amazon Fargate provides a serverless approach using containers. Amazon Fargate al-

lows to build using traditional methods used to build on servers, but paying as serverless,

only when instances are used. This is an easy way to lower costs of old applications and

ease transformation from old servers to new cloud infrastructures. Scaling is done auto-

matically to provide the best experience without provisioning over capacity on silent

times. [4] Amazon Fargate is the easiest way to approach to take a step into a serverless

world when making transformation using existing software.

2.2 Database

In a cloud solution environment, databases can be found in different shapes. Databases

can be hosted in the traditional way in servers or in database services such as Dyna-

moDB. These services are secure by default and all access to data is permitted. AWS

provided database services are easy to use and very maintainable. These solutions are

suited for smaller development teams because they need very little managing and can

be run for long periods of time without maintain. These services are billed ‘as you go’.

[5].

2.3 Storage

Storage solutions in cloud services are usually created to look and function similarly to

client-side cloud storages such as Google Drive or Dropbox. In addition to a similar user

interface there are multiple different use cases or configuration options. These storage

solutions can be easily defined as public, block all access or everything between. The

storages are easy to maintain and secure to use. In the AWS infrastructure one example

is Simple Storage Service S3 which is convenient for website hosting because it has built

in website hosting capabilities and is cost efficient. There are also multiple other storage

solutions for archiving or for very large data amounts. [6]

4

2.4 Content Distribution

Cloud service providers typically offer multiple solutions to provide content to user or

application. Content delivery network, CDN is like a door to a house. APIs, websites or

data can be accessed through one secure portal. Through CDN services can be distrib-

uted to users securely and efficiently. In AWS CDN is called CloudFront and it is often

used to provide website or application that is hosted from S3 bucket. For example, Cloud-

Front caches site for fast loading times and provides custom domains for that endpoint.

[7]

2.5 Access Management

Access management is an important part of cloud services. Access to cloud services is

done using roles. Roles can be given to user, group or service. Roles are easier to man-

age than IP address rules or username password type access to classic server.

In the AWS infrastructure, IAM, Identity and Access Management is a service where all

access and identification to services is managed. For example, access to AWS console

and command line interface access is done using IAM. IAM is a key element in every

interaction between AWS services. By default, services cannot communicate between

each other without granting access rights.

3 Current Status of Cloud Solution

Ramirent uses AWS as the selected service provider. In the new Enterprise Resource

Planning (ERP) project Microsoft Azure comes to the side. Ramirent uses AWS in group

level projects as well as in the country level. AWS was selected because it has a rela-

tively cheap pricing, good documentation and locations near the countries where

Ramirent operates.

Ramirent’s AWS overall architecture is quite loose. Ramirent Group have their own so-

lutions and they for example provide only a website for all countries. Ramirent Finland's

5

own AWS account is not controlled by Ramirent Group and they do not even share that

many common components or architecture. There are a few duplicates in services and

this overall solution is not as cost efficient as possible.

3.1 Applications

Applications that are served in Ramirent Finland’s account are mainly web applications.

The meeting room reservations server is only exception to this. Table 1 shows

Ramirent’s current application status in AWS and cloud services that are in use.

Table 1. Raiment’s applications and used AWS services

Name Devel-
oper

Type API
Gate
way

S
3

Lamb
da

Cloud-
Front

Dyna-
moDb

RDS EC2 Inte-
gra-
tion

Ra-

miSmart

App

Digia PWA X X X X X

Loca-

tion,

ERP,

Auth.

Rami-

Forms

Ramirent

Finland

Web

app

X X X X X

Auth.

Authenti-

cation

Server

Side

API /

Web

app

X X

X

X X

eTeline Server

Side

API /

Web

app

X X

X

X X Auth.

Raimo Digia An-

droid

X X X

X X

ERP

6

Raimo

User man-

agement

Digia Web

app

X X X X X

Evoko Ramirent

Finland

Room

reser-
vation

system

 X

Orders-

API

Ramirent

Finland

API X X X X

RamiSmart App

RamiSmart App is developed by Digia which is one of Ramirent Finland’s partners in

digital development. RamiSmart App is Progressive Web App, PWA for customers and

salespersons to order and control orders for worksites. Application is serverless and it

uses API Gateway, S3, Lambda, CloudFront, CodePipeline, DynamoDB, React and

GraphQL.

RamiForms

RamiForms is an in house developed web application to smooth processes and collect

valuable data. It contains management and user site and is usable also via API. Appli-

cation is serverless and it uses API Gateway, S3, Lambda, CloudFront, CodePipeline,

DynamoDB, React and REST.

Authentication

Ramirent created their own authentication platform for the needs of the applications. Au-

thentication platform controls users and their roles. Currently eTeline, RamiSmart App

and RamiForms are using authentication service. Authentication uses EC2, S3, Cloud-

Front and React. Authentication platform is created by Server Side Oy.

eTeline

7

eTeline is a scaffolding management web application. In this app users can inspect and

manage inspections of their scaffoldings using QR codes. eTeline uses EC2, S3, Cloud-

Front and React. eTeline is created by Server Side Oy.

Cloudinary tool

Cloudinary tool is a temporary web application for product image management in Cloudi-

nary. It is made for easier management of products with multiple images and documents.

Cloudinary contains 175 000 image and document which is divided for about 60 000

products. Cloudinary tool uses S3, API gateway, Lambda, Cloudinary and HTML, Ja-

vaScript, CSS combination. Cloudinary tool is developed in house and is deprecating

when new Product Information Management system, PIM is ready to take control of prod-

uct images and documents.

Raimo

Raimo is a mobile application for product management. It is connected to the ERP sys-

tem and greatly simplifies product management. Raimo is developed by Digia and it uses

API gateway, S3, Lambda, RDS and React native

Raimo user management

Raimo user management exists because Ramirent’s Authentication platform was not in

use that time for common solutions. That is why the Raimo application does not use

Ramirent’s own authentication platform to control users for now. Raimo has its own user

management web application. This application is developed by Digia. Raimo user man-

agement uses API gateway, S3, RDS and React.

Evoko

Evoko is a room reservation service. This application manages room reservation tablets

and Outlook calendar connection to book meetings. This is a ready-made solution and

contains the image of instance to deploy on server. Evoko uses one EC2 instance.

Orders-API

8

Orders API is an interface for new orders process. This API handles all incoming orders

from different platforms and simplifies the process of ordering. This application stores

data about the order and generates a pdf document from the order. Orders-API uses API

Gateway, S3, Lambda, DynamoDB, CodePipeline, CloudFormation and Simple Notifica-

tion Service. This application is developed by Ramirent.

3.2 Control of Environment

The overall control is currently not in a very good condition. Ramirent Finland’s director

of development owns the main account. Ramirent’s account is connected directly to per-

sons email address. This is not a good solution in the long term because if that person

leaves Ramirent there is a possibility that the email address is deleted accidently before

the linked email is changed and billing can be interrupted.

There are no administrators for the AWS. Someone creates something when someone

asks for it. Roles are given for the whole Ramirent account which creates a significant

risk for misbehavior or human error. Every user has access to every project and its re-

source.

3.3 Other Platforms

Microsoft Azure came into picture during the project. Azure is managed partly by

Ramirent Finland and partly by their partner Advania. Azure is used to provide SQL da-

tabase for ERP data. This data can be linked directly to Microsoft Power BI to create

data analysis about business. Because of this native implementation to Power BI Azure

is used over the existing AWS.

Traditional server capacity still exists and will continue to do so for a while. This capacity

is currently used by the current ERP system Rami and its reporting servers. This is being

actively reduced, though, and when the new ERP system is fully running it will be reduced

to minimum. Locally hosted server capacity requires more labor to maintain and that is

why is not as cost efficient as Cloud computing.

9

4 Cloud Solution for Ramirent

This part of the thesis follows the AWS documentation as to the best practices of archi-

tecture [8] with specific solutions to Ramirent or any other non-software company. AWS

makes it possible to have multiple different architecture solutions. Figure 1 shows a dia-

gram of a suitable architecture for a small company. The master account is divided into

organizational units OU’s. OU’s are project based and every OU can contain different

stages of project. For example, OU 1 contains developing stage of project 1 in one ac-

count and production stage of project 1 in other account.

Figure 1. Account structure

This account structure suits Ramirent’s solution best. Depending on the application this

can be streamlined even further to only one account per application combining the de-

velopment and production environments. The streamlining reduces the account creation

load at project start.

10

4.1 Organizations and Accounts

The AWS infrastructure contains at least one master account. The master account is

used to control billing and organizations. In some circumstances the master account

could be used for developing and production but when multiple applications are running

with different developers it is highly recommended that the architecture is divided into

organizations and accounts. Organizational units are a layer between accounts. An ac-

count can contain multiple organizational units and an organizational unit can contain

numerous accounts. Figure 2 illustrates the relationship of cloud services in the account

and how users and roles are used to manage this infrastructure. [9 p. 8- 11]

Figure 2. AWS account structure with roles and services

11

When following an infrastructure described in Figure 2 the products in the AWS are safe

from human errors and misbehaving in the service. One of the biggest risks in the cloud

services are a stolen laptop.

4.2 Cost Allocation

The control over costs is increased when the architecture is divided into organizations

and accounts. When using only the master account to develop and host applications,

detailed per application billing details are difficult to get. One option is to tag every re-

source with describing tags, but it leaves space for human errors and it is hard to main-

tain. When tags are used to identify resources and tags are missing it is very hard to

allocate where the solution belongs and if it is still in use. [10]

When creating a new organization for every project and account for every stage of the

project the company can achieve precise cost information on how much the development

of the application costs and how much the production version is creating bill. This can be

easily simplified if the project has only one account, then account maintaining does not

become a load in small development teams. [9. p. 7]

4.4 Security

Often companies that do not make software as their main product have small software

development teams and part of the software development is bought outside. When mul-

tiple companies and developers are working in multiple projects managing all users is

hard. Often in a software company, employees switch between different projects and

sometimes developers change. When projects are divided into separate accounts it is

easier to maintain the roles and users in such partition. For example, if a user’s laptop is

stolen and a hostile user gets access to the account it only affects one project. User

management can also be outsourced to the company developing that account. This way

the load on small development teams can be eased which in turn improves productivity

and reliability [11].

12

The account structure also gives protection from misused application level access rights.

For example, in AWS every cloud service action to other must be authorized with the

Identity and Access Management service IAM. The IAM roles can be easily overpowered

and grant access to unwanted parts of cloud solutions. With the application level account

structure this is minimized to most often just to the right level of security.

Account access can be granted for partners by linking the partner’s own AWS account

to Ramirent’s account. This way all access right can be removed at once from a partner

without any risk of leaving some access rights. This is obviously not convenient if the

partner does not have their own AWS account or the partner company is so big that their

AWS infrastructure is managed too strictly and heavily for this use case and giving user-

based access is an easier solution.

A part of the security is that just enough access rights is given to certain tasks. For ex-

ample, if the development manager is logged in to root account to review the month’s

current bill. In this case the manager needs only view access to services so they can dig

deeper into services and have full access to billing details.

4.5 Owner

Every process should have an owner. The owner owns the system. This means that that

person is responsible for decisions regarding the given process. When the process is

owned by a single person, decisions can be made quickly without heavy bureaucracy.

The owner is responsible for the state of the process whether it is making coffee in the

morning or maintaining a cloud platform. [12] The owner should be always one person,

because shared responsibility is nobody’s responsibility [13 p. 65]. In a cloud platform

case, the owner should be selected before even selecting the cloud service provider.

The owner should have an overall vision about the solution needs and technology, es-

pecially at the beginning of new platform decisions that have long term affect are made.

The owner can be assigned later, but the sooner the better.

13

4.6 Root Account Email and Name

An email address that is linked to a root account should never be linked to a person

directly. The best way to attach an email address to a root account is to use some sort

of an email group or mailing list. This way it is unambiguous that this email account is

attached to a root account. Root account access rights should not be used after initiali-

zation. Also, when the account is linked to an always existing email address it is not

dependent on individuals and whether that person who started the use of the cloud plat-

form even works at the company. The name of the root account should be convenient

and indicate that it is a root account. A root account can be used to access all billing or

maintain organizations and accounts.

4.7 Sandbox Account

A sandbox environment is important when developing new applications. A sandbox ac-

count should be created and used when prototyping new technologies and testing new

applications before they are pushed into new project related accounts. In a sandbox ac-

count every setting can be opened without risking any security vulnerabilities as long as

data used in there is appropriate. This way of open platform prototyping is fast and re-

quired environment setups are easily tested without waiting for tickets to go through mul-

tiple acceptance procedures in the ticketing system. When the developer knows what to

ask precisely it fastens the overall process of development.

4.8 Standards for Processes

Standards create longevity. When processes are standardized debugging becomes eas-

ier. A new project requires a new AWS account. For security and maintainability reasons

every project should have their own account.

14

Create account

AWS accounts are created from My Organizations page using master account. Figure 3

describes how to access My Organizations page.

Figure 3. Screenshot of AWS console menu where My Organizations are accessed.

Full name is the name of the account. Account is created for project that is why logical

naming for account is ProjectName i.e. RamiForms. In Ramirent case <ac-

count_name>.cloudsolutions@ramirent.fi email is used for the account. It is important to

make sure that the email account can receive emails outside the organization, with Mi-

crosoft outlook the default is “don’t allow emails outside of organization”. When using this

common email address individuals are not linked directly to the account and an employee

leaving company does not affect the AWS usage. IAM role name can be leaved blank.

Figure 4 shows an example of this step.

Figure 4. Screenshot of account naming process.

15

Sign in as root user

Root account is used to view from Organizations page list of Account ID:s and copy the

new identifier. New id can be used to sign-in in console.aws.amazon.com. Figure 5

shows an example of this process.

Figure 5. Screenshot of sign in selection to AWS console.

The “Forgot password” feature is used to create a new password for the account. An

email will be sent to the email address of the account. If the email does not arrive in a

few minutes, email settings could be too restricted. The email will contain a link to reset

password and, in this case, give the root account a password.

The root user of the account should not be used after creating the first administrator user.

Accounts root credentials are only used to remove account or transfer the ownership to

another user.

Sign in link creation

The sign in link is important when using multiple accounts. With sign in links users can

easily change between accounts and projects. Sign-in links can be created in the IAM

service. For convenience, the same sign-in name for the link and account name is used.

Figure 6 shows an example of how to customize the sign-in link.

16

Figure 6. Screenshot of IAM service where sign-in link can be modified.

Creating group

Groups are used to manage users’ access. A typical need for groups consists of three

groups. Groups are account dependent and are accessed through a specific account.

The following list explains these three groups.

1. Account_Admin - controls account. Access to billing and roles

2. Account_Developer – access to typical AWS services, console and program-

matic

3. Account_ViewOnly – access to view data. Useful for integration use when only

view is

Figures 7 and 8 describe how to setup group policies.

Figure 7 Policy for Admin group

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": "*",

 "Resource": "*"

 }

]

}

17

Figure 8 Policy for developer group

When using an account for every project the user can have more rights to the environ-

ment without affecting security. Every use case should have its own user, for example

developer, admin and view only.

Basics

The user name should be firstname.lastname_group to ease users’ login and maintain-

ability. Programmatic access means that the user has access to the AWS account using

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "VisualEditor0",

 "Effect": "Allow",

 "Action": [

 "sns:*",

 "rds:*",

 "apigateway:*",

 "s3:*",

 "dynamodb:*",

 "cloudformation:*",

 "wellarchitected:*",

 "autoscaling-plans:*",

 "iam:*",

 "cloudfront:*",

 "ses:*",

 "cloudwatch:*",

 "lambda:*",

 "ec2:*"

],

 "Resource": "*"

 }

]

}

18

development tools. This must be selected. In most cases the console access is also very

useful for the user. In a project-based account structure console access can be granted

for users. Figure 9 shows how to create use in the AWS console.

Figure 9 Screenshot of user creation

Grouping and tagging

Users are added to groups to give access rights. The user should be tagged to improve

maintainability. Tags are not case sensitive but upper and lower cases will be stored.

Tags should contain the role and company. Figure 9 shows how tags are added to the

user.

19

Figure 9. Screenshot of tagging example.

Users credentials can be found under user in the Security credentials tab. Figure 10

shows an example where users’ sign-in link, username and temporary password can be

found.

Figure 10. Screenshot of menu where the user’s temporary password can be created.

Admin has full access and this policy could be given to a subcontractor project leader to

grant access to create new users and maintain the project. The developer group has

access rights to most typical services in Ramirent’s environment. This instruction is cre-

ated as a result of the present project.

20

By standardizing the available cloud services, maintenance of the applications becomes

easier. Cloud platforms are always changing and when default services and technologies

are selected, changes to these services can be followed and possible issues fixed. Tech-

nology standardizing eases developer changes. When technologies are always similar

less time is spent on learning new technologies.

One standard for processes is to use CloudFormation templates. With templates it is

possible to write down building instructions to cloud platform. This code can be pushed

to a git repository which is web hooked to code pipeline that builds the cloud solutions

automatically. This way applications are transformable in case of an architecture change

or in case of a platform failure. AWS has also an open source Serverless Application

Model (SAM) that transforms natively to a Cloud Formation template, but it is also com-

mon description that can be used in other cloud service providers. Cloud Formation is a

service that builds an application from a recipe to a cloud platform. Cloud Formation can

be combined with GitHub hooks to create continuous integration and continuous devel-

opment pipelines. The same template works as documentation to an API or application

itself because it is written in JSON or YAML which makes it human readable. Below in

Listing 1, is an example of template.yml that corresponds to earlier description. [14 p. 7-

11]

Transform: "AWS::Serverless-2016-10-31"

Resources:

--- LAMBDA --- #

 AddOrder:

 Type: AWS::Serverless::Function

 Properties:

 Handler: index.handler

 Runtime: nodejs10.x

 Timeout: 30

 CodeUri: ./lambdas/add-order/

 Policies:

 - DynamoDBCrudPolicy:

 TableName: orders

 - S3CrudPolicy:

 BucketName: orders

 Environment:

 Variables:

 BUCKET_NAME: orders

 TABLE_NAME: orders

21

 Events:

 GetResource:

 Type: Api

 Properties:

 Path: /add-order

 Method: post

 CreatePDF:

 Type: AWS::Serverless::Function

 Properties:

 Handler: index.handler

 Runtime: nodejs10.x

 Timeout: 30

 CodeUri: ./lambdas/pdf-converter/

 Policies:

 - DynamoDBCrudPolicy:

 TableName: orders

 - S3CrudPolicy:

 BucketName: orders

 - SESCrudPolicy:

 IdentityName: noreply@exaple.com

 Environment:

 Variables:

 BUCKET_NAME: orders

 TABLE_NAME: orders

 Events:

 ObjectCreated:

 Type: SNS

 Properties:

 Topic: !Ref OrderSNSTopic

--- SNS --- #

 OrderSNSTopic:

 Type: AWS::SNS::Topic

 Properties:

 DisplayName: New S3 event

 Subscription:

 - Endpoint:

 Fn::GetAtt:

 - CreatePDF

 - Arn

 Protocol: lambda

 TopicName: AddOrderTopic

--- DYNAMODB --- #

 OrdersTable:

 Type: AWS::Serverless::SimpleTable

22

 Properties:

 TableName: orders

 PrimaryKey:

 Name: id

 Type: String

 ProvisionedThroughput:

 ReadCapacityUnits: 5

 WriteCapacityUnits: 5

 Tags:

 Project: test

 Owner: Ramirent

--- POLICIES --- #

 OrderSNSTopicPolicy:

 Type: AWS::SNS::TopicPolicy

 Properties:

 PolicyDocument:

 Id: OrderSNSTopicPolicy

 Version: '2012-10-17'

 Statement:

 - Sid: orderSnsTopicId

 Effect: Allow

 Principal:

 Service: s3.amazonaws.com

 Action: sns:Publish

 Resource: "*"

 Topics:

 - Ref: OrderSNSTopic

Listing 1. Template.yaml file for CloudFormation

In the template.yml file is created a simple API that adds order to S3 bucket and Dyna-

moDB table. This event triggers the pdf-creator that creates a pdf document to the same

S3 bucket and sends the file using Simple Email Service (SES). Simple Notification Ser-

vice, SNS, is used to transfer the trigger event from S3 to Lambda.

4.9 Microsoft Azure

Microsoft Azure is now part of Ramirent’s cloud solution. This platform is used to connect

with other Microsoft services including the new ERP system. Azure has been part of the

23

cloud solution in the background from the start of Microsoft Office 365 use. Office 365

requires at least the hybrid Active Directory solution to work [15 p. 13]. This means that

part of user access rights and device management is maintained in traditional servers

and partly in Azure. During this project Azure has been attached to the overall develop-

ment cloud solution. In future Azure will be handling part of ERP integration and analytics

due to its native integration with Microsoft solutions, Dynamics and Power BI.

5 Results

When a cloud platform is already in use, changes to the architecture are not easy to

handle. In Ramirent’s case, the development team is small, consisting of only three per-

sons, i.e. manager, developer and process specialist. During this project a new team

member was added to the team to own and maintain cloud platforms as a Cloud Solution

specialist. This was an improvement and has been already transforming pressure of the

environment from the developers’ shoulders.

Ramirent Finland has plans to shift part of the applications to a new architecture. New

applications will be implemented to the new account structure. Current applications that

are easy to move will be moved during the development pause. The first application to

move to the new account will be the Evoko room reservation system. This application

was selected due to its simple one instance footprint and effecting only internal users at

the headquarters. New projects will be following AWS administrator instructions about

account creation.

The start of Azure usage in Ramirent has been more controlled and planned due to the

current project and it was owned by the cloud solution specialist at the day one. This

move was timed perfectly when the new Cloud Solution specialist arrived. Azure is now

fully owned by the Cloud Solution specialist and Advania is helping in the technical mat-

ters.

Root account related email is now changed to a non-dependent email address. During

Microsoft One Drive renewal email addresses were flushed and Ramirent has to keep

eye on the most important email addresses such as this. Also, the name of the root

account is now changed to a more convenient name.

24

The sandbox account which was created to demonstrate this project’s content is still in

use and works perfectly to prototype and test securely new applications and technologies

without creating a risk of affecting production applications. The sandbox account is used

to develop one new application and also to test the guidance in action. This account has

currently only one actual user.

6 Conclusion

Overall, the project can be considered successful. Despite oft this project having been

created for Ramirent Finland’s case hopefully other traditional companies now figuring

out their own cloud solutions will find the study helpful. Cloud service providers’ own

documentation can be heavy to read when comparing platforms to each other and de-

signing suitable cloud architecture.

Architecture changes are hard to make when the platform is in use. This means that the

initial architecture and planning should be invested on at the beginning. Often a platform

is started fast because the end result, the first application is in mind and the target. That

is why the platform should have an owner right from the beginning. The owner thinks

more about the architecture and cloud solution than the end result, the application.

In future Ramirent should measure account-based usage and cost efficiency of the ap-

plication reflected to its business improvement or market value. With these parameters

the development recourses can be adjusted according to cost saving improvements or

increased sales.

25

References

1 Cloud computing with AWS. 2019. Internet source. Amazon Web Services.

<https://aws.amazon.com/what-is-aws/?nc1=f_cc> Read 25.10.2019

2 Robbins, Ken. 2019. How Many AWS Services Are There? Internet source.

<https://medium.com/cloudpegboard/how-many-aws-services-are-there-

51dda44fa946> 22.5.2019. Read 26.10.2019

3 AWS Lambda FAQs. 2019. Internet source. Amazon Web Services.

<https://aws.amazon.com/lambda/faqs/> Read 25.1.2019

4 AWS Fargate Serverless compute for containers. 2019. Internet source. Amazon

Web Services. < https://aws.amazon.com/fargate/> Read 26.1.2020

5 Amazon DynamoDB. Internet source. Amazon Web Services. <https://aws.ama-

zon.com/dynamodb/> Read 26.10.2019

6 Amazon S3. Internet source. Amazon Web Services. <https://aws.ama-

zon.com/s3/> Read 26.10.2019

7 Amazon CloudFront. Internet source. Amazon Web Services. <https://aws.ama-

zon.com/cloudfront/?nc2=type_a> Read 26.10.2019

8 Architechting for cloud. 2018. Internet source. Amazon Web Ser-

vices.<https://d1.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf>

Read 15.8.2019

9 AWS Organizations user guide. Internet source. Amazon Web Services.

<https://docs.aws.amazon.com/organizations/latest/userguide/organizations-

userguide.pdf> Read 15.8.2019

10 Software Engineering Team Lead at BBC. 2019. Conversation 16.10.2019

26

11 Samson Sunday Adaramola. 2012. Internet source. Job Stress and Productivity

Increase. <https://pdfs.semanticscho-

lar.org/37e0/e714280f06e2c32d148651e0f078f013952c.pdf> Read 25.10.2019

12 Tuoteomistajan pikastartti. Internet source. City of Helsinki.

<https://kehmet.hel.fi/organisaatio/tuoteomistaja/> Read 26.10.2019

13 Sahi, Anniina. 2013. Kaikkien ja ei kenenkään vastuulla. Internet source.

<https://jyx.jyu.fi/bitstream/han-

dle/123456789/42065/1/URN%3ANBN%3Afi%3Ajyu-201309042227.pdf> Read

26.10.2019

14 AWS Well-Architected Framework. 2019 Internet source. <https://d1.aws-

static.com/whitepapers/architecture/AWS_Well-Architected_Framework.pdf>
Read 27.10.2019

15 Haakanen, Joonas. 2019. Internet source. Windows directoryn ja Active directoryn

integraatio.<https://www.theseus.fi/bitstream/han-

dle/10024/171600/Haakanen_Joonas.pdf?sequence=2> Read 24.10.2019

