
1

Hoang Le Minh, Dang Nguyen

TRAVEL APP FOR EASYVIET TRAVEL

A Mobile Application for Booking Travel Tours with EasyViet

Travel

School of Technology

2020

ABSTRACT

Author Le Minh Hoang, Dang Nguyen

Title Travel App for EasyViet Travel

Year 2020

Language English

Pages 80

Name of Supervisor Timo Kankaanpää

This thesis concentrated on designing and developing a new mobile application

(Android/iOS) for booking travel tour with EasyViet Travel. Nowadays, mobile

phone is available to most people and a mobile application will help the user to

book their favorite tours for holiday easily and improve the customer experience.

The project was planned and designed using the core principles of the Human-

Computer Interactions (HCI). As a powerful framework for developing mobile

application, Ionic was used to create a hybrid mobile application for both Android

and iOS platform. The Ionic application was written with Angular with Type-

Script. Firebase serves as both database server and backend server.

The project has achieved basic requirements until this working point.

Keywords Travel app, mobile application, Ionic, Android and iOS

3

CONTENTS

ABSTRACT .. 2

1 INTRODUCTION ... 8

1.1 Background .. 8

1.2 About EasyViet Travel ... 8

1.3 Objectives .. 8

2 TOOLS AND TECHNOLOGIES .. 10

2.1 Android .. 10

2.2 iOS 10

2.3 Ionic Framework .. 11

2.4 Angular Framework ... 13

2.4.1 Views and Templates .. 14

2.4.2 Service .. 15

2.4.3 Routing ... 15

2.5 TypeScript.. 16

2.6 Firebase .. 16

2.6.1 Firebase Realtime Database .. 17

2.6.2 Firebase Authentication .. 17

2.7 Facebook Login.. 18

2.8 Cordova ... 19

3 USER INTERFACE DESIGN ... 21

4 SYSTEM DESCRIPTION ... 30

4.1 Software Requirements Specification ... 30

4.2 Use Case Diagram .. 31

5 APPLICATION DESIGN.. 33

5.1 Software Architecture... 33

5.2 Sequence Diagrams .. 33

5.2.1 Booking a travel combo .. 33

5.2.2 See details of a specific combo ... 34

5.2.3 Search for travel combos by travel destination 34

6 IMPLEMENTATION ... 36

6.1 Travel Combos ... 36

6.2 Travel Articles ... 42

6.3 Favorite Travel Combos ... 44

6.4 Ticket ... 49

6.5 Booking Form .. 53

6.5.1 Choosing a Departure Date ... 54

6.5.2 Input Customer Information .. 54

6.6 Payment ... 54

6.7 Facebook Login.. 57

6.8 Authentication and Security in the Application 58

6.9 User Account ... 60

6.10 Search for Travel Combos .. 62

6.11 Firebase Database... 66

6.11.1 Articles database ... 66

6.11.2 Combos database .. 67

6.11.3 Users database .. 68

6.12 Language ... 70

6.13 Testing ... 72

7 DEPLOYING AND PUBLISHING ... 76

7.1 Deploying for Debugging the Application .. 76

7.2 Deploying for Publishing the Application ... 77

8 CONCLUSIONS ... 79

REFERENCES .. 80

5

LIST OF ABBREVIATIONS

API Application Programming Interface

CSS Cascading Style Sheets

DOM Document Object Model

HCI Human-Computer Interaction

HTML Hypertext Markup Language

JSON JavaScript Object Notation

UI User Interface

UX User Experience

LIST OF FIGURES AND TABLES

Figure 1. Architecture of an Angular application ... 14

Figure 2. Architecture of Cordova /10/ .. 19

Figure 3. Log in screen and Home Page .. 21

Figure 4. Article Details and Combo Details ... 22

Figure 5. Search Screen ... 24

Figure 6. Date Selection and Personal Information .. 25

Figure 7. Checkout and Successful Payment ... 26

Figure 8. Favourite Screen .. 27

Figure 9. My Ticket Screen ... 28

Figure 10. My Account and Language Settings ... 29

Figure 11. Use Case Diagram .. 32

Figure 12. Application architecture ... 33

Figure 13. Sequence diagram of booking a travel combo 34

Figure 14. Sequence diagram of showing details of a travel combo 35

Figure 15. Sequence diagram of searching a combo by travel destination 35

Figure 16. Pay with PayPal buttons ... 56

Figure 17. Facebook login with Firebase ... 57

Figure 18. Facebook login OAuth Redirect URIs .. 58

Figure 19. Firebase Realtime Database main keys ... 66

Figure 20. Articles data in Firebase ... 66

Figure 21. Combos data in Firebase .. 67

Figure 22. User data summary in Firebase ... 68

Table 1. Function .. 31

Table 2. Non-functional characteristics.. 31

Table 3. Smoke tests.. 75

7

LIST OF CODE SNIPPETS

Code Snippet 1. Libraries and Ionic plugins in package.json file 13

Code Snippet 2. Combo class declaration.. 37

Code Snippet 3. Function to load combos from Firebase 37

Code Snippet 4. Template to display a list of combos 38

Code Snippet 5. Find a combo with ID ... 39

Code Snippet 6. Template to display details of a specific combo....................... 41

Code Snippet 7. Article class declaration .. 42

Code Snippet 8. Function to load articles from Firebase 42

Code Snippet 9. Template to display a list of articles .. 43

Code Snippet 10. Template to display detail of an article 44

Code Snippet 11. FavCombo class declaration .. 44

Code Snippet 12. Favourite combo service ... 46

Code Snippet 13. Template to display favourite combos 48

Code Snippet 14. Ticket class declaration ... 49

Code Snippet 15. Ticket service to load and add tickets 51

Code Snippet 16. Template for tickets page .. 53

Code Snippet 17. PayPal payment config .. 56

Code Snippet 18. Login with Facebook and Firebase implementation 59

Code Snippet 19. Authentication guard ... 60

Code Snippet 20. Template to display user account information 61

Code Snippet 21. Find combos by travel destination ... 63

Code Snippet 22. Search page implementation .. 63

Code Snippet 23. Search page template .. 65

Code Snippet 24. Article data in JSON tree... 67

Code Snippet 25. Combo data in JSON tree .. 68

Code Snippet 26. User data in JSON tree .. 69

Code Snippet 27. Add translate module into app modules file 71

Code Snippet 28. Implementation with translate service 72

1 INTRODUCTION

1.1 Background

Nowadays, a smartphone is very popular with many convenient services. Because

it is very easy to use a smartphone everywhere, mobile applications are growing in

number. They provide assistance as well as entertain a lot of people. YouTube and

Facebook mobile applications are even considered causing addition.

Although almost everyone in Vietnam has a smartphone and Internet access, there

are just a few travel applications for booking tours. Most of tourism companies only

allows booking offline or through sending message to their agent. This traditional

method is also an inefficient way to market the service. Therefore, it is necessary

to have a travel booking applications to simplify the booking process and advertise

travel tours to more potential customers, and they can focus on enjoying their holi-

day.

1.2 About EasyViet Travel

Founded in 2010, EasyViet Travel is a company that focuses on providing travel

services, such as organizing tours both locally and internationally, booking hotels

and flights, supporting visa process and many more. After nine years of growing,

the company is now expanding its business further into the digital market.

1.3 Objectives

The main objective of this thesis is to create a mobile application for booking

travel tours. The application should come with great UI and be easy to use.

The application should allow the user to authenticate with Facebook and view the

travel tour combos. They can search for combos according to their travel destina-

tions of interest, and easily add or remove these combos from their favorites. The

booking and payment process should also be easy to use for them. If they are not

9

clear where to travel in the holiday, the application also provides some travel arti-

cles or news to suggest some great travel destination. Besides, users should be

able to control easily their information, which they provided in the application.

2 TOOLS AND TECHNOLOGIES

2.1 Android

Android is a mobile operating system. It is based on the Linux kernel and other

open source software, designed mainly for mobile devices such as smartphones and

tablets. The main source code contributor and marketing commercial company for

Android is Google. Google is also the main provider for a lot of Android default

application.

Android has been the most popular operating system internationally on

smartphones and tablets for almost a decade. Nowadays, there are billion monthly

active Android users, and it is still the world's most popular operating system, and

as of January 2020, there are also over 2.9 million apps in the Google Play Store.

/1/

2.2 iOS

iOS is a mobile operating system, which was created and developed by Apple Inc.

exclusively for its hardware. The operating system currently powers many of the

company's mobile devices, including 1.4 billion iPhones, and over 100 million Pod

Touch; it also powered the iPad before the introduction of iPadOS in 2019. Besides,

it is the second most widely used mobile operating system worldwide after Android,

which held 13.9% of the market share in 2019. /2/

Originally introduced in 2007 for the iPhone, iOS has been extended to support

other Apple devices, such as the iPod Touch (September 2007) and the iPad (Janu-

ary 2010). As of March 2018, Apple's App Store has more than 2.1 million iOS

applications, 1 million of which are native for iPads. /3/

11

2.3 Ionic Framework

Ionic Framework is an open source UI framework for building high-performance,

high-quality mobile and web application by utilizing the web technologies —

HTML, CSS, and JavaScript — with integrations for the most popular frameworks

now like Angular and React. /4/

Ionic enables developers to build applications and mobile web from only a single

codebase, which saves time a lot comparing to developing separate applications for

Android and iOS. It also comes with plenty of components, which adapt to the plat-

form very well, along with many native plugins.

The libraries and plugins used in this application is declared at package.json file:

{

 "name": "easyviet-travel-app",

 "version": "0.0.1",

 "author": "Ionic Framework",

 "homepage": "https://ionicframework.com/",

 "scripts": {

 "ng": "ng",

 "start": "ng serve",

 "build": "ng build",

 "test": "ng test",

 "lint": "ng lint",

 "e2e": "ng e2e"

 },

 "private": true,

 "dependencies": {

 "@angular/common": "~8.2.14",

 "@angular/core": "~8.2.14",

 "@angular/fire": "^6.0.0",

 "@angular/forms": "~8.2.14",

 "@angular/platform-browser": "~8.2.14",

 "@angular/platform-browser-dynamic": "~8.2.14",

 "@angular/router": "~8.2.14",

 "@ionic-native/core": "^5.23.0",

 "@ionic-native/facebook": "^5.23.0",

 "@ionic-native/splash-screen": "^5.23.0",

 "@ionic-native/status-bar": "^5.23.0",

 "@ionic/angular": "^5.0.7",

 "@ionic/storage": "^2.2.0",

 "@ngx-translate/core": "^12.1.2",

 "@ngx-translate/http-loader": "^4.0.0",

 "cordova-android": "8.1.0",

 "cordova-browser": "^6.0.0",

 "cordova-ios": "^5.1.1",

 "cordova-plugin-facebook4": "^6.4.0",

 "cordova-sqlite-storage": "^5.0.0",

 "core-js": "^2.5.4",

 "firebase": "^7.13.2",

 "ion2-calendar": "^3.0.0-rc.0",

 "ionic5-star-rating": "https://github.com/JeongJun-Lee/ionic5-

star-rating/tarball/master",

 "moment": "^2.24.0",

 "ngx-paypal": "^6.1.0",

 "rxjs": "~6.5.1",

 "tslib": "^1.9.0",

 "zone.js": "~0.9.1"

 },

 "devDependencies": {

 "@angular-devkit/build-angular": "~0.803.20",

 "@angular/cli": "~8.3.23",

 "@angular/compiler": "~8.2.14",

 "@angular/compiler-cli": "~8.2.14",

 "@angular/language-service": "~8.2.14",

 "@ionic/angular-toolkit": "^2.1.1",

 "@types/jasmine": "~3.3.8",

 "@types/jasminewd2": "~2.0.3",

 "@types/node": "~8.9.4",

 "codelyzer": "^5.0.0",

 "cordova-plugin-device": "^2.0.2",

 "cordova-plugin-ionic-keyboard": "^2.2.0",

 "cordova-plugin-ionic-webview": "^4.1.3",

 "cordova-plugin-splashscreen": "^5.0.2",

 "cordova-plugin-statusbar": "^2.4.2",

 "cordova-plugin-whitelist": "^1.3.3",

 "jasmine-core": "~3.4.0",

 "jasmine-spec-reporter": "~4.2.1",

 "karma": "~4.1.0",

 "karma-chrome-launcher": "~2.2.0",

 "karma-coverage-istanbul-reporter": "~2.0.1",

 "karma-jasmine": "~2.0.1",

 "karma-jasmine-html-reporter": "^1.4.0",

13

 "protractor": "~5.4.0",

 "ts-node": "~7.0.0",

 "tslint": "~5.15.0",

 "typescript": "~3.4.3"

 },

 "description": "An Ionic project",

 "cordova": {

 "plugins": {

 "cordova-plugin-whitelist": {},

 "cordova-plugin-statusbar": {},

 "cordova-plugin-device": {},

 "cordova-plugin-splashscreen": {},

 "cordova-plugin-ionic-webview": {

 "ANDROID_SUPPORT_ANNOTATIONS_VERSION": "27.+"

 },

 "cordova-plugin-ionic-keyboard": {},

 "cordova-plugin-facebook4": {

 "APP_ID": "655763464969239",

 "APP_NAME": "easyviet-travel-app",

 "FACEBOOK_HYBRID_APP_EVENTS": "false",

 "FACEBOOK_ANDROID_SDK_VERSION": "5.13.0"

 },

 "cordova-sqlite-storage": {}

 },

 "platforms": [

 "android",

 "browser",

 "ios"

]

 }

}

Code Snippet 1. Libraries and Ionic plugins in package.json file

2.4 Angular Framework

Angular is a very popular platform and framework for front-end development. It is

mainly used for building single-page client applications using HTML and Type-

Script. Angular is written in TypeScript. It implements core and optional function-

ality as a set of TypeScript libraries, which can be imported into the applications.

Ionic allows developers to develop a mobile application with Angular. The ad-

vantages of Ionic are its good architecture and useful libraries.

Figure 1. Architecture of an Angular application

The architecture of an Angular application depends on some basic concepts. The

fundamental building blocks are NgModules, which provide a compilation context

for components. NgModules accumulate a related code into functional sets, and an

Angular application has been defined by a set of NgModules. An application always

has at least a root module that enables bootstrapping, and usually has several other

feature modules.

2.4.1 Views and Templates

Views are the HTML template with Angular binding to make sure that Angular will

be able to control and modify the front-end depending on the program logic and

data.

A template combines HTML with Angular markup that can alter the HTML ele-

ments before they are shown. Template directives offer the program logic, and bind-

ing markup links the data of application and the HTML DOM.

Before displaying a view for the user, Angular evaluates the directives and solves

the binding syntax in the template to update the HTML elements and the DOM, in

15

accordance with the application data and logic. Angular also supports two-way data

binding, which means that the modifications in the HTML DOM, for example new

input data from the user, are also reflected in the program data model. It helps the

developer to save a lot of time updating those data.

2.4.2 Service

For data or logic that is not linked to a particular view, or need to be shared among

components, Angular helps web developers with the service class. Service provid-

ers can be imported into components as dependencies, helping the developer to

write code in a modular, reusable, and efficient way. Components use services,

which give a particular functionality, which is not directly linked to the views. Be-

sides, dependency injection allows the keeping the component classes lean and ef-

ficient. The components now do not retrieve the data from the server, verify user

input, or write log directly to the console because they already delegate those tasks

to the services.

2.4.3 Routing

The Angular Router NgModule offers a convenient service that enables to the def-

inition of a navigation path, which is similar to some backend server framework,

among the different application states and view hierarchies in the application. It

may sound complicated, but the router is patterned on the normal browser naviga-

tion conventions:

• Enter a URL in the address bar and the browser navigates to a corresponding

page.

• Click on links and the browser should navigate user to a new web page.

• Click the browser's back and forward buttons and the browser navigates

backward and forward through the history of pages you have seen.

Instead of routing the user to pages in the same way as HTML, the router maps

URL-like paths to views. When the user performs an action, such as clicking on a

link that would transfer the user to a new web page in the browser, the router stops

the browser's behavior, then it can display or hide view depend on the application

logic. /5/

Routing can be implemented easily in both Angular templates and logic TypeScript

file with router service.

More detail information about Angular could be found at https://angular.io/docs

2.5 TypeScript

TypeScript is an open-source programming language built on JavaScript, the most

popular language. It is developed and maintained by Microsoft. It is a strict syntac-

tical superset of JavaScript and is a great improvement to JavaScript, for example

it encourages static typing or allow the developer to create class and interface in a

clearly way. Thank to these improvements, TypeScript is much easier to debug and

develop, as well as it provides a better security for the web application. Therefore,

TypeScript is also designed for better development of huge applications and trans-

compiles to JavaScript.

TypeScript can be used to develop web applications for both client-side and server-

side execution (as with Node.js or Angular). Actually, it is the main programming

language used for Angular Framework. Besides, it is also recommended by many

industrial companies to replace JavaScript. /6/

Information and tutorial about TypeScript can be found at https://www.typescript-

lang.org/

2.6 Firebase

Firebase is a mobile and web application development platform which has been

developed by Firebase, Inc. in 2011, then acquired by Google in 2014. At the mo-

ment, Firebase platform currently has 19 products and services, which integrate

https://angular.io/docs
https://www.typescriptlang.org/
https://www.typescriptlang.org/

17

with each other very well, and they are utilized by more than 1.5 million applica-

tions. /7/

In this project, Firebase Realtime Database will be used as an application database

as well as proving API for the Ionic application. Firebase Authentication will also

help the application to authenticate users easily.

2.6.1 Firebase Realtime Database

The Realtime Database is a NoSQL database. It is clear that NoSQL has a lot of

different optimizations and functionality in comparison to a relational database.

In NoSQL database, data is stored as JSON. Firebase also allows database to be

synchronized in real-time to every connected client. When building and deploying

cross-platform applications with iOS, Android, and JavaScript SDKs, all of the ap-

plication clients share one Realtime Database instance and automatically get up-

dates with the latest available data. Besides, the data is persisted locally, and even

while the user has no Internet connection, these real-time events are continuing to

fire, providing the end user a highly responsive experience. When the device regains

connection, the Realtime Database synchronizes the local changes to the data with

the remote updates that happened while the user was offline, merging any conflicts

automatically. Firebase can also provide assistance; help the application's data to

meet the requirements at scale by dividing the data across several database instances

in the same Firebase project. /8/

2.6.2 Firebase Authentication

Firebase Authentication is a very convenient service of Firebase. It offers backend

services to validate users to the application. It provides support for authentication

using email and passwords or popular authentication providers such as Google, Fa-

cebook, and more. Therefore, developers do not need to worry much about authen-

tication and security, and they can spend more time on developing the main appli-

cation.

After a successful sign in, developers can access the user's basic profile information,

and the user's access to data stored in other Firebase products can be controlled.

Then, developers can also use the provided authentication token in the response

data to verify the identity of users with backend services. Developers can also ac-

cess user information from other identity providers to help user have great experi-

ences with the application. /9/

More information about Firebase can be found at https://firebase.google.com/

2.7 Facebook Login

Facebook Login is a very popular authentication method nowadays. It provides a

quick and easy way for users to create new accounts and log into an application. It

is used to allow better user experiences, for example:

• Authentication: Facebook Login allows users to quickly and easily create

an account in the application without having to set (and likely later forget)

a password. It is also more suitable for mobile applications, which can make

the user feel a bit annoying when creating a new account for a simple task.

This straightforward and convenient experience can convert to a higher

number of users for the application. After allowing the application to access

user’s basic information on Facebook and creating an account on the appli-

cation, users are now able to login quickly with a single click on “Login

with Facebook” button. Besides, Facebook also helps the application to val-

idate user email addresses, which implies that developers are able to connect

to that user more in the future.

• Personalized Settings: Facebook Login allows developers to access infor-

mation, which would be complex or illegal to collect via the application’s

own registration form with a long term and condition, which no user would

read anyway. Even just importing the user’s profile image from Facebook

and setting it as the avatar in the application account, the application already

https://firebase.google.com/

19

makes the user feel happier, and offers them a stronger connection when

comparing between similar applications. /9/

More information about Facebook API can be found at https://developers.face-

book.com/

2.8 Cordova

Apache Cordova is an open-source mobile development framework, which helps to

develop an Ionic application with a lot of native plugins. Cordova enables develop-

ers to use standard web technologies - HTML5, CSS3, and JavaScript for cross-

platform development. Applications run within wrappers, which is aimed at the

specific platform, and depend on the API bindings to access each device's native

resources, for example camera, map, and installed application.

The architecture of Cordova:

Figure 2. Architecture of Cordova /10/

https://developers.facebook.com/
https://developers.facebook.com/

More information about Cordova can be found at https://cor-

dova.apache.org/docs/en/latest/guide/overview/index.html

https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://cordova.apache.org/docs/en/latest/guide/overview/index.html

21

3 USER INTERFACE DESIGN

Figure 3. Log in screen and Home Page

The Log in Screen is designed to have the company logo on top of a destination

photo, which is used to set the travel vibe for the application. The main method used

for logging in is Facebook Authentication due to the high amount of Facebook users

in Vietnam, which will help to make the log in process easier for the user.

The Home Page focus on 2 factors: Combo Voucher and Articles. This decision is

made based on a few meetings with the Client, to align the application with the

company’s business goal.

Figure 4. Article Details and Combo Details

The Article Details will serve as a medium for the company to share the travel news,

promotions, or to give the users some suggestions on where to travel. The Combo

23

Details, on the other hand, focus on showing a brief description of the travel desti-

nation, along with information of the trip such as travel date, the basic utilities of

the trip and the exact arrival destination.

Figure 5. Search Screen

25

The Search Screen allows the users to find the desired travel combo, based on the

provided destination. The Combo is shown with the name, price, and basic infor-

mation to help the users with decision- making.

Figure 6. Date Selection and Personal Information

The Booking flow includes four steps: Date Selection, Personal Information, Save

Card for payment and Checkout form. However, during the development process,

the Save Card for payment was removed due to the acknowledgement of the privacy

policy of Vietnam.

After choosing a travel combo, the application will show a list of dates for the users

to choose. Then, the users will be asked to fill in the Personal Information.

Figure 7. Checkout and Successful Payment

The Checkout Screen is implemented to show the total price of a trip, including the

coupon promotion and other expenses. The payment will then be executed using

PayPal and the users will be prompted to a Successful Payment Screen.

27

Figure 8. Favourite Screen

The Favourite Screen allows the users to save the travel combos for later. Every

combo has a heart shaped button on the top right, which serve as a toggle for the

users to save the combo in the Favourite list.

Figure 9. My Ticket Screen

After a combo is booked, it will be moved to the My Ticket Screen. This Screen

allows the users to view the booked combo, along with basic information of that

combo such as Date of the combo, destination, and number of tickets.

29

Figure 10. My Account and Language Settings

The Account Screen is designed for the users to easily edit the Personal Information,

set the Language of the application, contact the company for support, and log out.

4 SYSTEM DESCRIPTION

4.1 Software Requirements Specification

These are the requirements that were agreed upon by the company. The require-

ments are divided into 2 categories:

• Functional: The functions of the application are divided into must have,

should have, and nice to have features.

• Non-functional: The characteristics of the application.

Table 1 specifies the functional requirements of the application.

Table 2 specifies the non-functional requirements of the application.

Priority levels:

1 - Must have

2 - Should have

3 - Nice to have

Reference Description Priority

F1 Displaying the details of the trips 1

F2 Displaying the status of booked trips 1

F3 Login with social media 1

F4 Displaying articles details 1

F5 Log out of the application 1

F6 Payment with PayPal 1

31

F7 Search bar to search for trips 2

F8 Bookmark favourite trips 2

F9 Ability to change the application language 3

Table 1. Function

Characteristic Description

Usability The UX will be optimized so that the user can operate with the

application at ease.

Safety Only authorized users can access the application features

Response time The system should respond to user query in less than 1 sec-

onds, but the response data depends mostly on user’s Internet

connection speed

Aesthetic The UI should be clean and matched with the company’s

branding

Table 2. Non-functional characteristics

4.2 Use Case Diagram

The use case diagram includes all user’s operations with the application. There are

several use cases in the diagram below. The principal use case is to display details

of a travel combo, book a travel combo and display booked trips.

Figure 11. Use Case Diagram

33

5 APPLICATION DESIGN

5.1 Software Architecture

This system has a mobile client with the travel app installed and Firebase database.

There is no server because Firebase allows clients to connect to the database without

server.

Figure 12. Application architecture

The client connects to Firebase through HTTP requests established by Firebase An-

gular library. All the connection is handled through Angular services.

5.2 Sequence Diagrams

The sequence diagram present specific use case to show how Angular services and

pages interact with each other. Several main use cases of the application are illus-

trated with sequence diagrams in this part.

5.2.1 Booking a travel combo

The main function of the application is to book a specific combo. Users can choose

a specific combo from the combo list. After inputting the personal information and

paying with PayPal, users expect the ticket will be available in the Ticket tab of the

application.

Figure 13. Sequence diagram of booking a travel combo

5.2.2 See details of a specific combo

An important use case is to see the details of a specific travel combos. After clicking

on a specific combo in the combo list, users expect the details of the selected travel

combo will be represented. This process is illustrated in figure 13.

5.2.3 Search for travel combos by travel destination

Another use case is to search for travel combos by user’s travel destination. After

inputting the travel destination to the search bar, users expect the correct travel

combo will be found. This process is illustrated in figure 14.

35

Figure 14. Sequence diagram of showing details of a travel combo

Figure 15. Sequence diagram of searching a combo by travel destination

6 IMPLEMENTATION

The implementation of the travel application is described in this chapter.

6.1 Travel Combos

The travel combos are the travel tour data, which are declared with Combo class. It

contains all information about a combo tour: title, images, price, start destination,

travel destination, and description.

export class Combo {

 constructor(

 public id: string,

 public title: string,

 public imgUrl: string,

 public price: number,

 public discount: number,

 public rate: number,

 public startDest: string,

 public travelDest: string,

 public wifi: boolean,

 public breakfast: boolean,

 public hotelRating: number,

 public taxi: boolean,

 public description: string,

 public availableWeek: AvailableWeek,

 public coupon: Coupon,

) { }

}

export interface Coupon {

 [key: string]: number;

}

export class AvailableWeek {

 constructor(

 public mon: boolean,

 public tue: boolean,

 public wed: boolean,

 public thu: boolean,

37

 public fri: boolean,

 public sat: boolean,

 public sun: boolean,

) { }

}

Code Snippet 2. Combo class declaration

The list of combos is loaded in the combo service from Firebase:

 private _combos = new BehaviorSubject<Combo[]>([]);

 constructor(private db: AngularFireDatabase) { }

 get combos() {

 this.db.list<Combo>(`combos`).snapshotChanges().sub-

scribe(res => {

 const comboList = [];

 res.forEach(item => {

 const combo = item.payload.toJSON();

 const id = item.key;

 comboList.push({...combo, id});

 });

 this._combos.next(comboList);

 });

 return this._combos.asObservable();

 }

Code Snippet 3. Function to load combos from Firebase

Then, combos can be loaded from this service and display with the template:

<ion-slides [options]="slideOpts" class="tab1-slides">

 <ion-slide *ngFor="let combo of loadedCombos">

 <ion-card>

 <ion-button

 fill="clear"

 color="light"

 class="fav-button"

 (click)="onAddingFavCombo(combo.id, combo.ti-

tle, combo.imgUrl)"

 >

 <ion-icon name="heart-outline"></ion-icon>

 </ion-button >

 <ion-card-header

 [routerLink]="[

 '/',

 'tabs',

 'tab1',

 'combo-detail',

 combo.id

]"

 >

 <ion-card-title class="combo-title"> {{ combo.ti-

tle }}</ion-card-title>

 <ion-card-subtitle>

 <ionic5-star-rating #rating

 activeIcon = "star"

 defaultIcon = "star-outline"

 activeColor = "#ffce73"

 defaultColor = "#cdd1d5"

 readonly="false"

 rating="{{combo.rate}}"

 fontSize="13px"

 >

 </ionic5-star-rating>

 {{ combo.rate }} / 5

 </ion-card-subtitle>

 </ion-card-header>

 </ion-card>

 </ion-slide>

 </ion-slides>

Code Snippet 4. Template to display a list of combos

The detail of each combo also needs to be shown clearly and accessed easily. There-

fore, whenever the user clicks on a combo in the combo list, the application has to

find the right combo from combo list:

 getCombo(id: string) {

 return this.combos.pipe(

 take(1),

 map(combos => {

 return {...combos.find(c => c.id === id)};

 })

39

);

 }

Code Snippet 5. Find a combo with ID

Then, it will display detail of the selected combo: starting destination, travel desti-

nation, services, prices, etc. as well as the button to book the combo with the An-

gular template:

<ion-header>

 <ion-toolbar class="ion-color" style.back-

ground="'url(' + combo.imgUrl + ')'" >

 <ion-buttons>

 <ion-back-button icon="arrow-back-out-

line" slot="start" text=""></ion-back-button>

 </ion-buttons>

 <ion-img [src]="combo.imgUrl"></ion-img>

 </ion-toolbar>

</ion-header>

<ion-content padding>

 <ion-grid>

 <ion-row>

 <ion-col size="3">

 <ionic5-star-rating #rating

 activeIcon = "star"

 defaultIcon = "star-outline"

 activeColor = "#ffce73"

 defaultColor = "#cdd1d5"

 readonly="false"

 rating="{{combo.rate}}"

 fontSize="13px"

 >

 </ionic5-star-rating>

 </ion-col>

 <ion-col>

 {{ combo.rate }} / 5

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col>

 <ion-label color="dark"> {{ combo.title }}</ion-label>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col>

 <ion-label>

 <ion-icon name="time-outline"></ion-icon>

 {{ availableDay }}

 </ion-label>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col>

 <ion-label color="dark">

 <ion-icon name="pin-outline"></ion-icon>

 {{ combo.travelDest }}

 </ion-label>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col>

 <ion-label color="dark">

 <ion-icon name="airplane-outline"></ion-icon>

 {{ from }} {{ combo.startDest }}

 </ion-label>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col size=6 *ngIf="combo.wifi">

 <ion-icon name="wifi-outline"></ion-icon>

 <ion-label> {{ freeWifiTitle }} </ion-label>

 </ion-col>

 <ion-col size=6 *ngIf="combo.hotelRating && combo.hotelRat-

ing > 0">

 <ion-icon name="bed-outline"></ion-icon>

 <ion-label> {{ hotelTitle }} {{ combo.hotelRat-

ing }} {{ starTitle }}</ion-label>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col size=6 *ngIf="combo.breakfast">

 <ion-icon name="fast-food-outline"></ion-icon>

 <ion-label> {{ breakfastTitle }} </ion-label>

 </ion-col>

41

 <ion-col size=6 *ngIf="combo.taxi">

 <ion-icon name="bus-outline"></ion-icon>

 <ion-label> {{ taxiTitle }} </ion-label>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col>

 <ion-label color="dark"> {{ introTitle }} </ion-label>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col>

 <ion-text color="dark">

 <h3 class="combo-description">

 {{ combo.description }}

 </h3>

 </ion-text>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col>

 <ion-label color="dark"> {{ offerTitle }} </ion-label>

 </ion-col>

 </ion-row>

 </ion-grid>

</ion-content>

 <ion-toolbar>

 <ion-grid>

 <ion-row>

 <ion-col size="6" class="ion-text-center">

 <ion-label color="primary">{{ combo.price }}đ</ion-label>

 </ion-col>

 <ion-col size="6">

 <ion-button color="primary" ex-

pand="block" (click)="onBookCombo()">

 {{ bookButtonTitle }}

 </ion-button>

 </ion-col>

 </ion-row>

 </ion-grid>

 </ion-toolbar>

Code Snippet 6. Template to display details of a specific combo

6.2 Travel Articles

The travel articles are some of popular articles about travelling. They are declared

with the Article class, which contains information about article title, article image

and article description.

export class Article {

 constructor(

 public id: string,

 public title: string,

 public imgUrl: string,

 public content: string,

) { }

 }

Code Snippet 7. Article class declaration

The list of articles then can be loaded in the article service from Firebase to a Be-

haviorSubject class:

 private _articles = new BehaviorSubject<Article[]>([]);

 constructor(private db: AngularFireDatabase) { }

 get articles() {

 this.db.list<Article>(`articles`).snapshotChanges().sub-

scribe(res => {

 const articleList = [];

 res.forEach(item => {

 const article = item.payload.toJSON();

 const id = item.key;

 articleList.push({...article, id});

 });

 this._articles.next(articleList);

 });

 return this._articles.asObservable();

 }

Code Snippet 8. Function to load articles from Firebase

The list of articles can be presented with the template:

43

 <ion-slides [options]="slideOpts">

 <ion-slide *ngFor="let article of loadedArticles">

 <ion-card

 [routerLink]="[

 '/',

 'tabs',

 'tab1',

 'article-detail',

 article.id

]">

 <ion-card-header text-wrap>

 <ion-card-title class="article-title"> {{ arti-

cle.title }}</ion-card-title>

 </ion-card-header>

 </ion-card>

 </ion-slide>

 </ion-slides>

Code Snippet 9. Template to display a list of articles

When the user clicks on an article, the application should also display the details of

that article:

<ion-header>

 <ion-toolbar class="ion-color" style.background="'url(' + arti-

cle.imgUrl + ')'" >

 <ion-buttons>

 <ion-back-button icon="arrow-back-outline" slot="start"></ion-

back-button>

 </ion-buttons>

 <ion-img [src]="article.imgUrl"></ion-img>

 <ion-label class="ion-text-center"> {{ article.title }}</ion-

label>

 </ion-toolbar>

</ion-header>

<ion-content>

 <ion-grid>

 <ion-row>

 <ion-col>

 <ion-text> {{ article.content }}</ion-text>

 </ion-col>

 </ion-row>

 </ion-grid>

</ion-content>

Code Snippet 10. Template to display detail of an article

6.3 Favorite Travel Combos

The user can save their favorite travel combos to access it quickly later. The stored

data is declared in FavCombo class, which saves the ID of the travel combo. Due

to recommendation of Firebase about data structure, the title and images URL are

also saved to the database. /12/

export class FavCombo {

 constructor(

 public id: string,

 public comboId: string,

 public title: string,

 public imgUrl: string,

) { }

 }

Code Snippet 11. FavCombo class declaration

The FavCombosService is implemented to load favorite combos, add new favorite

combos, and remove favorite combos in Firebase Realtime Database.

import { Injectable } from '@angular/core';

import { FavCombo } from './favCombo.model';

import { BehaviorSubject } from 'rxjs';

import { AuthService } from '../auth/auth.service';

import { AngularFireDatabase, AngularFireList, AngularFireOb-

ject } from '@angular/fire/database';

import { take, switchMap, map, tap } from 'rxjs/operators';

@Injectable({

 providedIn: 'root'

})

export class FavCombosService {

 favComboListRef: AngularFireList<any>;

 favComboRef: AngularFireObject<any>;

45

 private _favCombos = new BehaviorSubject<FavCombo[]>([]);

 constructor(

 private authService: AuthService,

 private db: AngularFireDatabase,

) { }

 get favCombos() {

 return this._favCombos.asObservable();

 }

 fetchFavCombos() {

 return this.authService.userId.pipe(

 switchMap(uid => {

 if (!uid) {

 throw new Error('User not found!');

 }

 return this.db.list<FavCombo>(`users/${uid}/favcom-

bos`).snapshotChanges();

 }),

 map(res => {

 const favComboList = [];

 res.forEach(item => {

 const combo = item.payload.toJSON();

 const id = item.key;

 favComboList.push({...combo, id});

 });

 return favComboList;

 }),

 tap(favComboList => {

 this._favCombos.next(favComboList);

 })

);

 }

 public addFavCombo(comboId: string, comboTitle: string, comboIm-

gUrl: string) {

 let newFavCombo: FavCombo;

 let generatedId: string;

 return this.authService.userId.pipe(

 take(1),

 switchMap(uid => {

 console.log(uid);

 if (!uid) {

 throw new Error('No user id found!');

 }

 newFavCombo = new FavCombo(Math.random().toString(), com-

boId, comboTitle, comboImgUrl);

 console.log(newFavCombo);

 this.favComboListRef = this.db.list(`users/${uid}/favcom-

bos`);

 return this.favComboListRef.push({...new-

FavCombo, id: null});

 }),

 switchMap(resData => {

 console.log(resData);

 generatedId = resData.key;

 return this.favCombos;

 }),

 take(1),

 tap(favCombos => {

 newFavCombo.id = generatedId;

 this._favCombos.next(favCombos.concat(newFavCombo));

 })

);

 }

 public removeFavCombo(favId: string) {

 this.authService.userId.pipe(take(1)).subscribe(uid => {

 if (!uid) {

 throw new Error('No user id found!');

 }

 this.favComboRef = this.db.object(`users/${uid}/favcom-

bos/${favId}`);

 this.favComboRef.remove();

 });

 }

}

Code Snippet 12. Favourite combo service

These above functions are applied to the Angular template to represent all favorite

combos for the user. If there are no favorite combo, it should notice the users and

show them the link to navigate back to the home page. Otherwise, it should display

all favorite combos and the heart button to remove a specific combo from this list.

47

<ion-content>

 <ion-grid>

 <div *ngIf="!loadedFavCombos || loadedFavCombos.length <= 0">

 <ion-row>

 <ion-col size="6" offset="3">

 <ion-label>{{ noFavNotice }}</ion-label>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col size="10" offset="1">

 <ion-button

 expand="block"

 color="primary"

 [routerLink]="[

 '/',

 'tabs',

 'tab1'

]"

 >

 {{ discover }}

 </ion-button>

 </ion-col>

 </ion-row>

 </div>

 <div *ngIf="loadedFavCombos && loadedFavCombos.length > 0">

 <ion-row *ngFor="let combo of dummyArray; index as i">

 <ion-col size=4>

 <ion-card>

 <ion-button

 fill="clear"

 color="light"

 class="fav-button"

 (click)="onRemoveFavCombo(loadedFavCombos[i*2].id)"

 >

 <ion-icon name="heart" color="danger"></ion-icon>

 </ion-button>

 <ion-card-header

 [routerLink]="[

 '/',

 'tabs',

 'tab1',

 'combo-detail',

 loadedFavCombos[i*2].comboId

]"

 >

 <ion-card-title> {{ loadedFavCombos[i*2].ti-

tle }}</ion-card-title>

 </ion-card-header>

 </ion-card>

 </ion-col>

 <ion-col size=4 offset=2 *ngIf="loadedFavCombos[i*2+1]">

 <ion-card>

 <ion-button

 fill="clear"

 color="light"

 class="fav-button"

 (click)="onRemoveFavCombo(loadedFavCombos[i*2+1].id)"

 >

 <ion-icon name="heart" color="danger"></ion-icon>

 </ion-button>

 <ion-card-header

 [routerLink]="[

 '/',

 'tabs',

 'tab1',

 'combo-detail',

 loadedFavCombos[i*2+1].comboId

]"

 >

 <ion-card-title> {{ loadedFavCombos[i*2+1].ti-

tle }}</ion-card-title>

 </ion-card-header>

 </ion-card>

 </ion-col>

 </ion-row>

 </div>

 </ion-grid>

</ion-content>

Code Snippet 13. Template to display favourite combos

49

6.4 Ticket

Ticket contains information about the booked trip for a user including combo ID,

customer name, phone number, email, and note. Due to recommendation of Fire-

base about data structure, the combo information, for example, combo title or image

URLs is also stored with ticket in the database.

export class Ticket {

 constructor(

 public id: string,

 public comboId: string,

 public title: string,

 public imgUrl: string,

 public rate: number,

 public startDest: string,

 public name: string,

 public phoneNumber: string,

 public email: string,

 public note: string,

 public coupon: string,

 public startDate: number,

 public numTickets: number,

) {

 }

}

Code Snippet 14. Ticket class declaration

The ticket service uses this Ticket class to load all tickets for the user and adds a

new ticket after the user has purchased a combo to Firebase Realtime Database.

import { Injectable } from '@angular/core';

import { Ticket } from './ticket.model';

import { AuthService } from '../auth/auth.service';

import { AngularFireDatabase, AngularFireList } from '@angu-

lar/fire/database';

import * as moment from 'moment';

import { BehaviorSubject } from 'rxjs';

import { take, switchMap, map, tap } from 'rxjs/operators';

@Injectable({

 providedIn: 'root'

})

export class TicketService {

 private _ticket = new BehaviorSubject<Ticket[]>([]);

 ticketListRef: AngularFireList<any>;

 constructor(

 private authService: AuthService,

 private db: AngularFireDatabase,

) { }

 get tickets() {

 return this._ticket.asObservable();

 }

 fetchTickets() {

 return this.authService.userId.pipe(

 switchMap(uid => {

 if (!uid) {

 throw new Error('User not found!');

 }

 console.log(uid);

 this.ticketListRef = this.db.list<Ticket>(`us-

ers/${uid}/tickets`);

 return this.ticketListRef.snapshotChanges();

 }),

 map(res => {

 const ticketList = [];

 res.forEach(item => {

 const combo = item.payload.toJSON();

 const id = item.key;

 ticketList.push({...combo, id});

 });

 return ticketList;

 }),

 tap(ticketList => {

 console.log(ticketList);

 this._ticket.next(ticketList);

 })

);

 }

 public addTicket(

 comboId: string,

51

 title: string,

 imgUrl: string,

 rate: number,

 startDest: string,

 name: string,

 phoneNumber: string,

 email: string,

 note: string,

 coupon: string,

 startDate: Date,

 numTickets: number,

) {

 const newTicket = new Ticket(

 Math.random().toString(),

 comboId,

 title,

 imgUrl,

 rate,

 startDest,

 name,

 phoneNumber,

 email,

 note,

 coupon,

 moment(startDate).unix(),

 numTickets

);

 this.authService.userId.pipe(take(1)).subscribe(uid => {

 this.ticketListRef = this.db.list(`users/${uid}/tickets`);

 this.ticketListRef.push({...newTicket, id: null});

 });

 return this.ticketListRef.valueChanges();

 }

}

Code Snippet 15. Ticket service to load and add tickets

The template uses theses function to show all tickets of the user.

<ion-content padding>

 <ion-grid>

 <div *ngIf="!loadedTickets || loadedTickets.length <= 0">

 <ion-row>

 <ion-col size="6" offset="3">

 <ion-label>{{ noTicketNotice }}</ion-label>

 </ion-col>

 </ion-row>

 <ion-row>

 <ion-col size="10" offset="1">

 <ion-button

 expand="block"

 color="primary"

 [routerLink]="[

 '/',

 'tabs',

 'tab1'

]"

 >

 {{ discover }}

 </ion-button>

 </ion-col>

 </ion-row>

 </div>

 <div *ngIf="loadedTickets && loadedTickets.length > 0">

 <ion-row *ngFor="let ticket of loadedTickets">

 <ion-col>

 <ion-card

 button="true"

 [routerLink]="[

 '/',

 'tabs',

 'tab1',

 'combo-detail',

 ticket.comboId

]"

 >

 <ion-card-header>

 <ion-card-subtitle>

 <ionic5-star-rating #rating

 activeIcon = "star"

 defaultIcon = "star-outline"

 activeColor = "#ffce73"

 defaultColor = "#cdd1d5"

 readonly="false"

 rating="{{ticket.rate}}"

 fontSize="13px"

 >

53

 </ionic5-star-rating>

 {{ ticket.rate }} / 5

 </ion-card-subtitle>

 <ion-card-title> {{ ticket.title }}</ion-card-title>

 <ion-card-subtitle>

 <ion-icon name="time-outline" color="primary"></ion-

icon>

 {{ ticket.startDate * 1000 | date:'dd/MM/yyyy' }}

 </ion-card-subtitle>

 <ion-card-subtitle>

 <ion-icon name="airplane-outline" color="pri-

mary"></ion-icon>

 {{ from }} {{ ticket.startDest }}

 </ion-card-subtitle>

 <ion-card-subtitle>

 <ion-icon name="pricetags-outline" color="pri-

mary"></ion-icon>

 {{ ticket.numTickets }} {{ ticketUnit }}

 </ion-card-subtitle>

 <ion-button

 expand="full"

 shape="round"

 class="ion-text-center">

 {{ appliedMessage }}

 </ion-button>

 </ion-card-header>

 </ion-card>

 </ion-col>

 </ion-row>

 </div>

 </ion-grid>

</ion-content>

Code Snippet 16. Template for tickets page

The adding ticket function is used after the user has booked a combo to add a new

ticket to the ticket list.

6.5 Booking Form

The booking form appears when the user clicks on the book button on the combo

detail page. There are three steps to book a travel combo: choosing a departure date,

input personal information to book and payment.

6.5.1 Choosing a Departure Date

Although Ionic provides developers with ion-cal component as their default calen-

dar component, in this project ion2-calendar package at

https://www.npmjs.com/package/ion2-calendar will be used. Ion2-calendar has

better support for UI implementation with a lot of customization for the application.

6.5.2 Input Customer Information

In this section, the application just displays a normal form for the user to input their

personal information, for example name, phone number and email to book the travel

combo.

6.6 Payment

In the application, PayPal is chosen as a payment method because it supports both

pay with PayPal and pay with debit/credit card.

Actually, the native plugins for Ionic also support PayPal payment method at

https://ionicframework.com/docs/native/paypal. However, the plugin is based on

old API from PayPal. Ionic is also based on Angular architecture, therefore, Angu-

lar PayPal library can be applied in the application. The ngx-paypal library at

https://www.npmjs.com/package/ngx-paypal seems to be the most suitable for the

application. This library is compatible with all platform, while the native plugin is

only compatible with mobile device. Besides, the ngx-paypal library is imple-

mented using newest API and UI from PayPal, thereby bringing better user experi-

ence.

Firstly, a Client ID is required to use PayPal API for payment. By visiting PayPal

developer website at https://developer.paypal.com/ a new application can be cre-

ated. It will be created with a new Client ID.

Then, the package will be installed with npm:

https://www.npmjs.com/package/ion2-calendar
https://ionicframework.com/docs/native/paypal
https://www.npmjs.com/package/ngx-paypal
https://developer.paypal.com/

55

npm install ngx-paypal –save

Then, NgxPayPalModule is imported to the payment page and the ngx-paypal com-

ponent is configured according to the application requirement and the client ID.

 this.payPalConfig = {

 currency: 'USD',

 clientId: sandBoxClientId,

 // tslint:disable-next-line: no-angle-bracket-type-assertion

 createOrderOnClient: (data) => <ICreateOrderRequest> {

 intent: 'CAPTURE',

 purchase_units: [

 {

 amount: {

 currency_code: 'USD',

 value: totalPrice.toFixed(2),

 breakdown: {

 item_total: {

 currency_code: 'USD',

 value: totalPrice.toFixed(2)

 },

 discount: {

 currency_code: 'USD',

 value: discount.toFixed(2)

 }

 }

 },

 items: [

 {

 name: 'Travel combo',

 quantity: this.quantity.toString(),

 category: 'DIGITAL_GOODS',

 unit_amount: {

 currency_code: 'USD',

 value: itemPrice.toFixed(2),

 },

 }

]

 }

]

 },

 advanced: {

 commit: 'true'

 },

 style: {

 label: 'paypal',

 layout: 'vertical'

 },

 onApprove: (data, actions) => {

 actions.order.get().then((details: any) => {

 console.log('onApprove - you can get full order de-

tails inside onApprove: ', details);

 });

 },

 onClientAuthorization: () => {

 this.onBookCombo();

 },

 onCancel: () => {

 this.presentAlert(this.failMessage, this.errorMessage);

 },

 onError: err => {

 this.presentAlert(this.failMessage, err);

 },

 };

Code Snippet 17. PayPal payment config

The configuration is about order details such as total price, unit price, quantity. It

also allows developers to control what will happen when the order is approved,

authorized, or canceled. Compared to using JavaScript API from PayPal, this pack-

age helps developers to save a lot of time as well as write a well readable code.

Then, this configuration is applied to the ngx-paypal component in the template.

The button will be displayed as follows:

Figure 16. Pay with PayPal buttons

57

6.7 Facebook Login

Due to most people in Vietnam having a Facebook account, creating a new user

account, and logging in with Facebook will be the most suitable method for the

application.

First, Firebase needs to know that the authentication method is Facebook Login.

Move to the Authentication tabs in the Firebase console, choose sign-in method and

enable login with Facebook.

Figure 17. Facebook login with Firebase

To get the app ID and app secret, creating a new Facebook app is required. It also

allows developers to access the user Facebook account. A Facebook developer ac-

count at https://developers.facebook.com/ is required for doing that. Then, use that

Facebook developer account to create a new project. Facebook will provide devel-

opers a new app ID and app secret with that project. Then, the Facebook Login

configurations have to be completed for both iOS and Android.

After filling all setting for the application, move to the setting page for Facebook

Login product and add OAuth redirect URI of Firebase to the configuration.

https://developers.facebook.com/

Figure 18. Facebook login OAuth Redirect URIs

6.8 Authentication and Security in the Application

For the best user experience, the application should login the user with the native

Facebook application on their mobile devices. The Facebook connect plugin at

https://ionicframework.com/docs/native/facebook will be used to access that native

Facebook application.

In the source code folder, type:

ionic cordova plugin add cordova-plugin-facebook4 --variable APP_ID="APP_ID"

--variable APP_NAME="myApplication"

to install the Facebook connect plugin to the application.

Then, add Facebook to the providers in the app module declaration file. Now, the

plugin is ready to use. Firstly, the application needs to authenticate the user with

Facebook, and send the received credential token to the Firebase authentication to

authenticate the user with Firebase.

 async nativeFacebookAuth() {

 return this.fb.login(['email']).then((response: FacebookLoginRe-

sponse) => {

 if (response.authResponse) {

https://ionicframework.com/docs/native/facebook

59

 // Build Firebase credential with the Facebook auth token.

 const credential = firebase.auth.FacebookAuthProvider.cre-

dential(

 response.authResponse.accessToken

);

 // Sign in with the credential from the Facebook user.

 firebase

 .auth()

 .signInWithCredential(credential)

 .then((result) => {

 this.setCurrentUser(

 result.user.uid,

 result.user.email,

 result.user.displayName,

 result.user.photoURL,

);

 })

 .catch(error => {

 this.presentAlert(this.errorTitle, this.errorMessage);

 });

 } else {

 // User is signed-out of Facebook.

 firebase.auth().signOut();

 }

 }).catch(err => {

 this.presentAlert(this.errorTitle, this.errorMessage);

 });

 }

Code Snippet 18. Login with Facebook and Firebase implementation

To make sure the user cannot access application without login, Angular provides

the Route Guards, which are the interface to decide whether the user can access a

particular route. For this application, the authentication guard will check the user’s

data with the Firebase Authentication API. If the user has not logged in, the appli-

cation will navigate the user to the authentication page. Otherwise, the application

will set up him as the current user. This implementation also makes sure that the

current user is not required to authenticate again after leaving the application,

thereby provides a better user experience on a smartphone.

 import { Injectable } from '@angular/core';

import { UrlTree, Router, CanActivate } from '@angular/router';

import { Observable, of } from 'rxjs';

import { AuthService } from './auth.service';

import '@firebase/auth';

import firebase from '@firebase/app';

@Injectable({

 providedIn: 'root'

})

export class AuthGuard implements CanActivate {

 constructor(private authService: AuthService, pri-

vate router: Router) {}

 canActivate(): Observable<boolean | UrlTree> | Promise<bool-

ean | UrlTree> | boolean | UrlTree {

 return new Promise((resolve, reject) => {

 firebase.auth().onAuthStateChanged((user: firebase.User) => {

 if (user) {

 this.authService.setCurren-

tUser(user.uid, user.email, user.displayName, user.photoURL);

 resolve(true);

 } else {

 this.router.navigateByUrl('/auth');

 resolve(false);

 }

 });

 });

 }

}

Code Snippet 19. Authentication guard

6.9 User Account

The template to display current user account information:

<ion-header>

 <ion-toolbar>

 <ion-back-button icon="arrow-back-out-

line" slot="start" text=""></ion-back-button>

 <ion-title class="ion-text-center"> {{ info }} </ion-title>

61

 </ion-toolbar>

</ion-header>

<ion-content>

 <ion-list>

 <ion-item>

 <ion-avatar slot="start">

 </ion-avatar>

 <ion-label>

 <h2> {{ currentUser.name }}</h2>

 <p>{{ currentUser.email }}</p>

 </ion-label>

 </ion-item>

 <ion-item>

 <ion-label>

 <ion-text color="primary">*</ion-text>

 <ion-text> {{ customerNameField }}</ion-text>

 </ion-label>

 <ion-input value={{currentUser.name}} [(ngModel)]="curren-

tUser.name" type="text" (ionBlur)="updateName()"></ion-input>

 </ion-item>

 <ion-item>

 <ion-label>

 <ion-text>+84</ion-text>

 </ion-label>

 <ion-input value={{currentUser.phoneNumber}} type="tel" input-

mode="numeric" [(ngModel)]="currentUser.phoneNumber" (ionBlur)="up-

datePhoneNumber()"></ion-input>

 </ion-item>

 <ion-item>

 <ion-label>

 <ion-text color="primary">*</ion-text>

 <ion-text>Email</ion-text>

 </ion-label>

 <ion-label text-wrap>

 {{ currentUser.email }}

 </ion-label>

 </ion-item>

 </ion-list>

</ion-content>

Code Snippet 20. Template to display user account information

6.10 Search for Travel Combos

The application also allows users to search for travel combo by their travel destina-

tion. When the user clicks on the search bar, the application will navigate to the

search page, then allow the user to input data in there.

After receiving search input from the user, the search page will call combo services

to handle the input.

 findCombo(travelDest: string) {

 return this.combos.pipe(

 take(1),

 map(combos => {

 return combos.filter(

 c => this.changeAlias(c.travelDest).toLowerCase().in-

cludes(this.changeAlias(travelDest).toLowerCase())

);

 })

);

 }

 private changeAlias(input: string) {

 // Convert special Vietnamese character to English character

 let str = input;

 str = str.toLowerCase();

 str = str.replace(/à|á|ạ|ả|ã|â|ầ|ấ|ậ|ẩ|ẫ|ă|ằ|ắ|ặ|ẳ|ẵ/g, 'a');

 str = str.replace(/è|é|ẹ|ẻ|ẽ|ê|ề|ế|ệ|ể|ễ/g, 'e');

 str = str.replace(/ì|í|ị|ỉ|ĩ/g, 'i');

 str = str.replace(/ò|ó|ọ|ỏ|õ|ô|ồ|ố|ộ|ổ|ỗ|ơ|ờ|ớ|ợ|ở|ỡ/g, 'o');

 str = str.replace(/ù|ú|ụ|ủ|ũ|ư|ừ|ứ|ự|ử|ữ/g, 'u');

 str = str.replace(/ỳ|ý|ỵ|ỷ|ỹ/g, 'y');

 str = str.replace(/đ/g, 'd');

 str = str.re-

place(/!|@|%|\^|*|\(|\)|\+|\=|\<|\>|\?|\/|,|\.|\:|\;|\'|\"|\&|\#|\[

|\]|~|\$|_|`|-|{|}|\||\\/g, ' ');

 str = str.replace(/ + /g, ' ');

 str = str.trim();

 return str;

63

 }

Code Snippet 21. Find combos by travel destination

Due to the characteristic of Vietnamese, the application firstly needs to normalize

it to English and then find the suitable travel combo for the user. This problem can

be easily solved with regex. After that, it will return the matched combos to the

search page.

 ngOnInit() {

 this.loadingCtrl.create({

 message: this.waitMessage

 })

 .then(loadingEl => {

 loadingEl.present();

 this.combosSub = this.comboService.combos.subscribe(com-

bos => {

 this.allCombos = combos;

 });

 this.loadedCombos = this.allCombos;

 loadingEl.dismiss();

 });

 }

 search() {

 if (!this.searchInput || this.searchInput === '') {

 this.loadedCombos = this.allCombos;

 } else {

 this.comboService.findCombo(this.searchInput).subscribe(com-

bos => {

 this.loadedCombos = combos;

 });

 }

 }

Code Snippet 22. Search page implementation

Then, display them with Angular template:

<ion-header padding [translucent]="true">

 <ion-toolbar>

 <ion-buttons>

 <ion-button fill=clear color=dark (click)="closeModal()">

 <ion-icon name="arrow-back-outline"></ion-icon>

 </ion-button>

 <ion-input

 [(ngModel)]="searchInput"

 debounce=1000

 placeholder="{{ searchMessage }}"

 (ionChange)=search()

 >

 </ion-input>

 </ion-buttons>

 </ion-toolbar>

</ion-header>

<ion-content>

 <ion-list>

 <ion-item-sliding *ngFor="let combo of loadedCombos">

 <ion-item>

 <ion-card>

 <ion-button

 fill="clear"

 color="light"

 class="fav-button"

 (click)="onAddingFavCombo(combo.id, combo.ti-

tle, combo.imgUrl)"

 >

 <ion-icon name="heart-outline"></ion-icon>

 </ion-button >

 <ion-card-header>

 <ion-card-subtitle>

 <ionic5-star-rating #rating

 activeIcon = "star"

 defaultIcon = "star-outline"

 activeColor = "#ffce73"

 defaultColor = "#cdd1d5"

 readonly="false"

 rating="{{combo.rate}}"

 fontSize="13px"

 >

 </ionic5-star-rating>

 {{ combo.rate }} / 5

 </ion-card-subtitle>

 <ion-card-title class="combo-title">

65

 {{ combo.title }}

 <ion-grid>

 <ion-row>

 <ion-item *ngIf="combo.breakfast" class="border">

 {{ breakfastTitle }}

 </ion-item>

 <ion-item *ngIf="combo.hotelRating" class="bor-

der">

 {{ hotelTitle }} {{ combo.hotelRat-

ing }} {{ starTitle }}

 </ion-item>

 <ion-item *ngIf="combo.taxi" class="border">

 {{ taxiTitle }}

 </ion-item>

 <ion-item *ngIf="combo.wifi" class="border">

 {{ freeWifiTitle }}

 </ion-item>

 </ion-row>

 <ion-row>

 <ion-col size=6>

 <ion-label color="primary" style="padding-

top: 12px;">

 <h3>{{ combo.price }}đ/{{personTitle}}</h3>

 </ion-label>

 </ion-col>

 <ion-col size=6>

 <ion-button class="book-button" color="pri-

mary" expand="block" (click)="onBookingCombo(combo.id)">

 {{ bookButtonTitle }}

 </ion-button>

 </ion-col>

 </ion-row>

 </ion-grid>

 </ion-card-title>

 </ion-card-header>

 </ion-card>

 </ion-item>

 </ion-item-sliding>

 </ion-list>

</ion-content>

Code Snippet 23. Search page template

6.11 Firebase Database

The Firebase Realtime Database with three main keys to store data of this applica-

tion:

Figure 19. Firebase Realtime Database main keys

6.11.1 Articles database

Figure 20. Articles data in Firebase

The articles key stores all data about travel articles in the application. Each article

entry has a unique ID as key, and the value includes three fields: title, content, and

image URL.

"articles" : {

 "id" : {

 "content" : string

 "imgUrl" : string

 "title": string

67

 }

}

Code Snippet 24. Article data in JSON tree

6.11.2 Combos database

Figure 21. Combos data in Firebase

The articles key stores all data about travel combos offered in the application. Each

combo entry has a unique ID as key, and the value includes the necessary infor-

mation about the combo. In addition, due to the requirement about available day of

travel combos, their value needs to be stored by days in week. These values can

also be updated later in order to add more functionality to the application.

 "combos" : {

 "id" : {

 "availableWeek" : {

 "fri" : boolean,

 "mon" : boolean,

 "sat" : boolean,

 "sun" : boolean,

 "thu" : boolean,

 "tue" : boolean,

 "wed" : boolean

 },

 "breakfast" : boolean,

 "coupon" : {

 "test" : number

 },

 "description" : string,

 "discount" : number,

 "hotelRating" : number,

 "imgUrl" : string,

 "price" : number,

 "rate" : number,

 "startDest" : string,

 "taxi" : boolean,

 "title" : string,

 "travelDest" : string,

 "wifi" : boolean

 },

Code Snippet 25. Combo data in JSON tree

6.11.3 Users database

Figure 22. User data summary in Firebase

The articles key stores all data about user activities in the application. Each combo

entry has a unique ID as key, and the value includes the information of the user,

69

such as their favourite combos, their profiles, and their booking tickets. Firebase

automatically encrypts data in transit using HTTPS and logically isolates user data.

 "id" : {

 "favcombos" : {

 "favComboid" : {

 "comboId" : string,

 "imgUrl" : string,

 "title" : string

 },

 "id" : {

 …

 },

 },

 "profile" : {

 "phoneNumber" : string

 },

 "tickets" : {

 "id" : {

 "comboId" : string,

 "coupon" : string,

 "email" : string,

 "imgUrl" : string,

 "name" : string,

 "note" : string,

 "numTickets" : number,

 "phoneNumber" : string,

 "rate" : number,

 "startDate" : number,

 "startDest" : string,

 "title" : string

 },

 "id" : {

 …

 }

 }

Code Snippet 26. User data in JSON tree

There is a two-way relationship between favourite combos and combos, as well as

between tickets and combos. Some fields in the database, for example, combo title

or combo image URL, are duplicated. However, in this design, the necessary data

is still stored and can be fetched directly from database instead of using complicated

query. The database is designed so as to reduce unnecessary redundancy of two-

way relationships. It allows the user data to be fetched quickly and efficiency, even

when the data scales much larger in the future. Therefore, it is a faster and better

way than querying data in the database.

6.12 Language

In Android development, normally there is a strings.xml file, which allows devel-

opers to store constant string value. That file also helps the developer to translate

their application into other languages easily. However, there is no such file for Ionic

and Angular Framework. Fortunately, there is still an available package named

@ngx-translate/core at https://www.npmjs.com/package/@ngx-trans-

late/core#translateservice to work around language, although it is more complicated

than using strings.xml file.

Firstly, ngx-translate package needs to be installed:

npm i @ngx-translate/core –save

And http-loader package is also required for ngx-translate to function properly:

npm install @ngx-translate/http-loader –save.

To use it, simply import these packages to the main module of application, and add

the Translate Module into providers:

import { TranslateHttpLoader } from '@ngx-translate/http-loader';

import { HttpClientModule, HttpClient } from '@angular/common/http';

import { IonicStorageModule } from '@ionic/storage';

firebase.initializeApp(environment.firebaseConfig);

export function HttpLoaderFactory(http: HttpClient) {

 return new TranslateHttpLoader(http, './assets/i18n/', '.json');

}

https://www.npmjs.com/package/@ngx-translate/core#translateservice
https://www.npmjs.com/package/@ngx-translate/core#translateservice

71

@NgModule({

 declarations: [AppComponent],

 entryComponents: [],

 imports: [

 BrowserModule,

 IonicModule.forRoot(),

 AppRoutingModule,

 AngularFireModule.initializeApp(environment.firebaseConfig),

 AngularFireAuthModule,

 AngularFireDatabaseModule,

 AngularFireStorageModule,

 TranslateModule.forRoot({

 loader: {

 provide: TranslateLoader,

 useFactory: (HttpLoaderFactory),

 deps: [HttpClient]

 }

 }),

 HttpClientModule,

 IonicStorageModule.forRoot(),

],

 providers: [

 Facebook,

 PayPal,

 StatusBar,

 SplashScreen,

 { provide: RouteReuseStrategy, useClass: IonicRouteStrategy }

],

 bootstrap: [AppComponent]

})

export class AppModule {}

Code Snippet 27. Add translate module into app modules file

Normally, this translate module will automatically import the language file, for ex-

ample en.json or vi.json, from /i18n folder. However, there is no such file in Ionic.

Therefore, a language folder has to be set up the at /assets/i18n folder.

Note that the same import is necessary for every page using translate module in the

application. Now, the translate service is ready to be imported to logic files.

 ionViewDidEnter() {

 this._initialiseTranslation();

 }

 _initialiseTranslation(): void {

 this.translateService.onLangChange.subscribe((event: LangChang-

eEvent) => {

 this.articlePart = this.translateService.instant('ARTICLES');

 this.waitMessage = this.translateService.instant('WAIT');

 this.addFavMessage = this.translateService.instant('ADDFAV');

 this.searchMessage = this.translateService.instant('SEARCH');

 });

 this.translateService.get('ARTICLES').sub-

scribe((res: string) => {

 this.articlePart = res;

 });

 this.translateService.get('WAIT').subscribe((res: string) => {

 this.waitMessage = res;

 });

 this.translateService.get('ADDFAV').subscribe((res: string) => {

 this.addFavMessage = res;

 });

 this.translateService.get('SEARCH').subscribe((res: string) => {

 this.searchMessage = res;

 });

 }

Code Snippet 28. Implementation with translate service

The application must call the translate service before rendering page to load data

from language files. It also needs to set a promise to update these loaded data in

case of the user changing application language. These similar codes have to be im-

plemented for every page using the translate service in the application.

In comparison to using string.xml files for storing data in normal Android develop-

ment, this implementation method is much more complicated and results in writing

a lot of duplicated code. Still, it is the best choice for Angular and Ionic developer

right now.

6.13 Testing

Tests were executed to make sure that the application will work as intended.

73

The static testing tool used in the project is TSLint by Microsoft. It is already a

built-in tool of VS Code and is always applied during implementation process.

The smoke tests were the main test performed. These tests made sure that the ap-

plication’s functions are working correctly. Below are some main tests performed:

Test

ID

Test sce-

narios

Description Test step Expected result

1 Valid

login

creden-

tials

Test the login function-

ality of the web applica-

tion to ensure that a user

can login with his Face-

book account

1. Launch the ap-

plication

Application

should get

launched

 2. Click on the

Login with Face-

book button

Facebook Ap-

plication

should be dis-

played and ask

user for per-

missions

 3. Allow the app

to access Face-

book public pro-

file

Login success-

fully. The ap-

plication

should open

the home page.

2 Booking

a combo

tour

Test the booking func-

tion to make sure that a

user can book a travel

combo

1. Click on a spe-

cific combo

Application

should show

the combo de-

tails page

 2. Click on book

button

Application

should show

the form to in-

put information

 3. Click on next

button

Application

should display

the total price

 4. Click on Pay

with PayPal but-

ton

Application

should open

PayPal pay-

ment page

 5. Enter PayPal

sandbox account

and pay

Application

should navi-

gate to the suc-

cess page

 6. Click on the

complete button

Application

should navi-

gate to the

ticket tab. The

ticket should

be available

there.

3 Log out

function

Check log out function-

ality

1. Move to ac-

count tab and

click on log out

The user

should be able

to sign out.

75

The applica-

tion should

navigate to au-

thentication

page

Table 3. Smoke tests

7 DEPLOYING AND PUBLISHING

7.1 Deploying for Debugging the Application

To run quickly for debugging an Ionic application in development, simply move to

the source code folder, open the terminal and type:

ionic serve

The Ionic is based on the Angular architecture, so this command will open the Ionic

application as a web application in the browser served by localhost. Developers can

easily debug it with Chrome Developer Tools. The tools also provide mobile views,

so it is very visible and easy to debug the application in Chrome.

For testing the application on a smartphone, Cordova is used. For example, with

Android, firstly add Android to Cordova platform:

ionic cordova platform add android

Then, Ionic can build an application for Android:

ionic cordova build android

Running on an Android emulator opened:

ionic cordova emulate android

For running the application on a real Android device (connected with computer by

USB connection):

ionic cordova run android --device

77

7.2 Deploying for Publishing the Application

To publish the application on Google Play/Play Store, a developer account is re-

quired in these stores. For example, with Google Play, the developer can register

by paying 25 dollars and verifying ID with Google.

After registering and verification process, developers are able to start uploading the

app to Google Play.

Now, the application bundle must comply with the Google requirements for pub-

lishing an Android application on Google Play. To do that, firstly build and release

version of the Ionic application:

ionic cordova build android --prod --release

A released version in apk file will be built. That unsigned apk file is already enough

to run in an Android device. However, publishing requires a signed app bundle in-

stead of the built apk file.

Now, move to /platforms/android folder and run following command:

gradlew bundle

An unsigned Android app bundle now is created in /platforms/an-

droid/app/build/outputs/bundle/release folder. The default name for it is “app.aab”.

Then, generate the private key file to sign the bundle:

keytool -genkey -v -keystore my-key.keystore -alias alias-name -keyalg RSA -

keysize 2048 -validity 10000

The program requires developers to fill in password and some information. After

it's is done, a file called my-key.keystore is created in current directory. Use this

file to sign the bundle:

jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore app.aab alias-

name

Finally, the final app bundle is ready to release on Google Play.

Navigate to https://play.google.com/apps/publish/ and create a new application. Af-

ter that, some required data will be in the left menu with a checkbox that needs to

be completed:

• Store listing: Title, description, icon, screenshots, application type, catego-

ries, etc.

• Pricing and distribution: Information about app price (free/paid), country to

distribute and legal laws.

• App content: Privacy policy, advertisements, app access and target audience

and content (most questions are about whether this app is for children).

• Content rating: Type of app, categories of app, and purchasing in app.

• App releases: Releasing app in production, beta testing, alpha testing, or

internal testing as well as setting about testers for the application.

At the moment, the application is released under internal testing. The process starts

by specifying testers, then uploading the app bundle under internal testing form and

finishing the review. The application will be set under pending publication. Accord-

ing to Google, after a few hours, the application will be published successfully and

an opt-in link for testing will be available. For production, it required much longer

time, approximately 7 days or longer for Google to review the application.

The application can be updated later by increasing the version value in package.json

file and config.xml file and repeat the release process again.

https://play.google.com/apps/publish/

79

8 CONCLUSIONS

As already stated, the idea for this application is to develop a mobile application

which makes the travel booking process easier and mover convenient. Users can

log in into the application with their Facebook account and control their account.

They can read some travel articles, search for travel combos and add/remove travel

combos in favorites. Most importantly, they are able to book travel combos directly

in the application.

The application was developed with Ionic, Angular and TypeScript. The complex-

ity of JavaScript libraries created many challenges during the development process,

for example, the outdated Ionic PayPal plugins and the deprecated rating compo-

nent. The Ionic ready-made component is also not always suitable with the appli-

cation design and needs a lot of customized style fixing. Besides, while it is quicker

than developing separate native applications for both Android and iOS, a hybrid

framework such as Ionic requires a lot of work to develop and deploy successfully

on mobile devices as well as Google Play/App Store.

Choosing to use Firebase actually is a good point in the development process. It has

great services for both databases and authentication. It reduces the complexity, as

clients are able to access Firebase without servers. It also has great documentation

as well as good support libraries for Ionic and Angular. Therefore, Firebase is prob-

ably the best choice for mobile development.

As for improvement, some test cases should be done to make sure that the applica-

tion will work correctly. The rating component can also be improved with a feed-

back system, so after finishing the trip, users can rate their travel combo.

In conclusion, the thesis objective was completed by creating a well-working mo-

bile application for booking travel easier.

REFERENCES

/1/ Android. 2020. Accessed 2.5.2020. https://en.wikipedia.org/wiki/Android_(operating

system).

/2/ Smartphone Market Share. 2020. Accessed 30.4.2020.

https://www.idc.com/promo/smartphone-market-share/os

/3/ iOS. 2020. Accessed 30.4.2020. https://en.wikipedia.org/wiki/IOS

/4/ Ionic Framework - Ionic Documentation. 2020. Accessed 2.4.2020. https://ion-

icframework.com/docs

/5/ Angular - Introduction to Angular Concept. 2020. Accessed 30.4.2020. https://angu-

lar.io/guide/architecture

/6/ Typescript. 2020. Accessed 20.4.2020. https://en.wikipedia.org/wiki/TypeScript

/7/ Firebase. 2020. Accessed 13.4.2020. https://en.wikipedia.org/wiki/Firebase

/8/ Firebase Realtime Database. 2020. Accessed 2.5.2020. https://fire-

base.google.com/docs/database

/9/ Firebase Authentication. 2020. Accessed 2.5.2020. https://fire-

base.google.com/docs/auth

/10/ Overview - Facebook Login. 2020. Accessed 2.5.2020. https://developers.face-

book.com/docs/facebook-login/overview

/11/ Architecture overview of Cordova platform - Apache Cordova. 2020. Accessed

2.5.2020. https://cordova.apache.org/docs/en/latest/guide/overview/index.html

/12/ Structure Your Database | Firebase Realtime Database. 2020. Accessed 2.5.2020.

https://firebase.google.com/docs/database/admin/structure-data

https://en.wikipedia.org/wiki/Android_(operating%20system)
https://en.wikipedia.org/wiki/Android_(operating%20system)
https://www.idc.com/promo/smartphone-market-share/os
https://en.wikipedia.org/wiki/IOS
https://ionicframework.com/docs
https://ionicframework.com/docs
https://angular.io/guide/architecture
https://angular.io/guide/architecture
https://en.wikipedia.org/wiki/TypeScript
https://en.wikipedia.org/wiki/Firebase
https://firebase.google.com/docs/database
https://firebase.google.com/docs/database
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/auth
https://developers.facebook.com/docs/facebook-login/overview
https://developers.facebook.com/docs/facebook-login/overview
https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://firebase.google.com/docs/database/admin/structure-data

