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This work represents a research on deep-learning based approaches for object detection 

for the purpose of crowd density estimation. Specifically, thermal imagery which allows to 

preserve personal identity was used to train a deep learning object detection system. The 

ultimate objective of this work is to provide the client company with the tool which would 

facilitate better understanding of how various office, meeting, common and work spaces are 

being used across the campus, optimize crowd flows and drive down maintenance costs.  

 

Theoretical background related to both, traditional computer vision and novel deep-learning 

methods for object detection was studied and outlined in this work. Based on the outcomes 

of such comparison, the most promising method was implemented into production. 

 

Extensive empirical evidence obtained through extensive testing of the proposed solution 

demonstrated that the model exhibits high accuracy, great generalization capabilities and 

robustness against various perturbations in input images. It was concluded that provided 

solution satisfies both, accuracy and inference time requirements and therefore qualified to 

be deployed into production. 

 

Finally, possible directions for further development were outlined. Improved performance 

can be achieved by alternating backbone network architecture and expanding the training 

dataset. 
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1 Introduction 

Automated video surveillance has seen an exploding rise of adoption over the past 

decade. Steady growth in computational power, volume of available data storages and 

quality of various video cameras allows today to record and store vast amounts of data. 

Wide range of industries such as security, smart homes and cities, retail and quality 

control has been leveraging ability to automatically process huge amounts of video data 

and extract useful insights from it. 

 

Recently, video analysis has been finding its application for problems of crowd behavior 

monitoring and understanding. Main focus of this work is to find a solution to accurately 

estimate amount of people present in a given facility. Having means to acquire such 

information would allow to better understand how various office, meeting, common and 

workspaces are being used across the campus. Consequently, it can help to optimize 

crowd flow while making premises more attractive for both, campus employees and 

visitors, and drive down maintenance costs. 

 

This project has been carried out for Nokia Solutions and Networks Oy in collaboration 

with LEVITEZER Oy. A set of thermal cameras provided by LEVITEZER company is 

installed in different key locations across Nokia campus, Espoo. Using a stream of 

thermal images captured by the cameras, an object detection model allows to extract 

information about area occupancy whilst completely securing privacy. However, after 

overviewing existing object detection methods and related work, it becomes evident that 

the nature of thermal images poses its own constraints and brings challenges that make 

it hard to adjust any of traditional classic computer vision algorithms for the problem in 

question. 

 

Therefore, this work turns towards recently emerged and rapidly developing field of deep 

learning (DL) which has been persistently showing highest performance for various 

problems in domain of computer vision [1]. The main objective of this work is to 

investigate possible deep learning based solutions for an accurate indoor crowd 

estimation using thermal cameras. A range of potentially suitable approaches is tested 

in practice and documented. Solution which showed the best performance is 

implemented in production. 
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2 Theoretical Background 

2.1 Thermal Images 

All objects emit infrared radiation. In the far infrared range this radiation is perceived as 

heat. Normally people and animals emit more infrared radiation than their surrounding 

environment. Special infrared vision systems are used to capture the heat emitted by 

objects to create a thermal image. Hence thermal imagery can be described as a result 

of capturing electromagnetic radiation emitted or reflected from an object in the infrared 

range of the electromagnetic spectrum. 

 

The infrared spectrum consists of light with wavelengths between 0.8 to 14 µm [2, p. 9]. 

The spectrum can be divided into three different ranges: short wave infrared radiation 

(SWIR), mid wave infrared radiation (MWIR) and long wave infrared radiation (LWIR). 

These ranges are visible in the spectrum in Figure 1. 

 

 

Figure 1. Expanded view of Infrared (IR) and adjacent spectral regions. 

Copied from [2, p. 10]. 

 

Thermal infrared region depicted in Figure 1 is the region for which different IR imaging 

systems exist. However, special cameras might have wider ranges. 

 

Clearly specialized thermal cameras differ from conventional cameras that work with vis-

ual spectrum. Compared to them, thermal cameras have an ability to capture images in 
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total darkness, they are robust to illumination changes, and are less intrusive since it is 

nearly impossible to identify a person in a thermal image. 

 

Furthermore, same materials have different properties when captured by cameras for 

the thermal and visual spectrum and consequently they look different [3]. For example, 

in thermal imagery, there are no shadows because only emitted radiation is captured by 

the camera. 

 

In regard to noise, thermal imagery also has different characteristics compared to visual 

imagery. Typically, thermal cameras have lower resolution and a larger percentage of 

corrupted pixels. In Figure 2 the same frame is captured by thermal camera on the left 

and normal camera on the right.  

 

 

Figure 2. Same scene captured by (a) thermal camera and (b) normal camera. 

Copied from [4] 

 

An example of a thermal image on the left in Figure 2 might occur to look similar to a 

grayscale image. Therefore, some research papers argue that same computer vision 

methods that work well for visual imagery can be successfully applied to thermal im-

agery. At the same time, other papers, for example [3], suggest that there are several 

core differences between thermal and visual imagery, hence a specially designed ap-

proaches should be used for analyzing thermal images. Therefore, one of the objectives 

of this project is to empirically determine which argument is true. 

2.2 Object Detection 

The first essential step of any automated surveillance system is an object detection 

stage. Historically, the task of identifying objects in an image has been solved via differ-

ent computer vision (CV) methods. However, recently alternative deep learning methods 
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enabled extensive advancements in every computer vision task including object detec-

tion [1].  

Object detection is one of the most common computer vision tasks and an integral part 

of any automated surveillance system.  The term of object detection is frequently used 

interchangeably with another computer vision term of object recognition. Hence before 

proceeding, it is crucial to appropriately define and discern the terms of image classifi-

cation, object detection and object recognition [5]. 

 

Image classification is the process of taking an image as input and outputting a class 

label or a probability associated with the class label out of a set of given classes. Object 

detection usually refers to the process of discovering the presence of an object in an 

input image, alongside with a localization of that object. An output of an object detection 

task is a bounding box described in the format of (x, y, w, h) where x and y are coordi-

nates of a bottom left point of a bounding box, w is the width of the bounding box and h 

is the height of a bounding box. There could be many bounding boxes representing dif-

ferent objects of interest within the. Finally, object recognition is assumed to be the pro-

cess of identifying detected objects. Respectively, an output of an object recognition task 

is a set of bounding boxes and corresponding classes. 

 

Object recognition can also be considered a classification problem, which aims to classify 

detected objects into a set of predefined classes [6]. Figure 3 illustrates differences be-

tween these computer vision tasks.  

 

 

Figure 3. Examples of image classification, object detection and object recognition tasks. 
(a) - image classification output, (b) - object detection output, (c) - object recognition output. 

 

Depending on the purpose of a specific automated surveillance system, either object 

detection or object recognition might be needed. Following chapters cover specifically 

object detection techniques.  
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3 Object Detection Methods 

Detailed understanding of mechanics behind various object detection methods provides 

an essential theoretical background for further discussion and comparison of traditional 

and current state-of-the-art object detection algorithms. Moreover, deep understanding 

of both types of algorithms comes extremely important when it is time to choose the right 

implementation approach for the project. Therefore, following sections focus on essential 

mechanisms behind inner workings of both, traditional computer vision and deep learn-

ing methods for object detection. 

3.1 Traditional Object Detection Methods 

Due to the overall academic interest and potential of automated vision systems to in-

crease both the productivity and efficiency of organizations, significant advances have 

been seen in the field of object-detection systems over last 50 years [7, p. 830]. Tradi-

tional approaches to computer vision tasks date back to 1960s when the first applications 

of pattern recognition systems were developed for character recognition in office auto-

mation related tasks [8]. 

The fundamental idea behind any of these approaches is that any image can be repre-

sented as a set of derived features deemed to be relevant to a given task, such as edges, 

corners, colors or textures. Such a representation of an image is commonly known as a 

feature vector and the mechanism that converts an input image into a feature vector is 

known as a feature extractor. 

 

Typical object detection framework consists of several stages. First, feature descriptor is 

used to represent images as feature vectors. Then these feature vectors are passed as 

an input to a classification algorithm. Finally, this classifier is applied together with a 

sliding window to detect and localize objects in an image [7, p.836]. 

 

Subsequent sections present a critical overview of the most prominent classical CV ap-

proaches to object detection. The main goal of this overview is to get familiar with me-

chanics of each algorithm, study their downsides and assess feasibility of using tradi-

tional CV object detectors for the purpose of this project.  
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3.1.1 Scale-Invariant Feature Transform (SIFT) 

First published by David Lowe in 1999, SIFT method [9] uses local points to identify 

specific objects among many alternatives. For object detection, SIFT features are ex-

tracted from a set of reference images. A new image is matched by individually compar-

ing each feature from this new image to previously extracted ones and calculating Eu-

clidean distance of their feature vectors [10, p. 93]. Figure 2 illustrates a result of local 

feature extraction process using SIFT method. 

 

 
 

Figure 4. Extracting local features using SIFT method. Copied from [11]. 
 

Ability of the SIFT algorithm to extract large numbers of key points from a given image 

leads to efficient extraction of small objects. Since key points are detected over a range 

of different scales, small and highly occluded objects can be matched using small local 

features, whereas large key points allow to achieve high performance for images with 

sufficient noise [10, p. 106].  

 

However, since SIFT algorithms relies on extraction of numerous key points, it gets suf-

ficiently complex mathematically which results in extensive computational requirements. 

Moreover, whilst being rotation and scale invariant, this method experiences difficulties 

when facing lighting changes and blur [12]. 
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3.1.2 Speeded Up Robust Features (SURF) 

First presented by Herbert Bay, et al., at the 2006 European Conference on Computer 

Vision, speeded up robust features is a patented local feature detector and descriptor 

[13]. Based on the same principles of extracting local features and same algorithmic 

steps, SURF algorithm achieves considerably lower execution times compared to SIFT, 

while maintaining the same level of accuracy. Such robustness is achieved due to the 

quick approximation method called a box blur, which is used to detect points of interest. 

Blur box algorithm works by computing the average value of all the image values in a 

given rectangle. 

 

SURF algorithm proved to be an efficient when applied not only to normal images but 

also for medical imagery [14]. However, as comparative study [15, p. 150] shows, SURF 

is still prone to make errors on images with different types of affine transformations and 

blur. 

 

3.1.3 Haar Cascade Classifier 

Another technique used in computer vision to perform object detection is called Haar 

Cascade Classifier. Initially proposed in 2001 by Paul Viola and Michael Jones and there-

fore also known as Viola-Jones framework, it was the first framework to fulfill require-

ments of a real-time object detection task. 

 

Original Haar Cascade Classifier consists of four principal stages. First of all, a set of 

manually determined Haar Features is calculated from the input image. Predominantly, 

these features help to detect lines and edges. Hence this algorithm is so efficient at its 

original application of the face detection task. An “integral image” constructed during the 

second stage allows features to be computed extremely fast [16]. However, most of the 

calculated features are irrelevant. Therefore, during the next stage, a learning algorithm, 

called AdaBoost, chooses only features carrying critical visual information about the im-

age [16]. Afterwards, a classifier is trained using only these strong features. Term cas-

cade explains the last stage, when a set of weak classifiers is combined together to form 

a strong one. This complex classifier allows to rapidly discard background-like regions 

and concentrate resources on computing more promising object-like regions.                       
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One of the main deficiencies of this method originates from its initial application for face 

detection. Haar Features describe low-level visual properties of an image such as edges 

and lines. Therefore, if a target image does not have clear edges and lines, or even if 

they are slightly modified, an algorithm might not be able to correctly classify such im-

ages. Since this project is concentrated on detecting people in relatively low-quality im-

ages, Haar Cascade Classifier might not be the best candidate for the task. 

 

3.1.4 Histogram of Oriented Gradients (HOG) 

Lastly, one of the most prominent and widely used in traditional computer vision object 

detection methods is HOG descriptor. This method relies on the use of intensity gradients. 

First, the whole image is divided into small connected blocks, then a histogram of gradient 

directions is compiled for the pixels inside each block. The results of calculating gradients for 

a given input image are illustrated in Figure 5.  

 

Figure 5. Input and output of HOG descriptor. Copied from [17]. 

 

For further accuracy improvement, local contrast normalization is applied across overlapping 

cells. This approach got widely adopted after Navneet Dalal and Bill Triggs presented their 

work on pedestrian detection [18] at the Conference on Computer Vision and Pattern Recog-

nition in 2005.  

 

Since HOG descriptor operates on local cells, is has several advantages over other image 

descriptors. It is invariant to geometric and photometric transformations, except for object 

orientation. Moreover, local contrast normalization ensures better invariance to changes in 

illumination, shadowing, and edge contrast [17]. 
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3.2 Deep Learning Object Detection Methods 

Merely half a decade ago, computer vision mainly relied on image processing algorithms 

and methods. Whereas most computer vision tasks might appear easy and be trivially 

solved even by children, traditional CV algorithm as can be seen from the previous sec-

tions, are inherently complex in their nature. The main reason is that there is still no clear 

understanding of how human vision works. Another facet of the problem is the complexity 

of the visual world. A robust and accurate computer vision system should work in a vari-

ety of different scenes and under a range of changing conditions such as lightning, blur-

ring, noise, etc.  

 

Due to the immense success of deep learning applied to computer vision problems, 

which started in 2012, object detection methods based on deep learning models became 

increasingly popular as a default choice in recent years. In 2012 Krizhevsky et al. [19] 

won a Large Scale Visual Recognition Challenge (ILSVRC) competition by training a 

large deep convolutional model and achieving significant improvement in accuracy over 

all other approaches. 

Whereas tailored to solve the same computer vision tasks, deep learning models signif-

icantly differ from previously described traditional CV algorithms. In the following sec-

tions, a brief overview of the most essential fundamentals and concepts of DL for CV will 

be given in order to provide a basic understanding behind its inner working. 

3.2.1 Deep Learning Fundamentals 

Deep Learning can be defined as a sub-field of machine learning (ML), aimed at learning 

a function which can accurately map a set of given inputs to a set of given outputs [20, 

p. 164]. Applied to an object detection task, a deep learning model tries to map an input 

image to a set of bounding boxes drawn around each object of interest in that input 

image. To find such a mapping function, deep learning methods use so-called neural 

networks. 

 

Main building block of a typical neural network is called a layer. Generally, any neural 

network consists of an input layer, an arbitrary number of hidden layers and an output 

layer [20, p. 161]. Each layer itself is composed of nodes or neurons. Depicted below in 

Figure 6 is a typical deep neural network with k hidden layers.   
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Figure 6. Typical deep neural network architecture. Copied from [21]. 

 

Figure 6 also illustrates that neurons in each layer are connected to the neurons in the 

previous layer as well as to the neurons in the following layer. These connections are 

called weights.  

 

Interconnected in such a way, neurons allow computation to happen within the network 

and training signal to propagate through layers. Weights can either amplify or diminish 

the training signal depending on whether if a current input is helpful for the task or not. 

Figure 7 provides schematic representation of an artificial neuron. 

 

 

Figure 7. Parts of an artificial neuron. Copied from [22]  

 

Illustrated in Figure 7 is an example of a computation carried by a typical neuron. A 

neuron takes a set of inputs {x1, …, xm} and calculates a product of them and a corre-

sponding set of weights {w1, …, wm}. Input-weight products are summed up afterwards 

and an additional scalar bias term b is added to the sum [23, p.322]. The output is then 

passed through a non-linear activation function to produce the final output y. Final output 

of one layer servs as an input to the following layer where similar computation is per-

formed again until the output layer is reached.  

 



11 

  

The output of the final layer is the same as a prediction made for the task in hand. After 

prediction was made, it can be compared to the ground-truth, a value which is known to 

be the right prediction for that particular input. Such comparison of the produced output 

to the expected output is calculated using a loss function. Most often, cross entropy is 

used as a loss function for classification tasks, whereas mean squared error is used for 

regression tasks.  

 

The ultimate goal of the training process is to minimize the loss. This can be done by 

iterative adjustments of model parameters, i.e. weights and biases. This process is per-

formed with an algorithm known as backpropagation through gradient descent [24, p.69].  

Essentially, backpropagation can be viewed as a feedback loop allowing neural network 

to find the best possible combination of the parameters and therefore achieve the lowest 

loss. During the training of a neural network, each forward pass includes loss calculation 

and each backward pass includes calculation of the gradient and then performing back-

propagation or integrating the gradient in order to decide how much and in what direction 

the weights should be changed. This process is repeated until a point of convergence is 

reached.  

Depending on task in hand and given input, different types of neural networks can be 

used. Historically, when the input is represented as an image, a special type of a neural 

network called Convolutional Neural Network (CNN) is used.  

 

Originally devised by Yan LeCun in 1989, convolutional neural network is a special type 

of a deep neural network which is tailored to process grid-like inputs, most often images 

[20, p. 326]. This name comes from a particular mathematical operation called convolu-

tion. Therefore, any neural network which has at least one layer that uses convolution 

operation instead of typical weight matrix multiplication, can be called a CNN.  

 

Coming from the field of digital signal processing, a convolution operation refers to a 

combination of two functions which produces a third function as a result. Simply put, it 

combines two sets of numerical information. In the scope of deep learning, the input is 

corresponding to the first function and a kernel is corresponding to the second function 

[20, pp. 327-329]. Essentially, a kernel or as it is often interchangeably called a filter, 

represents an array of weights or parameters that are being learned by a neural network 

during the training process. The size of a kernel is usually relatively small, often being 

defined as 3x3 or 5x5, for example. In the figure below a typical process of applying a 

convolution operation to the input image is described. 
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Figure 8. Convolutional operation applied to the input image. Copied from [25]. 

 

It can be seen from the Figure 8, that during the convolution operation, a kernel is sliding 

or convolving across the input image in both dimensions. At each position a kernel is 

multiplied element-wise with the corresponding part of the image and the sum of the 

products is the final output of the convolution operation at that position.  

 

The result of a filter convolving over the whole image is called a feature map [24, p. 124]. 

Usually a set of multiple feature maps is produced at each level by applying different 

filters. Although all of the filter values are learned during the training process and never 

defined manually. 

 

Interestingly, at each layer typical neural network learns different types of features. As a 

rule, in first layers it learns low-level features such as edges, lines and shapes. The 

deeper the layer is, the more complex features it learns. Final layers usually represent 

quite sophisticated features such as textures, specific patterns or elements of the objects  

Such hierarchical structure allows CNNs to capture complex nature of natural images 

independent of scale of the objects, their position within the image and different distor-

tions such as blur and noise [24, p. 123]. 

 

Additionally, CNNs use pooling layers in between convolutional layers in order to reduce 

the dimensionality of the intermediate inputs and therefore reduce computational costs 

and speed up the training process. Other hyperparameters include stride and padding 



13 

  

[24, p.126]. Stride defines the step of the filter. Padding allows feature maps to have the 

same size of the output after convolution pass as it had before it. 

CNNs are suitable for a wide range of CV tasks including object classification, object 

detection, image segmentation, pose estimation and more. Consecutive sections de-

scribe two types of general architectures widely used for object detection task in partic-

ular. 

 

3.2.2 One-Stage Object Detectors 

As opposed to region-proposal family of models, one stage detectors represent a set of 

architectures which are trying to solve an object detection task by producing predictions 

for coordinates of the bounding boxes and probability scores for different classes using 

only a single forward pass through the network. They generally aim to classify each re-

gion of an image either as background or an object. Various positions across an image 

are considered as a potential object [26]. One-stage models aim to achieve lower infer-

ence time but do so by sacrificing accuracy. Most popular one-stage detectors are Sin-

gle-Shot Detector (SSD) [27] and You Only Look Once (YOLO) [28]. 

 

Generally, all one-stage detectors start by dividing an input image into a grid of cells. 

Each cell has the same task of predicting any bounding boxes whose centers fall within 

the area of that cell. Predictions for each bounding box consist of x and y coordinates, 

width and height, and a confidence score. Confidence score is a probability measure 

between 0 and 1 produced by a classifier, which reflects how likely is that an object is 

contained within a bounding box. This confidence score is calculated regardless of the 

class of an object. Finally, a class prediction is produced for each cell independently of 

other cells.   

 

The main idea that powers one-stage detectors is anchors or default boxes. The concept 

of an anchor box was first introduced in [29]. According to the authors, anchors are es-

sentially a set of predefined bounding boxes of carefully selected sizes and aspect ratios 

distributed across the image. Hence a model should decide which subset of anchor 

boxes to use and later adjust their coordinates and offset to make a final prediction. 

Below in Figure 9 is a high-level illustration of how a YOLO model splits an image into a 

grid of cells, initializes a set of default boxes and makes final predictions.     
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Figure 9. (a) Image split into a grid (b) A set of all default boxes (c) Final predictions. 

Copied and modified from [28]. 

 

One-stage detectors represent an end-to-end type of a network and make predictions 

using a grid without carrying out any intermediate tasks. Such architectures typically pro-

duce faster and simpler models compared to two-stage object detectors. These charac-

teristics make one-stage detectors a plausible candidate for this project. 

 

3.2.3 Two-Stage Object Detectors  

The main idea upon which all two-stage object detectors are built is composed of two 

essential steps [26]. First, a technique called selective search is used to identify a man-

ageable set of regions within the image which might contain different objects. Such object 

region candidates are commonly known as Regions of Interest (RoI). These RoIs usually 

produced in various sizes.  Second step of the process is to extract specific features from 

each region using a CNN model. Feature extraction is applied independently to each 

region for further classification. Additionally, a regression model could be integrated into 

two-stage architectures to refine bounding boxes predicted by a region proposal network 

(RPN).  

 

R-CNN is the first widely adopted two-stage detector which significantly improved upon 

previous models was proposed by Girshick et al. in 2014 [30]. Despite being relatively 

inefficient due to a high amount of redundant calculations, this architecture served as a 

basis for a whole family of region proposal object detectors. 

 

Consequently, same group of authors merely a year later proposed Fast R-CNN archi-

tecture. Improved architecture addresses main limitations of R-CNN model by merging 
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three models into a single framework [31]. Unified model increased number of parame-

ters shared across the layers, therefore enabling lower training and inference time while 

achieving better prediction scores than original R-CNN model. 

 

Next iteration of the R-CNN family models, Faster R-CNN, achieved state-of-the-art re-

sults by combining RPN into the main CNN model and further increasing the ratio of 

shared parameters [29]. As a result, nowadays multiple variations of a Faster R-CNN 

based architectures exist. [26] 

 

Finally, the latest most influential two-stage detector is Mask R-CNN. First presented in 

2017 by He et al. [32], this approach augments Faster R-CNN with a separate branch 

for predicting pixel-level masks of the objects.  

 

Overall, two-stage detectors tend to produce more accurate results with regards to both 

classification and bounding box localization. As can be seen in Figure 10, while for ex-

ample YOLO3 has the fastest prediction times, its accuracy is below average compared 

to other detectors. 

 
 

Figure 10. Performance comparison between various deep learning object detectors. Copied 

from [33].  

 

However, whereas two-stage detectors outperform one-stage detectors, it usually comes 

at a significant computational price. Whereas, as it can be seen from the Figure 10, one-

stage RetinaNet model represents a balanced model which is able to provide high accu-

racy without requiring extensive computational resources. These are important factors 

that should be considered when choosing a model for the project. 
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3.3 Deep Learning vs. Traditional Computer Vision Methods 

Previous sections provided detailed description of how both traditional CV methods and 

DL based methods for object detection work. When comparing both approaches, it can 

be seen that the main and the most important difference is how each method arrives 

from the input to the output. As illustrated in Figure 11, traditional CV methods heavily 

rely on a feature extraction phase. During this phase, a set of hand-crafted predefined 

features is extracted from an input image. Alternatively, DL based methods allow fea-

tures to be learned in an end-to-end fashion.     

 

Figure 11. Conventional Machine Learning vs Deep Learning Flow. Copied from [34] 

 

Such end-to-end approach is the main differentiating characteristic of any DL based 

method. It allows to completely skip the tedious phase of feature engineering. Instead, 

machine learning practitioner only needs to provide a predefined model with inputs (im-

ages) and outputs (a set of class labels and bounding box coordinates). This makes 

development process faster and eliminates possible errors in an overall pipeline. More-

over, no extended domain knowledge is needed to apply DL based methods of object 

detection. 

 

However, DL methods have other advantages over traditional CV methods. Most notice-

ably, CNNs in particular, have proven to have superior performance on a wide range of 

CV tasks and have also surpassed human-level performance. Typically, the more chal-

lenging the task in hand, the bigger would be the difference between performance of a 

traditional CV model and DL model.  

 

Furthermore, DL methods allows to continuously improve model performance by in-

creasing the size of a training set without hitting diminishing returns as traditional CV 

models eventually would. Even though such a requirement to have lots of training images 

could have been seen as a downside a few decades ago, nowadays there is lots of data 
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for almost any vision task, especially if we consider the case of video surveillance. How-

ever, labeling such huge datasets is clearly a downside and can turn out to be both 

expensive and time-consuming. 

 

On top of that, deep learning models for CV have shown to be more robust at handling 

images containing different transformations including blur, noise and scaling. This es-

sentially means that if a model has been trained on a set of images in one environment, 

it could be used to analyze images obtained from similar environments. In practice, this 

allows to use same model to perform human detection across different locations around 

the campus, be it cafeteria, meeting room or a lobby. technically speaking, deep learning 

models provided higher generalization. Not only it allows to spend less resources on 

development, but also facilitates easier scaling. 

 

Finally, due to heavy computational costs, typical deep learning models require special 

hardware such as GPU video cards to be used for training acceleration. When trained 

on a standard CPU, such models can take days or even weeks to train. However, now-

adays GPU cards are rather inexpensive. Additionally, free cloud resources like Google 

Colab can be used as an alternative for purchasing actual hardware. 

 

To conclude, whereas deep learning methods for CV tasks have some minor downsides 

compared to traditional CV methods, their upsides drastically overweight them. There-

fore, nowadays deep learning methods should be reviewed and considered alongside 

traditional methods. Next sections consider in detail two main types of object detection 

frameworks: one- and two-stage detectors. Knowing principal differences between them 

will later allow to choose the best suitable architecture for the project.    

 

3.4 Related Work 

Previous sub-chapters have covered in detail main object detection methods from both, 

traditional CV and deep learning. Their strong and weak sides have been highlighted. 

However, before one can make an educated decision about which model to use for the 

project, it would be useful to get a brief overview of which methods prevail in practice. 

Therefore, in this section, a survey on recent papers on object detection is presented.  

 

Object detection is a popular CV tasks and hence a popular research topic. To narrow 

down the amount of reviewed papers, three main criteria are used. Firstly, a paper is 
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required to be describing work on object detection, or other CV task where object detec-

tion is a downstream task. Secondly, the paper should be working with thermal images. 

And finally, the task should include humans as one of the possible classes. The more 

criteria a paper meets, the better. However, not all the reviewed papers meet all three 

criteria at once. 

 

In Table 1, a summary of all reviewed papers is given. Each entry includes paper’s title 

and a reference link, year of publication, main method used to perform object detection 

and an example. Analyzing this information helps to understand current trends in human 

detection in thermal imagery and their evolution over time. Sample images allow to vis-

ually compare tasks and identify which images are most similar to the images used in 

this project. 

 

 
Title, authors Year Method Example 

1 

Tracking of Hu-

mans and Estima-

tion of Body/Head 

Orientation from 

Top-view Single 

Camera for Visual 

Focus of Attention 

Analysis [35] 

2009 SIFT 

 

2 

Human Detection 

Using SURF and 

SIFT Feature Ex-

traction Methods in 

Different Color 

Spaces [36] 

2014 
SIFT, 

SURF 
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3 

Feature based per-

son detection be-

yond the visible 

spectrum [37] 

2009 SURF 

 

4 

Pedestrian Detec-

tion in Infrared Im-

ages based on Lo-

cal Shape Features 

[38] 

2007 HOG 

 

5 

A Real Time Hu-

man Detection Sys-

tem Based on Far 

Infrared Vision [39] 

2008 

Gauss-

ian 

back-

ground 

model 

 

6 

Human Detection 

Based on the Gen-

eration of a Back-

ground 

Image by Using a 

Far-Infrared Light 

Camera [40] 

2015 

Back-

ground 

sub-

traction 
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7 

Person Detection in 

Thermal Images 

using Deep Learn-

ing [41] 

2018 

Convo-

lutional 

autoen-

coder 

 

8 

Thermal Image-

Based CNN’s for 

Ultra-Low Power 

People Recognition 

[42] 

2018 CNN 

 

9 
Human detection in 

thermal imaging us-

ing YOLO [43] 

2019 YOLO 

 

10 

Human Detection in 

a Sequence of 

Thermal Images 

using Deep Learn-

ing [44] 

2019 

Tem-

poral 

CNN 

 

 

Table 1. Summary of various research papers on human detection in normal and thermal 

imagery. 
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Upon critical review of the abovementioned papers, two main factors have been discov-

ered. First of all, six papers out of ten used traditional CV methods as SIFT, SURF and 

HOG to identify people in both normal and thermal images. The other four papers opted 

towards different convolutional models. However, an important observation is that most 

recent papers, published in 2018-2019, exclusively use deep learning methods, whereas 

up until 2015 only traditional CV methods were used. This highlights a significant trend 

of choosing deep learning models both for research and development.  

 

The reason for such a paradigm shift can be derived both from section 2.2.3.5 where 

main differences between traditional CV and deep learning methods are described, and 

from analyzing sample images in Table 1. For instance, in a sample image from [37] one 

can see a missed object right in the center of the image, and another one at the right 

side of the image. Whereas first error type is similar for both types of object detection, 

the second person is not identified due to the fact that its silhouette is only partially visi-

ble. This prevents traditional CV model from making a correct prediction. However, when 

trained properly, deep learning models can successfully identify partially occluded ob-

jects or objects exceeding the limits of the image. 

 

Consequently, in a sample image from [39], another two error types typical for object 

detection in thermal imagery are present. Firstly, a reflection is identified as a person. 

This kind of error can be avoided by a deep learning model, if during the training no 

reflections are labeled as actual humans. Secondly, if a person present in a thermal 

image has just appeared to come from outside during the cold season and wears a coat, 

the heat radiated by the body is blocked by the coat and therefore person’s silhouette 

looks different and cannot be picked by traditional CV methods, especially those meth-

ods that rely on background extraction.  

 

Lastly, in [40] sample image two people standing close to each other share a single 

bounding box. Even though they are correctly identified, traditional CV method is not able 

to separate them as two individuals. On opposite, in sample image from [44], which uses 

temporal CNN, a whole group of multiple overlapping bounding boxes is correctly iden-

tified.   

To conclude, it can be suggested that deep learning approaches to object detection be-

came feasible and prevalent during last couple of years. This can be explained by supe-

rior performance that CNNs show compared to traditional CV methods. Considering 
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these findings, a deep learning object detector has been chosen for this project. Follow-

ing chapters provide additional details on methods, implementation details and discuss 

results that have been achieved. 

 

4 Methods and Tools 

In chapter 2 it has been established that DL approaches to solving CV problems might 

be faster and easier to develop, compared to traditional CV methods, all while achieving 

better accuracy. Therefore, this and following chapters are set do describe in detail a 

practical experiment which main goal was to demonstrate the eligibility of that statement. 

Whereas starting point and final goal for both, software projects and ML projects, are the 

same, an internal life cycle differs a lot. Generally, ML projects include more uncertainty 

and variability than traditional software processes. Additionally, they use a different set 

of programming tools and test solutions in a different way. Following sections go through 

each step of a development life cycle for a typical ML project with respect to the experi-

ment conducted for this work. 

4.1 Machine Learning Development Life Cycle 

Traditionally ML projects are more iterative and experimental by their nature compared 

to software projects. Therefore, one should be prepared to try out a range of various 

ideas, approaches and models before arriving at a satisfying solution.  Specific number 

of steps included in a typical ML workflow may slightly vary from source to source. In 

Figure 12, a set of most common steps for ML project is depicted.  

 

Figure 12. Typical workflow of a ML project. Copied from [45]. 
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Starting from task definition and ending with continuous monitoring of a deployed model, 

most of the steps presented in Figure 12 might be repeated several times. Roughly half 

of the steps are aimed at preparing the final model, whereas second half is concerned 

with deployment and maintenance of the developed model. Tasks related to model de-

ployment, a vast topic of its own, are outside the scope of the project. Therefore, follow-

ing sections focus on data preparation and model implementation. 

4.2 Task Definition  

To reinstate previously discussed motivation for the project from business perspective, 

the main goal of the practical part of the project is to develop an object detection model. 

This model must accurately identify humans in thermal images and provide coordinates 

of a bounding box for each identified human. 

Correctly chosen metric often defines the success of an ML project and allows to bring 

actual business value. Having a single metric defined at the very beginning of the project, 

as Andrew Ng suggests in [46, p. 20], allows ML practitioners to rapidly iterate over new 

ideas and evaluate them according to that single metric, making steady progress towards 

the main goal. 

Evaluation of a trained object detector is not a trivial task because it requires to simulta-

neously account for both classification and regression parts of the task. For this project, 

mean average precision (mAP) is chosen to be a single optimizing metric. It is a score 

metric commonly accepted in object detection competitions such as ImageNet, PASCAL 

VOC and COCO.  

For each predicted bounding box there are three possible outcomes: true positive (TP) 

in case an object is correctly classified and localized, false positive (FP) in case an object 

is incorrectly classified or localized and false negative (FN) in case if an existing object 

is not identified. The last case of a true negative (TN) prediction, correctly not predicting 

an object where it does not exist, is irrelevant within the scope of an object detection 

task. 

Knowing a number of true positive, false positive and false negative predictions across 

the dataset, one can calculate precision and recall. Formulas 1 and 2 show how each 

of the metrics is calculated.    
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Formula 1. Formula for calculating precision. Copied from [47]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Formula 2. Formula for calculating recall. Copied from [47.] 

In Formula 1, precision is a measure of how well a model identifies relevant objects. In 

Formula 2, recall is a measure of model’s ability to find all the relevant objects. 

Consequently, mAP represents a product of both precision and recall of the predicted 

bounding boxes. By combining detections from all images, a precision/recall curve can 

be drawn [60]. Inspection of precision-recall curves is highly recommended to get the full 

picture of both metrics when evaluating a model. An example of such a curve is depicted 

in Figure 13.  

Figure 13. Precision-recall curve. Copied from [61]. 

The area under the curve, as shown in Figure 13, is used to calculate average precision 

(AP) for each class in the dataset. Therefore, mean average precision is an average of 

AP scores across all classes. The mAP score can take values in a range between 0 and 

1, where a score of 1 is achieved by a prefect model. For this project there is a single 
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class, “person”, therefore AP must be calculated only once. The goal is to achieve a mAP 

score of 0.95 or higher.  

Apart from having an optimizing metric, it is often advisable to have a satisficing metric 

[46, p. 22]. In case of this project, it is not only required to achieve a certain performance, 

which is measured with mAP score, but also achieve sensible inference time. The most 

accurate model would be useless if generating predictions for a single image takes doz-

ens of minutes. For this project, satisficing inference time is defined to be 10 seconds on 

a standard CPU or GPU machine. This way all locations can be processed every minute 

with some buffer time left for any possible overheads. This way it would be possible to 

provide updates on a space occupancy rate at a granularity of a minute.    

Establishing optimizing and satisficing metrics allows to compare different models and 

their variations against each other and eventually choose the one which is most suitable 

for the deployment. Ultimately, developing a model which complies with both metrics, 

should be interpreted as a successful fulfilment of the main goal for the practical part of 

the project.       

3.3    Data Collection 

Popular computer science principle states: “Garbage in, garbage out” [50]. From ma-

chine learning perspective, this means that the quality of the output produced by a model 

depends on the quality of the inputs. When considering CV tasks, several principles 

should be followed to ensure the quality of the collected dataset. 

According to [46, p. 15], the most important condition for a ML dataset is to represent as 

closely as possible examples which a model must predict well on when deployed. Hence, 

images from the dataset should be ideally coming from the same distribution as images 

fed into the model during the inference stage. 

Secondly, to ensure that model generalizes well to previously unseen data, ML dataset 

should represent as wide a range of possible variations in images as possible. One of 

the goals for this project is to create such a model that could be deployed across different 

locations on the campus: meeting rooms, corridors, lobbies and other common areas. 

Therefore, a well-designed dataset should include images collected across all such ar-

eas.  
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Last of all, since another goal of the project is to compare performance of traditional and 

DL approaches to CV tasks, the dataset should include cases which were found in Chap-

ter 2 to be challenging for traditional CV object-detection models. Such cases include 

presence of small objects, objects being partially outside of image borders, reflections 

and occluding objects. Consequently, it is crucial for the dataset to include such images 

in order to access performance of the final model in all the described categories.      

Given above constraints, a training dataset of 2000 images was collected across four 

different locations at Nokia Campus, Espoo. Another 400 images comprise a test da-

taset. All images were gathered using a thermal camera provided by LEVITEZER Oy. 

Produced images are grayscale and have resolution of 120x160 pixels. Table 2 provides 

aggregate statistics of the training dataset sorted by location. 

Location 

Average 

people per 

image 

Average 

object 

size, pixel 

Reflections 
Occlu-

sions 

Outside of 

borders 

Location 1 1.14 3767 No 4.5% 9.5% 

Location 2 1.0 1103 Yes 4.5% 23.3% 

Location 3 1.26 903 Yes 20% 13.3% 

Location 4 3.31 1169 Yes 90% 10.9% 

Table 2. Per location statistics of the training dataset. 

Furthermore, statistics for an average size of bounding boxes, percentage of images that 

include reflections, occlusions and bounding boxes outside of image borders are given 

in the same table. 

Based on provided details of the dataset, it is reasonable to conclude that such dataset 

should allow to accurately access performance of a model with respect to generalization 

ability and robustness against known challenges in object detection. Since train and test 

sets were both obtained by shuffling and splitting the original dataset of 2400 images 

(train set – 80%, test set – 20%), they both have similar distribution and therefore fully 

represent the original dataset.      
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4.4 Model Choice 

Two main types of DL-based object detection architectures have been discussed and 

compared in Sections 2.2.3.3. and 2.2.3.4. Whereas two-stage detectors traditionally 

achieve slightly better accuracy than their one-stage counterparts, this superiority comes 

at a cost of additional computational complexity. Given iterative nature of ML projects, 

where same model or its modifications must be trained multiple times, both computa-

tional costs and training times accumulate. Therefore, following Occam’s razor principle 

widely adapted by the field of data science, one should always favour the least complex 

solution. 

Furthermore, recently a question of environmental impact of using DL models has been 

raised by several sources including [51]. A well-known trend pictured in Figure 10 sug-

gests that the best performing models usually also have the largest number of parame-

ters. Which subsequently means greater computational cost and higher energy con-

sumption. Most importantly, big models consume more energy not only during the train-

ing but also later, when a model is used for inference. Therefore, additional costs scale 

accordingly to increase in number of inferences. 

While it would be possible to use highly accurate two-stage detectors for the purpose of 

this project, a decision was made to avoid architectures with a significant overhead and 

favor models that exemplify sustainable approaches to developing DL solutions. Such 

models aim to provide state-of-the-art results by leveraging smart designer choices. 

 

Ethical and sustainable development is one of the core values of Nokia [52]. Therefore, 

a one-stage architecture called RetinaNet was chosen to be used in this project. Next 

section presents a more detailed overview of its inner working.  

 

4.5 RetinaNet 

RetinaNet [53] is an example of an architecturally simple one-stage detector which has 

demonstrated both superior accuracy and admissible inference time in comparison with 

other one-stage and two-stage object detectors. Besides, an opensource implementation 

of the architecture is available on Github [54] under Apache license.  
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Although, RetinaNet is a fairly simple architecture, in order to be able to use it appropri-

ately and be able to adjust and tune its parameters to fit a custom dataset, a profound 

understanding of the design is required.  

 

Fundamentally, RetinaNet is composed of the following parts: 

• a Feature Pyramid Network built on top of a backbone network; 

• a classification subnetwork which performs object classification task manipulating 

on the output of the backbone network; 

• a regression subnetwork which performs bounding box regression task manipu-

lating the output of the backbone network. 

Figure 12 shows how different parts of the RetinaNet network are connected to each 

other and what their corresponding dimensions are. 

 

 

Figure 12. Design of RetinaNet. Copied from [53]. 

 

Depicted in Figure 12 is a high-level structure of RetinaNet.  First part of the RetinaNet 

architecture utilizes slightly modified Feature Pyramid Network (FPN) which was previ-

ously introduced by [55]. In a default configuration of RetinaNet FPN augments a stand-

ard image classification network, for example ResNet [56].  

 

Implemented as a fully convolutional network, the backbone network of RetinaNet takes 

an arbitrary sized image and produces feature maps of different sizes at different levels 

of the FPN. At each level of the pyramid, objects of different sizes can be efficiently 

detected [26]. Higher levels of the pyramid produce feature maps containing grid cells 

spanning over larger regions of the input image, whereas lower levels of the pyramid 

produce feature maps containing grid cells covering smaller regions of the input image. 

As a result, higher levels are better at detecting large objects and lower levels are more 

suitable for detecting small objects. This makes RetinaNet scale invariant.  
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Classification subnetwork represents a fully convolutional network (FCN) connected to 

FPN at each level. Four convolutional layers of 256 filters with kernel size of 3x3 and 

ReLU activation function are followed by another convolutional layer which has 𝐾 ∗ 𝐴 

filters [53]. This final convolutional layer is using a sigmoid activation function to produce 

probability scores.  

 
The shape of the feature map in the output layer is WxHxK ∗ A, where W and H corre-

spond to the width and height of the input feature map, K is the number of classes and 

A is the number of anchor boxes.   

 

Regression subnetwork is attached to the FPN in the same manner and in parallel to the 

classification subnetwork. Moreover, these two subnetworks share an identical design 

with the exception of the last convolutional layer, which in regression subnetwork has 

4*A filters [53]. 

 

Consequently, the shape of the feature map in the output layer of the regression subnet-

work is WxHx4 ∗ A, where 4 corresponds to the four coordinates of the bounding box. 

Finally, the last convolutional layer uses linear activation function to produce continuous 

values of the bounding box.    

 

Neural networks trained with stochastic gradient descent always require an appropriate 

loss function to be chosen during the design and configuration stage. This poses a chal-

lenging problem because the loss function should accurately capture the characteristics 

of the problem and be motivated by qualities that are important to the task. 

 

RetinaNet loss function is composed of two terms [57]: 

• first term for localization (𝐿𝑙𝑜𝑐) 

• second term for classification (𝐿𝑐𝑙𝑠) 

 

Combining two parts gives the final formula which can be written as: 𝐿 = 𝜆𝐿𝑙𝑜𝑐 + 𝐿𝑐𝑙𝑠,  

where λ is a coefficient that balances localization and classification losses. 

 

Specifically, RetinaNet introduces a variation of the classification loss called the focal 

loss, which is one of the most innovative parts of the model design. Authors of the original 

paper mention that the practical issue which hurts performance of most object detectors 
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the most is a class imbalance [53]. Classification imbalance is greatly based on the fact 

that an extensive part of the locations in any given image can be effortlessly classified 

as a background and thus does not represent any useful training signal.   

In order to address the class imbalance issue, a focusing parameter is introduced into 

the focal loss formula. This parameter allows to bring down the contribution of the easily 

classified regions and force the network to put additional resources into classifying hard 

regions.      

 

In order to calculate the loss for training, predictions produced by both classification and 

regression subnetworks should be compared with the ground-truth bounding boxes. 

Since there are several predicted bounding boxes and several ground-truth bounding 

boxes, it is necessary to understand mechanisms of matching predictions with ground-

truths. 

 

According to RetinaNet logic, a ground-truth box is considered to be a match with a can-

didate bounding box if their intersection-over-union (IoU) is higher than 0.5 [53]. How-

ever, if IoU between a candidate anchor box and a ground-truth bounding box is below 

0.4, such anchor box is considered to be a background and have no match among 

ground-truths. Figure 13 illustrates how IoU is calculated. 

 
Figure 13. Formula for calculating IoU. Copied from [58] 

 

 

As shown in Figure 13, IoU is calculated by dividing the area of overlap between pre-

dicted bounding box and ground-truth bounding box by a union of these areas. If an 

anchor box predicts an object instead of a background and vice versa, it is penalized by 

the loss function. Additionally, in situations when IoU lies between 0.4 and 0.5, an anchor 

box is recognized to have no match. However, unlike in previous case, no penalty is 

produced by the loss function.     
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After a network has been trained up to the desired accuracy levels, it can be used for the 

inference. During the inference, given an input image, a trained network predicts what 

objects are present in an image and where are they located.  

 

In order for RetinaNet to generate predictions, at most a 1,000 anchor boxes with the 

highest probability scores are selected at each FPN level. At this point an object in an 

image can have multiple corresponding anchor boxes. A non-maximum-suppression 

(NMS) algorithm is used to select an anchor boxes with the highest predicted probability 

score for each class independently of others [53].  

 

 
 

Figure 14. An example of refining anchor boxes with NMS algorithm. Copied from [59] 

 
In the Figure 14, a process of applying NMS to a set of candidate anchor boxes is illus-

trated. After applying NMS, any overlapping anchor boxes are removed, and previously 

existing redundancy is eliminated. 

 

Ultimately, the regression subnetwork produces center coordinates and offsets for each 

of the remaining anchor boxes. These coordinates are used to refine anchors and get 

final bounding box predictions for each object.   

 

4.6 Software tools 

Whereas nowadays there is a wide range of programming languages allowing to develop 

ML solutions including R, C++, Java, Julia, Scala and many more, the most commonly 

used language is Python. Being a high-level, general purpose programming language, 

Python offers ML practitioners an abundance of simple yet powerful tools to tackle vari-

ous problems. Therefore, Python is chosen to be used throughout the project.   
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The central most tool for any DL project is a DL framework, which is essentially a high-

level interface allowing to access abstractions of different algorithms. By using such a 

framework, one can develop complex DL models by combining common pre-built and 

optimized components without delving into implementation details of underlying algo-

rithms. 

As of today, there is a plenty of different DL frameworks to choose from. For instance, 

Google’s TensorFlow, arguably the most prominent DL framework, provides the most 

extensive set of tools for productizing DL models. However, at the same time, it requires 

practitioners to work with low levels of abstraction and subsequently write more extensive 

code and conduct vigorous testing. Another popular DL framework, PyTorch from Face-

book, is widely used in academia, since it enables researches to implement highly cus-

tomizable modules. 

However, another DL framework, Keras [60], is chosen for this project. Keras was first 

introduced in 2015 by François Chollet, a world-known expert in DL. Being a high-level 

API, Keras runs on top of other backends, including TensorFlow. Whilst this results in a 

less configurable and flexible environment, it simultaneously provides best prototyping 

capabilities, allowing practitioners to swiftly implement their ideas by writing concise and 

readable code. Among other advantages, Keras provides seamless support for using 

both CPU and GPU, which becomes an important consideration, since CV tasks usually 

require extensive computational power and rely on GPUs for acceleration.       

5 Implementation 

Due to a highly iterative nature of a ML development cycle, it becomes crucial to establish 

a reproducible and interactive pipeline. This allows to promptly perform training of a 

model, evaluate it and perform error analysis. Based on evaluation results and error 

analysis, one can determine how to adjust hyperparameters, data pre-processing or a 

training procedure in order to eliminate the most significant source of error. Afterwards, 

an experiment is repeated until achieving both satisfying and optimizing metrics. 

For this project, an experiment pipeline has been developed on Google Colaboratory or 

‘Colab’ for short. platform [61]. It is a cloud based Jupyter environment available for free 

via browser. In Google Colab users can write and execute custom Python code. More 

importantly, no setup is required and free computational resources including GPU are 
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provided on a limited basis. Such capabilities allow to minimize development efforts and 

facilitate rapid prototyping. Therefore, all experiments for this project have been carried 

out in Google Colaboratory.           

First, all required utility libraries such as pandas, OpenCV, NumPy, urllib and os are 

imported. They provide functionality to download and read images, calculate evaluation 

metrics and measure execution times.  

Given a training dataset which resides in Google Drive, it can be downloaded and used 

in Google Colab as shown in Listing 1. 

drive_url = 'https://drive.google.com/uc?export=download&id=' + 

DATASET_DRIVEID 

file_name = DATASET_DRIVEID + '.zip' 

urllib.request.urlretrieve(drive_url, file_name) 

Listing 1. Downloading training dataset to Google Colab. 

Folder with training images should also include a .csv file with labels for each image 

submitted in Pascal VOC format. Each line in an annotation file describes a single bound-

ing box and includes path to the image, top left x coordinate, top left y coordinate, bottom 

right x coordinate, bottom right y coordinate and a label assigned to that bounding box. 

Additionally, another csv file with class mapping needs to be provided. For this case, 

there is only one class – person. 

After a training dataset has been provided, a training procedure can be initiated by invo-

cating a script from a pre-installed keras_retinanet library. A corresponding command 

line command is shown in Listing 2.  

!keras_retinanet/bin/train.py --freeze-backbone 

--random-transform --weights {model} --batch-size {bs} 

--steps {steps} --epochs {n_epochs} –-tensorboard-dir {log_dir} 

csv {annotations_path} {classes_path} 

 

Listing 2. Initializing training with specific arguments. 

In Listing 2, apart from the command itself, a list of additional arguments is specified. 

First argument, --freeze-backbone, is used to freeze the weights of a backbone net-

work. This approach, known as transfer learning, is often used in situations when the 



34 

  

dataset at hand is smaller than the dataset on which the backbone network has been 

trained. Freezing pre-trained weights helps to avoid overfitting and decreases training 

time, since only weights in last layers are adjusted during the training.  

Next argument, --random-transform, enables data augmentation. Data augmen-

tation is another method of mitigating effects of using a small training dataset. Before an 

image is fed to the network, a set of random transformations is applied to the image, 

producing a set of slightly modified images and consequently increasing the size of the 

original training dataset. For this project, a set of possible transformations includes rota-

tion, transition, shear, scaling and horizontal flipping. Additionally, visual transformations 

such as change in contrast, brightness and saturation are randomly applied to each input 

image. 

Following –weights argument specifies a path to the pre-trained weights. If omitted, 

the training is initiated with random weights. For this project, weights of ResNet50 pre-

trained on ImageNet dataset are used. 

Subsequently,  --batch-size, --steps and --epochs arguments specify how 

many images should be included in a single batch, how many training steps should be 

performed per epoch and for how many epochs the training should run. Larger batch 

sizes allow for more precise calculation of the gradient during backpropagation at the 

expense of a longer training time and possible generalization issues. On the other hand, 

smaller batch sizes are faster to process but often steer weight updates toward a wrong 

direction and delaying convergence. Correctly chosen batch size allows to balance both 

training time and accuracy of a gradient calculation. Additionally, an upper boundary for 

a batch size is limited by the amount of available memory. Since RetinaNet is a compu-

tationally heavy network, a batch size of 8 is chosen. When batch size is determined,      

--steps argument can be calculated by dividing number of all images in the dataset by 

a batch size. Finally, --epochs argument specifies how many full passes over the whole 

training dataset are made. RetinaNet is known to converge relatively fast, therefore this 

argument is set to 30. 

 

Afterwards, –-tensorboard-dir argument is used to specify directory to which Ten-

sorBoard training logs are stored. TensorBoard is a set of applications for visualizing and 

tracking TensorFlow runs. Among other capabilities these tools enable users to inspect 

relevant metrics such as training and validation loss. During the experiment TensorBoard 



35 

  

has been used to monitor loss over time, spot possible training issues such as small 

learning rate or overfitting and recognize convergence moment.  

 

Last arguments, csv, {annotations_path} and {classes_path}, indicate that a 

custom dataset is used to train the model and points to the files containing labels and 

classes. When csv argument is passed to the training script, a special parser is invoked 

to read labels and create an instance of a training generator. 

After training has been started, a snapshot of the current model is saved to the disk at 

the end of every epoch. Simultaneously, TensorBoard outputs updated plots with both 

classification and regression losses. Training curve flattening out and loss being stable 

for several epochs indicate that a model has reached minimum and training process is 

finished.  

 

Finally, after a model has been trained, it must be evaluated on a test dataset. Test 

dataset consists of images a model hasn’t seen during the training. Therefore, it provides 

an ultimate measure of model’s fitness. Evaluation metric is a mAP described in a Sec-

tion 3.2. Additionally, a visualization function overlays each test image with predicted 

bounding boxes and probability scores. Figure 15 shows an example of visualizing re-

sults of the inference performed for a randomly chosen image.  

 

 

Figure 15. Visualizing predicted bounding boxes. 

 

As seen in Figure 15, three persons have been detected in the input images with corre-

sponding confidence scores of 0.78 (person on the left), 0.910 (person in the middle) 

and 0.965 (person on the right). Such representation of model’s predictions, shown in 
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Figure 15, allows to rapidly perform a visual error analysis, assess accuracy of localiza-

tion, and understand what kind of errors a model tends to make.    

 

6 Results 

After optimal hyperparameters were identified, an instance of a RetinaNet network was 

trained on a total of 2000 images. Out of this training dataset, 85% of the images were 

used to adjust model parameters and calculate training loss. Training loss indicates the 

progress of the model over time against data it has already seen. Other 15% of the im-

ages were used to calculate validation loss of the model at the end of every epoch. Val-

idation loss similarly to the training loss allows to track the progress of the model over 

time but against previously unseen data. 

However, validation loss is calculated by testing the model against previously unseen 

data. By plotting both learning curves against each other, as illustrated in Figure 16, it is 

possible to see whether a model is underfitting, overfitting or balanced. 

 

Figure 16. Learning (training and validation) curves plotted over time. 

It can be seen in Figure 16 how both, training and validation curves steadily decline as 

training progresses. Since loss is essentially a measure of error and the goal is to mini-
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mize it, the lower the value on the y axis, the better. Furthermore, as it has been previ-

ously explained, the loss used in RetinaNet is a sum of classification and localization 

losses. 

It is clear from Figure 16 that both curves reached reasonably low loss values, meaning 

the model is not underfitting. Moreover, the learning curves stay relatively close to each 

other and do not start to diverge over time which would indicate overfitting. On contrary, 

both curves flatten during last epochs, signalling that the model has successfully con-

verged.     

To assess model’s robustness, ability to generalize and resilience against different envi-

ronmental changes, a series of carefully tailored test cases were conducted. Their de-

tailed description and corresponding results are presented in the following sections. 

6.1 Main test case 

To determine an overall model’s capacity to correctly detect persons in thermal images, 

an instance of RetinaNet neural network has been trained according to the training pro-

tocol explained in Chapter 4. The model was trained on 2000 images taken across four 

different location. Another 400 images equally sampled from the same locations were 

used to test the model. Nearly perfect mAP score of 0.9912 was achieved. Listing 3 

shows the output of the testing script. 

Listing 3. Testing results for the main test case. 

From Listing 3 it can be seen that for this test case, both optimizing and satisficing met-

rics, established in Section 3.2 are met. Less than 1% of all testing images included 

either classification or localization error. With accuracy requirement being set to 0.95, 

proposed model achieved better than expected performance. Figure 17 presents sam-

ples of predictions made by the model trained for this experiment. 
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Figure 17. Sample predictions for the main test case. 

From top to bottom: location 1, location 2, location 3, location 4. 

 

Out of all the images presented in Figure 17 only first image in the last row contains an 

error – a single false negative prediction. In the rest of the images all objects are correctly 

identified and localized. Specifically, fourth image in the second row shows correct omis-

sion of reflections. Third image in the third row shows that proposed model is able to 

handle very small objects. Fourth image in the same row shows model’s capability to 

handle occlusions. Lastly, second image in the last row showcases model’s robustness 

in analysing images with a large number of objects.  

 

To measure the average inference time, proposed model was evaluated in two different 

setups. In both scenarios, first the model weights were loaded into memory, after that 

prediction function was timed and results were aggregated across 400 runs. When exe-

cuted on a GPU machine (NVIDIA Tesla T4), the model showed an average time of 0.27 

second per image. This result is significantly lower than 10 second limit established for 

the inference time. When the model was executed on a CPU machine (Intel Xeon CPU 
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2.30GHz), average time was 5.76 seconds per image with standard deviation of 0.33. 

Even though the average inference time on a CPU machine is expectedly higher than on 

a GPU-enabled machine, it is also well under 10 second limit. Running proposed model 

on a CPU machine would allow to simultaneously process images from approximately 

ten different locations every minute. 

 

Another important aspect to consider during model assessment is the distribution of con-

fidence scores. In the scope of object detection task, confidence score is simply the prob-

ability for an object of a class to exist in the specific part of the input image. The higher 

the probability, the more confident a model is about this specific prediction. Therefore, 

for true positive predictions confidence scores are desired to be as high as possible. For 

false positive predictions lower confidence scores are expected. When these two condi-

tions are satisfied, the detection threshold can be increased in order to avoid false posi-

tive predictions with low confidence scores. Hence overall accuracy of the model can be 

improved without re-training. The distribution of confidence scores for the model trained 

in the main experiment is shown in Figure 18.  

 

 

Figure 18. Distribution of confidence scores for true positive and false positive detections. 
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Upon inspection of the Figure 17, it is clear that confidence scores for true positive de-

tections are indeed higher that confidence scores for false positive detections. For true 

positive detections most of the confidence scores lie above 0.95 with the average score 

being 0.925. Consequently, for false positive detections all the scores lie in the interval 

between 0.6 (threshold value) and 0.8. The average score is 0.67. However, since the 

model error rate is only 1%, increasing detection threshold would discard otherwise cor-

rectly identified objects. Therefore, the optimal solution is to keep detection threshold at 

its current value of 0.6.  

 

6.2 Hold out test case 

In the previous test case testing images are sampled from the same exact locations 

which were used to train the model. In this experiment, four different models are trained 

on a reduces set of images. Each model is trained on three locations and tested on the 

fourth, holdout location. By framing the test case in such a manner, a generalization 

capability of the model can be determined. Good performance signals a high generali-

zation capability, whereas low performance means that such a model is only useful to 

make predictions for the environments it was exposed to during the training phase. 

Therefore, it would not be possible to apply this pre-trained model in a new location. 

From the scaling perspective, a model which generalizes well is highly desirable and can 

reduce both, development efforts and deployment times.  

Table 3 shows a summary for four corresponding test cases. Each row contains test 

cases set up and final mAP scores.     

 

Test case Trained on Tested on mAP score 

1 Locations 2, 3 and 4 Location 1 0.9496 

2 Locations 1, 3 and 4 Location 2 0.9873 

3 Locations 1, 2 and 4 Location 3 0.8478 

4 Locations 1, 2 and 3 Location 4 0.5233 

 

Table 3. Testing results for the holdout test cases. 
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By inspecting results in Table 3 and comparing them against typical images from each 

location, three important observations become evident. 

For the first two test cases, final mAP scores fall close to the mAP score achieved by the 

model in the main test case (mAP of 0.9912). In practice it means that these two models 

can be deployed with no further tuning yet provide reliable predictions, although during 

the training phase neither model was exposed to the images from the target environment. 

Third test case which achieved mAP score of 0.8478 indicates that whilst the model has 

learned important features from the training images, its prediction power is below previ-

ously established optimizing metric. Hence, such a model cannot be directly applied for 

reliable object detection. However, in some cases a suboptimal model is better than no 

model. In ML, a situation which requires generating predictions in a new environment 

with no data available at the start is known as a cold-start problem. 

Typically, a cold-start problem can be solved by providing a suboptimal solution at the 

start and gradually improving upon that solution as relevant data is being accumulated. 

Deploying a suboptimal object detection model in at a new location allows to produce 

good estimates for crowd counting straight away. When enough data is collected from 

that new location, initial model can be fine-tuned to reach required levels of performance.  

Last holdout experiment, where the model is trained on images from locations 1, 2 and 

3 and tested on images from location 4, shows an insufficient mAP score of 0.5233. This 

result indicates that close to half of all predictions made by the model are incorrect. 

Clearly such a model cannot be used and require another development cycle to be initi-

ated to achieve better performance. 

The results of the holdout experiment can be naturally explained by the complexity of the 

target location images used for testing. As seen in the Figure 19, images representing 

locations 1 and 2 are relatively simple.  
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Figure 19. Sample predictions for the holdout test case. 

From top to bottom: location 1, location 2, location 3, location 4.  

 

Typically, as seen in images in the first row in Table19, there is only a single object in an 

image, no occlusions, very few reflections and very few examples of objects crossing 

image borders. 

Subsequently, as shown in Figure 19, images from location 3 are of a medium complex-

ity. In images from this location background includes other objects which in thermal im-

agery appear to be of the temperature close to the temperature of human bodies: working 

lamps, computer monitors and TV screens. Additionally, multiple reflections present in 

the images make object detection more challenging compared to images from first two 

locations. 

Finally, images recorded in the fourth location are the most complex of all. There are 

more objects per image, occlusions are more prevalent, and background includes addi-

tional objects. Therefore, it is understandable that the model which has not been pre-

sented with images of a similarly high complexity during the training cannot accurately 

perform the task when faced with such images. 

To conclude, the results of the holdout experiment suggest that proposed model is ca-

pable of a high degree of generalization when presented with images of the similar or 
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lower complexity compared to the images it is trained on. This allows to ensure that a 

model trained on a subset of the images collected from the most challenging environ-

ments can be successfully re-deployed across many novel locations without additional 

development investments.  

6.3 Error analysis 

When assessing model’s performance, it is critical to recognize its limitations. Conduct-

ing an error analysis of the model’s predictions provides DL practitioners with insights 

into model’s behaviour and highlights most promising directions for the model improve-

ment. A sample of 400 testing images has been used to perform the error analysis of the 

proposed model. Results of the analysis are summarized in the Table 4. 

Location mAP score Recall Precision 

Location 1 0.9488 90% 97.9% 

Location 2 0.9995 100% 97.8% 

Location 3 0.9662 96% 97.5% 

Location 4 0.9977 98% 98.4% 

    Average 0.9785 96% 97.9% 

Table 4. Error analysis results. 

Table 4 shows that overall and per-location mAP scores of the model are about 0.95 and 

higher, indicating that required performance was reached in every location. At the same 

time, by inspecting Table 4, it becomes evident that the weakest part of the model is its 

recall in the first location. Essentially, this means that model performance can be further 

improved by reducing the number of missed objects in that location. 

To understand what causes false negative detections among images recorded in the first 

location, a manual inspection of such images was conducted. Figure 20 summarizes the 

findings of this inspection. 
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Figure 20. Sources of false negative detections in images from Location 1. 

Figure 20 clearly shows that most of the false negatives in images from the first location 

are caused by target objects crossing image borders. In such images only a part of the 

person’s body is visible, which drives the model to miss such objects. Therefore, a ra-

tional approach for improving model’s accuracy is to collect more images where only a 

part of the object is included within image.  

However, extra sources of incorrect predictions occur across images obtained from other 

locations. Figure 21 provides a detailed overview of these sources. 

 

Figure 21. Sources of false negatives across all locations. 

 

According to Figure 21, two leading sources of false negatives are occlusions and bound-

ing boxes that cross image borders. Extending training dataset with corresponding im-

ages can potentially drive down the number of false negative detections. Similarly, fac-

tors which contribute to false positive detections can be seen in Figure 22.   
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Figure 22. Sources of false positives across all locations. 

 

Figure 22 shows that in addition to previously described sources of incorrect predictions, 

low contrast of the input images contributes to 6.7% of all false positives. This type of 

error can be illuminated by implementing an extra pre-processing step. By applying his-

togram equalization to an input image, the brightness and contrast across the image can 

be adjusted so that the model can correctly recognize target objects.   

7 Conclusion 

The primary objective of this project was to examine existing approaches to object de-

tection task in thermal imagery. Both, traditional CV methods and DL-based methods 

were examined in detail. An exhaustive review of advantages and drawbacks of both 

techniques has suggested that as of today DL object detectors should be capable to 

outperform traditional counterparts, whilst simultaneously requiring substantially less de-

velopment effort and domain knowledge.  

Based on the results of the background study, a DL-based object detection system ca-

pable of processing thermal images was successfully implemented. The object detection 

network has fulfilled all initially established requirements. The model has shown a high 

mAP score of 0.9912. At the same time, average inference times achieved during model 

testing were correspondingly 0.27 second on a GPU-enabled machine and 5.76 second 

on a CPU machine. 

Upon conducting a range of extensive test experiments, developed model demonstrated 

high generalization capabilities and robust performance. When trained on a carefully 
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sampled set of images, the network can be deployed in novel locations without need to 

be re-trained. Furthermore, proposed model is able to efficiently handle reflections, oc-

clusions, small sized objects and changes in brightness and contrast.       

Obtained results demonstrate the fact that the object detection system developed as the 

part of this project is sufficient and ready to be productized. Deployment of the model 

across different location in Nokia Espoo campus would facilitate analysis of utilization 

rates and patterns in different premises, help to optimize crowd flows and drive down 

maintenance costs.           

8 Future work 

A step towards eventual productization for this project would be to deploy the final model 

into an embedded module such as Jetson Nano or similar instead of a conventional GPU. 

Investigating how performance and inference time change upon transition would be of 

equally interesting. Bringing computation to the edge would allow to reduce latency and 

network congestion whilst enabling real-time analysis and decision making.  

Another possible direction for the future development includes changing a backbone net-

work of a RetinaNet model from ResNet50 to an alternative network. Plausible candi-

dates for the replacement are MobileNet and DenseNet networks. Comparing their per-

formance against proposed solution would allow to choose the best suitable model based 

on the trade-off between accuracy and inference time.  

Ultimately, current project could be extended even further to handle the task of crowd 

density estimation in highly challenging environments. The examples of possible envi-

ronments are shown in Figure 23.        

    

Figure 23. Thermal images taken from (a) lobby, side view and (b) cafeteria, top view. 
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As it can be seen in Figure 23, such images are increasingly more complex than the 

images used in this project. Therefore, more sophisticated approaches such as object 

segmentation or a combination of traditional CV and DL methods might be required to 

tackle the problem. Developing solution capable of analysing bigger crowds from further 

away would enable a whole range of new applications at a reduced cost due to less 

camera installations required.    
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