

Magento 2 – Dynamics 365 Business

Central Connector

Dominik Rohaľ

Bachelor’s thesis
May 2020
School of Technology
Information and Communications Technology

Description

Author(s)

Rohaľ, Dominik
Type of publication

Bachelor’s thesis
Date

May 2020

Language of publication:
English

Number of pages

52
Permission for web publi-

cation: yes

Title of publication

Magento 2 – Dynamics 365 Business Central Connector

Degree program

Information and Communications Technology

Supervisor(s)

Salmikangas, Esa

Assigned by

Solteq Oyj

Abstract

There was a need for a universal solution allowing integrating Microsoft Dynamics 365
Business Central enterprise resource planning system into Magento 2 online stores, on the
market. The currently used solutions required development work on the Microsoft Dynam-
ics 365 Business Central’s side. However, these two systems were often developed and
maintained by different vendors. Connecting these systems required close cooperation of
multiple development teams.

A new solution, not requiring a development work on the enterprise resource planning sys-
tem’s side, needed to be developed. The development of the solution required under-
standing both systems and its implementation required programming in PHP programming
language.

The implementation consists of multiple modules that are highly reusable and extendable.
The modules can be easily installed in any Magento 2 project and allow merchants to
transfer products and inventories from their enterprise resource planning system to their
Magento 2 online store, and also transfer orders created in the online store to the enter-
prise resource planning system.

The implementation proved that the integration of these two systems can be done without
development work on the enterprise resource planning system’s side. All the expectations
were met, and the implemented solution can be offered to the potential customers.

Keywords/tags (subjects)

PHP, integration, Magento 2, Microsoft Dynamics 365 Business Central, e-commerce, en-
terprise resource planning system

Miscellaneous

http://finto.fi/en/

1

Contents

1 Introduction .. 6

2 Magento 2 overview .. 8

2.1 Magento 2 in general .. 8

2.2 Magento 2 editions ... 8

2.2.1 Magento 2 Open Source ... 8

2.2.2 Magento 2 Commerce .. 8

2.3 Admin panel... 9

2.3.1 Structure ... 9

2.3.2 Admin ACL ... 12

2.4 Websites, Stores, and Views ... 13

2.4.1 Magento 2 Scope .. 13

2.4.2 Single store mode ... 15

2.4.3 Multiple stores mode ... 15

2.5 Magento 2 Module overview .. 16

2.5.1 Module installation ... 17

2.5.2 Module configuration ... 17

2.5.3 Cron jobs and commands ... 19

2.6 Sources and Stocks .. 20

3 Microsoft Dynamics 365 Business Central overview ... 21

4 Integration implementation in general .. 23

4.1 Architecture ... 23

4.2 Base configuration ... 26

5 Communication with an external system .. 27

5.1 Implementation overview ... 27

5.2 Calling standard API ... 30

2

5.3 Calling Open Data Protocol web services .. 30

6 Product integration .. 31

6.1 Product integration overview .. 31

6.2 Product update in general ... 32

6.3 Product update implementation ... 35

6.4 Inventory update in general .. 39

6.5 Inventory update implementation .. 41

7 Order integration.. 45

7.1 Order integration overview ... 45

7.2 Sending orders to external system implementation 47

8 Conclusion .. 50

References .. 52

3

Figures

Figure 1. Admin panel .. 10

Figure 2. Roles resources list .. 13

Figure 3. Single Website, Store, and View... 15

Figure 4. Hierarchy of Websites, Stores, and Store Views .. 16

Figure 5. Store configuration page ... 18

Figure 6. Sources, stocks and sales channels mapping .. 21

Figure 7. Total platform architecture including the integration of ERP system in

Magento 2 online store .. 23

Figure 8. Dependencies between modules in the Solteq vendor folder 24

Figure 9. Module placement .. 24

Figure 10. Solteq tab on the configuration page ... 26

Figure 11. ACL rule structure .. 27

Figure 12. BC Integration section on the configuration page 28

Figure 13. Relations between BcIntegration module’s classes 29

Figure 14. Product integration configuration section .. 31

Figure 15. General configuration of Product Integration .. 32

Figure 16. Product update configuration ... 33

Figure 17. Category mapping configuration ... 34

Figure 18. Relations between classes which provide product update 38

Figure 19. Inventory update configuration .. 40

Figure 20. Relations between classes which provide inventory update 44

Figure 21. Order integration configuration .. 46

Figure 22. The relation between classes which provide order integration 49

4

Tables

Table 1. BcIntegration module configuration values ... 27

Table 2. General product integration configuration fields .. 31

Table 3. Product update configuration fields ... 33

Table 4. Product visibility values .. 37

Table 5. Inventory update configuration fields .. 40

Table 6. Order integration configuration fields ... 46

5

Acronyms

ACL Access Control List

API Application Program Interface

CLI Command-line Interface

CMS Content Management System

EAV Entity Attribute Value

ERP Enterprise Resource Planning

HTTP Hypertext Transfer Protocol

JSON JavaScript Object Notation

MSI Multi-Source Inventory

OData Open Data Protocol

SEO Search Engine Optimization

SKU Stock-keeping Unit

6

1 Introduction

Over the past few decades, technologies have improved drastically and many new

technologies have been invented. The technological progress has a significant impact

on the society. The way how consumer goods are produced and delivered to the

consumers is very different from what it was in the past. New options and

possibilities allow a better cooperation between different producers. Easier

communication allows smaller producers to focus on smaller parts of final products,

put them together and sell them through merchants to end consumers or other

companies for further process or use. An electronic system providing communication

between different companies or their units in the chain of production and delivery of

products or services to end consumers, other companies or government is called an

e-commerce system, also known as e-commerce. For a regular person, e-commerce

is an online store that can be used to order goods or services regardless of time or

place.

The number of online shoppers increases every year. This has multiple causes: young

people more familiar with modern technologies are growing up and gaining

responsibilities, including the responsibility of buying goods on their own. Also, older

more traditional people often find online shopping more convenient than a

traditional visit to a physical store or market. People prefer the ability to compare

various products offered by multiple sellers and choose the best option without

physical visit to stores during opening hours. This way, people can also avoid

overcrowded shopping malls that are often tens of kilometers away from their

homes, especially in less densely populated countries, such as Finland.

The growing popularity of online shopping is not without a response. Many new

companies have been founded with their focus on online selling. Also, retail sellers

known for their physical stores have entered the online market. Having an online

system allowing cooperation with business partners or reaching end consumers is

almost a necessity for many businesses.

In many cases, creating an e-commerce system is a very repetitive task. Most of the

systems can be grouped where each system of a group needs to have the same or

7

very similar main functionalities. However, every system has its specifics. Thus,

developing every e-commerce system from scratch would not be efficient and

creating a new system by copying an existing system would not solve the problem.

The solution is pre-developed software that can be reused, modified and extended

by adding new functionalities to meet the needs of a specific business. This software

is called an e-commerce platform.

There are many e-commerce platforms available on the market. Several e-commerce

platforms are used by the hosting company Solteq Oyj which develops and delivers e-

commerce solutions to its customers. One of the e-commerce platforms that are

used by the hosting company is Magento 2. Besides e-commerce systems, the

hosting company offers solutions to its customers including enterprise resource

planning (ERP) systems. Sometimes, these two systems need to be connected. The

ERP system may also be connected to other systems, for example, systems used in

warehouses. In these cases, the e-commerce system must send the created orders to

the ERP system and it also must update product information and product availability.

The piece of software which allows communication between two different systems is

called a connector.

One of the ERP systems used by the hosting company in its solutions is Microsoft

Dynamics 365 Business Central which is the successor of Microsoft Dynamics NAV. In

some cases, the hosting company provides an e-commerce solution to its customer;

however, the customer’s ERP system is in the hands of other vendors and the

cooperation with the other third-party companies may be complicated. The aim of

this bachelor’s thesis is to investigate the possibility of connecting the ERP system

with the Magento 2 e-commerce system by using ERP system’s built-in endpoints;

thus, not requiring customizations on the ERP system’s side, and implementing a

universal solution installable to multiple Magento 2 installations.

The current and potential future customers of Solteq Oyj interested in implemented

solutions did not agree to be mentioned in any public document, therefore the

names of the customers are left out of this thesis.

8

2 Magento 2 overview

2.1 Magento 2 in general

Magento 2 is an e-commerce platform built on open source technology that provides

online merchants with a flexible shopping cart system, as well as control over the

look, content, and functionality of their online store. Magento offers powerful mar-

keting, search engine optimization, and catalog-management tools. (Kristen 2019.)

Practically, almost every online store requires the same functionality. There are not

many larger online stores on the market without a shopping cart, categories, user ac-

counts or product pages. Except for not many exceptions, every bigger online store

must have this core functionality. However, each retail seller is a specific case and

requires for their online store additional functionality specific for their business. Ma-

gento 2 is available in two editions, each of them fitting the needs of different types

of online sellers.

2.2 Magento 2 editions

2.2.1 Magento 2 Open Source

Magento 2 Open Source is an open-source e-commerce platform which provides a

free comprehensive solution for online retailers. Developers can override core files

and extend functionality, which makes the platform highly customizable and flexible

to meet the merchant’s needs. There is an extensive marketplace for modules to add

extra functionality. (Shaun n.d.)

The Open source edition of the platform is suitable mainly for smaller businesses

with limited resources that do not need or cannot afford the advanced features con-

tained in paid platforms.

2.2.2 Magento 2 Commerce

Magento 2 Commerce comes in two versions, on-premise and cloud. Unlike the Open

Source, it is not free; yet, it has more features and functionality. It is designed for

9

large businesses that require technical support. The pricing for Commerce is tiered

depending on an e-commerce business’s revenue. (Shaun n.d.)

As already mentioned above, the Magento 2 Commerce edition is not for free, and it

is suitable for larger businesses that can benefit from the advanced features and

functionality. Besides that, development work and extensions developed by third-

party vendors are usually much more expensive in comparison to Magento 2 Opens

Source edition.

2.3 Admin panel

2.3.1 Structure

Magento 2 is a robust platform providing many features. The admin panel allows ad-

min users with applicable access rights to manage an online store. In there is a

screenshot of an admin panel in a Magento 2 demo store that does not have any ac-

tivated extension that would customize its appearance.

10

Figure 1. Admin panel

Since Magento 2 is a powerful platform that contains many functionalities that are

accessible from the admin panel, they are logically sorted into multiple sections. As it

can be seen in Figure 1, the main element of the admin panel is the left navigation.

The left navigation is visible from every admin panel’s page and provides the admin

users quick access to the admin panel’s sections.

The left navigation contains at least the following sections:

• Dashboard

• Sales

• Catalog

• Customers

• Marketing

• Content

• Reports

• Stores

• System

11

Dashboard

The dashboard is the default startup place for admin users. shows a dashboard of a

Magento 2 demo store where the admin users are provided an overview of a store’s

critical information, such as revenue, shipping, tax, last orders, best-selling products,

or top searched terms.

Sales

Under the sales section, orders, invoices, shipments, credit memos, billing agree-

ments, and transactions can be observed and managed.

Catalog

Products and categories can be found under this tab. Admin users can add new or

edit existing categories or products.

Customers

Tools that allow admin users to manage customers are sorted in the customer sec-

tion. For example, admin users can list currently logged in customers, find any cus-

tomer and edit their information, admin users can also manage customer groups.

Marketing

The marketing section groups many useful marketing tools. The tools contain promo-

tions, communication with customers (e.g. newsletter), reviews, SEO (Search Engine

Optimization) and search settings.

Content

Store content and design can be managed under this section. The admin users can

edit CMS (Content Management System) pages, add new elements (static blocks or

widgets) to a selected page. Under this section, also a theme can be configured or

changed.

Reports

Reports on the store can be found in this section. There are different kinds of reports

available in the core Magento 2. For example, there are reports about orders, taxes,

refunds, searched terms, and wish lists accessible in this section.

12

Stores

The stores section provides access to store configuration. Also, it provides access to

e. g. tax configuration, product attribute and product attribute set configuration, and

extension management.

System

Under this section, besides other functionality, the admin users can manage caches

and indexes, create user roles and grant permissions.

Additional sections can be added by custom modules. However, according to Admin

Panel Placement and Design (2019), it is not considered a good practice.

2.3.2 Admin ACL

Magento 2 Admin ACL is a robust authentication system that allows the store owners

to create an access control list (ACL) which allows the store owners to define user

roles and specify their access rights by selecting resources from a tree-structured list.

Each admin user can be assigned to a specific user role and is thus able to access only

the parts of an admin panel which are allowed for his/her user role.

A custom resource can be added to the list by creating acl.xml file in the module’s etc

directory. The content of the file adding a resource, with title “Solteq” and id

“Solteq_Base::admin”, looks like the following:

| <?xml version="1.0"?>

| <config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="urn:magento:frame-

work:Acl/etc/acl.xsd">

| <acl>

| <resources>

| <resource id="Magento_Backend::admin">

| <resource id="Solteq_Base::admin" title="Solteq" sortOr-

der="1"/>

| </resource>

| </resources>

| </acl>

| </config>

After adding nested resources to the resource with the title “Solteq”, the roles re-

sources list looks like the list illustrated in Figure 2.

13

Figure 2. Roles resources list

In Figure 2, there can be seen an ACL configuration. The role resources list, or ACL

list, contains resource, also called ACL rule, with title “Solteq” which also has child

ACL rules. Next to each ACL rule, there is a checkbox element. Click on a checkbox

grant or denies resource to a specific group of admin users. If a parent resource is

not granted to an admin user, a child resource is not granted as well. For example,

child resource with title “BC Integration Admin” cannot be granted without granting

its parent resource with title “Solteq”.

2.4 Websites, Stores, and Views

2.4.1 Magento 2 Scope

Every Magento installation has a hierarchy of website(s), store(s), and store view(s).

The term scope determines where in the hierarchy a database entity such as a prod-

14

uct, attribute, or category content element, or configuration setting applies. Web-

sites, stores, and store views have one-to-many parent/child relationships. A single

installation can have multiple websites, and each website can have multiple stores

and store views. (Websites, Stores, and Views 2019)

Basically, scope or context determines a specific part of a Magento 2 installation.

A fresh Magento installation has a default hierarchy consisting of the main website,

default store and store view.

Scope in Magento 2 has the following 4 levels:

• Global

• Website

• Store

• Store view

Global scope

According to Scope (2019), the global scope level provides system-wide settings and

resources that are available throughout the Magento installation.

Website scope

A single Magento instance can have multiple websites running on different domains.

A website is a top-level container that either has one store or groups multiple stores

that share e.g. cart, payment gateways, and user sessions.

Store scope

Stores that do not share cart, payment gateways or user sessions must be contained

by a different website. Each store can have a different appearance, categories, and

product selection. All stores are managed from the same admin. A store has at least

one store view.

Store view scope

Besides other reasons to have multiple store views, it allows having localization sup-

port. Support of one language can be represented as one store view. The customers

can switch between different store views contained by one store using a language

switcher.

15

2.4.2 Single store mode

A single store mode consists of one website, one store and one store view as seen in

Figure 3. The single store mode can be set from the store configuration in the admin

panel. The mode prevents the admin users from making different configurations at

the store view or website levels.

Figure 3. Single Website, Store, and View (Single Store Mode 2019)

2.4.3 Multiple stores mode

Magento 2 allows creating multiple stores in a single Magento 2 installation. The

multiple stores can be created in order to run separate stores that can focus on dif-

ferent customer groups, sell different sorts of products and be visually different from

each other. However, the stores are managed from the same admin panel and share

functionalities. A hierarchy of a Magento 2 installation with multiple stores running

on different websites is illustrated in Figure 4.

16

Figure 4. Hierarchy of Websites, Stores, and Store Views (Scope 2019)

2.5 Magento 2 Module overview

A module is a logical group, i.e. a directory containing blocks, controllers, helpers,

models related to a specific business feature. In keeping with Magento’s commit-

ment to optimal modularity, a module encapsulates one feature and has minimal de-

pendencies on other modules. (Module overview 2019)

The modules in Magento 2, besides providing new functionality, in many cases disa-

ble or extend an existing functionality provided either by the platform itself, as core

functionality, or by any other third-party vendor, which makes Magento 2 a highly

customizable platform.

One of the disadvantages of Magento 2 is that it is a robust platform not ready to be

used in production immediately after installation. A larger amount of development

work must be carried out when compared to smaller and simpler e-commerce plat-

forms, which also means that it is not a suitable platform for the smallest businesses.

On the other hand, Magento 2 is very powerful and provides many features that sup-

port businesses in their growth.

17

Fortunately, there are many Magento 2 modules or extensions developed by third-

party vendors available on the market. They can be installed based on the needs of a

specific business. Themes, payment gateways, modules providing shipment methods

and integrations with other systems can be considered the most important modules

or extensions.

2.5.1 Module installation

In Magento 2, there are two ways how to install the modules. One of the ways how

they can be installed is using Composer, a package management tool. This option is

typically used to install general modules provided by third-party vendors. The pack-

age management tool makes module updates easier and checks module dependen-

cies. The second way how the modules can be installed in Magento 2 is placing mod-

ule files inside a vendor folder in app/code directory in Magento 2 installation. This

way of module installation is usually used to install custom modules developed for

specific Magento 2 installation.

In many cases, the needs of a merchant’s business cannot be satisfied by installing

third-party modules. In these cases, custom modules fulfilling specific and often

unique requirements of concrete merchants must be implemented.

2.5.2 Module configuration

Often, modules need to be configured in order to adjust provided functionality to the

needs of a specific merchant. This is achieved by setting up configuration values.

Each configuration value can be identified by its configuration path. A configuration

path consists of section id, group id and field id, separated by slashes.

The general configuration page is accessible from the admin panel of the “Configura-

tion” item in the “STORES” tab. The organization of the general admin page can be

seen in Figure 5.

18

Figure 5. Store configuration page

As can be seen in Figure 5, the configuration page consists of four main elements. In

the left column, tabs containing sections are placed. The content of the selected sec-

tion is displayed in the right column (the two-column layout is standard for the con-

figuration page). The content consists of configuration fields where each field repre-

sents a configuration value. Grouped fields are presented as dropdowns.

If a configuration value is saved, it is stored in database table core_config_data. Dif-

ferent scopes can have different values. It has been defined for each value at which

scope level it can be configured. The default configuration values can be defined in

config.xml file located under etc folder in the module’s root directory. The value from

the file is used only if there is no record with the path in the core_config_data data-

base table. The content of the config.xml file defining the default configuration value

with path “section/group/field” and the default value “value” has the following struc-

ture:

| <default>

| <section>

| <group>

| <field>value</field>

| </group>

19

| </section>

| </default>

New tabs, sections, groups and fields can be added to general configuration by creat-

ing a system.xml file in adminhtml folder placed under module’s etc directory. The

file contains the defined elements with their sort orders, resources (used for ACL)

and field scope levels.

2.5.3 Cron jobs and commands

In Magento 2 installation, there are many processes triggered at some point, then it

takes some amount of time till the execution is done and during this time they per-

form some actions, e.g. a newsletter. The newsletter is sent to the customers period-

ically. The process of sending the newsletter to the customers is started at some

point, it takes time till the email with the newsletter is sent to all customers and once

all the emails have been sent, the functionality is not active until it is triggered again.

This also applies to integrations.

Magento 2 provides a mechanism which triggers processes running in Magento 2 in-

stallations. The mechanism or program is called cron. The cron allows to run com-

mands or scripts automatically at a specified time. Each module in Magento 2 can

have its own crontab.xml file which is in module’s etc directory. In the crontab.xml

file a list of jobs is defined. Each job has its name, path to a class containing the exe-

cuted method and the method name executed by the cron job. Not less importantly,

a schedule is also defined there. The schedule uses cron syntax known from Linux op-

erating system. Cron jobs are sorted into cron groups where only one job of a group

can be run at the same time. A crontab.xml file can look like the following:

| <?xml version="1.0" ?>

| <config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="urn:magento:module:Ma-

gento_Cron:etc/crontab.xsd">

| <group id="default">

| <job instance="Solteq\BcIntegration\Cron\Test" method="exe-

cute" name="solteq_bcintegration_cron_test">

| <schedule>0 4 * * *</schedule>

| </job>

| </group>

| </config>

20

The code above defines a cron job in group “default” which executes the method ex-

ecute implemented in class Test, the file Test.php of which is in directory Cron of

BcIntegration module in Solteq vendor folder. The method is executed every day at 4

a.m.

In some cases, scheduled cron jobs are not enough. For example, initial product im-

port cannot wait till it is scheduled. In this and other similar cases, there is a need for

a way which allows to trigger processes in Magento 2 at any time. One of the ways is

defining a custom command, which triggers the process by executing the command

in command line interface. The module’s commands are defined in di.xml file which

is in module’s etc folder. The content of the di.xml file defining a command which

calls the method called execute is implemented in Test class, the Test.php file of

which is in Command folder of BcIntegration module in Solteq vendor; this is illus-

trated in the following code snippet:

| <?xml version="1.0"?>

| <config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="urn:magento:framework:ObjectMan-

ager/etc/config.xsd">

| <type name="Magento\Framework\Console\CommandList">

| <arguments>

| <argument name="commands" xsi:type="array">

| <item name="solteq_bcintegration_command_test"

xsi:type="object">Solteq\BcIntegration\Console\Test</item>

| </argument>

| </arguments>

| </type>

| </config>

2.6 Sources and Stocks

A source is a physical location of products from where products are shipped to cus-

tomers. The source can represent a warehouse, drop shipper, distribution center, or

a physical store selling products face to face. Each source has specific attributes, such

as location, and defines total and salable quantity for products. In Magento 2, every

online store must have at least one (default) source. (Managing Sources 2019)

Each source can be assigned to stock and each stock must have at least one assigned

source. A stock represents a virtual, aggregated inventory of products for sources of

21

sales channels. The sales channels can be different websites running under a single

Magento 2 instance. Depending on an online store’s configuration, a single stock can

be assigned to multiple sales channels. (Managing Stock 2019)

An example of sources, stocks and sales channels mapping for a specific product is

illustrated in Figure 6.

Figure 6. Sources, stocks and sales channels mapping

3 Microsoft Dynamics 365 Business Central overview

Many companies use a centralized system that collects various data, gives a global

real-time view of data, automates business operations, improves the productivity of

employees, and breaks barriers between different business units. Systems providing

these functionalities are called Enterprise Resource Planning Systems, or ERPs. One

of the ERP systems available on the market is Microsoft Dynamics 365 Business Cen-

tral.

22

Microsoft Dynamics 365 Business Central is a business management solution for

small and mid-sized organizations that automates and streamlines business pro-

cesses and helps to manage businesses. Highly adaptable and rich with features,

Business Central enables companies to manage their business, including for example,

finance, manufacturing, sales, shipping, project management, services. Companies

can easily add functionality relevant to the region of operation, and that is custom-

ized to support even highly specialized industries. (Welcome to Dynamics 365 Busi-

ness Central 2020)

Microsoft Dynamics 365 BC provides various ways allowing its integration into other

systems, such as Magento 2 online store. The ERP system provides endpoints that

allow other systems to request or send data. Besides simple requesting data, the ERP

system has implemented mechanisms that allow to filter and partially process re-

quested data on the ERP system’s side what enhances efficiency. An example of a to-

tal architecture of the system that contains the Microsoft Dynamics 365 Business

Central ERP system and its integration in a Magento 2 online store is illustrated in Fi-

gure 7.

23

Figure 7. Total platform architecture including the integration of ERP system in Ma-
gento 2 online store

4 Integration implementation in general

4.1 Architecture

In order to avoid code redundancy and achieve higher flexibility and scalability, the

logic of the Microsoft Dynamics 365 Business Central integration in Magento 2 is split

into multiple logical groups called modules. In the future, the functionalities of these

modules can be easily extended by adding new modules that can reuse the function-

ality implemented in these modules. The dependencies between the implemented

modules and possible new modules are illustrated in Figure 8.

24

Figure 8. Dependencies between modules in the Solteq vendor folder

In a Magento installation the modules are in the vendor folder Solteq which is in

app/code directory together with other custom modules or modules provided by

third-party vendors not installed using Composer. The module placement can be

seen in Figure 9.

Figure 9. Module placement

As can be seen in Figure 8 and Figure 9, the integration is implemented in the follow-

ing four modules:

• Base

• BcIntegration

• BcProduct

25

• BcOrder

Base module

In the Base module, the most used functionalities needed in almost every module

are implemented. All other modules in the Solteq vendor folder are dependent on

this module by reusing its functionalities. The functionalities contain error logging,

accessing and modifying configuration values in Magento’s database, base structure

of configuration page, and predefined ACL rules.

BcIntegration module

The BcIntegration module has the same function as the Base module but on the level

of MS Dynamics 365 BC integration in Magento 2. The module extends the function-

alities implemented in the Base module by functionalities specific for the integration.

It contains communication with the external system, common configuration values,

configuration page substructure, and integration’s general ACL rules.

BcProduct module

Integrations related to products are implemented in the BcProduct module. The

module processes product data retrieved from the external system using the func-

tionalities implemented in the BcIntegration module.

BcOrder module

Order integration is implemented in the BcOrder module. The same as in the BcProd-

uct module, the BcOrder module reuses the functionalities implemented in the BcIn-

tegration module. The module is used to send orders created in Magento 2 online

store to an external ERP system.

Other modules

The modularity makes Magento 2 a very scalable platform; therefore, the imple-

mented functionalities can be easily extended and supplemented by implementing

other modules that can reuse the already implemented functionalities.

26

The architecture allows installing the BcProduct and the BcOrder modules inde-

pendently on each other following the needs of a specific merchant. However, nei-

ther the BcProduct nor the BcOrder can be installed without the Base and the BcInte-

gration modules.

4.2 Base configuration

Since each Magento 2 installation is unique, most of the modules need to be config-

ured. The module configuration of the implemented modules is done from the admin

panel. The Base module adds a new tab with the title “SOLTEQ” to the general store

configuration. The tab is used to keep all configuration sections added by modules in

the sorted Solteq vendor and accessible for store administrators from one place. The

Solteq tab is pictured in Figure 10.

Figure 10. Solteq tab on the configuration page

Usually, online stores have multiple admin users with different responsibilities. Not

every store administrator should have full access to the whole administration panel;

thus, the implemented modules define their own ACL rules. In order to keep the ACL

rules sorted, the Base module defines an ACL rule Solteq, which is used as a parent

ACL rule for all rules defined by modules in Solteq vendor. The parent ACL rule allows

to grant or to deny access to the configuration of all modules in Solteq vendor. As a

child ACL rule of the main rule with title “Solteq”, there is a rule titled “BC Integration

27

Admin” used as a parent rule of all Integration modules. The structure of the ACL

rules is pictured in Figure 11.

Figure 11. ACL rule structure

5 Communication with an external system

5.1 Implementation overview

Communication with an external ERP system, Microsoft Dynamics 365 Business Cen-

tral, is implemented in a custom module named BcIntegration. The communication is

achieved by calling an external ERP system’s built-in application programming inter-

face (API), so the integration does not require any development work outside Ma-

gento 2 modules, which is the strongest side of the implemented solution.

Setting up communication requires information about the ERP system. In Table 1,

there is an overview of the module’s configuration values. All the values are config-

ured for the global scope; therefore, the same value is used for the whole Magento 2

installation regardless from store.

Table 1. BcIntegration module configuration values

Name Path

Business Central ID solteq_bc_integration/connection/bc_id

URL Base Part solteq_bc_integration/connection/url_base_part

Username solteq_bc_integration/connection/username

Password solteq_bc_integration/connection/password

28

Company ID solteq_bc_integration/connection/company_id

The information about the external system can be filled by an admin user with appli-

cable access rights from the admin panel. The module adds a configuration section

with the title “BC Integration” under “SOLTEQ” tab, which is added by The Base mod-

ule. As can be seen in Figure 12, the section has one group named “Connection”.

Figure 12. BC Integration section on the configuration page

Username, Password, and Company ID values can be found on the merchant’s Mi-

crosoft Dynamics 365 Business Central administration page. URL Base and Business

Central ID, also known as a tenant ID, are parts of the administration website URL,

where URL Base is followed by Business Central ID.

The structure of the BcIntegration module is illustrated in Figure 13. Classes Connec-

tion and Config are implemented in the BcIntegration module. The SolteqConfig class

is implemented in the Base module and class Curl is provided by Magento 2 platform.

29

Figure 13. Relations between BcIntegration module’s classes

The SolteqConfig class is used to access configuration values by configuration value

path and scope is extended by the Config class. The Config class simplifies access to

the configuration values found in Table 1. Each value has its own get method (getter)

implemented in the Config class, which handles corresponding configuration value

path and scope.

The communication with the ERP system is implemented in the Connection class. The

Configuration class uses the Config class to access values required for setting up a

connection with the external system. The methods implemented in the class com-

bine the configuration values with the values parsed as method parameters and cre-

ate a hypertext transfer protocol (HTTP) request which returns JavaScript Object No-

tation (JSON) as a response. The request to the external system is called using the

Curl class provided by the Magento 2 platform. The calling of a request requires au-

thentication and URL with parameters. The authentication is handled by the module

and consists of a username and password taken from the module’s configuration.

30

5.2 Calling standard API

One of the ways how to access the data stored in the ERP system MS Dynamics 365

Business Central from other systems is by calling a standard API. The API is called by

sending a GET HTTP request to URL with the following pattern:

| <URL Base>/v1.0/<Business Central

ID>/api/beta/companies(<Company ID>)<path>

The <URL Base>, <Business Central ID> and <Company ID> are values taken from the

module’s configuration. The <path> is a value that comes as a method’s parameter.

The method implementing the logic of calling the API returns the response as a text

(string).

The same path is used to send a POST HTTP request to the standard API. Sending a

POST HTTP request allows both-way communication with the external system. The

data from Magento 2 are sent in the body of a POST HTTP request, and the API re-

turns a text (string) as the response.

5.3 Calling Open Data Protocol web services

The data stored in MS Dynamics 365 Business Central can also be retrieved by calling

Open Data Protocol (OData) web services. The data can be retrieved by calling a GET

request to URL with the following format:

| <URL Base>/v1.0/<Business Central

ID>/ODataV4/Company("<Company Name>")<path>

The <URL Base> and <Business Central ID> are values taken from the module’s con-

figuration. The <Company Name> value is retrieved by calling the standard API GET

HTTP request with “/?$select=name” as the path which is appended to the request’s

URL. The response of the standard API call is a JSON with the <Company Name>

value stored under the key “name”. The <path> is a value coming as a method’s pa-

rameter, and it is appended to the request’s URL. The method implementing the

logic of calling the OData web services returns the response as a text (string).

31

6 Product integration

6.1 Product integration overview

The product integration is implemented in a module named BcProduct which de-

pends on the BcIntegration module. The BcProduct module uses the BcIntegration

module to request product data from the external system and access configuration

values.

All configuration fields specific for the product integration are in the “Product BC In-

tegration” section under the “SOLTEQ” tab on the store configuration page. The sec-

tion placement is pictured in Figure 14.

Figure 14. Product integration configuration section

There is a section with the module’s general configuration under the “Product BC In-

tegration called “General” containing only one configuration field listed in Table 2 to-

gether with its configuration path.

Table 2. General product integration configuration fields

Name Path

Enabled solteq_bc_product/general/enabled

In Figure 15, there is the “General” group of the “Product BC Integration” section.

32

Figure 15. General configuration of Product Integration

The “General” group consists of one configuration field which is a selection with

“Yes” and “No” values. The selection allows store administrators with applicable ac-

cess rights to disable or enable all functionalities implemented in this module.

6.2 Product update in general

The product update is one of the main functionalities implemented in the BcProduct

module. It is used to import products from an external system to a Magento 2 instal-

lation. The update is also used to update the information of existing products in the

Magento 2 installation, based on their identifier stock keeping unit (SKU). In a Ma-

gento 2 installation, the product update is triggered by a cron job, in specified fre-

quency, or by executing a command, from the Magento root directory, using a com-

mand-line interface (CLI). Both, the cron and the command, are implemented in the

module. The frequency of triggering the product update by the cron can be config-

ured from the store configuration page.

The configuration of the product update is in the “Product BC Integration” section

under the “SOLTEQ” tab, in the store configuration. All configuration fields, that are

used only by the product update, are in the group called “Product Update”. The con-

figuration group on the store configuration page is pictured in Figure 16.

33

Figure 16. Product update configuration

In Table 3, there are listed configuration paths of product update’s configuration val-
ues.

Table 3. Product update configuration fields

Name Path

Attribute Set ID solteq_bc_product/product_update/default_attribute_set_id

Websites solteq_bc_product/product_update/schedule

Cron Schedule solteq_bc_product/product_update/websites

BC Property Map solteq_bc_product/product_update/configurable_attributes

Attribute Set ID

The Attribute Set ID is a numeric identifier of the attribute set which is assigned to

the product. The attribute set defines which attributes are saved for the product. It

can be considered as a template for the product record.

Websites

The field contains comma-separated numeric values. The values are identifiers of

websites in which the product should be shown.

34

Cron Schedule

This field defines how often the product update is triggered by the cron job. The field

accepts text value in a valid cron syntax.

BC Property Map

This field allows admin users to map values that are returned from the external sys-

tem. Admin users can map attributes that are not saved in Magento’s database by

default into custom product attributes. A new row can be added by clicking on the

“Add” button. The row contains two fields, “Magento Attribute” and “BC Property”.

The value filled in the “Magento Attribute” field is the code of Magento’s EAV attrib-

ute which stores a value retrieved from the product data returned from the external

system, under key defined in the “BC Property” field.

Besides the custom configuration fields, on the store configuration page, there is also

an additional field on the admin category page, added by the module. The category

page is accessible from the admin panel by clicking on the item with title “Catego-

ries” under the “CATALOG” tab located in the admin panel’s left menu. The category

configuration page contains a list of store categories. Each category has its own addi-

tional configuration. The configuration contains a custom field called “BC Category

Codes”, added by the BcProduct module. The field is hidden in a wrapper with the ti-

tle “Solteq Product Integration” which can be seen in Figure 17.

Figure 17. Category mapping configuration

In the custom field, there are filled category codes from the external system. Multi-

ple categories from the external system can be mapped into a single category in Ma-

gento 2 installation by filling multiple comma-separated values into the field. All

35

products which come from the external system and have category code that is filled

in the field are assigned to the category. The module also allows assigning multiple

categories to a single product by filling the same category code to multiple Ma-

gento’s categories. The value is stored in Magento’s database as a category’s custom

attribute which is defined by the module.

6.3 Product update implementation

The full product update is done by calling the standard API with the following expres-

sion as the method’s parameter:

| /items?$select=<product_attributes>

The <product_attributes> is a comma-separated list of product attributes that are

saved in the Magento 2 online store’s database. The part of the product attribute list

is static; hence, it cannot be changed by an admin user. However, admin users can

specify additional attributes.

 As a response, there is returned a JSON that contains the product data. The re-

sponse consists of multiple records where each record represents one product. For

each product, there are returned only attributes that are specified in <product_at-

tributes>.

By default, the following product attributes are saved in Magento’s database:

• Name

• SKU

• Price

• Type Id

• Attribute Set Id

• Status

• Website Ids

• Visibility

Name

It is one of the required product’s attributes. The name is taken from the external

system. It is retrieved from the returned product data where is persistent under the

key “displayName”.

36

SKU

Each product can be identified by its unique SKU, often known as a scannable bar

code that can be printed on product labels in a retail store. From the external sys-

tem, the SKU comes under the key “number”.

Price

There are more values that come from the external system and can be used for the

product price calculation. In the module, the value with the key “unitPrice” is used

for product price calculation.

Type Id

In the basic version of the module, all products imported from the external system

are simple products; hence, their type id is “simple”.

Attribute Set Id

The attribute set ID is taken from the product integration configuration. The configu-

ration value with path “solteq_bc_product/product_update/default_attrib-

ute_set_id” is used for all products which are imported from the external system.

Status

The product status determines whether the product is enabled or disabled in the

store. Newly created products have status 0 which means that they are disabled. The

products can be enabled during other processes that are running in the Magento in-

stallation.

Website Ids

The value is taken from the product integration configuration. The product is as-

signed to the websites whose Id is filled in the configuration field with path

“solteq_bc_product/product_update/schedule”.

Visibility

As the visibility, there can be set any numeric value from 1 to 4.

37

Table 4. Product visibility values

Value Meaning

1 The product is not visible.

2 The product is visible in the catalog.

3 The product is visible in search.

4 The product is visible in both, catalog and search

Newly created products are not visible straight away, after the product import. The

product visibility can be changed by other processes that are running in the Magento

installation.

There are more values returned from the external system which can be mapped to

custom product attributes. The map can be configured from product integration con-

figuration. The configuration path of the map is “solteq_bc_product/product_up-

date/configurable_attributes”.

Besides saving values to product attributes, the product update also maps products

into categories. Besides other values, the product data returned from the external

system during the update contains the product’s category code. The product is as-

signed to all categories which have the category code filled in the custom field “BC

Category Codes” which is pictured in Figure 17.

The logic of the product update is split into multiple classes. The relations between

the main classes which contain the logic of the product update are illustrated in Fi-

gure 18.

38

Figure 18. Relations between classes which provide product update

ProductUpdate class

Most of the module logic is implemented in the ProductUpdate class. The class re-

quests the product data by calling methods implemented in the Connection class. Af-

ter receiving the product data, they are processed and saved in a Magento’s data-

base.

CategoryMap class

The CategoryMap class contains a logic that goes through all categories in a Magento

installation and builds a category map. The category map can be presented as an as-

sociative array, where the key is a category code, and the value is an array of cate-

gory Ids that are assigned to products with the category code. Once the map is built

during a product update, it is kept and reused next time it is needed during the prod-

uct update.

ProductUpdateConfig class

39

The ProductUpdateConfig class contains the logic of accessing product update config-

uration values. Once, a value is retrieved from the database, it is kept and served

next time it is needed, during the product update.

6.4 Inventory update in general

In most cases, the update of inventories needs to be run in shorter intervals than full

product update since Magento 2 online store may be only one of many channels that

changes product availability. The sellable quantities of products can be affected by

other systems connected to the MS Dynamics 365 BC ERP system and it may lead to

situations when a specific product gets sold out, but this information is not in Ma-

gento 2 online store yet. The probability of this conflict can be lowered by defining

higher buffer in the inventory map in the module’s configuration. However, defining

a greater number in the buffer configuration field is not efficient if the interval of the

inventory update is too long. Because of this reason, the inventory update is sepa-

rated from the product update. The update is scheduled by cron job; however, it can

be triggered by running a CLI command at any time.

The configuration of the inventory update is in the “Product BC Integration” section

under the “SOLTEQ” tab, in the store configuration. All configuration fields, that are

specific for inventory update, are in the group called “Inventory Update”. The config-

uration group is pictured in Figure 19.

40

Figure 19. Inventory update configuration

The configuration fields and their paths are listed in Table 5.

Table 5. Inventory update configuration fields

Name Path

Cron Schedule solteq_bc_product/inventory_update/schedule

Inventory Map solteq_bc_product/inventory_update/inventory_map

Cron Schedule

This field defines how often the inventory update is triggered by a cron job. The field

accepts text value in a valid cron syntax.

Inventory Map

The inventory map is used to map locations in the external system into sources in

Magento. A new row can be added to the inventory map by clicking on the “Add”

button. A row consists of three fields. The first field is a code of Magento’s source.

The second field is a location name in the external system. The last field is a buffer

that accepts any numeric value. During an inventory update execution, the buffer

value is subtracted from the product quantity per the location retrieved from the ex-

ternal system and the result is saved as sellable quantity in the Magento 2 store. The

41

buffer can be used for several purposes. One of them is avoiding situations when the

product is sold out from another system, but the availability has not been updated

yet.

6.5 Inventory update implementation

The inventory update is executed in two steps. In the first steps, there is called BcIn-

tegration’s method calling the external system’s OData web service endpoint with

parameter matching the following pattern:

| /ItemLedgerEntries?$select=Entry_No,Item_No,Location_Code

&$filter=(<location_filter>) and Entry_No gt <last_ledger_en-

try_no>

The “/ItemLedgerEntries” as a parameter of the BcIntegration’s method returns data

containing changes in the product’s availability per location. Without adding anything

to the parameter, there is a huge amount of data returned from the external system

and most of the data is not useful for the integration. To lower the amount of re-

turned data the “?$select=Entry_No,Item_No,Location_Code” part is added to the

parameter. The part specifies attributes that are useful for the integration and only

these attributes are returned in the response from the external system. Since in the

external system, there may be locations that are not mapped to any online store’s

sources, the next part of the method’s parameter is a location filter (<location_fil-

ter>). The location filter specifies locations that are mapped into an online store’s

sources. As a result, only changes in the product’s availability of these locations are

returned from the external system. The location filter has the following format:

| Location_Code eq "<location_code>"

Multiple location filters can be defined by adding “OR” between them. At this point,

the result contains the whole history of changes in the product’s availability per loca-

tion. Adding “Entity_No gt <last_ledger_entry_no>” limits the result to the latest

changes. The <last_entry_no> is the Entry_No value of the last record returned from

the external system. Only records with Entry_No greater than <last_ledger_en-

try_no> are returned from the external system.

42

As a response, there is returned data in a JSON format that contains multiple records.

Each record consists of the following values which are also defined in the parameter:

• Entry_No

• Item_No

• Location_Code

Entry_No

It contains a numeric value which is used as a unique identifier of a ledger record. A

newer record always has greater Entry_No value than older records. This characteris-

tic is used to retrieve only records that are older than the oldest record from the last

request. The Entry_No value of the last retrieved ledger record is used in the call pa-

rameter as <last_ledger_entry_no> value.

Item_No

This value matches the SKU of an existing product in the Magento online store. The

availability of the product with the SKU needs to be updated.

Location_Code

The Location_Code has an external system’s location code which is mapped into the

Magento online store’s source. The value specifies in which source the product’s

availability needs to be updated.

The response is processed and used to build a structure that is used in the second

step of the inventory update. The structure is an associative array of arrays where

the key is a location code, and the value is an array of products that need to be up-

dated in the online store per the location (source).

 For each location, there is called the external system’s OData endpoint with parame-

ter matching the following pattern:

| /ItemCard?$filer=Location_Filter eq <location_code> &$se-

lect=No,Inventory &$filter=(<product_filter>)

43

The “/ItemCard” as a parameter returns information about all products in the exter-

nal system. Appending “?$filer=Location_Filter eq <location_code>” specifies loca-

tion whose availability is returned in the response. The <location_code> is a unique

code of a specific location in the external system that is mapped into a source in the

Magento online store. The “&$select=No,Inventory” part limits the result only to the

values that are needed for the online store. The <product_filter> defines products

whose availability needs to be updated in the online store. The product filter has the

following format:

| No eq "<product_sku>"

The <product_sku> is an SKU of the Magento online store’s product whose inventory

needs to be updated. There can be multiple product filters separated with “OR” in

the parameter.

As a response, there is returned a text value in JSON format containing multiple rec-

ords where each record has the following values:

• No

• Inventory

No

The No is a unique value that identifies a specific product. In the Magento online

store, the value matches a product’s SKU.

Inventory

The Inventory is a numeric value that is saved in the Magento online store’s database

as a product availability in a specific source (location).

The logic of the inventory update is split into multiple classes. The relations between

the classes is pictured in Figure 20.

44

Figure 20. Relations between classes which provide inventory update

InventoryUpdate class

The main class of the Inventory update is called InventoryUpdate. The class uses the

Connection class implemented in the BcIntegration module to request inventory data

from the external system. The retrieved data are processed and saved in Magento’s

database.

Updater class

The Updater class is used by the InventoryUpdate class to format and save data for

specific inventory.

InventoryUpdateConfig class

The InventoryUpdateConfig class extends the Config which is also extended by the

ProductUpdateConfig which provides access to product update configuration values.

The InventoryUpdateConfig class provides access to inventory update configuration

45

values and it allows changing configuration values during the inventory update. Be-

sides accessing configuration values, the module builds a location map when it is re-

quired and once the map is built, it keeps it during the whole inventory update exe-

cution and reuses the next time it is needed. The location map provides quick access

to the code of Magento’s source and inventory buffer value by the external system’s

location name.

7 Order integration

7.1 Order integration overview

Orders created in Magento 2 online store are sent to the centralized external system.

After orders are saved in the external system, they are accessible by other systems

that are connected to the same external system. The centralization allows orders to

be processed by other systems that are not directly connected with the Magento 2

online store, and it also allows to keep all orders, created in different sales channels,

in one place; hence, merchants can have a global view of their sales.

The order integration configuration is in an additional configuration section named

“Order BC Integration”, in the “SOLTEQ” tab. The new section contains two configu-

ration groups with titles “General” and “Order Send”. The configuration of the order

integration is pictured in Figure 21.

46

Figure 21. Order integration configuration

The configuration fields with their paths are listed in Table 6.

Table 6. Order integration configuration fields

Name Path

Enabled solteq_bc_order/general/enabled

Statuses solteq_bc_ordert/order_send/statuses

Cron Schedule solteq_bc_ordert/order_send/schedule

Default Customer ID solteq_bc_ordert/order_send/customer_id

Enabled

The order integration can be disabled from the admin panel. If the inventory update

is triggered, the value of this field is checked. If the inventory update is disabled, the

execution is interrupted. As a default, the order integration is disabled and must be

enabled in the admin panel after the module is installed.

Statuses

By default, a newly created order has status “Pending”. A successful payment

changes the status to “Processing”, or it can be changed to other, also custom, state

47

by a third-party module. For this reason, there is a field in the configuration which al-

lows admin users to specify order statuses. Orders with specified status are sent to

the external system. The default value of the field is “Processing”.

Cron Schedule

The Cron Schedule configuration field allows admin users to specify how often the

orders created in the online store should be sent to the external system. The field ac-

cepts values matching a valid cron syntax.

Default Customer ID

It is a customer number of a generic customer in the ERP system to who are assigned

all orders created in a Magento 2 online store.

7.2 Sending orders to external system implementation

Orders created in a Magento 2 online store are sent to an external system by calling

BcIntegration’s method sending a POST request to the external system’s standard

API with the following parameter:

| /salesOrders?$select=id

The “/salesOrders” as the parameter returns information about a newly created or-

der in the external system (the order is created in the external system based on the

values sent from the Magento online store). Adding “?$select=id” lowers the amount

of returned data to only one attribute. The value of the returned attribute is a unique

identifier of the newly created order in the external system. The identifier is saved in

a custom column which is added to Magento’s database table that contains order’s

data. The column name is bc_external_id and can be used to check the order status

in the external system and update it in the Magento online store. The functionality of

updating order statuses is not part of this integration. However, the future custom

Magento modules can use the bc_external_id value to add this functionality. The

BcOrder module uses the value saved in the bc_external_id column to identify new

orders that should be sent to the external system.

48

The order data is sent to the external system in the POST request body. The data are

sent in a JSON format. The JSON consists of the following attributes:

• orderDate

• customerNumber

• salesOrderLines

orderDate

In this attribute, there is a date when the order was created in the Magento online

store.

customerNumber

The customer number identifies the customer in the external system to who is the

order assigned. In the base version of the module, this value is static, and it is defined

in the module configuration. In the external system, all orders created in the Ma-

gento online store are assigned to the single generic customer with this identifier.

salesOrderLines

The value of this attribute is a JSON array. Each JSON in the array contains data of a

single order item. The order item can be an ordered product or a fee, such as ship-

ping costs. The product data contains a product identifier, a quantity of ordered

product, product price, tax code, and item type. The item type attribute is used to

recognize product items from fee items.

A Magento 2 online store does not keep information about product identifiers that

are used in the external system. For this reason, the identifier is requested from the

external ERP system by sending a GET HTTP request to the standard API with the fol-

lowing parameter:

| /items?$filter=number eq '<product_sku>'&$select = id

The <product_sku> is a product’s SKU used also in Magento online store. The

“/items” as the parameter returns data of all products in the external system. Ap-

pending “?$filter=number eq '<product_sku>'” limits the response to the data of

product with attribute number matching the product SKU. The product data contains

many attributes that are useless for order integration. Because of this reason, there

49

is appended “&$select = id” part to the parameter. This part specifies attributes that

are returned in the response from the external system. In this case, it is just “id”

which is the needed identifier. The returned identifier is kept during the whole order

integration execution and it is reused if needed.

Order integration is implemented in classes that are pictured in Figure 22.

Figure 22. The relation between classes which provide order integration

OrderSender

The OrderSender class is the main class of the BcOrder module. It contains the main

part of the logic allowing an Magento 2 online store to send orders to an external

system. The logic of the class formats order data to a specific format and uses logic

50

implemented in the BcIntegration module to send the order data to an external sys-

tem. A response from the external system is processed and needed information is

saved in an online store’s database.

Config

The Config class implemented in the BcOrder class extends the BcIntegration’s Config

class and adds functions specific for an order integration. The class provides an ac-

cess to the configuration values needed for the order integration.

8 Conclusion

Online shopping enhances the convenience of shopping and allows customers to

compare and buy different kinds of products from their homes. Customers can visit a

website or open a mobile application and list the products they want to buy. How-

ever, it is only one part of the whole system. E-commerce brings convenience not

only to the end customers, but also to merchants, logistic companies, manufacturers,

and other businesses. Usually, in the chain between the point where the products

are manufactured to the point they are delivered to the end customer, different sys-

tems are used automating many tasks and increasing effectiveness. Using different

systems brings one main problem. Different systems need to communicate with each

other. The main goal of this bachelor thesis was to investigate the possibility of con-

necting two different systems and to implement a universal reusable and scalable so-

lution. The connected systems are ERP system Microsoft Dynamics 365 Business Cen-

tral and e-commerce platform Magento 2. Usually, merchants do not have the capa-

bilities to maintain and develop these two systems. Because of this reason, mer-

chants find vendors who develop and maintain their systems. Commonly, an ERP sys-

tem and online store do not have the same vendor. This used to be a problem since

existing solutions used to integrate Microsoft Dynamics 365 Business Central into

Magento 2 required development work on both sides; hence, close cooperation of

multiple development teams was needed.

The solution implemented as the result of this thesis allows Magento 2 vendors to in-

tegrate an ERP system in Magento 2 online store by installing modules in a Magento

51

2 installation. The module uses the endpoints of the built-in ERP system to import

product data, update product quantities, and send order information from an online

store to an ERP system; hence, the implemented solution does not require any addi-

tional development work on the ERP system’s side. The modules can be installed in

any Magento 2 project. Thanks to the design of the modules, their functionality can

be easily extended.

During the Magento module development, a new version of Magento 2 was re-

leased. Magento version 2.3.x introduced important changes that affected the imple-

mented solution. The main change introduced in the new Magento version was a

multi-source inventory (MSI) that allowed products to have multiple quantities, each

for different sources representing physical warehouses mapped into stocks and sales

channels. Support of MSI was not originally planned to be implemented as part of

this bachelor’s thesis; however, it was implemented as a part of this solution since

the MSI became Magento’s core feature. Since the MSI is a relatively new feature in

Magento, the part of the implementation allowing source mapping is not supported

by older versions of Magento.

In the future, the implementation can be extended following the needs of a specific

customer. The design of the implemented modules allows to reuse their logic to add

additional integrations. The future versions of the implemented modules can support

multiple store mode that would also allow adding support of locations; thus, versions

of an online store in different languages. Additionally, the support of mapping cus-

tom attributes created in the ERP system into custom Magento’s product attributes

can be added to the existing modules.

Most importantly, the implemented solution proved that Microsoft Dynamics 365

Business Central ERP system can be integrated into Magento 2 without complicated

development work on the ERP system’s side.

52

References

Admin Panel Placement and Design. 2019. Page on Magento documentaton website.
Accessed on 23 January 2020. Retrieved from
https://devdocs.magento.com/guides/v2.3/ext-best-practices/admin/placement-
and-design.html.

Kristen L. 2019. What Is Magento? Page on Commonplaces website. Accessed on 18
November 2019. Retrieved from https://www.commonplaces.com/blog/what-is-ma-
gento/.

Managing Sources. 2019. Page on Magento documentation website. Accessed on 27
April 2020. Retrieved from https://docs.magento.com/m2/ce/user_guide/catalog/in-
ventory-sources.html.

Managing Stock. 2019. Page on Magento documentation website. Accessed on 27
April 2020. Retrieved from https://docs.magento.com/m2/ce/user_guide/catalog/in-
ventory-stock.html

Module overview. 2019. Page on Magento documentation website. Accessed on 20
December 2019. Retrieved from https://devdocs.magento.com/guides/v2.3/archi-
tecture/archi_perspectives/components/modules/mod_intro.html.

Scope. 2019. Page on Magento documentation website. Accessed on 26 January
2020. Retrieved from https://docs.magento.com/m2/ce/user_guide/configura-
tion/scope.html.

Shaun U. N.d. Magento 2 Commerce vs Magento 2 Open Source - which is best for
who? Page on Sozo website. Accessed on 24 January 2020. Retrieved from
https://sozodesign.co.uk/blog/ecommerce-websites/magento-2-commerce-vs-ma-
gento-2-open-source/.

Single Store Mode. 2019. Page on Magento documentation website. Accessed on 26
January 2020. Retrieved from https://docs.ma-
gento.com/m2/ce/user_guide/stores/store-mode-single.html.

Websites, Stores, and Views. 2019. Page on Magento documentation website. Ac-
cessed on 23 January 2020. Retrieved from https://docs.ma-
gento.com/m2/ce/user_guide/stores/websites-stores-views.html.

Welcome to Dynamics 365 Business Central. 2020. Page on Microsoft Docs website.
Accessed on 08 February 2020. Retrieved from https://docs.microsoft.com/en-us/dy-
namics365/business-central/index.

https://devdocs.magento.com/guides/v2.3/ext-best-practices/admin/placement-and-design.html
https://devdocs.magento.com/guides/v2.3/ext-best-practices/admin/placement-and-design.html
https://www.commonplaces.com/blog/what-is-magento/
https://www.commonplaces.com/blog/what-is-magento/
https://docs.magento.com/m2/ce/user_guide/catalog/inventory-sources.html
https://docs.magento.com/m2/ce/user_guide/catalog/inventory-sources.html
https://docs.magento.com/m2/ce/user_guide/catalog/inventory-stock.html
https://docs.magento.com/m2/ce/user_guide/catalog/inventory-stock.html
https://devdocs.magento.com/guides/v2.3/architecture/archi_perspectives/components/modules/mod_intro.html
https://devdocs.magento.com/guides/v2.3/architecture/archi_perspectives/components/modules/mod_intro.html
https://docs.magento.com/m2/ce/user_guide/configuration/scope.html
https://docs.magento.com/m2/ce/user_guide/configuration/scope.html
https://sozodesign.co.uk/blog/ecommerce-websites/magento-2-commerce-vs-magento-2-open-source/
https://sozodesign.co.uk/blog/ecommerce-websites/magento-2-commerce-vs-magento-2-open-source/
https://docs.magento.com/m2/ce/user_guide/stores/store-mode-single.html
https://docs.magento.com/m2/ce/user_guide/stores/store-mode-single.html
https://docs.magento.com/m2/ce/user_guide/stores/websites-stores-views.html
https://docs.magento.com/m2/ce/user_guide/stores/websites-stores-views.html
https://docs.microsoft.com/en-us/dynamics365/business-central/index
https://docs.microsoft.com/en-us/dynamics365/business-central/index

