

Automated Jira Data Analysis for Optimised
Project Supervision and Delay Detection

Johannes Koop

2020 Laurea

Laurea University of Applied Sciences

Automated Jira Data Analysis for Optimised Project Supervision
and Delay Detection

 Johannes Koop
 Business Information Technology
 Bachelor’s Thesis
 June 20, 2020

Laurea University of Applied Sciences
Degree Programme in Business Information Technology
Bachelor of Business Administration

Abstract

Johannes Koop

Automated Jira Data Analysis for Optimised Project Supervision and Delay Detection

2020 Pages 67

CAS Software AG is a mid-sized Software company in Karlsruhe, Germany. They use Atlas-
sian’s Jira Project Management Tool to organise and monitor customer projects.

During a 5-month internship at CAS Software, I was able to analyse the management and de-
veloper side of a software development project using Jira.

Currently, Project Managers need to analyse data manually to successfully reallocate re-
sources, optimise cost-profit-ratio or organise developer teams within a project. Investigating
the delayed issues requires downloading of Jira Tempo reports and manual data entry in Ex-
cel tables. Therefore, this task is often neglected for its extensive effort.

The objective of this thesis project was to provide a solution to support Project Managers at
CAS in supervising projects with the support of a Jira-ticket monitoring tool.

Interviews and surveys were chosen as methods to evaluate the underlying problem for ticket
delays and current procedures. The so-called “TimeTrackingTool” is an already existing CAS-
internal application that supports project controlling procedures by providing accumulative
reports of Jira worklogs.

In the scope of the thesis project the TimeTrackingTool was extended by the “Delay Detec-
tion Mode”. This mode analyses different metrics and provides the Project Manager with cal-
culated estimates and delay predictions for individual Jira issues.

The Delay Detection Mode computes key performance indicators for Jira issues such as esti-
mated time, aggregated time and time progress. With the support of the new mode, a Pro-
ject Manager can prevent delays by reallocating developer resources, changing priorities or
further actions.

The resulting software solution is used for a range of similar projects within CAS Software to
avoid unnoticed delays for individual tickets and improve project performance overall. Previ-
ous calculation of delays and estimates were done in around 45 minutes. The Delay Detection
Mode is providing results on average in less than 60 seconds.

Keywords: Jira, Project Management, Java, Time Management, Resource Management

Table of Contents

1. Introduction ... 8

1.1 Client company: CAS Software AG ... 8

1.2 Background: Jira by Atlassian ... 9

1.3 Business Needs .. 9

1.3.1 Estimation in Story Points ... 11

1.3.2 Detecting Delays .. 11

1.4 Objectives .. 11

2. Theoretical Framework .. 13

2.1 Project Controlling Processes ... 13

2.2 Project Human Resources ... 14

3. Research Methodology ... 15

3.1 Qualitative ... 15

3.2 Quantitative ... 15

4. Research Outcome ... 17

4.1 Project Managers .. 17

4.1.1 Interview with Steffen Euch... 17

4.1.2 Interview with Marcel Schrumpf .. 17

4.2 Developers ... 18

4.3 Limitations ... 19

4.3.1 Sample Size .. 19

4.3.2 Previous studies ... 20

4.3.3 Mitigation ... 20

5. Workflow ... 21

5.1 Jira Tempo Procedures .. 21

5.2 Downfalls ... 22

5.3 Mitigation of Downfalls with Delay Detection Mode 23

6. Development .. 25

6.1 Existing custom Jira Tools for CAS ... 25

6.2 Project Management Approach ... 29

6.3 Stages of Development ... 30

6.3.1 Analysis ... 30

6.3.2 Design ... 30

6.3.3 Implementation ... 33

6.3.4 Testing .. 36

6.3.5 Deployment .. 38

6.4 Technical Architecture ... 40

7. Result ... 44

8. Future improvement ... 45

8.1 Saving time progress and average time spent results 45

8.2 Colour coding the time progress bar .. 46

8.3 Removal of worklogs ... 47

8.4 Sprint listing multiple items .. 47

8.5 Concatenating percentage to time progress ... 47

8.6 Merge Delay Detection Mode to development branch 48

9. Conclusion ... 49

References .. 50

Figures ... 53

Tables .. 54

Equations .. 55

Appendices .. 56

Confidentiality clause: .. 57

List of Abbreviation:

CAS The client company CAS Software AG from Karlsruhe, Germany.

Confluence A collaboration software program developed and published by Atlas-

sian. Used by CAS for documentation.

Delay Detection

Mode

Third mode added to the TimeTrackingTool as part of this thesis pro-

ject.

Epic Group of multiple Jira Issues. Used to organise Issues and form mile-

stones for teams and map single issues to entire features.

Git branch A separate parallel workspace to avoid working the main branch of the

version control.

Git checkout A command to change to a specific branch.

Git pull A command to load latest changes from the version control server.

Git push a branch

or commit

A command to upload local changes to the version control server.

Issue Represents a task in a Jira project. An issue could represent a story, a

bug or other technical tasks.

JavaScript Object

Notation (JSON)

Open standard file format to transfer data in a human-understandable

text.

Jira Project Management software by Atlassian that supports bug tracking

and agile project management.

JSON get-meth-

ods

Method to obtain certain elements of the JSON object.

SDLC Software Development Life Cycle.

Sprint Term of SCRUM: A fixed time period with a set amount of Issues for a

team.

Story Points A measurement to estimate the complexity of a task.

 7

Tempo Time Tracking extension for Jira.

TTT CAS-internal “TimeTrackingTool” application.

Worklog Users enter their task and the time spent on Jira issues in the form of

entries called worklogs.

 8

1. Introduction

In times of fierce competition, companies need to improve their productivity. Staying com-

petitive can only be achieved by fighting many different battles. Every successful project will

follow and balance the metrics of the project management triangle. These metrics define the

triple constraints of quality, scope and time.

An innovative company can adopt new technologies to improve cost-control. Time-monitoring

software supports the Project Manager to track the progress of a project, and investigate on

delay root causes to find adequate counter-actions.

Software developing companies that focus on customer projects can have difficulties deter-

mining the exact cost of a project. This problem arises because of almost non-existent mar-

ginal cost and the difficulty to exactly know how much time was spent by developers on a

software project. To mitigate this issue, a form of time tracking needs to be conducted to

evaluate the time spent on a customer project by each Project Manager and developer.

Time Tracking itself is not new, emerging over 130 years ago. The Tabulating Machine Com-

pany is one early example, developing a tabulating machine to punch holes into a strip of pa-

per to store information about employee work hours. (Cruz 2019)

1.1 Client company: CAS Software AG

CAS Software was founded in Karlsruhe, Germany by Martin Hubschneider and Ludwig Neer in

1986. CAS found early success developing a sales support and customer service system for

Daimler, the parent company behind Mercedes-Benz.

CAS was successful with the help of a major client. Today these systems are still used by over

3000 Daimler employees in 13 different countries. The CAS Group has over 400 employees

with a 40-million-euro annual turnover. CAS main product is the distribution of their relation-

ship management platform genesisWorld. (CAS n.d.)

CAS Software AG is using the project management software Jira as a self-hosted on-premises

solution. CAS Software is branding itself with the title “Software Made in Germany”. CAS is

trying to avoid using foreign services for their business operations to maintain the title. Espe-

cially, since the US-court decision from August 2014 obliges US firms to reveal data to federal

US institutions, even if the data lies on a foreign server. (CAS 2014)

 9

1.2 Background: Jira by Atlassian

Atlassian is a software company founded in Sydney, Australia in 2002 by Mike Cannon-Brookes

and Scott Farquhar. The agile project and issue tracker Jira is their first product, and most

profitable to date. Over the last 18 years Atlassian has declined many investor and buyer of-

fers. Instead Atlassian focused on acquiring more products and seamlessly integrating them

into their continuously growing ecosystem. (Atlassian n.d.)

Jira is the market leader with a market share of around 32%. (Datanyze.com, n.d.)

Table 1 - Market share project management tools

1.3 Business Needs

CAS is using Jira as their main tool to provide a platform for agile software projects. Jira is-

sues are summarised on a Jira board (see Figure 1) in different columns to indicate their

workflow status. For example, in Figure 1 the SMART-17 ticket is in the “In Progress” column.

This indicates that a developer is working on this ticket. The SMART-44 ticket is in the “Done”

column to indicate the work on this ticket has been completed.

Software development teams will organise their different sprints. A sprint is a defined time

period for a Jira board. During one sprint there will be a defined amount of tickets on the

board. The tickets will determine the developer work for the sprint.

Market Share

Jira Microsoft Project Trello Azure DevOps Server

HPE ALM Kanban Airtable VersionOne

WorkFront Rest

 10

Figure 1 Example Jira Board

CAS Software also uses Jira to track time for projects. Developers are logging the time they

spent working on a ticket in the ticket worklog function. Jira’s analysis of the logged times by

the developers helps the Project Managers

to create detailed reports about the current

expenses on a project. These reports enable

faster project cost supervision.

In Figure 2 you can see the standard Jira

menu to log work time on a ticket. You can

choose the respective ticket, worked time

and Account that will be charged with the

cost.

In Figure 3 you can find the Time Tracking

diagram. This diagram displays the logged

time and estimated time for a ticket. The

estimated time value needs to be filled man-

ually. Not all teams are using this value in

their project workflow. The missing esti-

mated time can make it difficult to have a
Figure 2 Logging Time on a Ticket

 11

grasp on the current progress status of a ticket. For example, a ticket could have 10h logged,

but no adequate progress was made.

1.3.1 Estimation in Story Points

Some of the teams at CAS are estimating the complexity of a ticket in Story Points. Story

Points do not have a set conversion in hours and minutes. Depending on the complexity of an

issue and the individual skillset of a developer, the needed time for an issue can be roughly

predicted. Project Managers can export Jira Reports with a calculated average time spent on

a Story Point during a Sprint. This is one of the indicators to establish estimates during a pro-

ject.

1.3.2 Detecting Delays

CAS Project Managers have tried to find a solution to simplify delay detection in one of the

third-party plugins for Jira. So far there was no adequate approach to satisfy CAS’ business

needs. To support decision making CAS Project Managers need to look at the entire develop-

ment and velocity of a project.

Detecting ticket delays could prevent delays for the entire project. Past experience has indi-

cated that CAS developers do not always ask for help from co-workers when encountering dif-

ficulties. Despite the time constraints, developers often attempt to solve the difficulties in-

dependently. (Schrumpf 2019)

1.4 Objectives

The goal of this thesis is to improve existing project supervision workflows with a custom soft-

ware solution. The software should save the Project Manager time when supervising Jira pro-

jects to allow more frequent and thorough delay detection. Before the project was started

some research was done to understand the current situation. The research consists of inter-

views and a survey to analyse the current situation for developers and Project Managers. It

was important to analyse the teamwork amongst CAS AppFactory developers to test how they

behave towards each other, when problems in a project arise that can hinder the project pro-

gress. Delays can be mitigated, if developers receive the required help or other developers

take over the task.

Figure 3 Worklog Diagram

 12

Furthermore, it was crucial to evaluate how Project Managers detect and mitigate delays.

Project managers usual procedures will have an effect on the outcome of the TimeTrack-

ingTool. If the current project controlling processes are sufficiently sophisticated, the im-

provement with the TimeTrackingTool might not be justified.

The project goal has two related research objectives.

The first research objective of this thesis is to understand the underlying project supervision

processes of CAS Project Managers. Analysing these processes helps to provide a foundation to

investigate on downfalls and potential improvements. This allows to define requirements of

the thesis project. My previous work experience and surveying CAS Project Managers will pro-

vide the data to comprehend the obstacles of current project supervision procedures.

The second research objective is to investigate if there are personnel-related variables that

contribute to overall project delays. Finding these variables could help to define more clear

thesis project requirements and CAS Project Managers can use this information to adapt their

project strategies for improved project success. The personnel-related variables will be eval-

uated with CAS developer surveys based on the Project Manager interview results. Project

Managers can provide broad insight to suspected delay-contributing variables.

 13

2. Theoretical Framework

2.1 Project Controlling Processes

According to the Project Management Body of Knowledge project management consists of five

process groups:

 Initiating

 Planning

 Executing

 Monitoring and Controlling

 Closing

Throughout the monitoring and controlling phase the project manager tracks, reviews and

regulates the progress and performance of a project to detect budget and time transgres-

sions. To maintain the latest update on project progress and performance frequent key per-

formance indicators calculations are required.

Continuous monitoring enables the Project Manager to identify project areas that require ad-

ditional adjustment to guarantee the smooth operation of the project. For example, when a

task exceeded its schedule and the responsible supervisor detected the transgression early

enough it allows to adjust the resource allocations to prevent a chain reaction that will cause

more delays over the entire project life time.

Controlling the constraints cost, scope and schedule is essential for a successful project.

These constraints are described as the project management triangle. Changes to one of the

constraints will require adjustments of the other constraints to avoid quality compromise. For

example, extending the scope without increasing the schedule or cost will lead to quality

losses. Unless more resources are used to cope with the higher workload, which increases

cost.

According to the Project Management Body of Knowledge (PMBOK) the processes in the Moni-

toring and Controlling group are crucial to supervise the progress and performance of a pro-

ject. The definition of the PMBOK is important in this study, as it assists to find weaknesses in

the current processes of CAS Project Managers. (PMBOK2008)

Investigating the effect of time pressure on cognitive performance has been studied for sev-

eral years. Project Managers try to maximise the productivity to increase overall project per-

formance. However, studies found that excessive and prolonged time-pressure can have nega-

tive effects on the performance of employees. For the client company an individual research

 14

approach is needed to find variables that can contribute to performance decline. (Kramer et

al. 2002)

2.2 Project Human Resources

Project Human Resource Management includes all processes that organise, manage and lead

members of the project team. Team members have assigned roles and responsibilities within

a project. The four main processes of project human resources are:

- Develop Human Resource Plan

- Acquire Project Team

- Develop Project Team

- Manage Project Team

The process of managing project teams comprises tracking team member performance,

providing feedback and resolving issues. The project manager should observe team behaviour

to examine the factors that affect project progress. Managing the project team requires to be

aware of all human resource factors that might compromise team performance. These factors

include environment, geographical location, team communication, cultural issues and other

personnel-related factors. For example, digital collaboration is trending but in certain cir-

cumstances team work can be boosted by working together in person. Team communication

and team work culture build have great impact in teams with unfamiliarity amongst team

members. (PMBOK 2008)

The definition of managing project teams from the Project Management Body of Knowledge

provides a foundation to evaluate the situation at CAS. This definition allows to compare the

results of the study to an ideal value defined by the PMBOK.

 15

3. Research Methodology

Investigating the effect of time pressure on cognitive performance has been studied for sev-

eral years. Project Managers try to maximise the productivity to increase overall project per-

formance. However, studies found that excessive and prolonged time-pressure can have nega-

tive effects on the performance of employees. For the client company an individual research

approach is needed to find variables that can contribute to performance decline. (Kramer et

al. 2002)

3.1 Qualitative

There have been two interviews with Project Manager of the AppFactory. They have been se-

lected as participants because they will be the main users of the software project behind this

bachelor’s thesis. Both Project Managers have great insight in the business operations and can

evaluate downfalls of workflows. The interviews have been done separately in a semi-struc-

tured manner. There were prepared questions to help guide the interview, but time was also

allocated for participants to discuss the importance of other project aspects, if necessary.

The interviews were both 30 minutes long and were documented in a Confluence page. The

main points discussed in each interview were:

 Current project controlling procedures

 Using the TimeTrackingTool

o Benefits

o Downfalls

 Requirements for the Delay Detection Mode

3.2 Quantitative

The goal is to gather opinions from multiple software engineers in different locations. With an

online survey the physical distance between the office in Germany and Hungary are irrele-

vant. All participants can fill out the anonymous survey at their own discretion.

The Google Forms survey was accessible from 28.11.2019 – 15.01.2020 and is comprised of

eight non-suggestive questions to evaluate the work environment of software engineers in the

AppFactory department of CAS. All employees of the CAS AppFactory have been selected as

the target group for the survey. 50 people received the invitation e-Mail on the 28.11.2019

with a link to access the survey.

To ensure a bias-free outcome of the survey, the question should avoid leading the partici-

pants. For example, the question “Do CAS developers help each other?” is the non-leading ap-

proach. By adding the word “constantly” to the question it becomes suggestive and leading

 16

“Do CAS developers help each other constantly?”. The participant is likely to answer nega-

tively as developers are not constantly helping one another. (Bhat n.d.)

Five out of eight questions are based on rating scales. Based on the Likert scale, these ques-

tions allow the participants to provide streamlined and fast answers. The user does not need

to write their own text. Furthermore, all participants of this survey are non-native English

speakers. Questions that require answers with written text answers in a second language in-

troduce the risk of misinterpreting answers. Rating scales avoid misinterpretation, because

the results will be values from one to seven. Therefore, these values require little effort to

compute mathematically and compare the responses of several participants, or examine cor-

relations between answers. (LaMarca 2011)

The survey had a moderate response rate of 41.6%. Nine employees from Hungary and 16 from

Germany have filled out the questionnaire. The response rate may be low because the invita-

tion email was sent to all AppFactory employees, including non-developers. The email ex-

plained that this survey is for participants with developer experience exclusively.

 17

4. Research Outcome

The key findings of the conducted research were used to determine the approach for the un-

derlying software project and to answer the research question. The outcome of the inter-

views and survey was evaluated individually, but contributed to the development of the pro-

ject as a whole.

4.1 Project Managers

Steffen Euch and Marcel Schrumpf are both team leaders and Project Managers in the Ap-

pFacotry unit of CAS. Steffen is a user of the current TimeTrackingTool and knows its func-

tionalities. Steffen and Marcel are the main stakeholders and primary users of this thesis pro-

ject’s outcome. They have set the requirements and limitations for the TimeTrackingTool

software based on their experience in project controlling and project supervision.

4.1.1 Interview with Steffen Euch

The interview with Steffen Euch has helped to understand the current downfalls of project

management procedures. Steffen is a primary user of the TimeTrackingTool. The TimeTrack-

ingTool is an application, that helps Project Managers to create project controlling reports.

To increase the usefulness of this tool for Steffen, the TimeTrackingTool should allow Steffen

to access information about the current performance of Jira issues. The current standard ex-

port tools by Jira and the Tempo extension do not provide sufficient data to analyse the

amount of worklogs in a specified timeframe. This makes cost controlling in a project more

time consuming. As a Project Manager, Steffen is responsible to submit project performance

reports to stakeholders. Having faster access to reports that analyse the time spent and time

planned would eliminate manual reporting for Steffen and save time. (Euch 2019)

4.1.2 Interview with Marcel Schrumpf

Marcel Schrumpf has given further insight about the problems Project Managers encounter

during project supervision. According to Marcel’s interview, he is facing challenges when try-

ing to predict delays and supervise delayed issues. Currently delays are often detected to-

wards the end of a sprint. Project Managers need to manually evaluate Jira Tempo export to

investigate if a Jira issue is delayed. The extensiveness of this task leads to its neglect.

(Schrumpf 2019)

Usually, the Project Manager will update the project plan towards the end of a sprint. Updat-

ing the project plan exclusively at the end of sprints disables the Project Manager to react to

delays throughout the sprint. (Schrumpf 2019)

Detecting delays is time consuming, but establishing predictions is time intensive as well. To

create predictions for issues, the Project Manager must calculate average times in project. As

 18

values in project constantly change, so must the prediction. Maintaining an up to date predic-

tion would require constant updating. This leads to the neglect of prediction calculations.

(Schrumpf 2019)

Marcel is currently not a user of the TimeTrackingTool, but to improve the usefulness of the

TimeTrackingTool the application should calculate predictions for each issue in a project

based on continuously updated data. The tool should allow the user to obtain instant infor-

mation about the performance of a project and its issues. (Schrumpf 2019)

4.2 Developers

The first survey questions were asking the participant about their location, seniority and ex-

perience level. These questions were trying to prove any correlation to team work culture.

This questionnaire aimed to prove, if AppFactory developers cannot solve problems them-

selves whether they request assistance from other team members. If they help each other

when encountering problems, delays within the project can be prevented. But if the develop-

ers are not sharing their difficulties, it could lead to overall project delays.

Appendix 1 depicts the ratio between Hungarian and German developers at CAS. Nine devel-

opers from Szeged and 16 from Karlsruhe participated in the survey. The average participant

has worked 5,9 years for CAS and has 6,96 years of professional developer experience. The

survey’s main questions were regarding teamwork. They depict the satisfaction level of the

developers for working with each other on team projects.

The vertical axis of the chart in Appendix 10 displays the answer scale. 0 is equivalent to “No,

I don’t” or “Difficult”. 7 is the opposite of 0, meaning “Yes, I do” or “Easy”. The horizontal

axis represents each participant of the survey.

By analysing this chart, we see that the average developer at the CAS AppFactory unit is likely

to help other developers. Furthermore, AppFactory developers believe that asking for help

amongst each other is easy. The overall positive result of the teamwork questions indicates

that developers are satisfied with teamwork amongst their peers. This is beneficial for pro-

ject teamwork.

The results demonstrate that it is likely for developers to receive help to solve an issue and

avoid unnecessary delays. Nevertheless, it is not improbable that technical difficulties arise

and the developer is spending disproportionate amounts of time on the issue. Also, individual

developers might not seek help to save face. Furthermore, developers might not alarm the

Project Manager, in case of difficulties, and will try to solve the issue with help from peers.

This disables the Project Manager from ordering external help early on, and from including

delays in project planning

 19

 .

Additionally, the question relating to the accuracy of estimation procedures produced the

lowest result out of the rating scale questions. The average for this question was 4.56. This

can be an indicator for Project Managers, that CAS software developers in the AppFactory

unit are not fully satisfied with the procedures or the outcome for estimating story points

within a project. If estimations are lower than the relative work required, developers will

feel time pressure. In a light form, time pressure can increase productivity and intrinsic moti-

vation. However, if inaccurate estimations cause consistent time pressure for developers, this

could lead to overall dissatisfaction and block creative cognitive functions. (Kramer et al.

2002)

Ultimately, there was no significant correlation between location, seniority, experience level,

and team work culture amongst CAS developers.

4.3 Limitations

Interviewing Project Managers and conducting surveys with developers has helped to gather

information to answer the research question. The research had following limitations.

4.3.1 Sample Size

With only 25 participants the sample size of the conducted quantitative research was rela-

tively small. On the other hand, the invitation to this online survey was sent to all 50 devel-

opers of the AppFactory department. However, the small size of the AppFactory, the sample

size is in relation to the number of employees relatively high. This leads to a participation

rate of 41.6%.

The choice of participants and sample size limits the result of this survey to the AppFactory

developers exclusively. The changes made to the TimeTrackingTool will only affect develop-

ers within the AppFactory, since Project Managers in the AppFactory are using this tool exclu-

sively. Considering other developers for this survey would dilute the results.

Figure 4 - Google Forms Question

 20

4.3.2 Previous studies

There have been no previous empirical studies to document developer data within the Ap-

pFactory department of CAS. This required an entirely new approach to gather information

about the Project Managers and developers.

4.3.3 Mitigation

To improve the accuracy of the small sample size of the survey, the focus was set on a spe-

cific target group. The invitation to the survey was only sent to AppFactory members. Ap-

pFactory developers will be the only units affected by the changes made to project control-

ling procedures. Furthermore, the quantitative study is complemented by the qualitative

study. The interviews with Steffen Euch and Marcel Schrumpf helped to mitigate the effect of

a small sample size by providing facts from previous projects. The conclusion was made by

outweighing the input from the interviews and the interpretation of the survey.

 21

5. Workflow

The workflow was established based on information from my personal experience as a project

management intern, and the interviews with Marcel Schrumpf and Steffen Euch. Elaborating

the workflow helps to understand the benefits of the TimeTrackingTool improvements.

Figure 5 - Workflow Project Plan

5.1 Jira Tempo Procedures

Tempo is a plugin for Atlassian’s Jira project management tool. Tempo provides an array of

time tracking tools and reports to enhance project controlling. Currently, CAS Project Manag-

ers are using Tempo’s Logged Time reports to accumulate project worklogs in a certain

timeframe.

Appendix 12 depicts the export of a Logged Time report. The grid view of the report can be

set in days, weeks, quarters or years. In the report example the selected timeframe was

01.03 – 31.03.2020 and set on a weekly interval. Project Managers will adjust this report to

their requested project, timeframe and interval. (CAS - Jira n.d.)

When the desired variables have been set, an export of the report can be downloaded. The

easiest way to further use the report data is in the form of a CSV or Excel file export. These

reports will contain essential Jira issue data. However, the powerful feature of this logged

time report is the ability to calculate the amount of worklogs for a specified time and pro-

ject. Out of the box Jira cannot calculate worklogs for a certain timeframe. Without the

Tempo plugin a Project Manager was required to accumulate worklogs by hand. Jira displays

Download latest
Jira Tempo
exports.

Insert export data
to Excel Pivot

Table calculation.

Transfer results to
project plan and

project
controlling.

Interpret project
situation.

Adapt project
plan for next

period.

 22

individual time logs and the overall total, but not the total of selected time frames. (CAS -

Jira, n.d.)

Appendix 13 demonstrates an example Excel export from a Logged Time report. This report

contains the entire cost of this example project for all of March. Project managers will use

this information for further calculations in a different Excel file to include it in their project

plan and project controlling. (CAS - Jira n.d.)

The data that comes from the export, will be used in project plans and other forms of final

data processing. The resultant information obtained from project plans can help Project Man-

agers to detect delays. For example, in Appendix 14 column AB, displays the ratio between

planned project days and spent project days. If the ratio is higher than 100%, the issue has

spent more time than planned. If the ratio exceeded 100% and the issue is not resolved yet,

the Project Manager should investigate the reasons for this delay and react to them. How-

ever, the greatest challenge is the post-sprint investigation of delays. (CAS - Jira n.d.)

5.2 Downfalls

In most cases the delay investigation is only conducted at the end of the month. This investi-

gation is extensive and time consuming. On average the update of the project plan and pro-

ject controlling required around 40 minutes of work. As a consequence, this investigation is

not done throughout the month to monitor the progress of a project. Also, this hinders the

Project Manager from counter-acting to occurring delays during the month.

To detect delays in a Jira project contains copy and paste steps, which can lead to errors.

When a Jira Tempo report was exported as an Excel or CSV file, the Project Manager must

transfer it to another Excel table for further calculations. The step of manually copying data

between Excel files can lead to errors. Carelessness errors may lead to pasting in a wrong col-

umn, which could lead to wrong results.

Furthermore, developers can correct their logged time in a project retrospectively. Retro-

spective correction of worklogs will require the Project Manager to update the project report

data frequently. Project managers tend to update the project controlling on a monthly basis.

During this update the last month’s worklog will be regarded exclusively. For instance, at the

end of April 2020 a Project Manager will obtain the latest worklog list for the entire month,

but a developer has corrected worklogs at the end of March 2020. If the Project Manager does

not obtain all worklogs of a project, previous worklogs will not be visible. (Schrumpf 2019)

According to the 1-10-100-Rule, the cost increases ten-fold from prevention to correction and

again to failure.

 23

Figure 6 - 1-10-100 rule

 As an example, to prevent errors in project controlling the Project Manager must ensure that

the entered data, and therefore resulting reports, are correct. Preventing mistakes in project

controlling could cost the Project Manager 20 minutes. The Project Manager can prevent er-

rors by sanity checking the variables for the Jira Tempo report export, and paying extra at-

tention when entering data. If the Project Manager does not prevent the error the correction

will cost ten hours. After a project controlling report has been finalised it will be presented

to stakeholder. Errors might be noticed now by stakeholders if the result are not conclusive.

This will require the Project Manager to spend around 3 hours to remediate the error. Reme-

diation is more time consuming because the error cause is often not instantly visible. The re-

mediator will need to dedicate time to find the root cause of the errors. Finding wrong data

entries in extensive Excel table calculations can be very time consuming, because of the num-

ber of cells, data and calculations which need to be assessed. If prevention and correction of

errors has not prevented any errors, it will lead to false interpretation of project controlling

reports. According to the interpretation of project controlling, project resources will be allo-

cated. As an example, a task is within budget according to the false project controlling, but

in reality, this task is over budget. This leads to the Project Manager not reallocating re-

sources to mitigate the effect of the overbudget task on the project time line. Ultimately,

the failure to prevent the error and to correct the error lead to a chain of events, that caused

overspending and delays, which cost the entire company the equivalent of 30 work hours.

(Syed 2009)

5.3 Mitigation of Downfalls with Delay Detection Mode

The downfalls of the current project controlling can be mitigated by developing a new mode

in the TimeTrackingTool to suit the needs of Project Managers in the AppFactory. The devel-

opment of this mode is discussed in chapter 6.

1
Prevention

10
Correction

100
Failure

 24

The Delay Detection Mode will allow the user to access instantaneous results to discover de-

lays. Instead of manually obtaining the latest Jira exports and investigating the project situa-

tion, the Delay Detection Mode will provide all necessary information. This information pro-

vides the evidence to evaluate if counter measures are necessary to avoid delays. Further-

more, the low effort of using the Delay Detection Mode enables the Project Manager to use it

throughout the month and increase the frequency of delay investigations.

The accuracy of report results can be improved with automated data imports. The tool will

eliminate carelessness errors by reducing the amount of input variables required by the user.

The user will only need to login with their Jira credentials and select the required project

key. The user will not be required to copy and paste any information to obtain an update on

the delays in a Jira project. The result table will display information about the performance

of each Jira issue, which the Project Manager can use for his project resource allocations.

The tool will access the entire history of a Jira project and obtain all worklogs. This removes

the danger of a Project Manager not refreshing previous project controlling data, when devel-

opers have updated previous worklogs. The Project Manager will not be required to reassure

the validity of project data in project controlling reports.

The Project Manager can focus on allocating resources and making management decisions

based on the results of the tool. The risk of allocating resources incorrectly is minimised by

providing latest project controlling data, and results that are not prone to human careless-

ness errors.

After including the mitigation of downfalls with the Delay Detection Mode, the project man-

agement processes will be less extensive and more time saving. The updated workflow is

faster and less extensive.

Start
TimeTrackingTool -

Delay Detection Mode

Investigate
displayed

results to find
delays.

Take counter
meassures.

Figure 7 - Updated Delay Detection Workflow

 25

6. Development

To improve the understanding of the reader the existing TimeTrackingTool and the Delay De-

tection Mode must be discussed. The Delay Detection Mode is an added mode to the

TimeTrackingTool.

6.1 Existing custom Jira Tools for CAS

The TimeTrackingTool is a JavaFX application. JavaFX is a set of graphics and media packages

to allow developers to create desktop applications. The TimeTrackingTool code logic and

graphical user interface is based on JavaFX 12.0.2.

Maven 4.0.0 is used a build automation tool and dependency management. Maven enables to

run its commands to build and package the project. These are necessary to create an execut-

able file of the project. The user is not required to open the project in an integrated develop-

ment environment like IntelliJ or Eclipse. Instead the user can open the executable file to

start the TimeTrackingTool.

Figure 8 depicts the classic structure of a Maven project. The src folder contains the logic

components of the project. The main folder consists of the main functionality and logic of the

application. Unit-test are located in the test folder.

The target folder is made up of unit-test outputs and execution variables. Each time compil-

ing the application unit-tests are running and the results can be found here. All setting files

are located in this folder. The timetrackingtool.yml lists variables for the Effort Mode that

define hourly wages and save student settings. The wecloud.properties file contains location

of the Excel file inlcuding all projects on the WeCloud storage system.

Figure 8 - Maven Project Structure

 26

For Maven the pom.xml (Project Object Model) is fundamental. It contains all configurations

for the project like dependencies, build directory and plugins. Maven reads the pom.xml and

locates the directories of the main, test and target.

This JavaFX application obtains JSON objects from the CAS Jira servers using HttpGet re-

quests. Http server request must be used for the TimeTrackingTool because the CAS Jira

server does not support the Jira REST API.

The list of projects for the Office Mode are obtained from CAS own file storage service

WeCloud. On the WeCloud lies an Excel list that contains all projects that will be evaluated in

the Office Mode. The Office Mode is by CAS’ branch in Hungary to create their monthly bill-

ing. The CAS Jira servers do not support the Jira REST API. The JSON objects contain all rele-

vant information of worklogs, issues and projects. The JSON objects are mapped to their re-

spective classes and variables for further use in the application.

 Git was used as the version control system to track the commit changes of the software pro-

ject throughout its development. The TimeTrackingTool project lies on a CAS hosted Gerrit

server.

As a Project Manager Steffen Euch is using the TimeTrackingTool. The TimeTrackingTool con-

sists of multiple modes. The effort mode helps by differentiating student and full-time em-

ployee cost. The effort mode allows to mark a user as a student and recalculate their produc-

tivity and cost according to the hourly rate of students. Also, the tool allows to select a

timeframe, which enables the user to get precise information for monthly controlling reports.

He is using the effort mode of the TimeTrackingTool to get cumulative worklog data for con-

trolling reports. Appendix 16 depicts the result table of the effort mode. The effort mode is

used to get a better overview of a project’s performance in a given timeframe.

The effort mode requires the user to enter Jira login credentials, project key, effort number

and timeframe. The effort number is used to differentiate the productivity between students

and full-time employees. Productivity and hourly wages between students and full-time em-

ployees indicate a significant gap which needs to be represented in project controlling. Per

hour, a student costs the company less than a full-time employee. Project keys are composed

of at least two letters that are used to identify one Jira project. Within a company workspace

every project key is unique. A project key is also used as a prefix for issues and epics.

 27

Using the effort mode of the TimeTrackingTool in

comparison to standard Jira report comes with

several benefits. In Figure 10 the TimeTrack-

ingTool prompts the user to enter whether the

project participant is a student. This has an effect

on the displayed effective hours and cost of the

worklog.

In Figure 11 the difference between students and

full-time employees is indicated. The “Johannes

Koop Test” account was selected as a student. Both accounts have logged five hours on the

Jira issue PT-6. For the student account, the effective hours are halved according to the en-

Figure 10 - Student Check Dialogue

Figure 9 - Login Screen TimeTrackingTool

 28

tered effort number. In this example the assumption is that a student is only half as produc-

tive as a full-time employee within one hour. That’s why they enter the effort number 0,5,

which is the equivalent of 50% productivity for students.

In this example the daily rate for full-time employees is 20 Euros per day and for students 10

Euros per day. This gives us the values in the amount column:

1. Full-Time employee: 5 effective hours * 2,5 €/h = 12,5 €

2. Student: 2,5 effective hours * 1,25€/h = 3,125 €

The Project Manager can benefit from clear differentiation between students and full-time

employees. Project controlling will be more accurate when the cost and productivity of stu-

dents is taken into consideration. Normally a Project Manager would need to calculate stu-

dent cost manually. There was no calculation from the Project Manager required to get the

amount spent on project work by students and full-time employees.

In Figure 12, the warning column il-

lustrates the warnings that can

help the Project Manager to super-

vise Jira issues. These warnings are

not depicted by Jira at any time,

because they are not mandatory

fields. However, these warnings

have been set up to help the Pro-

ject Manager maintain homogeneity

amongst all worklogs. These warn-

ings include missing epics, areas, components, or worklogs larger than 8 hours. Epics, areas

and components help to categorise Jira issues into groups that allow users to find a set of Jira

issues that belongs to a component or epic group. Project controlling can be done more pre-

cisely if worklogs are categorised by epics and components of a project. For that reason, pro-

ject controlling will depict which epics or components were out of budget or caused delays.

Figure 11 – Effort Mode

Figure 12 - Effort Mode Warning

 29

6.2 Project Management Approach

The analysis period has commenced in November 2019. Marcel will be one of the primary us-

ers of the finished software. As an experienced Project Manager, Marcel has worked with sev-

eral Jira projects in the past. Based on his experience, Marcel can define the requirements

which need to be met by this software project to fulfil his needs.

Throughout the first week of planning and analysing the requirements, Marcel and I have cho-

sen a hybrid project management approach. Neither classic or agile project management de-

livered the guidelines and flexibility required. The classic project management required de-

tailed planning for the entire life time of the project, and the agile approach could have

caused too much overhead for a one-person team. (West n. d.)

During my internship as a software developer, with Marcel Schrumpf as my Project Manager, I

have learnt to work within a SCRUM team. Agile project management is used by the majority

of teams at CAS. (Schrumpf 2019)

The beginning of the thesis project has been conducted in a classic project management ap-

proach. During the initiation phase of the thesis, a project plan and project time line was cre-

ated. These elements require the student to define the project scope from the start of their

thesis project. The project plan and time line contain detailed information about the time

frame and the milestones. Both documents specify the project elements as a waterfall

scheme, because of the set dates and hierarchically order of implementation.

Agile Project Management Classic Project Management

- Dailies with Marcel Schrumpf - Milestone plan

- Weeklies with Oswaldo Montenegro - Project plan

- Product Owner: Marcel - Project scope

- Incremental software development

with feedback cycles.

- Sequential project phases

- Agile mindset: What is most valua-

ble for my client?

Table 2 - Agile and classic project management elements

 30

The combination of CAS leaning towards agile project management and the initialisation of

the project by providing project plans and time lines to Laurea, allowed to start this thesis

project in a hybrid project management approach.

In this thesis project the hybrid project management planning approach allowed to adjust re-

quirements throughout the project life time if needed. Not all requirements were clear at the

beginning of the project. Several times the requirements have been adjusted due to time

constraints or inclusion of new needs. A solid work breakdown structure would have not al-

lowed to change the requirements throughout the project. The execution and delivery are

part of the agile methodology. Therefore, daily meetings with Marcel were used for status re-

porting. And during weekly meetings I have reported the development status to CAS software

developer Oswaldo Montenegro. Oswaldo acted as a mentor for the code. I have created a

milestone list to break down the project into manageable pieces, that allowed Marcel and I to

break down the parts of the project and track the development progress.

6.3 Stages of Development

To clarify the progress of the Delay Mode the Delay Mode development has been separated

into five stages. The stages are listed according to classic software development lifecycle.

However, as part of a hybrid project management approach some stages were iterated multi-

ple times.

6.3.1 Analysis

During the fundamental stage of Software Development Life Cycles, the conducted research

helped to define the needs of the end users. During my time as an intern I helped Marcel to

create project plans and monthly controlling reports. The combination of detailed interviews

with Project Managers and my own experience were crucial for defining the software require-

ments. The most urgent need of Steffen and Marcel was to simplify the delay detection. Find-

ing delays in a Jira project can be time consuming, because Jira project data needs to be ex-

ported and calculated in separate Excel sheets. Project managers have neglected delay de-

tection throughout sprints, because of its effort.

6.3.2 Design

The existing TimeTrackingTool effort mode has four different tabs to group Jira issues:

 31

1. user/components,

2. location/components,

3. epic, and

4. issue.

The issue tab displays one worklog per row and provides issue relevant information. (Appendix

17) After the analysis phase of the software project, it was apparent, that the effort mode’s

issue tab is a suitable base for the software project. Marcel and Steffen’s requirements made

clear that a delay detection on issue granularity is ideal instead of worklog granularity like

the effort mode. Since the goal was to calculate and detect delays, the new mode for the

TimeTrackingTool as part of the thesis will be named “Delay Detection Mode”.

MockFlow is an online platform to create wireframes. With MockFlow a wireframe to outline

the result of the thesis project was created. This wireframe has helped to envision the prod-

uct owner Marcel and other stakeholders the result and to simplify the refining of the require-

ments. In case of unclear requirements or outcome for the software project, the wireframe

has helped to visualise the goal. At the beginning of the project the wireframe serves as a

form of visualisation, when the software itself is not ready. (Appendix 15)

With the effort mode issue tab as a base some columns were removed and some were added

during the design process. These are the columns that were either reused, discarded or newly

created:

Columns to be reused: Columns to be discarded: Columns to be added:

1. Issue Key

2. Issue Summary

3. All Components

4. Issue Type

5. Parent Key

6. Epic Link

7. Epic Name

8. Project Key

1. Working Description

2. Effective Hours

3. Hours

4. Work Date

5. Location

6. Name

7. Amount

8. Area

9. Warning

1. Issue Status

2. Story Points

3. Sprint

4. Assignee

5. Aggregated Time Spent

6. Estimated Time

7. Time Progress in %

Table 3 - Delay mode columns

The discarded columns did not provide any added value to the goal of the software project or

were not relevant. For example, all of the discarded columns, with the exception of area and

warning, are not suitable for the new Delay Detection Mode, because these columns represent

 32

values that are attached to worklogs. A worklog contains information about the person log-

ging work, the number of hours and the work date. A Jira issue does not contain that infor-

mation.

The new columns were required for the goal of the Delay Detection Mode. The essential com-

ponent of the Delay Detection Mode will be the calculation of average time spent per story

point. Story points are a widely used estimation tool at CAS and other companies. Story points

represent a relative amount of work. Using story points and the worklog sum of resolved is-

sues allows to calculate the average time per story point. Only worklogs and story points from

resolved issues are used in this calculation, because open issues would dilute the accuracy of

the average time. At the beginning of an issue it has only a few worklogs, but the number of

story points will stay the same. To avoid changing variables dilute the results only story points

and worklogs from resolved issues will be used. This is the simplified calculation behind the

Delay Detection Mode.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐻𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑆𝑡𝑜𝑟𝑦 𝑃𝑜𝑖𝑛𝑡 ℎ
𝑆𝑃 =

(𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 𝑆𝑝𝑒𝑛𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝐼𝑠𝑠𝑢𝑒𝑠) ℎ

(𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑆𝑡𝑜𝑟𝑦 𝑃𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝐼𝑠𝑠𝑢𝑒𝑠) 𝑆𝑃

Equation 1 - Average hours per story point

The result of the average time per story point is passed on to the next calculation. The aver-

age time per story point is multiplied with the amount of story points per issue. The result of

this is the estimated time per issue in hours. The estimated time predicts the total of work-

logs on an issue according to the average hours per story point. The automatic conversion of

story points to an estimate of hours is a highly sought-after feature. (Schrumpf 2019)

The estimation procedure in software projects can be difficult due to the number of uncer-

tain variables. Requirements are not always completely clear to all stakeholders and are

likely to change throughout the project. The nature of software project requires them to

work with foreign, continuously evolving technologies. With the automated conversion of

story points to estimated hours, Project Managers can have more realistic estimates that help

to deliver project success. (Radigan n.d.)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑖𝑠𝑠𝑢𝑒 𝑖𝑛 ℎ

= (𝑆𝑡𝑜𝑟𝑦 𝑝𝑜𝑖𝑛𝑡𝑠 𝑝𝑒𝑟 𝑖𝑠𝑠𝑢𝑒)𝑆𝑃 𝑥 (𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑜𝑢𝑟𝑠 𝑝𝑒𝑟 𝑠𝑡𝑜𝑟𝑦 𝑝𝑜𝑖𝑛𝑡) ℎ
𝑆𝑃

Equation 2 - Estimated time per issue in h

To visualise and compare the current performance of each issue, the progress between aggre-

gated time spent and estimated time needs to be considered. Calculating the quotient time

progress per issue is the result of the division of aggregated time spent and the estimated

time. Time progress per issue is the relative amount of actual worklog hours in comparison to

 33

the estimated time hours. The lower the time progress the less time has been spent with ac-

tual work compared to the estimate. If the time progress is higher than 100, the aggregated

time spent exceeded the estimated time. This key performance indicator has to be used con-

servatively as the variables included in the calculation are changing throughout the project

life time. Especially, during the early stage of a project variable fluctuations have a strong

effect on the average time per story point. Time progress only represents the current situa-

tion and does not reflect the development overt time. For example, the time progress of an

issue can be at 10% and two weeks later the time progress has risen to 80% because other is-

sues have been completed quickly without the issue’s aggregated time increasing.

𝑇𝑖𝑚𝑒 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠 𝑝𝑒𝑟 𝑖𝑠𝑠𝑢𝑒 𝑖𝑛 % =
(𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 𝑆𝑝𝑒𝑛𝑡) ℎ

(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 𝐼𝑠𝑠𝑢𝑒) ℎ

Equation 3 - Time progress per issue in %

Besides the new story point and aggregated time spent column, issue status was included in

the calculations. The average time per story point is only calculated with values from re-

solved issues. The values from the issue status column are used to filter resolved issues.

6.3.3 Implementation

The approach to establish the Delay Detection Mode can be broken down into individual

phases. The first step was to copy the Effort Mode of the TimeTrackingTool. This copy was ad-

justed to suit the naming of the Delay Detection Mode. Then the new static columns were

added to display Jira issue information. The next step was to add the dynamic columns that

display the calculated estimate result. To fill these dynamic columns the average time per

story point was required. Finally, the result of the average time per story point was used to

calculate the result in the dynamic column. The overview of these steps is displayed in Figure

13.

 34

Figure 13 - Development Approach

To start working on the Delay Detection Mode I needed the TimeTrackingTool project. I had

to request permission for the CAS Gerrit server to be able to download the project. After re-

ceiving access to the Gerrit server and setting up private and public SSH keys, I was able to

git clone the repository.

As intended during the design phase, the Delay Detection Mode will be based on the effort

mode of the TimeTrackingTool due to the similarity in used columns and data. I have received

an initial briefing of the project from Jakab Fenyovari, one of the main developers responsi-

ble for the TimeTrackingTool. The project code does not have inline comments to explain

methods or classes. There is also no documentation to provide insight of the functionality ei-

ther. The lack of comments and documentation has been an obstacle during the initial imple-

mentation phase.

IntelliJ has been chosen as the integrated development environment (IDE) because of its out-

of-the-box functionalities. IntelliJ’s automation analyses the project execution flow, creates

references and builds a syntax tree. IntelliJ has supported me as a developer when examining

the TimeTrackingTool project. It assisted by finding implementations and references of clas-

ses, methods and variables. For instance, one of the first steps towards developing the Delay

Detection Mode was to replicate the LoadEffortModeTask. The replica was changed to the

LoadDelayModeTask. The comparison of the LoadEffortModeTask to the LoadDelayModeTask is

depicted in Appendix 18. The difference between them was highlighted in blue. Both task

files were essential to the respective mode, because of the missing member or missing issue

method. The LoadDelayModeTask is testing which issues are not represented in the YAML file.

The timetrackingtool.yml contains a list of issues that have been obtained from the Jira

server in the last run of the Delay Detection Mode. If the list of available issues from Jira does

Copy Effort Mode. Adapt copy to
Delay Mode.

Add new static
columns.

Add dynamic
columns.

Calculate the
average time per

story point.

Display estimates
using the average

time per story
point.

 35

not equal the list of issues in the timetrackingtool.yml, the timetrackingtool.yml will be syn-

chronised with all available issues from the Jira server. (Cheptsov 2016)

The table below visualises the synchronisation of available issues. Each time running the

TimeTrackingTool, the timetrackingtool.yml is synchronised with all Jira issues of the chosen

project that contain worklogs.

Available PT Jira issues Timetrackingtool.yml (before

sync)

Timetrackingtool.yml (after

sync)

PT-1 - PT-1

PT-2 PT-2 PT-2

PT-3 PT-3 PT-3

PT-4 - PT-4

Table 4 - Timetrackingtool.yml synchronised

Copying structural files of the effort mode was the fastest way to create the Delay Detection

Mode. All files were then edited to suit the naming and functionality of the Delay Detection

Mode.

The greatest challenge and most time-consuming part of the implementation was the calcula-

tion and usage of the average hours per story point. For example, the story point, assignee

and issue key columns represent static data obtained from Jira. In the effort mode some col-

umns require calculation. The amount and effective hours columns calculate Jira values with

static data from the timetrackingtool.yml. The challenge for the average hours per story

point was the constant recalculation of the average time for each Jira issue. The final result

after the last issue is passed on to every Jira issue data row. This involved working with ab-

stract classes to calculate the average time before displaying the results in the table. Figure

14 explains the current workflow to calculate the average time:

 36

Figure 14 - Abstract workflow of Delay Detection Mode

In the bottom right hand corner of the Delay Detection Mode in Appendix 19, the calculation

of the average time per story point is displayed. The sum of story points, worklogs and the av-

erage time per story point is displayed to allow the user to understand the calculations made

in the table. The display of these numbers has not been part of the wireframe. This feature

was designed throughout the implementation process to support the user. The late adaption

of this feature is an example of the flexibility offered by using hybrid project management.

During the implementation process I decided to implement an additional feature to improve

usability. However, the risk of introducing scope creeps, in the form of new features, could

delay the project.

6.3.4 Testing

The testing phase took place in two steps. The first step of testing was conducted throughout

the implementation. As I am the developer and tester at the same time, I was responsible to

guarantee the functionality of each feature in the Delay Detection Mode. For example, after

including the sprint column in the result table the displayed data needed to be examined. Af-

ter running the first test for the sprint column, the sprint column displayed the entire JSON

field for sprints. This JSON field contains all information of the sprint.

Obtaining all worklogs
of project.

Load all issue
information from

respective worklog.

Cycling through all
issue sets.

Filter unwanted
values and calculate

average hours.

Cycling thourgh all
issue sets, but add
them to the result

table.

Pass average to each
data set and calculate

estimate time and
time progress.

 37

All sprint information is listed in one data string dividing each field with commas. If a Jira is-

sue was in multiple sprints, each sprint has its own data string. The strings of each sprint will

be concatenated to create a longer data set. Regular JSON fields can easily be accessed with

get-methods. The only information required of this string is the name of the sprint.

The approach to this problem was to save each name and sequence to its respective Ar-

rayList. A sprint sequence is unique within a project. The latest sprint name has the highest

sequence number. By assigning each sequence number to its name, the latest sprint is ac-

cessed by using methods to find the highest sequence number.

Furthermore, unit tests are in place to guarantee the project functionality. The newly imple-

mented data for the Delay Detection Mode was included in existing unit tests. For example,

one of the JiraIssueMapTest features is to examine whether the JSON object data is mapped

correctly to the Jira issue object. If the data was not mapped correctly a mocked Jira issue

data set will be used, and a Jira exception is thrown. These tests have helped to ensure the

correct Delay Detection Mode implementation.

The second part of testing occurred after the implementation had been completed. During

this phase acceptance and performance tests were conducted. These tests were executed to

validate if the project satisfied the specified requirements, user needs and business pro-

cesses. Acceptance tests were required to replicate real user behaviour to investigate if any

errors occur. During these tests I have launched the Delay Detection Mode on three different

devices loading different projects. The result was satisfactory because all implemented func-

tionalities passed the functionality test. However, there was an issue with the Delay Detec-

tion Mode performance. Unlike the effort mode, the Delay Detection Mode gathers all work-

logs of a project. I used a test project with around 20 worklogs during implementation. One

of the real projects, with 4,454 worklogs, indicated that the loading time increased signifi-

cantly. I have tested the software at the CAS office in Karlsruhe, Germany where the Jira

servers are located, and also remotely in Perth, Western Australia.

Figure 15 - Sprint JSON field

 38

Project worklog size Location Loading time in minutes and seconds

20

Karlsruhe 20 sec

Perth 50 sec

3269

Karlsruhe 1 min 15 sec

Perth 12 min 25 sec

4454

Karlsruhe 1 min 44 sec

Perth 15 min 37 sec

Table 5 - Performance test

The table above depicts the significant difference between the locations. The further away

the user is from the CAS Jira server, the longer the loading time will be. This effect is signifi-

cant because of the amount of data that needs to be loaded and calculated by the client.

However, the main users of this software will be located in Karlsruhe, Germany, making the

location-based performance difference negligible.

Testing included delivering the TimeTrackingTool with the Delay Detection Mode to Marcel

Schrumpf as the Product Owner. After installing it on his work computer he was able to use

the software without any issues. Marcel has used the software and did not find any problems

that require adjustment.

6.3.5 Deployment

After testing was completed successfully, the software project needed to be uploaded to the

CAS Gerrit server. Throughout the software development I have submitted multiple commits

to maintain different stages of the software project. This helped to return to previous ver-

sions in case the project was not functioning after entering new lines of code. These commits

were only stored locally, and required to be uploaded to the remote Gerrit server at the end

of implementation. The procedure to upload branches and commits to the remote server can

have two outcomes.

1. The local branch can be pushed to the Gerrit server repository and remain as an op-

tional feature branch.

2. The local branch is merged into the development branch of the TimeTrackingTool.

 39

If the Delay Detection Mode branch remains as an optional feature branch, the code will not

be maintained by other developers. If the Delay Detection Mode feature branch is merged

into the development branch, and the TimeTrackingTool code is changing its infrastructure,

the Delay Detection Mode code will be adapted with every upgrade to maintain the function-

ality of the TimeTrackingTool. The difference between both outcomes is the attention of

other developers towards the Delay Detection Mode code. As my time at CAS is coming to an

end, I will not continue to maintain the Delay Detection Mode code. If the Delay Detection

Mode does not function after a major rebase, the other developers will need to invest time to

investigate the Delay Detection Mode branch. If the Delay Detection Mode was a part of the

TimeTrackingTool development branch, it would always be updated with the TimeTrack-

ingTool. This is because the entire TimeTrackingTool needs to function at all times even after

major updates. However, merging the feature branch into the main development branch re-

quires the approval of two developers maintaining the TimeTrackingTool. Acquiring this ap-

proval was out of the scope of this thesis. It likely would have cost another ten days of ad-

justing the Delay Detection Mode to the requirements of the pending approval. The local De-

lay Detection Mode branch was pushed to the Gerrit server, but remains as an optional fea-

ture branch. Every user of the TimeTrackingTool has access to checkout the Delay Detection

Mode branch and use the delay detection features.

As a user-friendly the TimeTrackingTool including the Delay Detection Mode is available as a

ZIP folder on the CAS WeCloud to all CAS employees. The ZIP folder only requires unpacking

to be ready for use. This option does not require the user to have Git version control

knowledge.

 40

6.4 Technical Architecture

To explain the abstract technical architecture the Delay Detection Mode is separated into five

main components:

Figure 16 - Architecture of Delay Detection Mode

1. Graphical User Interface

The graphical user interface of the TimeTrackingTool is defined by FXML files. Every mode

and tab of the TimeTrackingTool has its own FXML file to define its appearance. The de-

layView and its sub user interface delayIssueView represent the Delay Detection Mode.

The delayIssueView is the main component to establish the appearance of the result table.

The Delay Detection result table is defined by the delayIssue.fxml. FXML is an XML-based user

interface markup language to define the graphical user interface of JavaFX applications. The

benefit of using FXML is its hierarchical XML-structure and its support on any Java-supporting

device. Figure 18 demonstrates a cut out from the delayIssueView.fxml. The FXML file will

contain information to define components like titles, buttons, tabs and appearance of the ta-

ble.

Definition of
graphical user

interface.

Loading of
JSON objects

from Jira.

Mapping JSON
objects to
Jira Issue
classes.

Dynamic
columns

calculation.

Building table
rows.

Figure 17 - FXML Architecture

 41

This screenshot is an example of the delayIssueView.fxml content. In this section the issueK-

eyFilter component is defined. The HBox is similar to a container. It frames the children and

allows to define its size and position. The Label is

an element to define the title or naming. In this

case it is the naming of the TextField issueKeyFil-

ter. The result of the delayIssueView section is in

Figure 19.

2. Loading Jira Server Data

The acquireWorklog method is used to establish the connection to the Jira server and load all

JSON objects. Firstly, it examines if all config information is given. Then it tries to establish a

connection to the Jira server.

Secondly, the acquireWorklog method of the LoginController class initiates the loading pro-

cess. This disables all entry fields and displays the loading bars. Once the Jira connection was

successful, the next step is to call the UserActionProcessor class. The UserActionProcessor

starts the respective TableTask depending on the selected program mode. As the Delay Mode

is selected the delayTableTask will be called. The delayTableTask is a Task with the DelayIs-

sueWorklogTable as a variable. Tasks represent a conglomeration of work in JavaFX that can

be called and executed. This task is loading all Jira Issue JSON Objects that contain worklogs.

These JSON objects are requested from the Jira server with a Http-Get request.

Figure 18 - delayIssueView.fxml

Figure 19 - Issue Key Filter

Figure 20 - JSON Jira Issue

 42

Figure 20 is a section of a JSON object received from Jira. This object contains all information

of a Jira issue. It contains information like the id, issue key and all worklogs on this issue.

Every element of a JSON object can be directly accessed to obtain individual parts instead of

the entire

3. Mapping JSON Object

To make the the JSON object more usable for the application, the necessary information is

mapped by a method in the JiraIssueMap class. In Figure 21 this method is trying to assign

parts of the JSON object to a variable. For example, the key variable is obtaining the JSON

field key. The field key is always displayed in the JSON object in Figure 20.

 The mapped variables will be passed on to the IssueInfo list to be accessible for the DelayIs-

sueWorklogTable after the next step.

4. Calculate Estimates

The centrepiece of the Delay Detection Mode was the automated calculation of average times

per story points. This calculation is done by iterating through all IssueInfo list elements. The

calculateAverageTimePerStoryPoint method is called in a for loop to iterate through all ele-

ments of the IssueInfo list. During each iteration the method evaluates if the element is re-

solved or closed to add the story points to the total story points variable. The next step is to

evaluate if the element is resolved, has story points and is not a sub-task. If all three criteria

are fulfilled the elements aggregated time spent is counted towards the total. After the last

Figure 21 - Jira Issue Mapping

 43

iteration the final division result of total aggregated time spent and total story points equals

the average time per story points. The result is passed on to the DelayCalcData class to calcu-

late the estimated time and time progress.

5. Building rows

The DelayIssueWorklogTable is assigning values to each column of a table row. This method is

in a for loop to iterate through all elements of the IssueInfo class. The DelayIssueWorklog-

Table defines which cell variables of the IssueInfo or DelayCalcData. For example, the second

last row in Figure 23 obtains the Time Progress from the DelayCalcData.

Figure 22 - Calculate Average Time per Story Point

Figure 23 - Assigning Row Values

 44

7. Result

The first sign of the success is the inclusion of the Delay Mode option on the login screen of

the TimeTrackingTool. Selecting this option removes the date picker and effort number be-

cause neither of them are necessary for this mode. The result table of the Delay Mode Detec-

tion is depicted in Figure 19. In the top left corner is are the three filter that allow the user

to refine the displayed results by selecting required issue keys, epic links or sprints.

The columns are displaying their static values to display relevant issue information. The ag-

gregated time spent, estimated time and time progress column are displaying dynamic re-

sults. Every row represents an individual Jira issue. The user can use the values to interpret

the development of individual Jira issues.

In the bottom left the export button is located which allows the user to export all values in a

CSV file. This allows the usage of the results in further calculations. In the bottom right of the

table the two variables for the average time per story point is located. The sums of all re-

solved issue’s worklogs and story points are displayed and the therefore resulting average

time per story point. These variables allow the user to understand the calculation in the dy-

namic columns. Furthermore, the columns can be rearranged by drag and drop. This can be

useful to change the order for CSV exports or to have a specific order of columns.

Ultimately, the tool met all client requirements. The tool reduced the delay investigation

process from 40 minutes to approximately 5 minutes. This is a time saving of 87,5%. This time

saving will allow the project manager to use the tool more frequently. The Delay Detection

Mode will help Project Managers to receive instantaneous issue progress results. The Aggre-

gated Time Spent will allow to understand how much time was spent in total. The Estimated

Figure 24 - Result Table Delay Detection Mode

 45

Time is the prediction of the total amount of hours spent. The Time Progress is the quotient

between Aggregated time Spent and Estimated Time to interpret if the actual time has ex-

ceeded the predicted time.

8. Future improvement

Software develops over time, and so will the Delay Detection Mode. I have had ideas for fu-

ture improvements that will enhance the performance of the Delay Detection Mode, or add

new functionalities. All of these improvements were out of scope for the thesis project.

8.1 Saving time progress and average time spent results

Each time the user is running the Delay Detection Mode the time progress result is calculating

with the latest update of aggregated time spent and the latest average time per story point.

All values used in the time progress calculation will change over the life time of the project.

To give each result more meaning, the user should be able to see the development of the var-

iables over time. Each time running the Delay Detection Mode of the TimeTrackingTool the

value of the average time per story points could be stored in an Excel spreadsheet that visual-

ises the development of the average time per story point in a line graph chart. The time pro-

gress values could be listed in a table that has time stamps for each time progress value of

each Jira issue.

Keeping this information in store adds value to the time progress column. The Project Man-

ager can compare the development of a Jira issue and make a more informed decision on al-

locating resources, because the user sees what trend the Jira issue is following. The issue

might have been increasing or decreasing its performance since running the application last

time. For example, the Project Manager can interpret the trend of the Time Progress when

previous results are considered. Table 8 demonstrates the trend of Issue-1 and Issue-2. Issue-1

Time Progress has increased steadily over the last three months, which indicates normal de-

velopment. However, the Issue-2 Time Progress had a significant spike throughout March

which lead to exceeding 100%. The significant spike of Issue-2 could be an indicator of devel-

opment difficulties which need further investigation. Without the previous result this spike

would not be visible.

Time Stamp 01.02.2020 01.03.2020 01.04.2020

Jira issue-1 80% 90% 95%

Jira issue-2 75% 70% 110%

Table 6 - Saving average time results

 46

Alternatively, the previous results of the Time Progress could be displayed in a separate tab.

The results tab would contain the same information as the Excel file, but contain it inside of

the application. Additionally, the data of this tab could be displayed in a graph chart in a sep-

arate tab. Figure 20 depicts the potential look of the graphical time progress representation.

This would give the Project Manager a visual analysis of the issue development. The Project

Manager can see if the Time Progress is increasing rapidly in comparison to the other graphs

which would indicate a risk of delays.

Figure 25 - Time Progress Chart Concept

8.2 Colour coding the time progress bar

The time progress value gives the user information about the relationship between time spent

and time planned. If the value exceeds 100, it indicates that the time spent outgrew the time

planned. The cells could be colour coded to improve the user experience when searching for

critical issues that are close to exceeding, or have exceeded, their time planned.

Time Progress in % 0-85% 85-100% >100%

Table 7 - Time progress colour coded

Colour coded cells would stand out and improve the visibility of critical Jira issues. For exam-

ple, all values below 85% would be green, indicating that the time spent has not exceeded

0

20

40

60

80

100

120

01.01.2020 01.02.2020 01.03.2020 01.04.2020

Time Progress Chart

Issue 1 Issue 2 Issue 3

 47

the planned time. If the issue status is not resolved and time progress is between 85% - 100%

the cells could be yellow. This would highlight Jira issues that need to be watched as they are

getting closer to exceeding the time planned. If the issues status is not resolved, and time

progress is higher than 100%, the cells could be red to indicate the need of root cause investi-

gations.

8.3 Removal of worklogs

The effort mode of the TimeTrackingTool obtains all worklogs from Jira for the given time pe-

riod and project key. For all worklogs the effort mode loads the respective Jira issue data. At

this point the Delay Detection Mode is still obtaining all worklogs. However, it does not dis-

play any worklog related data. It only contains issue relevant information. To improve the

performance of the Delay Detection Mode and remove unnecessary code, the Delay Detection

Mode should obtain all Jira issues from a project instead of the worklogs. This would increase

the performance of the Delay Detection Mode by removing the loading of worklogs. Loading

all worklogs first, and not displaying their information, is unnecessary and wastes resources.

8.4 Sprint listing multiple items

The sprint column provides the user with more information about the Jira issue. The sprint

filter uses the respective column to filter all issues by entering a sprint of choice. Currently

only the latest sprint will be displayed. In Appendix 19 the “All Components” column contains

multiple entries per cell. At the same time the components filter allows the user to enter a

component. All rows that contain the component will be displayed, though it may have other

components in the same cell. This feature could be useful for the sprint column as the cur-

rent sprint, and all previous sprints, are displayed. This would allow the user to find specific

information about a past sprint. However, selecting a past sprint would still display the latest

amount of aggregated time spent.

8.5 Concatenating percentage to time progress

To improve readability of the time progress values in the Delay Detection Mode a percentage

symbol could be concatenated to each value. Currently only the column title “Time Progress

in %” contains the information that displayed values are to be interpreted in percentages. I

have tried to add the percentage symbol during the implementation of the Delay Detection

Mode, but did not find a simple approach because the time progress value is a Java type dou-

ble. Converting this value to a string before displaying it and concatenating the percentage

symbol could be an approach. Adding the percentage symbol would decrease the likelihood of

the value being misunderstood.

Time Progress in % (Current) Time Progress in % (Improved)

 48

55,87 55,87%

Table 8 - Time progress improvement

8.6 Merge Delay Detection Mode to development branch

As discussed in 5.2.5, the local feature branch created for the Delay Detection Mode was

pushed to the Gerrit server, but remains an independent feature branch. This means that the

Delay Detection Mode feature branch does not benefit from any updates for the main

TimeTrackingTool branch. Figure 21 is depicting a simplified version of the current Git struc-

ture. The Delay Detection Mode feature branch was created from the main branch but was

never merged back to the main branch. As a result, the Delay Detection Mode branch does

not obtain the updates on the main branch.

Figure 26 - Git Branch

A goal for this feature is for it to be included in the standard TimeTrackingTool version. Merg-

ing the feature branch to the development branch will remove the need for developers to re-

base the feature branch when the development branch is updated. This will guarantee that

Delay Detection Mode users can use the latest features of the TimeTrackingTool, without re-

basing and merging the feature branch themselves. For example, the developers may have

updated the TimeTrackingTool to use the Jira REST API to load all data. If the Delay Detection

Mode was merged to the development branch, the developers will provide the changes to the

entire project including the Delay Detection Mode. So, the user will only need to git pull the

latest changes of the development branch.

Having said that, if the Delay Detection Mode is on the feature branch, the user will need to

rebase the feature branch to access the new REST API features. A major rebase will most

likely cause merge conflicts that require manual solving. If the user is not familiar with the

TimeTrackingTool
main branch

Delay Detection
Mode feature

branch

Update 1
TimeTrackingTool

Update 2
TimeTrackingTool

 49

code and Git, a developer will need to help the user to resolve the merge conflicts. As a con-

sequence, merging the Delay Detection Mode branch to the development branch will prevent

unnecessary support expenses.

9. Conclusion

Changing business processes can be a difficult task. Stakeholders need to be convinced that

new processes are beneficial, and feasible. Researching the teamwork characteristics of CAS

developers has helped to find an incentive for this project. Interviewing Steffen Euch and

Marcel Schrumpf has supported the creation of the Delay Detection Mode wireframe, and sub-

sequent goals. Stakeholders of the Delay Detection Mode project have been convinced by its

usefulness and simplicity. The Delay Detection Mode avoids carelessness errors and saves time

by removing manual steps for the Project Manager. The thesis project has been successfully

completed within the given time frame. Marcel Schrumpf, as the main client, has received

and accepted the results. He is enthusiastic about the project management support tool as it

met all of his requirements for this thesis project. The use of this tool is allowing him to de-

tect delays quickly and more frequently.

As an intern and working student, I was able to support Marcel Schrumpf in his project man-

agement tasks. I enjoyed calculating and interpreting results for project controlling reports. I

am glad that I was able to optimise CAS project management processes with my thesis.

After working for CAS as an intern, working student and now writing my bachelor’s thesis, I

was able to develop new skills and establish business and personal connections. I want to per-

sonally thank Marcel Schrumpf for his continuous support throughout all stages of my time at

CAS.

 50

References

Electronic sources

2008. A Guide To The Project Management Body Of Knowledge (PMBOK® Guide). 4th ed.

[ebook] Newtown Square: A Guide to the Project Management Body of Knowledge (PMBOK®

Guide). Available at: <https://ebookcentral.proquest.com/> [Accessed 19 May 2020].

Ardem. 2017. Why 'Good Enough' Isn't Enough When It Comes To Data Entry. [online] Available

at: <https://ardem.com/data-entry-services/why-good-enough-isnt-enough-for-data-entry/>

[Accessed 3 April 2020].

Atlassian. (n.d.). Development and Collaboration Software Company | Atlassian. [online]

Available at: https://www.atlassian.com/company [Accessed 15 Jan. 2020].

Bhat, A., n.d. Leading Questions: Definition And Characteristics With Examples. [online] Ques-

tionPro. Available at: <https://www.questionpro.com/blog/leading-questions/> [Accessed 14

April 2020].

Cas.de. (2014). Zukunft souverän gestalten mit "Software Made in Germany" | CAS Software

AG. [online] Available at: https://www.cas.de/nc/de/kundenzeitschrift/details/article/zu-

kunft-souveraen-gestalten-mit-software-made-in-germany.html [Accessed 15 Jan. 2020].

Cas.de. (n.d.). History | CAS Software AG. [online] Available at:

https://www.cas.de/en/company/cas-software-ag/profile-history/history.html [Accessed 15

Jan. 2020].

Cheptsov, A., 2016. Enjoying Java And Being More Productive With Intellij IDEA | Intellij IDEA

Blog. [online] IntelliJ IDEA Blog. Available at: <https://blog.jetbrains.com/idea/2016/03/en-

joying-java-and-being-more-productive-with-intellij-idea/> [Accessed 10 April 2020].

Cruz, F. (2019). Herman Hollerith Tabulating Machine. [online] Columbia.edu. Available at:

http://www.columbia.edu/cu/computinghistory/hollerith.html [Accessed 15 Jan. 2020].

Datanyze.com. (n.d.). Jira Market Share and Competitor Report | Compare to Jira, Microsoft

Project, Smartsheet. [online] Available at: https://www.datanyze.com/market-share/pro-

ject-management/jira-market-share [Accessed 15 Jan. 2020].

Jira.cas.de. n.d. CAS - Jira. [online] Available at: <https://jira.cas.de> [Accessed 3 April

2020].

 51

Kramer, S., Mueller, J., Amabile, T., Simpson, W., Hadley, C. and Fleming, L., 2002. Time

Pressure And Creativity In Organizations: A Longitudinal Field Study. Ph. D. Harvard Business

School, Harvard University.

LaMarca, N., 2011. The Likert Scale: Advantages And Disadvantages. [online] Field Research

in Organizational Psychology. Available at: <https://psyc450.wordpress.com/2011/12/05/the-

likert-scale-advantages-and-disadvantages/> [Accessed 15 April 2020].

Mockflow.com. 2020. Mockflow - Wireframe Tools, Prototyping Tools, UI Mockups, UX Suite,

Remote Designing. [online] Available at: <https://www.mockflow.com/> [Accessed 8 April

2020].

Pawlan, M., 2013. What Is Javafx? | Javafx 2 Tutorials And Documentation. [online] Docs.ora-

cle.com. Available at: <https://docs.oracle.com/javafx/2/overview/jfxpub-overview.htm>

[Accessed 20 April 2020].

Pittet, S., n.d. The Different Types Of Testing In Software | Atlassian. [online] Atlassian.

Available at: <https://www.atlassian.com/continuous-delivery/software-testing/types-of-

software-testing> [Accessed 13 April 2020].

Radigan, D., n.d. What Are Story Points And How Do You Estimate Them?. [online] Atlassian.

Available at: <https://www.atlassian.com/agile/project-management/estimation> [Accessed

9 April 2020].

Robins, D., 2017. Hybrid: A New Project Management Approach. [online] CIO. Available at:

<https://www.cio.com/article/3222872/hybrid-a-new-project-management-approach.html>

[Accessed 8 April 2020].

Rongala, A., 2015. Manual Data Entry Challenges. [online] Invensis Technologies. Available at:

<https://www.invensis.net/blog/data-processing/top-6-manual-data-entry-challenges-com-

panies-face/> [Accessed 3 April 2020].

West, D., n.d. Agile Scrum Roles | Atlassian. [online] Atlassian. Available at:

<https://www.atlassian.com/agile/scrum/roles> [Accessed 8 April 2020].

Westland, J., 2018. The Triple Constraint In Project Management: Time, Scope & Cost.

[online] ProjectManager.com. Available at: <https://www.projectmanager.com/blog/triple-

constraint-project-management-time-scope-cost> [Accessed 20 April 2020].

 52

Interviews

Euch, S., 2019. Usage Of The Timetrackingtool.

Schrumpf, M., 2019. Requirement Analysis For Timetrackingtool.

 53

Figures

Figure 1 Example Jira Board ... 10

Figure 2 Logging Time on a Ticket .. 10

Figure 3 Worklog Diagram .. 11

Figure 4 - Google Forms Question ... 19

Figure 5 - Workflow Project Plan ... 21

Figure 6 - 1-10-100 rule ... 23

Figure 7 - Updated Delay Detection Workflow.. 24

Figure 8 - Maven Project Structure ... 25

Figure 9 - Login Screen TimeTrackingTool .. 27

Figure 10 - Student Check Dialogue .. 27

Figure 11 – Effort Mode ... 28

Figure 12 - Effort Mode Warning .. 28

Figure 13 - Development Approach ... 34

Figure 14 - Abstract workflow of Delay Detection Mode .. 36

Figure 15 - Sprint JSON field ... 37

Figure 16 - Architecture of Delay Detection Mode ... 40

Figure 17 - FXML Architecture ... 40

Figure 18 - delayIssueView.fxml .. 41

Figure 19 - Issue Key Filter ... 41

Figure 20 - JSON Jira Issue ... 41

Figure 21 - Jira Issue Mapping ... 42

Figure 22 - Calculate Average Time per Story Point ... 43

Figure 23 - Assigning Row Values .. 43

Figure 24 - Result Table Delay Detection Mode .. 44

Figure 25 - Time Progress Chart Concept .. 46

Figure 26 - Git Branch ... 48

 54

Tables

Table 1 - Market share project management tools .. 9

Table 2 - Agile and classic project management elements .. 29

Table 3 - Delay mode columns ... 31

Table 4 - Timetrackingtool.yml synchronised .. 35

Table 5 - Performance test .. 38

Table 8 - Saving average time results .. 45

Table 7 - Time progress colour coded .. 46

Table 6 - Time progress improvement ... 48

 55

Equations

Equation 1 - Average hours per story point ... 32

Equation 2 - Estimated time per issue in h .. 32

Equation 3 - Time progress per issue in % ... 33

 56

Appendices

Appendix 1 – 10 Confidential Appendices

Appendix 11: Survey Questionnaire ... 58

Appendix 12: Jira Tempo Logged Time Report ... 60

Appendix 13: Jira Tempo Excel Export ... 61

Appendix 14: Project Plan .. 62

Appendix 15: Wireframe .. 63

Appendix 16: TimeTrackingTool – Effort Mode - User/Comp Tab 64

Appendix 17 – Effort Mode – Issue Tab ... 65

Appendix 18 – LoadEffortModeTask comparison LoadDelayModeTask 66

Appendix 19 – Delay Mode .. 67

 57

Confidentiality clause:

Appendices 1-10 contain confidential data of CAS Software AG.

These appendices may only be made available to the first and second reviewers and author-

ized members of the board of examiners. Any publication and duplication of the confidential

appendices - even in part - is prohibited.

An inspection of the confidential appendices by third parties requires the expressed permis-

sion of the author and CAS Software AG.

 58

Appendix 11: Survey Questionnaire

 59

 60

Appendix 12: Jira Tempo Logged Time Report

 61

Appendix 13: Jira Tempo Excel Export

 62

Appendix 14: Project Plan

 63

Appendix 15: Wireframe

 64

Appendix 16: TimeTrackingTool – Effort Mode - User/Comp Tab

 65

Appendix 17 – Effort Mode – Issue Tab

 66

Appendix 18 – LoadEffortModeTask comparison LoadDelayModeTask

 67

Appendix 19 – Delay Mode

