

Hoang Le Minh

Migration project with Serverless Frame-

work and Amazon Web Services API

Technology and Communication

2020

 2

ACKNOWLEDGMENT

First of all, I would like to show my respect and gratefulness toward Mr. Timo

Kankaanpää, my supervisor, teacher, ex-employer and a great supporter to my ca-

reer path during the time I was studying in VAMK. The strength and motivation I

have today were built up from his lessons and encouragement.

I would like to thank my employers for having me in the team and trusting me

enough with this big project decision, especially the CTO, he gave me instructions

and helped me to organize the thesis work. Also, I want to thank my colleague for

helping me with the work.

Finally, to all my classmates at VAMK, family and friends in Vietnam, thank you

all for supporting my decisions.

Wish the best to all of you.

Vaasa, 26.04.2020

Hoang Minh Le

VAASAN AMMATTIKORKEAKOULU

UNIVERSITY OF APPLIED SCIENCES

Information Technology

ABSTRACT

Author Hoang Le Minh

Title Migrating a Serverless Framework API with Amazon Web

Services

Year 2020

Language English

Pages 58

Name of Supervisor Timo Kankaanpää

In the era of the Internet, it is a must for every company, small or big, to have a

website for people to visit and connect with them. Therefore, the demand for qual-

ity applications and e-services is strongly increasing. As a result, there have been

many different technologies to help to build API services different from the tradi-

tional way depending on the scenarios and capabilities. The Serverless framework

is one in those that have been insights for many developers and companies which

are both new and old. This thesis focuses on the main aspects of Serverless tech-

nology and why it works well and not well with Amazon Web Services based on

the benefits it brought and the problems that occurred while developing the prod-

uct.

This thesis is built based on a project in a start-up company where I have been

working for. The main purpose of it was to give an understanding of the architect

of an API using the Serverless framework and Amazon Web Services through

solving a scalability problem that occurred during the development process.

Keywords e-commerce, AWS, Serverless, API

 4

CONTENTS

ACKNOWLEDGMENT

1 INTRODUCTION .. 10

Server & Serverless Application .. 10

Migration Project .. 10

2 BACKGROUND OF THE PROJECT ... 12

2.1 Serverless Framework ... 12

2.2 Amazon Web Services .. 14

2.2.1 Amazon Cognito User Pools and Identity Pools 16

2.2.2 Amazon DynamoDB ... 16

2.2.3 Amazon Lambda ... 17

2.2.4 Amazon API Gateway and Amazon Route 53 17

2.3 MongoDB ... 18

2.4 Docker, Jenkins & Automation Testing.. 18

3 STRUCTURE DESIGN ... 20

3.1 Main Object .. 20

3.2 Infrastructure ... 21

3.3 Package Diagram .. 22

3.4 Index.js .. 23

3.5 Execution sequences ... 25

4 IMPLEMENTATION .. 26

4.1 Serverless.yml ... 26

4.2 Lambda function configuration ... 27

4.3 Authentication ... 28

4.4 Database queries ... 30

5 MIGRATION PROJECT ... 32

5.1 The reason ... 32

5.2 Solutions ... 33

5.3 MongoDB Atlas .. 36

6 MIGRATION AND TESTING .. 38

6.1 Setup Connection .. 38

6.1.1 MongoDB Initialization and setup VPC connection 38

6.1.2 Connect/Disconnect function MongoDB 39

6.1.3 Schema definition.. 40

6.2 Querying ... 42

6.3 Compatibility .. 42

6.3.1 Connections management ... 42

6.3.2 Indexes .. 43

6.4 Testing and Deploying .. 43

6.4.1 Unit Testing ... 44

6.4.2 Integration Tests .. 44

6.4.3 Automation Testing ... 46

6.4.4 Deployment ... 51

7 CONCLUSION .. 56

REFERENCES .. 57

 6

LIST OF FIGURES

Figure 1: Differences between software services ... 13

Figure 2: The diagram indicates which layer FaaS’s customers will cover 14

Figure 3: Example Services that Amazon will provide (taken from AWS Console)

 ... 15

Figure 4: How AWS Lambda works ... 17

Figure 5: AWS's architecture ... 21

Figure 6: Package structure of the project ... 22

Figure 7: The structure of the Lambda function in JavaScript 23

Figure 8: An example of the Event object in Lambda function 23

Figure 9: Sequences Diagram .. 25

Figure 10: Example of the Serverless.yml with environment variables................ 26

Figure 11: Configuration of the API path in Serverless.yml 27

Figure 12: Example of extracting body from a POST request to /notes then create

a record in DynamoDB ... 27

Figure 13: Example of generating App client id for notes-user-pool User Pool.. 29

Figure 14: Login and get authorization token from User Pool 29

Figure 15: Simply getting one note from DynamoDB .. 30

Figure 16: Grant access to DynamoDB inside Serverless.yml 30

Figure 17: How Item size is calculated on DynamoDB (source: AWS DynamoDB

Documentation) ... 33

Figure 18: MongoDB .. 36

Figure 19: MongoDB Production URI setup in Serverless.yml as an environment

variable ... 38

Figure 20: Setup a VPC connection to Atlas MongoDB....................................... 39

Figure 21: Connect to MongoDB via a URI ... 40

Figure 22: Example of creating a MongoDB Schema with validations 41

Figure 23: Example of a simple get one item with option query with a model named

“Adventure” .. 42

Figure 24: Deploy to production .. 43

Figure 25: Example testing indexOf() function .. 44

Figure 26: Example of sequence tests ... 45

Figure 27: Jenkins EC2 Instance .. 47

Figure 28: Docker installed on an EC2 Instance ... 47

Figure 29: The container is up and running ... 48

Figure 30: Jenkins home page .. 48

Figure 31: Add Github account token to Jenkins configuration 49

Figure 32: Pipeline configuration for Git project .. 49

Figure 33: List of actions in Jenkinsfile .. 50

Figure 34: An example of a successful build .. 51

Figure 35: The result after the deployment... 52

Figure 36: API Gateway Custom domain names .. 53

Figure 37: The API Gateway record is connected with the testing API Lambda,

which is deployed on the previous section .. 54

Figure 38: Route53's record set for the API Gateway record API 55

 8

LIST OF TABLES

Table 1: List of required attributes ... 20

Table 2: Analysis of different solutions ... 35

LIST OF ABBREVIATIONS

API Application Programming Interface

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

AWS Amazon Web Services

PaaS Platform-as-a-Service

FaaS Function-as-a-Service

YAML Yet Another Markup Language

YAML Ain’t Markup Language

VPC Virtual Private Cloud

URI Uniform Resource Identifier

URL Uniform Resouce Locator

CPU Central Processing Unit

RAM Random-access Memory

SSH Secure Shell

 10

1 INTRODUCTION

Server & Serverless Application

Traditionally, companies who want to build their websites or applications have to

rent, manage and maintain the server. However, hiring a good system development

team is costly, not to mention it could still create pressure for both the development

team and business aspect when it comes to incidents and accidents happened which

are related to the operational aspect. Another factor is that when the team decided

to use a new technology/framework but a change in the current system is needed, a

transition or migration process would be a difficult decision. These problems are

even bigger for small companies such as start-ups because their resources are lim-

ited.

With the innovation of cloud services, more opportunities have been offered for

developers. They are a variety of choosing trust-worthy providers, infrastructure to

even software-based service, giving them the chance to work specifically on their

targets without worrying about scalability and reliability.

Serverless is on top of that. It is a “function-as-a-service” architect that enables

developers to shift more of the operational responsibilities to cloud providers and

focus more on the delivered products. Serverless applications are light-weight ap-

plications that only include the core logic without overhead servers or runtimes

configurations but still greatly scalable.

Migration Project

The backbone of the project has already been done which is used by a few custom-

ers. However, there are lots more features and customizations depends on the strat-

egy and needs of each customer with their products, therefore, the project was still

far from the goal and everyone has to understand the concept from scratch. During

the development process, we had encountered a scalability problem that could af-

fect the original architect.

Overall, this thesis work is to take responsibility for the migration of the database

and make sure it never happens again by making integration and automation testing.

This project is a service API built on the Serverless framework on Node.js runtime

environment provided by Amazon Web Service.

 12

2 BACKGROUND OF THE PROJECT

2.1 Serverless Framework

The Project is built on the Serverless framework, one of the latest fast-growing

technology.

The word “Serverless” means “the smaller contribution of the Server”. Tradition-

ally, web applications are hosted on web servers. To keep the application up and

running, the Operating System of the host machine has to be always updated and

patching during that time to up downloading, compiling and connecting all sorts of

components. This is time and power-consuming since every website needs a web

server and not every second the server gets a request but they have to always be

ready to prepare for it. Besides, managing servers is a complicated task since it

requires dedicated and experienced engineers.

Lately, when the network and the internet have been improved significantly (speed,

latency, etc), together with the invention of virtual machines they have brought the

cloud computing industry closer to the users. Therefore, instead of having their

hardware to customize the configuration and serve their websites, they can rent a

machine somewhere on the internet and just focus on developing the product with-

out worrying about the maintenance. Those who are giving the service are called

Infrastructure-as-a-service (IaaS) and Platform-as-a-service (PaaS) operators.

Figure 1: Differences between software services

However, there is still a more powerful and convenient way for developers to man-

age their projects.

“The Serverless Framework helps you build serverless apps with radically less

overhead and cost. It provides a powerful, unified experience to develop, deploy,

test, secure and monitor your serverless applications.” - Serverless, Inc. © 2019

Without having to build things from scratch, or concern about cost and mainte-

nance, Serverless is a Function-as-a-Service that can connect developer’s code with

existing functional components provided from the cloud, resulting in a loosely cou-

pled, efficient and scalable application quickly but less complexity.

 14

Figure 2: The diagram indicates which layer FaaS’s customers will cover

Currently, there are three biggest and most popular providers: Microsoft Azure with

Azure Functions, Google Cloud Platform with Google Cloud Functions and Ama-

zon Lambda Functions from Amazon Web Services. There are only some minor

differences among them but the values that they share are nearly the same. But for

the scope of the project, Amazon is the provider for the application cloud solution

because of the huge benefits that Amazon Web Services could bring.

2.2 Amazon Web Services

Amazon Web Services (AWS) are Cloud Computing Services provided by Ama-

zon, one of the biggest technology companies in cloud computing, also in e-com-

merce and artificial intelligence. They have led the market of cloud computing ser-

vices a long time ago before the two greatest opponents decided to jump in after

witnessing the potential of this era. Even though both Microsoft and Google have

proved their names on the market, Amazon is still stabilized as the largest shares

by owning almost half of the world’s public cloud infrastructure market. Being the

biggest and oldest age but remaining strong and powerful, Amazon Web Services

ecosystem is the perfect choice for the project.

Amazon Web Services provide all tools and technologies needed for developer’s

applications, for example, power computing, database storage and content delivery,

in a secure container that can be accessed anywhere. Additionally, it is also easy to

use any services with powerful AWS SDK provided by Amazon that is available in

any language.

Figure 3: Example Services that Amazon will provide (taken from AWS Console)

It depends on the project that developers can decide which services they want to

use for their application. For an application that requires user data, it is a must that

storing and authorizing them by users are available and secured, so as a result Am-

azon Cognito services and Amazon DynamoDB are used in this project.

 16

2.2.1 Amazon Cognito User Pools and Identity Pools

It is common today that applications are authenticated with user name and pass-

word. Therefore, Amazon Cognito provides a fully basic functional authentication

process for the application with storing users’ data, generating sign-up, sign-in, ac-

tivating an account, forgetting a password, etc. In addition, every successful login

will generate a token to authorize every request that called on the behavior of that

user. This eased the work since the API does not require any extra features out of

this authentication process and implementing it into the project was a simple job.

The other service is called Identity Pools. These services provided AWS credentials

for other developers to access the same AWS resources. Since our developers are

working as a team, it is convenient that we all can access the console. The API does

not require this feature but it optimized the development progress by saving devel-

oping time.

2.2.2 Amazon DynamoDB

For the database solution, we decided to save our users’ data in Amazon Dyna-

moDB. It is a NoSQL database that supports the key-value structure and document

data models. To run high performance, internet-scale applications, DynamoDB

overburdens traditional relational databases, enables developers to build fast, mod-

ern serverless applications that can start small but are globally scalable.

With the power of handling more than 10 trillion requests per day and 20 million

requests per second, it seems to be a good match with the Serverless application.

With the fact that data schema is a single document key-value structure, it leaves

DynamoDB as a perfect option for the project.

2.2.3 Amazon Lambda

Figure 4: How AWS Lambda works

This is what makes the application alive. Lambda is one in AWS tools to help to

build Serverless applications. Lambda lets developers run code without having to

manage servers, all they have to do is just to focus on developing their features.

Each request to Lambda is triggered by Lambda functions which can be written in

any common programming language easily.

By using Lambda for your Serverless applications, developers only have to pay for

the functions that they created, which is different from the traditional server hosting

method that needs to be paid even the idle time. Therefore, it helps individuals and

small development teams cut costs and save resources.

2.2.4 Amazon API Gateway and Amazon Route 53

To protect the source code and data of our APIs from being directly accessed with-

out knowledge, Amazon API Gateway is used to act as a front door to applications

to access Amazon services. It manages and handles all the tasks that require accept-

ing and processing API calls for the applications.

Finally, Amazon also provides a Domain Name System (DNS) service called Route

53 that lets the user create, maintain and connect custom domains to their applica-

tion endpoints.

 18

2.3 MongoDB

Same with DynamoDB, MongoDB is a NoSQL, document-based database that is

fast and scalable. The difference is that MongoDB has validated Schema for each

table (Collection) it has that can control the data structure while DynamoDB re-

quires users to define their own. MongoDB can be installed anywhere and any place

easily with simple setup processes.

For cloud solutions, serverless applications can directly connect to MongoDB Atlas

database as a service, available on all three popular cloud providers: Microsoft’s

Azure, Amazon Web Services, and Google Cloud Platform.

By allowing the maximum document size of 16MB and rich but simple and fast

query types, MongoDB provides a large scale of data storing that eases the system

design for scalable applications.

2.4 Docker, Jenkins & Automation Testing

In DevOps, automation is the key principle. To make sure the API performs only

better after each change, the team had to not only make the new tests for the new

features but also had to make sure that all the old tests are passed. Manually testing

is an easy task but it is time-consuming and has low-efficiency, not to mention the

risks of creating wrong or missing tests are high in practice, which leads to the result

of not all tests being covered. To avoid building that kind of a fragile system, an

automatic and continuous testing process run after each change seems to be a safe

and optimized solution.

Jenkins is an open-source automation server that enables automatically tests run-

ning and deploying applications by being triggered by any Commit of any version

control system; or by scheduling a run via a cron job, which made it become the

standard of automation testing in DevOps. Jenkins can be added with plugins to

extend the functionality.

To ease the process of installing Jenkins and to keep Jenkins always running,

Docker will be used. Docker creates an environment for developers to develop apps

regardless of languages, frameworks, architectures, and versions of the tools. A

Docker container can be created following a subset of configurations for a specific

purpose, which is a Docker Image. In the project, Jenkins Docker Image was used

to install Jenkins on a Docker container.

 20

3 STRUCTURE DESIGN

3.1 Main Object

With the target of keeping the API fast and simple to implement, data is stored

inside the database is non-relationally, it is just a list of items with attributes.

An Item represents an object. Under the scope of this project, a Note will be an Item

during this and the upcoming sections.

Name Type Description Example

id UUID The unique string indicates a note

among others in the databases

8d9f3ca7-4e97-4405-941c-

2952117b5a69

title String The name of the Item (note) “New Note”

createdBy UUID The unique string indicates the user

created the note among others

“3x2f3ca74e972605941c29

54337b5b13”

created Timestamp The time that the note is created 1542785399846

description String The content of the note “Get 2 eggs instead”

noteHistory Array List of note details that had been

changed. Each element contains the

time and description that were

changed during that time:

[{

“time”: 1542785399846,

“description”: “Buy an egg”,

}]

Table 1: List of required attributes

3.2 Infrastructure

Figure 5: AWS's architecture

Figure 6 describes how Amazon Web Services communicates in the application.

Our development client-side files (HTML, JavaScript, and CSS files) are stored in

Amazon S3 (1). Users will authenticate through AWS Cognito User Pool services

to able to get the token (2). After that, every API request will use that access token,

then being sent to Lambda service (3) through Amazon API Gateway (4) to be able

to perform suitable queries syntax to DynamoDB.

 22

3.3 Package Diagram

Users will have options to get, create, edit or delete the notes from the API. Au-

thentication is also needed.

Figure 6: Package structure of the project

The application backbone is built on a single YAML file (.yml) that normally

named Serverless.yml. It contains configurations for Lambda service for the API

such as provider, engine runtime, environment variables, execution time, etc.

The code for the API will be handled inside index.js. This is the main event for

everything happens to the API: request body, headers, query-string, path parame-

ters, etc. inside an object called Event. Routes are also handled in index.js for serv-

ing different purposes, such as:

- /authenticate: for authentication.

- /notes: handle notes data.

Each route has a different way of extracting data from the Event object, but some-

times they share common functionality. To fulfill the condition, useful functions

are stored inside a separated area, which is inside libs. Libs can also import global

variables listed in Serverless.yml.

3.4 Index.js

Figure 7: The structure of the Lambda function in JavaScript

A Lambda function requires three parameters by orders to be able to perform the

computing:

- Event (object): this JSON object contains information about the request that

got sent to the API, including the request headers and body. All information

we need for the application to work is available in this object.

Figure 8: An example of the Event object in Lambda function

 24

From the JSON object above, it is clear that this is an HTTP GET request

to https://lambda-alb-123578498.us-east-2.elb.amazonaws.com/lambda

route with query string parameter “query” has the value of “1234ABCD”.

This is a GET request so the request body is empty, which is understandable.

In addition, we can also see extra data such as which browser the sender was

using or other AWS resource name (ARN).

- Context (object): this object gets passed into the handle before the Lambda

service executes. It contains both methods and properties to help define the

invocation, function and execution environment.

- Callback (function): an asynchronous function acts as an exit point for the

Lambda function.

3.5 Execution sequences

Figure 9: Sequences Diagram

The diagram indicates the process when an API call is performed. Firstly, the re-

quest is passed to the API resource through Amazon API Gateway, where it then

be validated for the sakes of security and monitoring purposes later on. After reach-

ing the resource, the Lambda function which takes the request data gets triggered.

It then connects to the AWS User Pool to retrieve the correct user data according to

the request object. When the previous process is completed, it will start to fetch the

note data from DynamoDB according to the user information. When the data is

settled, it gets saved to the database and sent back to the client inside the response

object.

 26

4 IMPLEMENTATION

4.1 Serverless.yml

Serverless.yml is the unique YAML file that acts as the backbone of the API and

consists of variables and configurations for the Lambda computing services. As it

can be seen from the example, it is clear that developers can understand what is

needed for the code execution, such as the version of the Serverless framework,

provider, runtime environment, etc. Global variables are defined under provider/en-

vironments so they could be imported in project files.

Figure 10: Example of the Serverless.yml with environment variables

Serverless.yml is also used to define paths for the API. Figure 12 indicates the struc-

ture of an API path.

Figure 11: Configuration of the API path in Serverless.yml

The path /users/create of this API is configured to have the handler is users.create,

can be connected through API Gateway HTTP endpoint with GET method. This

HTTP endpoint of the path also has an authorization step that takes the resources

from AWS Cognito UserPool ARN (Amazon Resource Name).

4.2 Lambda function configuration

The handler of an API path is a function that will be triggered when a request got

sent to the API path, as shown in Figure 13.

Figure 12: Example of extracting body from a POST request to /notes then create

a record in DynamoDB

 28

In the handler, a request to path /notes/create should create a user on the databases

and return the result. It can be seen that from the Event object, we can retrieve

request body data (line 6). The data then was used to make database queries (Dy-

namoDB put syntax to create a record) and the response was sent in the callback().

On the other hand, the Context object has the configuration for the Lambda services,

as mentioned in section 3.4 index.js to show the basic structure of a Lambda func-

tion. In the project, the most obvious usage of this object is to retrieve the Request

ID if the function passes through the Lambda compute service, and one special con-

figuration context.callbackWaitsForEmptyEventLoop (line 19), which simply

just terminates all the event loops that are left in the Event object and send the re-

sponse immediately when it is set to false (default is true).

In the handler, the callback is the third argument, which is a callback function that

gets called whenever the Lambda function needs to stop executing. It can be that

the data is fully retrieved and ready to be sent as a response, or an error has occurred

and the process needs to be stopped and sent the error message to the client.

4.3 Authentication

We already have Cognito where user data is stored. But to be able to connect to the

resources from the application, a tunnel needs to be created. To do so, a special

token will be needed for Cognito service to recognize the origin of the data source.

In this case, the clientId of the User Pool is used.

Figure 13: Example of generating App client id for notes-user-pool User Pool

After getting the clientId successfully, it is possible to start creating a connection.

Amazon has a special development kit for JavaScript developers to achieve the pur-

pose: amazon-cognito-identity-js. Simply just adding configuration for both sides

will do the job. There are many features but under the scope of the project, log in

and sign up have already fulfilled the needs.

Figure 14: Login and get authorization token from User Pool

 30

4.4 Database queries

Figure 15: Simply getting one note from DynamoDB

DynamoDB Query finds items base on primary key values and in this case, is cre-

atedBy attribute. The items returned will all contain createdBy equals to the cog-

nitoIdentityId (userId) provided in the requestContext of the event object.

After creating the table on the AWS Console, the same idea with Cognito, we need

a client app interface and a tunnel to connect to the resource. It can be easily done

by serverless-dynamodb-client npm package, and the resource is authorized by cre-

ating a record of access granting inside the backbone Serverless.yml.

Figure 16: Grant access to DynamoDB inside Serverless.yml

As it is described, the database actions have to be declared for each data querying

syntax.

 32

5 MIGRATION PROJECT

5.1 The reason

As the note keeps being edited, the noteHistory attribute increases in size (see 3.1).

This will happen for several reasons such as being frequently changed or a huge

note description per change. At a certain point in time, it will result in an error that

stated: “DynamoDB: Item size has exceeded the maximum allowed size”.

“An item is the core unit of data in DynamoDB. It is comparable to a row in a

relational database, a document in MongoDB, or a simple object in a programming

language. Each item is uniquely identifiable by a primary key that is set on a table

level. An item is composed of attributes, which are bits of data on the item. This

could be the "Name" for a User, or the "Year" for a Car. Attributes have types --

e.g., strings, numbers, lists, sets, etc -- which must be provided when writing and

querying Items.”

- dynamodbguide.com/anatomy-of-an-item

An Item contains a Note data which is stored inside the DynamoDB. By following

this idea, it is a big chance that the problem was caused by DynamoDB itself. The

flow of the data was fulfilled and the error was caught with the message. It was also

found out that the Get Items query to DynamoDB was responsible for this error

message.

After looking through either on the documentation or Q&A forums, there were sim-

ilar problems posted, and one quote from the documentation was mentioned more

than 70% of those cases:

“The maximum item size in DynamoDB is 400 KB, which includes both attribute

name binary length (UTF-8 length) and attribute value lengths (again binary

length). The attribute name counts towards the size limit.”

- docs.aws.amazon.com/amazondynamodb

https://www.dynamodbguide.com/anatomy-of-an-item/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html#limits-items

The size of the data was never being one consideration during development. But it

surely gave the team a sight of what happened. Data can be stored on DynamoDB

at any type because it is schemaless and here is how it is users can estimate the Item

size with the formula from DynamoDB Developer’s guide.

Figure 17: How Item size is calculated on DynamoDB (source: AWS DynamoDB

Documentation)

For that calculation, approximately a note with 400000 characters can be created

without any further changes or a note with 2000 characters can be changed 200

times. The mission is set out to be able to exceed this boundary for this project.

5.2 Solutions

The problem could be solved if the Item size, or to be more specific, noteHistory,

could be reduced.

The attribute noteHistory stores all the updated note data from the beginning so the

customer can have all the information to perform analytics purposes such as undo

or check history.

In the real case, having missed one or many histories can make the data-collecting

work difficult. For that reason, a solution which can keep all history is necessary.

After gathering information, a table of solutions was formed.

 34

Solution Description

Using com-

pressed method

The idea would be using compressing JavaScript libraries such as zlib or gz

since DynamoDB can store any kind of data. The size then could be reduced

more than 2/3, leaving the customers being able to have a longer note history

list. However, the drawback is the time and resource-consuming for com-

pressing/decompressing data every request.

Possibility: 6/9

Practicality: 5/9

Restrict the input This is the most simple solution and easiest way to solve the case without

any breaking changes by providing a validation that could calculate and re-

ject a request that exceeds the maximum item size. However, this would cre-

ate a bad user experience for every end-user such as they can not having more

than this number of characters or change the note more than a specific time.

Possibility: 8/9

Practicality: 3/9

Make a separate

table for storing

the history in the

DynamoDB

Since we are using a table to store all the notes as the items and the problem

is the array of note history could exceed the limit, we could just make a dif-

ferent table called NoteHistory to store only the note history data, connected

by the Note ID, which makes the item size only around 50B. The drawback

of this the fact that the Note Data table can have billions of rows since all the

user’s note data is also stored there. Moreover, since the NoSQL database is

being used so there is no relation between the table that corresponding data

has to be fetched manually, which is efficiency wasted and time-consuming,

especially when are using AWS Lambda Serverless where the services are

paid by the usage.

Possibility: 6/9

Practicality: 4/9

Using a different

databases solu-

tion

If the database is the problem, then it needs to be changed. There are many

options nowadays, various from SQL to NoSQL, even real-time Databases

could be a possible solution. But the first came to the mind while thinking

about migrating to a new database is what breaking changes it could make,

how much time and efforts it needs to take because that could affect the road

map of the whole project, also the budget plan for the migration also needs

to be considered.

Firstly, SQL databases would not be used since the incompatibility with the

old project structure. The data still is a simple key-value object type and each

Item is referenced by a user from AWS Cognito service so there is no need

for extra tables at the moment. As a result, this leaves the project with options

of NoSQL and Real-time Databases such as Redis, MongoDB, Docu-

mentDB, Firebase, etc. Secondly, the maximum item size has to be calculated

carefully for the performance and real-world situations coverage.

Possibility: 5

Practicality: 8

Table 2: Analysis of different solutions

As can be seen from the results, the last solution (using different databases solution)

seems to be the safest and the most efficient way, even though it would require lots

of researches and discussions, but it would be worth the effort.

 36

5.3 MongoDB Atlas

Figure 18: MongoDB

After gathering information about some of the NoSQL Databases available such as

MongoDB, DocumentDB, Redis, or even Google Firebase, some estimations of the

pros and cons of each type of database was made in different paces of migration:

implementation, compatibility, differences, and pricing. MongoDB then stood out

and became the priority.

“MongoDB is a document database designed for ease of development and scaling.

The Manual introduces key concepts in MongoDB, presents the query language,

and provides operational and administrative considerations and procedures as well

as a comprehensive reference section.”

 - https://docs.mongodb.com/manual/introduction/

Reasons for the decision:

- It is a NoSQL database with schema definition, which restricts the input

before actually putting data inside the database while DynamoDB lacks this

feature.

- Both databases share lots of commons in configuration and data manipulat-

ing since they are NoSQL databases and needed with support libraries.

- MongoDB is also hosted on AWS server to avoid latency and complicated

authentication process when it comes to accessing resources outside of

AWS server

- npm package Mongoose.js fully support connecting, querying and casting

to MongoDB from Node.js runtime server/service

https://docs.mongodb.com/manual/introduction/

- It is one of the most popular NoSQL databases with huge supports from the

community.

- Same to other NoSQL databases, its speed has been proven for such heavy

jobs with simple data.

- Data has version control that can be kept track.

- Max item size support: 16MB. This is one of the main reasons for the deci-

sion since it is 40 times more than the limit that DynamoDB allows.

- The maximum query size is 16MB. Compare to 1MB of DynamoDB, it al-

lows the query to retrieve much more data per time.

- More query options. For example, there is currently no update query for

DynamoDB, which leads to having to use data over-writing. But all four

basic actions create, read, update and delete are available officially for Mon-

goDB.

- MongoDB usage is paid monthly instead of paid by the demands of Dyna-

moDB. By simple estimation from previous months, the tire M10 of Mon-

goDB’s Atlas which is enough for the needs only costs 2/3 of what we had

spent on DynamoDB (it could be much higher due to incoming demands).

Future upgrading is possible without losing data.

 38

6 MIGRATION AND TESTING

The migration process includes:

- Create database’s Instance and set up connections and configurations

- Change database queries and response handling

- Testing

- Documentation and Deployment

Because the current version is still being used by many customers, a brand new

version of the API should be published along with the current one.

6.1 Setup Connection

6.1.1 MongoDB Initialization and setup VPC connection

Figure 19: MongoDB Production URI setup in Serverless.yml as an environment

variable

With this configuration, the team can customize the username and password with-

out providing plain text since they are sensitive information. It is great for security

purposes. Also, the URI can be accessed securely within the application with the

environment object process.env.MONGODB_URI.

Traditionally, the connection to the Atlas’s MongoDB via URI from the application

is going through HTTP/HTTPS, which means it will go to the Internet. However,

since MongoDB was chosen to be the best option because it is also hosted in the

AWS server, a Virtual Private Cloud (VPC) can be set up between services inside

the AWS ecosystem to reduce the latency and increase the security.

Figure 20: Setup a VPC connection to Atlas MongoDB

VPC can be set up directly on MongoDB Cloud Console in Network Access/Peering

section. The information needed for this setup is AWS account ID, region infor-

mation of the application and blocked subnets information.

As a result, the responses received through VPC connection have a minimum 100

to 300ms reduction compared to the traditional way. It means a lot when it comes

to budget-saving since Serverless applications are billed with the consuming time.

For example, if there are 3 million requests per month and 200ms are cut down for

each request, 600000 seconds of useless execution time could be saved every

month.

6.1.2 Connect/Disconnect function MongoDB

Mongoose.js is MongoDB fully-supported library with user-friendly syntaxes for

Node.js runtime application and it will be used throughout the application to replace

the original.

Connections will be opened whenever there are needs for data querying. Connec-

tion will be closed when being timeout (by default is 30 seconds) or mongoose.dis-

connectMongoDb() gets called.

 40

Figure 21: Connect to MongoDB via a URI

During the connection initialization, some special parameters need to be provided

to serve the purpose of the application:

- useNewUrlParser (Boolean): The MongoDB Node.js Driver rewrote the

way it parses the connection string and the old way will be removed in the

future, so providing true value to this parameter will keep the connection

initializing process always up-to-date.

- poolSize (Integer): Define how many sockets per connection that the current

MongoDB tier can handle according to the application usage. If the sockets

are full, it will start a new connection. By default, it is 5 and the maximum

connections allowed for free tier are 100.

- autoIndex (Boolean): Apply the newly defined Indexes structure to the cur-

rent Schema. By default it is false.

6.1.3 Schema definition

It is great that MongoDB is a Schema-type structure with validation for all database

queries. Before, on DynamoDB, Item validation was manually developed and used

whenever a query got executed.

Figure 22: Example of creating a MongoDB Schema with validations

With this setup and required attributes from section 3.1 Main Object, a Note Item

Schema can be initialized and validated whenever a document is being inserted into

the database. It is an important upgrade that helps the team with there being no need

to implement a custom validator for the input data as in the past, which is less effi-

cient and secure since it is already provided by the MongoDB features.

Beside simple validation, it is possible to define a custom validation for Item attrib-

utes. Also, new attributes and validations can be added later to schema without the

worry of changing the current data in the database

After finished creating validation, the Item Model can be exported from Item

Schema. Indexes can also be added as an optional when a Schema is being defined.

Multiple schemas can also be added as in the example.

 42

6.2 Querying

A database query can be performed using the Model object that had been exported.

Figure 23: Example of a simple get one item with option query with a model named

“Adventure”

A Model is a primary tool for interacting with MongoDB. In the application,

Item.findById() is the Model class asynchronous function which returns a single

document (an Item) that matched with the ID and conditions provided.

6.3 Compatibility

There is not much of unique concern for this change because of the incomplex data

structure. However, during the migration, some manual configurations need to be

done in able to fully experience the benefit of MongoDB.

6.3.1 Connections management

As is mentioned in section 6.1.2, MongoDB allows users to control the limit of

connections to the database by determining how many sockets that one connection

can handle before creating a new one to save up resources and time. With a socket

is being reused, the querying speed is much higher because there is no need to re-

initialize the configuration.

However, by default, Lambda service clears all the cache whenever a Lambda func-

tion is finished, which means even though multiple requests are coming from the

same origin, there is no way to get the information from the connection is being

used. This results in a new connection having to be initialized and during the testing,

as maximum connections errors had occurred so many times.

Figure 24: Deploy to production

Luckily, Lambda service allows us to use cache data and it is easy to turn on by

providing --skipCacheInvalidation true when deploying to Lambda serverless ser-

vice.

6.3.2 Indexes

To increase the querying speed of the database, besides choosing the correct plan

and tier, indexes are also important. For DynamoDB, indexes are defined from the

beginning when the database is created or edited on the AWS console.

For MongoDB, there are two ways to define indexes:

- MongoDB Atlas Cloud: This is the place to view data and monitor the state

of MongoDB (usage, limit, RAM, CPU e.g). It is also able to create or delete

indexes of the selected Collection

- MongooseSchema.index(): Indexes can be added to the existing list using

Mongoose Schema by setting autoIndex to true in the configuration when a

connection is set up.

6.4 Testing and Deploying

Previously, due to the shortage of resources, there were only unit tests available.

During this migration process, a better testing environment was requested to be de-

veloped, not only to strengthen the currently fragile system but also to make sure

the newly migrated database works as expected.

The tests are built with Mocha.js – a powerful testing library for JavaScript.

 44

6.4.1 Unit Testing

Assert is a verifying invariants module provided within Node.js modules.

With Mocha’s help, test cases can be divided into simple and flexible series, making

them easier to report and map the results.

Figure 25: Example testing indexOf() function

By default, simply run mocha inside the terminal will trigger JavaScript files with

prefix .test to run the jobs, for example, indexOf.test.js.

6.4.2 Integration Tests

These tests are made to be sure that the API calls get the correct body data and the

Lambda functions return the correct response, which could not be tested within unit

testing. The test cases require handling asynchronous API calls and therefore, a

special tool is required for the specific needs, superagent.

“SuperAgent is light-weight progressive ajax API crafted for flexibility, readability,

and a low learning curve after being frustrated with many of the existing request

APIs. It also works with Node.js!” - visionmedia.github.io/superagent/

https://visionmedia.github.io/superagent/

Figure 26: Example of sequence tests

With the help of step, asynchronous API calls are now synchronous. This step will

not start if the previous step does not get executed successfully. In this particular

case, the authentication process is expected to return an error if the client sends a

string and it will return token if the request body data is correct.

The timeout(3000) indicated that if the step took more than 3000 milliseconds (3

seconds) it would return an error immediately.

With this setup, it is possible to fully create API call test cases.

 46

6.4.3 Automation Testing

With all the tools available, it is easy to do manual testing with the system. But

there are updates every day and for every update, it is necessary to test again to

make sure that the new test run does not create conflict with the existing one, and

therefore, the current method of testing is time-consuming and could slow the de-

velopment progress.

In this section, an automation testing process for Note API will be built to solve the

problem using Jenkins. The idea is that Jenkins will do all the tests that have been

scripted every time an update happens (a commit), automatically.

1. Create an EC2 instance and install Docker

By going to EC2 AWS, there will be a list of instances available and their

details. Create an instance that is also available with Launch Instance.

This should be a simple free-tier instance since its only purpose is to keep

Jenkins up and running. It has been monitored and evaluated the resources

needed.

Figure 27: Jenkins EC2 Instance

After creating the instance, it can be connected by setting up an SSH con-

nection with secret key pairs authorization to public IPv4 IP address, or di-

rectly on the console with a browser-based SSH connection.

Figure 28: Docker installed on an EC2 Instance

 48

2. Create a Jenkins container from Jenkins Docker Image

jenkinsci/blueocean is An Image contains necessary packages to install Jen-

kins and blueocean, a popular friendly user interface that comes with it.

Jenkins will be hosted on a container that will be created from the Image

listed above by using the command

docker create --name jenkins-v1 -p 80:8080 jenkinsci/blueocean

This command means to create a container named “jenkins-v1” from the

base Image jenkinsci/blueocean which port 8080 will be connected to port

80 on the Instance. Therefore, when a user accesses the default public ad-

dress of the Instance, the home page of Jenkins will be returned.

Figure 29: The container is up and running

The container can be started with command docker run

Figure 30: Jenkins home page

3. Configure Jenkins behaviors

Firstly, to be able to trigger the test actions for every change on the Git pro-

ject, an authorization process must be added to Jenkins. The credentials to-

ken key can be generated from Github profile settings.

Figure 31: Add Github account token to Jenkins configuration

A multiple pipeline Jenkins project is created for this project. Add the re-

mote branch and configuration to the pipeline settings.

Figure 32: Pipeline configuration for Git project

 50

This indicates that Jenkins will subscribe to the changes of the Git project

on the Repository HTTPS URL with the Git credentials added. Addition-

ally, every branch that named mongodb that has new commits will be trig-

gered every 1 hour. The reason for the name filtering is that we only want

the branch with the migrated MongoDB will be able to perform the tests.

4. Configure Jenkins actions for the project

Since a tunnel has been made and there are test cases, there were not any

specific job for Jenkins to do. Therefore, a list of required actions for Jenkins

to perform needs to be made. By default, Jenkins will always search for

actions Jenkinsfile in the root directory of the Git project.

Figure 33: List of actions in Jenkinsfile

- agent: Environment required to perform the tests. Since the project is built

with JavaScript with Node.js runtime, a Node V8 was used.

- stages: Defined actions in 3 particular stages: Build, Test and Deploy:

o Build: Install necessary packages and dependencies (Node.js mod-

ules and Serverless CLI)

o Test: Run the unit tests

o Deploy: Deploy to the testing environment and run the integration

tests.

- post: Send a message after the build depends on different cases (success,

failure, aborted, .eg)

Figure 34: An example of a successful build

6.4.4 Deployment

1. Deploy to Lambda Service

In this section, the deployment to the Testing environment will be described.

The command to deploy to Lambda service:

sls deploy --stage prod --autoIndex false --poolSize 20 -v

While:

- sls: Serverless framework CLI (Command Line Interface) which au-

thenticated with AWS credentials

- deploy: action to deploy current workspace to Lambda service

 52

- --stage: define the current environment (dev, testing or prod). Depends

on each environment that some of the environment variables will have

different values

- --autoIndex: Check for new Database indexes, set to false will make the

Lambda use only the old existing indexes

- --poolSize: Define the number of sockets available in one connection.

Production tier Database has more resources than testing tier Database,

therefore, it is needed to extend the usage of the production stage data-

base.

- -v: An option to log all the details to the command-line tool during the

deployment

Figure 35: The result after the deployment

As can be seen, the deployment is successful and an API path is generated

by default. This path is accessible through the Internet.

2. Export the API

Now the API is ready, but its name is not in a humanly readable format. I

already had a signed domain (****.com) associated with the project and the

only work needs to be done is to connect the domain to the Lambda re-

sources. The current API resource is inside Amazon’s ecosystem, therefore,

it needs to be redirected to a gateway to be able to connect with the outside

world. In this case, it is Amazon API Gateway.

During this section, an API path associated with the domain will be created

and linked with the Note API in the previous section.

a. Configure the API Gateway

The API path will be called test-v3.****.com in this example.

It is necessary that a custom domain is created and it will be the API

gateway, letting connections from outside to Amazon’s resources

through this generated Amazon API Gateway domain (example.cloud-

front.net).

Figure 36: API Gateway Custom domain names

After that, the gateway can be connected to the Lambda resources by

adding the API Gateway record to the testing Lambda function trigger

on the Lambda service console.

 54

Figure 37: The API Gateway record is connected with the testing API

Lambda, which is deployed on the previous section

Now there is an easier reading API name that is available publicly, but

that will not be enough for a production API.

b. Routing the API with Route53

With a valid signed domain, Route53 will setup and redirect securely

the connections to this domain to the API Gateway record (exam-

ple.cloudfront.net)

Figure 38: Route53's record set for the API Gateway record API

As can be seen, the record “test-v3.****.com” is connected to the same

Alias Target as the API Gateway record, which means every request will

go to this record will be forwarded to the CloudFront domain name and

finally trigger the Lambda function. With this setup, the API is now

published successfully.

 56

7 CONCLUSION

The migration project is a great example of a challenging practical use-case sce-

nario for developers, especially when having to give a hard decision such as replace

a technology that could not be maintained, to meet the requirement of the custom-

ers. Even though the coding part is not much, a lot of hours were put to find, to

research and to discuss the most optimized methodology.

For an eager developer, not the sufficient coding skills but rather the problem solv-

ing and future self visualization are the essential checkpoints in the career-based

activity list.

In addition, getting individual horizons familiar with the Amazon Web Services

collaboration and Serverless framework API configuration has been significantly

enhancing skill throughout the developing workflow. As a result, since AWS has

been an up-to-date service, starting to be a connoisseur of utilizing AWS is not only

an utmost wholesome experience broadening opportunity but also a promise for a

brighter career path in Cloud Technology has opened.

Future work

Even though the most crucial problem has been solved for this project, there are

plenty of things that could be done in the future such as ensuring the performance

for a huge amount of active items, sockets and connections managing for Mon-

goDB, upgrading the automation test procedure and improving the logging system

to be able to get up-to-date with latest events.

REFERENCES

1. Serverless framework documentation.

https://serverless.com/framework/docs/getting-started/

2. Why Serverless.

https://dev.to/yos/why-serverless--3pn7

3. Amazon Web Services

https://aws.amazon.com/

4. AWS Lambda introduction.

https://aws.amazon.com/lambda/

5. AWS DynamoDB introduction.

https://aws.amazon.com/dynamodb/

6. AWS API Gateway introduction.

https://aws.amazon.com/api-gateway/

7. AWS Cognito introduction

https://aws.amazon.com/cognito/

8. AWS EC2 introduction.

https://aws.amazon.com/ec2/

9. AWS Route 53 introduction.

https://aws.amazon.com/route53/

10. Simple Serverless AWS application architect tutorial.

https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-

lambda-apigateway-s3-dynamodb-cognito/

11. JavaScript npm package for AWS Cognito configuration.

https://www.npmjs.com/package/amazon-cognito-identity-js

12. Atlas’s MongoDB.

https://www.mongodb.com/cloud/atlas

13. MongoDB Indexes.

https://docs.mongodb.com/manual/indexes/

14. Setup VPC Connection for MongoDB

https://docs.atlas.mongodb.com/security-vpc-peering/

15. Mongoose npm package.

https://mongoosejs.com/

https://serverless.com/framework/docs/getting-started/
https://dev.to/yos/why-serverless--3pn7
https://aws.amazon.com/
https://aws.amazon.com/lambda/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/cognito/
https://aws.amazon.com/ec2/
https://aws.amazon.com/route53/
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://aws.amazon.com/getting-started/hands-on/build-serverless-web-app-lambda-apigateway-s3-dynamodb-cognito/
https://www.npmjs.com/package/amazon-cognito-identity-js
https://www.mongodb.com/cloud/atlas
https://docs.mongodb.com/manual/indexes/
https://docs.atlas.mongodb.com/security-vpc-peering/
https://mongoosejs.com/

 58

16. Mocha.js, JavaScript testing library.

https://mochajs.org/#getting-started

17. Superagent, npm package for API call testing.

https://visionmedia.github.io/superagent/

18. Jenkins pipeline introduction.

https://www.jenkins.io/doc/book/pipeline/

19. Docker container introduction.

https://www.docker.com/resources/what-container

20. Setup Jenkins on a Docker container.

https://www.jenkins.io/doc/book/blueocean/getting-started/

21. Basic comparison between DynamoDB and MongoDB.

https://www.mongodb.com/compare/mongodb-dynamodb

22. Data compressing solution for network bottlenecks by Ebay.

https://tech.ebayinc.com/engineering/how-ebays-shopping-cart-used-compres-

sion-techniques-to-solve-network-io-bottlenecks/

23. OpenAPI framework.

https://swagger.io/docs/specification/about/

https://mochajs.org/#getting-started
https://visionmedia.github.io/superagent/
https://www.jenkins.io/doc/book/pipeline/
https://www.docker.com/resources/what-container
https://www.jenkins.io/doc/book/blueocean/getting-started/
https://www.mongodb.com/compare/mongodb-dynamodb
https://tech.ebayinc.com/engineering/how-ebays-shopping-cart-used-compression-techniques-to-solve-network-io-bottlenecks/
https://tech.ebayinc.com/engineering/how-ebays-shopping-cart-used-compression-techniques-to-solve-network-io-bottlenecks/
https://swagger.io/docs/specification/about/

