

Duy Le-Dinh

Multiplatform Architecture, Protocols
and Technologies for Smart Systems

Metropolia University of Applied Sciences

Bachelor of Engineering

Degree Programme in Information Technology

Bachelor’s Thesis

01 June 2020

 Tiivistelmä

Author
Title

Number of Pages
Date

Duy Le-Dinh
Multi-platform architecture and technology for smart systems

35 pages + 1 appendix
01 June 2020

Degree Bachelor of Engineering

Degree Programme Information Technology

Professional Major Smart Systems

Instructors Sami Sainio, Senior Lecturer

Low-cost connectivity microprocessors have enabled ordinary electronic devices to be

smarter with internet-connected capabilities. Synergized with smartphones and cloud

computing, smart devices have formed the internet of things (IoT), which consists of a wide

range of hardware, mobile apps, and cloud services.

This diversity in smart systems offers great choices to the end-users. Yet, the same

variousness generates new problems for developers: a huge amount of time is required to

develop mobile applications and cloud services. Worse yet, this challenge exacerbates when

applications need to be maintained or integrated with the third-party service.

This project explores the state-of-the-art of Cross-Platform Technologies (CPT), i.e., React

Native, Flutter, Xamarin, and Qt: frameworks that have potential in alleviating the above is-

sues. Another purpose of this project is to study the IoT protocols and architectures and how

they can interface with CPT frameworks. Finally, this project aims to find the good de-signs

that empowers engineers to build excellent smart systems while limiting the maintenance

efforts.

In this project, information has been gathered from different sources such as official

documentation, research papers, review articles, and actual experiments. The study shows

that a solid cross-platform smart system should consist of four basic components: devices,

gateways, engine controller, and user-space applications. The combination of lightweight

IoT protocols such as MQTT, heavy-protocol like HTTP, and cross-platform mobile software

empower the system to work seamlessly and smartly

As a result of this final year project, a prototype of the smart garden eco-system has been

implemented at Lien Tam Buddhist Monastery in Turku, Finland. The system will be

developed further in the future as an open-source project.

Keywords
smart systems, architecture, protocols, cross-flatform, flutter,
react, native, mobile, mqtt, coap, iot, rest api

Contents

List of Abbreviations

1 Introduction 1

2 What is a Smart System? 4

2.1 Brief History of Smart System 4

2.2 Characteristics of Smart Systems 5

2.3 Trend and Challenges in Smart Systems 6

3 Smart System Architectures and Protocols 7

3.1 Four Basic Layers of Smart Systems 7

3.2 Devices Manager in Smart Systems 9

3.3 MQTT 10

3.4 COAP and HTTP 11

3.5 WebSocket 12

4 Mobile Cross-Platform Technologies in Smart System 13

4.1 Progressive Web Apps and Hybrid Web Apps. 14

4.2 React Native Framework 15

4.3 Flutter Framework 17

4.4 Xamarin Framework 19

4.5 Qt Framework 20

5 Use Case: Community Smart Garden Ecosystem 22

5.1 Project Description 22

5.2 Design the Ecosystems 23

5.3 The System’s Prototype 25

5.4 Implementation Prerequisites 29

5.5 Build and Deployment Process 33

6 Conclusion 37

References 38

Appendix: Source Code and More Documentations

List of Abbreviations

ADC Analog to Digital Converter.

CPT Cross-Application Technologies.

IoT Internet of Things.

RTOS Real-Time Operating System

V Voltage, Electrical energy level

PWA Progressive Web Apps

HWA Hybrid Web Apps

HTTP Hyper Text Transfer Protocol

UDP User Datagram Protocol

MQTT MQ Telemetry Transport

CoAP Constrained Application Protocol

SSL Secure Sockets Layer

TTL Transport Layer Security

OS Operating Systems

UI User Interface

1

1 Introduction

As the processing power grows continuously and the cost of electronic components

drops, new smart connectivity devices emerge to market. Today, there are approximately

26,66 billion internet-connected devices, while the world population is 7,8 billion [1 1]. In

other words, on average, every individual owns more than 3 devices; smart devices are

present nearly everywhere. It is believed that this growth trend is likely to continue in the

following years, as shown in figure 1.

Figure 1. Global Connected and IoT Device Installed Based Forecast between 2007-2025 [1]

The blossom of the smartphone market has changed the course of smart systems

dramatically. In fact, a decade ago, the only well-known commodity operating system

was Microsoft Windows; whereas, nowadays, Android is the most popular operating

system, as shown in figure 2. [3]

A smartphone engages in many aspects of smart systems, e.g., as main controllers, the

devices managers, and data collectors. In fact, smartphone applications are important

parts of the smart systems nowadays.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

IoT Devices (million) World Population (million)

2

Figure 2. Market share comparison between different Operating System. [3]

The rise of cloud computing enables smart systems to unite multiple technologies and

application sectors. For instance, knowledge of how a plant grows can be applied,

thereby empowering the system to take care of the plant automatically or give users

meaningful insights. Not to mention, cloud connection allows user’s input to be stored,

processed, and analyzed; hence, the meaningful output could be generated and utilized

to enhance system performance. Smart System has evolved to be a knowledge-rich

ecosystem, as illustrated in figure 3.

Thanks to these changes, service, and software now take priority over devices, the

system’s complexity is growing fast with the ability to manipulate data, integrate with third

parties, and update continuously. Furthermore, enterprises are shifting their business

model from products sales to digital propositions sales. They are not only selling devices

but also the eco-system, which includes software, services, contents, community

connection, and supports. [4, 5, 6, 7]

This project explores how smart system engineers can cope with the new situations; it

examines what architectures, protocols, and technologies permit software developers to

build the entitle smart system ecosystem. Any solution for this system imposes several

requirements. First, it has to be compatible with the diversity of platforms and devices.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 Mar-20

Windows OS X Android iOS Others

3

Second, it has to be easy to maintain. Finally, it should have the ability to integrate with

the cloud seamlessly.

Figure 3. Smart System Ecosystem illustration.

In the next section, this report describes the history and characteristics of a smart system

and discusses the basic layers in Smart System Architectures; it shows how devices

could interface with the others and with the network. Furthermore, this report shows the

CPT in mobile application development; and it shows the state-of-the-art CPT framework

such as React Native, Flutter, Xamarin, and Qt.

The use case has been taken for Lien Tam Monastery in Turku: Smart Garden

Ecosystem. The prototype utilizes the architecture and protocol mentioned in this report.

The user application is built with the Flutter Framework. The implementation chapter

explains how decisions have been made.

Finally, a short conclusion will end this thesis and attempt to predict the future of smart

systems.

4

2 What is a Smart System?

2.1 Brief History of Smart System

Since the dawn of civilization, humankind has been building machines that could reduce

physical work. Examples of the ancient machines include wedge, inclined plane, wheel.

They lay the foundation for the modern industrial revolutions.

From the first industrial revolution started in England to the second industrial revolution,

mankind has invented sophisticated machines for mass production, utilized the power of

electricity, built better engines, etc. The world has witnessed the significant development

in technology and economy.

In 1946, the first fully functional digital computer – The ENIAC (Electronic Numerical

Integrator and Computer), was completed [8]. Ten years later, the Massachusetts Institute

of Technology inventors invented the transistor and opened the new era of technology

[9]. The third industrial revolution began with the development of electronic infrastructure,

computers, and digital technology.

In 1971, Texas Instruments developed the first microprocessor: the TMS 1000 series,

(figure 4) [10]. In the same year, Intel 4004 – the first single-chip microprocessor was

released [11]. During this period, the integrated circuit’s price dropped while the usage

surged.

Figure 4. The TMS 1000 Microcontroller.

5

In 1990, the Internet was invented, marked the important milestone in the development

history of smart systems [12]. People started finding themselves living the parallel worlds:

i.e., the physical world and the digital world. One with machines and everyday objects,

one with no physical form, but a wide range of social media and digital contents.

Smart system has combined these two worlds, connected the digital world with the

physical world, and transformed everyday objects into smart things. With the rise of smart

system, home appliances become a system of smart home, cars become smart cars,

cities become smart cities, etc. The popularity of smart systems has increased

significantly from the early 2000s.

Cisco IBSG estimated that between 2008 and 2009, the Internet of Thing was “born”. In

2012, the number of internets connected devices surpassed the number of the world

population. The trend keeps going up. Today, there are about 26.6 billion connectivity

devices. [13]

2.2 Characteristics of Smart Systems

Smart Systems, also well-known as Embedded Systems, or Internet of Things are

systems that incorporate sensors, actuators, and controllers with the purpose of

analyzing and processing situation’s data, in order to decide predictively or adaptively on

which actions should be performed. These systems are operated autonomously, with

low energy consumption and networking capabilities. [14]

The key factor of smart systems is connectivity capabilities. Devices within the systems

can interact with users, other devices, and cloud services. Connectivity enables smart

systems to adapt to changes. Furthermore, thanks to this interaction, smart systems

could identify, understand, and extract information, e.g., meaning, time, place, to make

better decisions and get smarter.

Well-known as the precision system, smart systems could eliminate human error in a

variety of fields, such as healthcare, aerospace, manufacturing, etc. Besides, the

characteristics of having low energy consumption and lightweight make smart systems

an important role in areas that are sophisticated and safety-critical.

6

A wide range of application sectors can benefit from applying smart system technology.

Not only they are benefiting from smart systems, but smart systems could also benefit

from them, with the ability to unite knowledge from different areas and create a single

smart system ecosystem.

2.3 Trend and Challenges in Smart Systems

In 2014, Gartner, Inc – a research and advisory company, predicts that a typical house

could host several hundred smart devices by 2022; the rise will start in 2020 [15]. It is

expected that the smart home industry will offer a variety of opportunities for innovative

organizations. The world is expected to have nearly 40 billion IoT devices by 2025.

New challenges of user expectation and demand are waiting for engineers to solve. First,

as the price of microcontrollers drops, all devices could have an embedded controller

inside, which enables them to have additional capabilities such as connectivity,

performance monitoring, etc. At the same time, users expect more from smart devices,

meaning that it has to perform real smart actions. Smart systems should be able to take

care of their own and interact with users.

Second, thanks to the growth of smartphones, mobile apps will be an indispensable part

of smart systems, which will be responsible for a wide range of functionalities, such as

controlling, managing, even entertaining. Users expect devices and applications to be

updated frequently, with new features.

Finally, with the development of cloud computing, services will take priority over devices,

not only more ecosystem will be introduced but also the larger unified ecosystem will

emerge; smart devices should be able to interact cross-ecosystem, they should be

integrated with cloud services that provide knowledge for the system, collect user data,

process and make good use of them.

How are engineers going to cope with these changes? This thesis discusses possible

solutions in the following sections.

7

3 Smart System Architectures and Protocols

3.1 Four Basic Layers of Smart Systems

The fundamental layers of every smart system are identical to each other; even though

each of them is designed or advertised differently; even though standards in the smart

system industry, i.e., Alexa standard, IFFTT, Apple Home Kit are different; even though

different devices and applications have different core technologies. [15, 16, 17]

Components of all smart systems could be categorized under 4 layers: Smart Devices,

Gateway, Engine Processor, and Application Layer (figure 5). In other documents, this

layer can become a variation of 3 layers or 5 layers. However, the principle of all is

similar.

Communication: MQTT, COAP, HTTP

Figure 5. Basic Smart System Architecture.

Application Layer

Engine Processor (Cloud Computing)

Gateway or Aggregation Layer

Smart Devices: Sensors, Actuators, and Controllers

Web

Mobile App

API

8

Firstly, the most important part of the smart system is smart devices, which consist of

sensors, actuators, and controllers. Sensors are the small electronic components that

respond to a physical stimulus and transmit the results as impulses. Collected data, after

being passed to the controllers, will then be passed to the gateway. Also, actuators

execute the command given by controllers. Sensors can be embedded into a controller

or can be a standalone device.

There is a large range of communication protocols that enable smart devices to interface

with the gateway, such as MQTT and COAP in home appliances, or Fieldbus and IO-

Link in the industrial systems. Other designs that consider protocols as a transportation

layer. Protocols are critical in smart systems as they allow devices to communicate

efficiently, thereby affecting significantly energy usage and response time.

The next one is the gateway layer. It contains software that collects, filters, and digitally

converts raw data, and pre-processes them for the main processors. The gateway is the

bridge between devices and processor. It ensures that data is transferred efficiently and

securely.

Next, cloud computing is the brain in the architecture of smart systems. Without this

engine processor, a smart system is just a system of embedded devices. A cloud

platform can obtain and provide the knowledge to the smart systems; it is the engine that

can unite other technologies and sectors, combine all of these valuable data, and form

the smart ecosystem. Besides, in scalable systems, it can help reduce energy

consumption and downtime.

Finally, the last part is the application layer, which has become the indispensable

element of today’s smart systems. Applications interact directly with users to control and

sets up the system, collect user’s data, and provide useful feedback. It can provide the

API to give external systems a portal to access. Furthermore, it is a part of the device

management system, which will be described in the next section.

9

3.2 Devices Manager in Smart Systems

Figure 6. Device Management in Smart System

The Device Manager System is designed to authenticate, insure, configure, monitor, and

maintain the firmware and software of the smart system. This software plays a critical

role in ensuring that the system functions healthily with full connectivity and security

feature. The efficient device manager is one of the important answers to the question of

how a smart system can be maintained well. Figure 6 describes the architecture of the

devices manager system. [18]

There are three important components in the device management system. First, the

Identity and Access Manager function as the security layer. This component controls the

policy, allows users to be identified, and provides access to users. Second, the device

manager is a software that manages different agents in the smart system. This software

can be a standalone software in large smart systems or part user applications in small

systems.

Device manager can interact with devices and perform necessary tasks such as

configure, monitor, or update the software through many different protocols, similar to

the way components in the smart system communicate with the others. Examples of

these protocols are MQTT, CoAP, and HTTP, etc. In the next section, popular protocols

will be described.

Communication

MQTT
COAP
HTTP

Device Manager

Device 1

Devics 2

Device 2

Identity and Access
Manager

OATH2 Token

Policy Control

Identity Services

10

3.3 MQTT

MQTT stands for “Message Queue Telemetry Transport”. It is defined as “Publish-

subscribe-based “lightweight” messaging protocol, which is used on top of the TCP/IP

protocol”. [19]

Figure 7. How MQTT protocol works.

MQTT is an ideal protocol for M2M applications, such as smart system applications. One

popular example of MQTT is Facebook Messenger. Figure 7 shows how MQTT works.

An MQTT Broker is a server that has different topics. Different client nodes subscribe

and publish to the topic. When a message is broadcasted, messages are sent to the

subscribers.

There are three Qualities of services (QoS) in MQTT:

• QoS0: Broker and client send data only once, the process is confirmed by TCP/IP

protocols

• QoS1: Broker and client send data with at least one confirmation from the other

end. In other words, there can be more than one confirmation that data has been

received.

• QoS2: Broker and client ensure that data is received exactly once, this process

requires the four-part handshake: the client publishes QoS2, broker replies, the

client confirms, broker confirms.

MQTT Broker

Topic 1

Topic 2

Publisher

Subscriber

Subscriber

Subscriber

Publisher

Publisher

11

3.4 COAP and HTTP

Unlike MQTT, CoAP (Constrained Applications Protocol) and HTTP (Hypertext Transfer

Protocol) are one-to-one protocols. While the HTTP is the most popular protocol of the

world wide web, which is used to power the web and other activities on the internet, Co

CoAP is designed for the constrained environments. CoAP is similar to HTTP but it

supports smaller data packets. [20]

While HTTP supports TCP, CoAP utilizes UDP (User Datagram Protocol). Compare to

UDP, TCP is slower as it is a heavy-weight protocol, with a tracking system, big header

size, connection-oriented, and extensive error checking. In term of security, SSL/TSL is

not available for CoAP. Fortunately, there is an alternative tool, namely Datagram

Transport Layer Security (DTLS). Similar to HTTP, CoAP follows the client/server model;

it could send the GET, PUT, POST, and DELETE requests. CoAP is a RESTful protocol.

 White arrow : HTTP
 Orange arrow : CoAP

Figure 8. HTTP and CoAP protocols.

Along with MQTT, CoAP is one of the most popular protocols for smart system devices

as they are lightweight and energy friendly. Especially, CoAP has a big advantage over

other protocols: it is easy to be translated to HTTP. Using CoAP and HTTP altogether

allows system to communicate seamlessly, as shown in figure 8.

 THE INTERNET
Constrained

Environments
Proxy

Server

Client

Server

C

C

C
C

C

12

3.5 WebSocket

WebSocket is two ways communication protocols between client and server by using a

TCP socket. This protocol is very efficient, compared to HTTP. WebSocket initial the

handshake as the HTTP request. After the connection has been established, it maintains

the persistence with bidirectional communication. Figure 9 illustrates this method. The

strategy used in the WebSocket protocol is push-based, meaning the client only receives

the message when the new data is available. In the case of HTTP, to maintain the nearly

real-time connection, the client needs to proceed with the long-polling or polling

technique. [21]

Handshake (HTTP Upgrade)

Connection opened

Client Server

Bidirectional Messages, open and persistent connection

One side closes channel, connection closed

Figure 9. WebSocket handshake and communication.

Web Socket is not the greatest option for communication between smart devices.

However, it has the potential in the communication between server to server, server to

the edge processor. The following table compares the described protocols.

13

Table 1. Protocols Comparisons.

 MQTT CoAP HTTP WebSocket

Year 1999 2010 1997 2008

Architecture Client/Broker
Client/Server

Client/Broker
Client/Server Client/Server

Header Size 2 Byte 4 Byte Undefined Undefined

Packet
small, up to

256 MB)
small, large large

QoS
QoS 0, QoS

1, QoS 2

Confirmable

message
Limited Unreliable

Transportation

protocols
TCP UDP TCP TCP

Power Consumption Low Lowest High Highest

Security TLS/SSL DTLS, IPSec TLS/SSL TLS/SSL

Connection consistent restful restful consistent

Usage D2C/C2C D2D C2C/D2C C2C

The lightweight protocols such as MQTT or CoAP are suitable to use in the constrained

environment. For example, smart devices can be connected using MQTT if the opened

connection is required or CoAP if it is a restful connection is preferred. MQTT could also

be used to connect the device to the cloud if the consistency is needed. On the other

hand, the connection between devices and the cloud can be done via either CoAP or

HTTP protocol. Finally, WebSocket can be utilized to connect different clouds together.

4 Mobile Cross-Platform Technologies in Smart System

Application is an essential part of today’s smart system architecture, as explained in the

previous section. To build an app for both iOS and Android smartphones, developers

can choose either native technologies or non-native technologies. The native mobile

framework is the best choice for apps that require high performance, stability, and feature

14

access. However, in terms of the development speed and cost, native technologies show

problems, since apps have to be built and maintained multiple times.

This section reviews the state-of-the-art in cross-application technologies, which shows

great promise in solving the native app’s development speed and cost problems.

4.1 Progressive Web Apps and Hybrid Web Apps.

Progressive web apps (PWA) are a website that look like a mobile app but it can work

offline. Hybrid Web Apps (HWA) are also web apps but it is embedded inside Native

apps. They both are built using web technologies, i.e., HTML, CSS and JavaScript.

Example of this technologies used in these browser-based solutions includes React,

Angular, Js Ionic, PhoneGap, etc. [22]

The advantage of web apps is the fast development. Since a website is a cross-platform

app itself, using this technology, a developer needs to write code once only, and the app

is going to work on all devices that support web, meaning all smartphones and personal

computers. [23]

Another advantage is that a web can be deployed faster. A PWA app does not have to

go through App Store or Play Store to be installed. Users can access app directly through

a website or save it as an app. It is also linkable, which can be shared via a URL, without

any complex installation. While native apps are updated using the stores, developer can

update PWA directly. In cases of native apps, some users may miss the update and be

vulnerable to attacks. [24]

HWA is installed through the App Store or Play Store like the native apps. Both HWA

and PWA use HTTPS protocols, which is a secured connection.

Even though they have many advantages and sounds like an ideal choice to develop an

application for Smart Systems, they have problems. Firstly, compared to native apps, the

general performance and graphical performance is slower. Second, the biggest

disadvantage is feature accessibility. There are many features that a PWA application

cannot access [25]. Examples are shown in the below, table 2.

15

Table 2. Feature Assess of web apps.

Supported Not Supported

Bluetooth
Local Notification
Touch Gestures
Geolocation
Camera
Device Motion
Offline Storage
File Access

NFC
Proximity Sensors

Contacts
SMS/MMS

Geofencing
Others

As application is very important in Smart System, the lack of some feature or the low

performance may not be tolerant. Therefore, this thesis does not discuss further about

the web app technologies. In the following section, this thesis explores the most popular

native cross-platform framework: React Native, Flutter, Qt and Xamarin.

4.2 React Native Framework

Developed and introduced by Facebook, Inc in 2015, React Native is the combination

between React and Native Development. React Native was born at a Facebook’s internal

Hackathon event. React Native solves the issues of both Hybrid apps and Native apps.

An application written using React Native can run on both iOS and Android. React Native

source codes are intepreted to Javascript, which will then be converted to Native code

by a series of elements known as the Bridge, as shown in figure 10. [26]

16

Figure 10. The Architecture of React Native

Since React Native utilizes JavaScript and React framework, companies which have

other resources built in JavaScript can be beneficial with React Native. Shopify is an

example, it has announced its change from Native apps to React Native, with one of the

reasons is to leverage the JavaScript resource. [27]

In terms of smart system, React Native allows apps to be built quickly, and able to run

on various platforms. Besides the two main smartphone operating systems: iOS and

Android, React Native could be used to run on web server. In addition, the experimental

feature enables React Native to work with Electron Js in a Desktop app, meaning, it can

be used to build a Desktop software that can run on Windows, Linux and Mac OSX. [28]

REACT

JAVASCRIPT (JSC)

BRIDGE

Shadow Tree
JSON(ASYNC)
Native Modules

NATIVE

17

Figure 11. Example of Hello, World application written in React Native.

As demonstrated in figure 11, An app written using React Native consists of

Components, which is a function that has props (properties). The bridge modules

compile React components into the iOS/Android UI Components. Components are very

useful; they allow the application to be developed quickly by reusing them. [29]

A compelling advantage of React Native is the performance, it can achieve 60 frames

per second with the native look and feel. This is a powerful feature as it allows apps to

run animation easily [30]. Unfortunately, since the interpreted layer is heavy, compared to

the Native Apps, the performance is still much lower, even though, users usually cannot

detect the difference.

4.3 Flutter Framework

With React Native, the app can be developed quickly. However, there is one more issue,

which is ‘the-native-performance’. React Native app is still slow, compared to a native

18

app. Flutter not only can be developed fast but also it has native performance. Flutter

can be considered as the state-of-the-art in cross-application technology. [31]

Flutter is written with Dart - a new programing language created by Google. Dart has

excellent designs, it combines the best features of C++, C#, Java, ES7, with elegant and

attractive syntax. The big success of Dart is the ability to be either a compiled or an

interpreted language. For a web application, Dart can be interpreted to JavaScript, while

on Flutter, it is compiled to the machine code.

Figure 12. Example of Hello, World application written in Flutter.

Inspired by React, even though the language syntax is different, Flutter’s UI is made of

widgets, which similar to React Components [32]. Figure 11 and 12 shows how a Widget

is implemented. In addition to widgets, Flutter’s state management system is also similar

to React-Redux. [33]

Flutter controls all screen’s pixels by using its rendering engine. This is an advantage

and also a disadvantage. On the one hand, it renders fast and keeps the same look on

all devices that it supports. On the other hand, an app has to be shipped with this engine

and become bigger. Besides, it does not render the Native Components. [34]

19

Figure 13. The widget tree of the above Hello, World application.

The first stable version of Flutter was launched on December 4, 2018. Even though it is

young, it attracts a lot of attention from the community. On GitHub, it is now (5/2020)

having more stars than React Native. Moreover, the features are growing fast, the current

Flutter version not only supports mobile platforms but also Mac OSX and Web platform.

The experimental version even supports Linux and Windows.

4.4 Xamarin Framework

Xamarin was a cross-platform framework developed by Xamarin, which now belongs to

Microsoft. It is open-source and can be used to develop Android, iOS, macOS, watchOS,

and tvOS apps. The language that Xamarin utilizes is C#.

Xamarin has an impressive performance. Even though the performance is still slower

than Flutter, it is close to the performance of the native apps. Besides, another advantage

of using Xamarin is that it uses native user interfaces, which allows apps to look native.

Xamarin supports full native API access. [35]

MaterialApp

Scaffold

Center

AppBar

Text

Text

20

Figure 14. The architecture of Xamarin Framework

One downside of Xamarin is that although it is an open-source, in order to leverage all

potential, Visual Studio IDE is required, and the Professional Visual Studio and

Enterprise Visual Studio IDE are very expensive. Another disadvantage is that Xamarin

is slightly delayed in updating new features. [35]

4.5 Qt Framework

Qt framework is a very famous open-source framework, it is an old framework with 24

years of history, with a community of approximately 1 million developers worldwide [36].

This is a powerful framework, as it can work on almost all platforms. It can work with

embedded devices, microcontrollers, internet of things, desktop applications, multiple

screens, and mobile devices. According to Qt, it is a “code once, deploy everywhere”

framework.

Qt is built with C++, which is a language that most of the smart system developers know.

Currently, as C++ is the fastest object-oriented programing language, and as a result,

21

there is no doubt about Qt performance. Examples of applications that are written in Qt

are Spotify, Weather App, Atlas, and Math Graphica. For other platforms, Qt application

can be seen in many different places such as cars’ screen, smart home control panels,

etc. [37]

Figure 15. Qt is used in the Rimac Automobile electric super car info and entertainment system.

Similar to other frameworks, Qt has its disadvantages. Qt may be a good option for

commercial uses. However, for a non-commercial version, there are constrains. For

example, without the Qt Quick Compiler, the application startup time is long. Besides, Qt

is under LGPL version 3, GPL version 2, and GPL version 3, meaning applications that

developed by Qt have to be categorized within the same licenses. [38]

The above open-source problem is one of the reasons why Qt has not been tried during

this project. Apart from that, Qt has the large potential to be applied in Smart System,

because of it is mature, supports wide cross-platform, and utilize C++.

22

5 Use Case: Community Smart Garden Ecosystem

5.1 Project Description

Smart Garden is one of the most popular applications of smart system today. This system

is available on a big scale, from a small single plant system to an industrial system. This

project is carried out for a community garden at Lien Tam Buddhist Monastery. The goal

is to build a smart ecosystem for Monastery’s garden.

The first functionality of the system is to control the drip irrigation system autonomously.

This system could turn the pump on, open the valves to supply water on a daily basis or

when needed. It uses a series of moisture, light, and temperature to monitor the garden

and make decision based on this information.

The second feature of the system is to monitor the garden. Since the garden is taken

care of by infrequent volunteers, cooperation is sometimes disrupted. The system can

monitor people who enters the garden, what they do, and notify the others. Besides, it

can help the manager to manage the usage of farming equipment such as tools,

machines, and gases.

Lastly, it is a learning platform. An application can provide necessary information about

the tropical plants, how to take care of each plant, and how to harvest. Information is

synchronized with the cloud. Volunteers can study, monitor, and control the garden via

the mobile application that can run on both iOS and Android.

The prototype has been built and ready for this year’s growing season (2020). This

system can automatically monitor the soil moisture, give users the latest update of the

garden’s status. It can control the whole system automatically or be controlled by users

over the mobile application through the internet. The learning section on a mobile app

can teach users about vegetables that have been planted in the garden. Due to time

constrain, it is not yet a fully functional system. However, this prototype is an excellent

example to demonstrate the architecture, protocols that are reported in this thesis.

Besides, the mobile app is a perfect example for the benefit of using cross-platform

technology in nowadays smart system ecosystem

23

5.2 Design the Ecosystems

Figure 16. The design of Smart Garden Ecosystem

Figure 16 illustrates the basic design of the smart garden system. This design is very

flexible. At the heart of the system, a cloud server responds to all requests from

applications and devices gateway. The cloud interfaces with applications and gateways

through various protocols. Devices with low-power consumption and consistent

connection can use MQTT protocols to communicate with the cloud, while devices that

do not require the consistency can send data to the server through HTTP requests.

Mobile Apps

(Flutter)

MQTT

Mobile Apps
(React Native)

HTTP

Others

MQTT Client
HTTP

CLOUD ENGINE PROCESSOR

MQTT, HTTP, WebSocket

Third-Party Cloud
SERVER

HTTP, WebSocket

Irrigation System
Gateway

CoAP

Irrigation System
Gateway

MQTT

Other Gateways

MQTT Client

HTTP

Device

CoAP

Device

CoAP

Device

MQTT

Device

MQTT

Device

HTTP

24

The server could interact with the third-party clouds to provide extra services to the

system. For example, if the client decides to buy a system from Gardena – a company

that provides smart garden equipment, the integration between the client’s cloud and

Gardena’s cloud can be implemented in order to allow users to control Gardena’s

equipment using the existing mobile app. Using the cloud server also enables the system

to connect to a bigger cloud server that can provide services such as Big Data, Assistant,

AI easily. The main task is to connect to the API provided by server providers.

On the application layer, there can be multiple applications connecting to the cloud.

These apps are technology independent and platform-independent. For example, a

volunteer’s mobile application can get data from the server using an HTTP request, a

manager controller app can maintain the MQTT connection to the server to receive

“nearly-real-time” information.

Figure 17. Test MQTT connection between several machines.

25

On the device layers, this design allows the system to be device-independent. If the

device is broken, it can be replaced with other devices, as long as the new one provides

the same protocol. The manager only needs to configure the new device in the

management app.

One disadvantage of the system is if the internet is down, the whole system will corrupt.

An edge computer can be a temporary solution; however, it cannot provide the same

functionality as the cloud provides. Therefore, this system is internet dependent.

5.3 The System’s Prototype

The system’s design is sophisticated and requires time to build a complete solution.

However, a simple prototype has been completed and can be used to demonstrate how

the architecture, protocol, and especially the mobile application works.

The prototype consists of a wide range of components: a server hosted in Digital Ocean,

Deco’s mesh WLAN system, Capacitive Moisture Sensor, Solenoid, ESP32

Development Boards, and most importantly, a mobile app written in Flutter that can run

on both iOS and Android smartphone.

A virtual server rented on the Digital Ocean is cheap and stable. It can be expanded

easily if needed. In this project, the backend source code is hosted in the Digital Ocean.

The Eclipse Mosquitto and Flask microframework have been utilized to power the central

engine. The Mosquitto provides the MQTT broker for devices communication while Flask

provides the REST API to enable, for example, data processing and third-party cloud

integration.

For network infrastructure, the existing Deco Mesh network system of Lien Tam

Monastery is re-designed to cover the whole garden. Mesh network is a perfect solution

for smart systems because it allows the network to be self-configuring, self-healing, and

provides great coverage.

26

Figure 18. Sample FreeRTOS and ESP-IDF librabry used in the project to power the sensor.

The capacitive soil moisture sensor is selected to measure the moisture of small plant’s

soil. There are many different types of soil moisture sensors. However, the capacitive

soil moisture sensor is more durable. A low-cost solenoid has been purchased for testing

purposes; better options are being researched. ESP32 microcontrollers are being used

as the controller to exchange data to the cloud via MQTT protocol. In this project, a DOIT

Esp32 Devkit V1 has been used. (figure 19).

27

Figure 19. DOIT Esp32 DevKit v1 is used in this project.

ESP32 is a microcontroller manufactured by Espressif Systems Co., LTD. There are

several reasons why ESP32 is chosen, instead of microcontrollers manufactured by

NXP, STM, and Texas Instruments.

Firstly, ESP32 is popular among the DIY community, as the system is an open-source

community project, utilizing this controller allows the system can be easily developed

further, even by non-professional developers. The second reason is ESP32 is an

affordable duo-core microcontroller with WLAN, Bluetooth, and Sensors built-in, which

suitable for the requirement of this project. Finally, despite the popularity in the DIY

community, ESP32 comes with the ESP-IDF framework built on top of FreeRTOS, which

provides powerful tools for professional development. In other words, professional

developers could work comfortably with this choice: i.e., having, for example, full control

and debugging easily.

28

Figure 20. A Flutter App on iPhone 11 Pro Max (iOS) and Blackberry Key 2 (Android)

Most importantly, the whole system interfaces with users through a mobile application.

At first, the React Native framework has been used to develop this application since the

writer is familiar with React – which is a powerful library to build web interfaces. However,

during the development, several issues occur. First, the performance is not good, even

React Native is much better than Web App, the framework’s complexity slows down the

performance. Second, debugging in React Native is complicated, there are bugs that are

29

difficult to track. Finally, the most important reason is that a better solution, namely

Flutter, already exists.

Flutter framework has React Native inspiration but does not have React Native’s

drawback. The framework’s design is efficient and allow the app to be compiled to the

machine code and run nearly as fast as the native apps. In addition, there are pre-built

widgets that allow the application to be built quickly. Besides, the app provides good

user-experience with stability, and easier to debug, compare to React Native. In short,

with Flutter, not only an app can be easily built, but also it is also eye-catching and

powerful. Figure 20 shows the UI of the Flutter app for both iOS and Android. This is an

app that has been built in this project.

5.4 Implementation Prerequisites

Before starting this project, besides purchasing all necessary hardware components, a

variety of prerequisites are required to be fulfilled before the development process can

be started.

Working Integrated Development Environment (IDE) tools

Three different IDEs, i.e., Visual Studio, Android Studio, and Emacs has been chosen in

this project. Unlike other projects which involve only one technology, this project

combines different technologies, such as embedded system, web development, and

mobile development. Different IDE is suitable for different technologies, besides,

separate these working environments could reduce confusion during the development

process.

These are personal choices. I chose the Android Studio for mobile app development

since it supports Flutter SDK very well. Visual Studio is chosen to build the web

application. In addition, Emacs is chosen for embedded programming on the ESP32

because it is convenient to use the terminal for writing, compiling, and debugging the C

code. Besides, emacs is utilized to write code and config files on the server through SSH.

In addition to the IDE, the latest version of Mac OS and XCode are required to build the

iOS application. The XCode version should be 2 versions ahead compared to the

iPhone/iPad in order to deploy the app. During this project, I have made a mistake when

30

using the Mac OSX Mojave 10.14.6. This does not support the latest XCode. Since it is

risky to update the system in the middle of the development, the app could not be

deployed on the real iPhone using this machine. Fortunately, the virtual engine works,

and app could be deployed using another Mac OS machine.

Installing Espressif IoT Development Framework (ESP-IDF) on Mac OS

• Different toolchains are required to be installed to support ESP-IDF. Depend on

the OS, the requirements are different. On Mac OS, the installation can be done

as follow:

 $ sudo easy_install pip

 $ pip install –user pyserial

 $ sudo port install cmake ninja dfu-util

• After the tools have been installed, change directory to home and clone ESP-IDF

framework from GitHub:

 $ cd ~/esp

 $ git clone --recursive https://github.com/espressif/esp-idf.git

• After the download completed, install the ESP-IDF:

 $ cd ~/esp/esp-idf

 $./install.sh

• Finally, add ESP-IDF to the PATH environment variable by using the automatic

script. This script needs to be run every time the terminal restarts.

 $. $HOME/esp/esp-idf/export.sh

Installing Flutter Development Kit on Mac OS

• It is simple to install Flutter. First, download the latest stable release from the

Flutter download page and extract the file to the desired location. After that, add

the flutter tool to the path using the export command as follow:

https://github.com/espressif/esp-idf.git
https://storage.googleapis.com/flutter_infra/releases/stable/macos/flutter_macos_1.17.0-stable.zip

31

 $ export PATH="$PATH:`pwd`/flutter/bin"

• Download and install XCode from the App Store. XCode may requires users to

update to the latest OS version. In the case installing the newest version is not

possible, go to the Apple Developer page to download XCode. Please be mindful

that Flutter may not work with the old XCode version. Check the documentation

for more detail. After the installation, configure XCode as following in the terminal:

$ sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer

 $ sudo xcodebuild -runFirstLaunch

• Finally, install Android Studio by simply download it from the official website and

drag it to the Application folder on Mac OS. After installing, open Android Studio

and follow the instruction to install Android SDK. By opening the Flutter source,

Android Studio will automatically detect it and request for new packet install,

accept the request.

• Check if all setup has been done successfully:

 $ flutter doctor

Setting up Digital Ocean Server

To create a digital ocean account, open https://cloud.digitalocean.com/login, click Sign

up, and follow the online instruction. After the registration, log in to the administration

panel, create a new Droplet by select Create/Droplets and follow online instructions.

https://cloud.digitalocean.com/login

32

Figure 21. Create the Droplets on Digital Ocean

After that, the initial server setup is required. One needs to create a new user account
and the user to the sudo group. The root account should not be used in ordinary tasks.

• Logging in as root using SSH and change the password:

 $ ssh root$droplets_ip_address

• Adding new Linux user, for security reason:

 $ adduser username

• Adding new user to the sudo group:

 $ usermod -aG sudo username

• Setting up the basic Firewall to allow OpenSSH:

 $ ufw allow OpenSSH

 $ ufw enable

• Check the ufw status:

 $ ufw status

 Output:

33

 Status: active

 To Action From

- ------- -----

 OpenSSH ALLOW Anywhere

 OpenSSH (v6) ALLOW Anywhere (v6)

Other Prerequisites

The working environment is ready now, however, other things should be set up as well.

The working process involves soldering and measuring voltage. A good soldering station

and a multimeter should be prepared. Besides, an oscillator is another tool that can bring

benefits during the working process. Finally, one can prepare several smartphones for

real tests.

5.5 Build and Deployment Process

Install MQTT broker on Digital Ocean Server

• Update Ubuntu’s package and install Mosquitto:

 $ sudo apt-get update

 $ sudo apt-get install mosquitto mosquitto-clients

• Configure MQTT for testing, add the default config file:

 $ sudo emacs /etc/mosquitto/conf.d/default.conf

• Since this is just a test server and a prototype, configure the default post and IP

address simply by adding the following line to the end of the <default.conf> file

and save it. This lets the moquitto server knows that it should listen for request

that comes from port 1883, which is the default TCP/IP unencrypted port:

 listener 1883 <server.ip.address>

34

• Allow port 1883 to be accessed. In production, a secured authentication with user

and password must be set up, besides, SSL/TTL certificate need to be configured

and port 8883 can be used:

 $ sudo ufw allow 1883

 Output:

 Rule added

 Rule added (v6)

• Restart the Mosquitto to update setting:

 $ sudo systemctl restart mosquitto

• Test to make sure that it works:

 $ mosquitto_pub -h <server.ip.add> -t test -m "hello, world" -p 1883

Build and Flashing the ESP32 Development Board

Figure 22. DOIT Esp32 DevKit v1 pinout.

35

• After connecting ESP32 with Sensor and Actuator. Go to the project root

directory, for example:

 $ cd ~/esp/zocho-ten-sensor

• Connect the ESP32 to the Mac OS through the USB connection, set the target

with the following with the first command and open the configuration window:

 $ idf.py set-target esp32

 $ idf.py menuconfig

• A configuration window will be shown to allow the developer to config the

program. This menu allows the developer to set up the project-specific

variables, i.e. WLAN network, processor speed, etc. If all variables have been

set up in the source code, simply skip the menu.

Figure 23. Menu Config Windows of ESP-IDF framework.

• Build the project:

 $ idf.py build

• Identify the Port that ESP32 utilized to connect to Mac OS:

36

 $ ls /dev*

• After identifying the port, save it to an environment variable:

 $ ESP32_PORT=’enter the above address’

• Flash the program to ESP32:

 $ idf.py -p $ESP32_PORT flash

• Monitor the program:

 $ idf.py -p $ESP32_PORT monitor

• Alternatively, the program can be monitor after flashing.

 $ idf.py -p $ESP32_PORT flash monitor

Deploy Flask to Digital Ocean Server, setup MongoDB database, Nginx, uWSGI:

• Follow this instruction on how to deploy a Flask app to Digital Ocean:
https://www.digitalocean.com/community/tutorials/how-to-serve-flask-
applications-with-uswgi-and-nginx-on-ubuntu-18-04

Build and deploy the mobile application

• The instruction can be found in the Deployment section in the Flutter
documentation: https://flutter.dev/docs,

• Source codes can be downloaded from the link provided in the appendix.

https://www.digitalocean.com/community/tutorials/how-to-serve-flask-applications-with-uswgi-and-nginx-on-ubuntu-18-04
https://www.digitalocean.com/community/tutorials/how-to-serve-flask-applications-with-uswgi-and-nginx-on-ubuntu-18-04
https://flutter.dev/docs

37

6 Conclusion

Smart systems unite different fields of information technology such as embedded

systems, networking, IoT, mobile solutions, and web development to form a smart

ecosystem that leverages the advantages of these fields. Smart systems unite

knowledge from other industries with the help of cloud computing, data mining, and

artificial intelligence, to create a truly smart ecosystem.

This thesis presents the modern architecture of smart systems, consisting of four main

layers: devices, gateways, engine processor, and application. This study also discusses

how engineers could use this architecture to build a system that is platform-independent,

powerful, and easy to maintain.

This study focuses on different mobile cross-platform technologies such as React Native,

Flutter, Xamarin, and Qt. It studies the advantages and disadvantages of each

technology. Flutter was chosen to be the mobile solution for the use case demonstration

– the Community Smart Garden Ecosystem. Using frameworks such as Flutter could

reduce half of the development time because it allows an application to be written once

instead of multiple times.

At the end of the thesis, the implementation and decision-making process has been

documented. The prototype is ready to be tested in the real environment, it shows great

potential to be developed further and it will be developed further in the future. Due to the

constraints of the thesis report, the source codes and more details are provided in the

GitHub repositories mentioned in the appendix.

To conclude, this smart system design and technologies show great potential to solve

the mentioned problems: how to build a smart system that is quick, powerful, and easy

to maintain.

38

References

1 David Mercer. Global Connected and IoT Devices Forecast Update. Available
from: https://www.strategyanalytics.com/access-services/devices/connected-
home/consumer-electronics/reports/report-detail/global-connected-and-iot-
device-forecast-update

2 Worldometer.World Population. Available from:
https://www.worldometers.info/population/world/

3 Statcounter GlobalStats. Operating System Market Share Worldwide. Available
from: https://gs.statcounter.com/os-market-share/all/worldwide/2019

4 Daniel Beverungen, Martin Matzner & Christian Janiesch. Information system for
smart services. Available from: https://link.springer.com/article/10.1007/s10257-
017-0365-8

5 Smart Systems primer. Available from: https://www.express-
ca.eu/public/ecosystem-knowledge-gateway/references/references-smart-
systems-primer/references-smart-systems-primar

6 Michael E.Porter and James E. Heppelmann. How Smart, Connected Products
are Transforming Competition. Available from: https://hbr.org/2014/11/how-smart-
connected-products-are-transforming-competition

7 6 Business Model shifts to explore. Available from:

https://www.businessmodelsinc.com/business-model-shifts-blog/

8 Martin H. Weik. The ENIAC Story. Aavailable from:
https://web.archive.org/web/20110814181522/http://ftp.arl.mil/~mike/comphist/eni
ac-story.html

9 San José State University, The History of Transistor. Available from:
https://www.sjsu.edu/faculty/watkins/transist.htm

10 TMS 1000 One-Chip Microcomputers. Available from:
https://web.archive.org/web/20050213130208/http://www.ti.com/corp/docs/compa
ny/history/tms.shtml, accessed 03-05-2020)

11 Intel’s first microprocessor. Available from:

https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html

12 Evan Andrews. Who Invented the Internet. Available at:

https://www.history.com/news/who-invented-the-internet

https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update
https://www.worldometers.info/population/world/
https://gs.statcounter.com/os-market-share/all/worldwide/2019
https://link.springer.com/article/10.1007/s10257-017-0365-8
https://link.springer.com/article/10.1007/s10257-017-0365-8
https://www.express-ca.eu/public/ecosystem-knowledge-gateway/references/references-smart-systems-primer/references-smart-systems-primar
https://www.express-ca.eu/public/ecosystem-knowledge-gateway/references/references-smart-systems-primer/references-smart-systems-primar
https://www.express-ca.eu/public/ecosystem-knowledge-gateway/references/references-smart-systems-primer/references-smart-systems-primar
https://hbr.org/2014/11/how-smart-connected-products-are-transforming-competition
https://hbr.org/2014/11/how-smart-connected-products-are-transforming-competition
https://www.businessmodelsinc.com/business-model-shifts-blog/
https://web.archive.org/web/20110814181522/http:/ftp.arl.mil/~mike/comphist/eniac-story.html
https://web.archive.org/web/20110814181522/http:/ftp.arl.mil/~mike/comphist/eniac-story.html
https://www.sjsu.edu/faculty/watkins/transist.htm
https://web.archive.org/web/20050213130208/http:/www.ti.com/corp/docs/company/history/tms.shtml
https://web.archive.org/web/20050213130208/http:/www.ti.com/corp/docs/company/history/tms.shtml
https://www.intel.com/content/www/us/en/history/museum-story-of-intel-4004.html
https://www.history.com/news/who-invented-the-internet

39

13 Dave Evan. The Internet of Thing, How the Next Evolution of the Internet is
changing everything. Available at:
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINA
L.pdf

14 SSI Smart Systems Integration. Available from: https://www.smart-systems-
integration.org/ssi-smart-systems-integration

15 Gartners says a typical family home could contain more than 500 smart devices
by 2022: https://www.gartner.com/en/newsroom/press-releases/2014-09-08-
gartner-says-a-typical-family-home-could-contain-more-than-500-smart-devices-
by-2022

16 Multiple Authors. System Architecture for a Smart University Building. Available
from:
https://www.researchgate.net/publication/221078634_System_Architecture_for_a
_Smart_University_Building

17 Multiple Authors. IoT Elements, Layered Architectures and Security Issues: A
Comprehensive Survey. Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165453/

18 Calum McClelland. IoT Device Management: What is it and why do you need it.

Available from: https://www.iotforall.com/what-is-iot-device-management/

19 MQTT wiki page. Available from: https://github.com/mqtt/mqtt.github.io/wiki

20 Multiple Authors. The Constrained Application Protocol (CoAP). Available from:
https://tools.ietf.org/html/rfc7252

21 The WebSocket API. Available from: https://developer.mozilla.org/en-
US/docs/Web/API/WebSockets_API

22 Welcoming Progressive Web Apps to Microsoft Edge and Windows 10. Available
from: https://blogs.windows.com/msedgedev/2018/02/06/welcoming-progressive-
web-apps-edge-windows-10/

23 Introduction to Progressive Web App Architectures. Available from:
https://developers.google.com/web/ilt/pwa/introduction-to-progressive-web-app-
architectures

24 A Guide to Mobile App Development: Web vs. Native vs. Hybrid. Available from:
https://clearbridgemobile.com/mobile-app-development-native-vs-web-vs-hybrid/

25 What web can do today. Available from: https://whatwebcando.today/

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.smart-systems-integration.org/ssi-smart-systems-integration
https://www.smart-systems-integration.org/ssi-smart-systems-integration
https://www.gartner.com/en/newsroom/press-releases/2014-09-08-gartner-says-a-typical-family-home-could-contain-more-than-500-smart-devices-by-2022
https://www.gartner.com/en/newsroom/press-releases/2014-09-08-gartner-says-a-typical-family-home-could-contain-more-than-500-smart-devices-by-2022
https://www.gartner.com/en/newsroom/press-releases/2014-09-08-gartner-says-a-typical-family-home-could-contain-more-than-500-smart-devices-by-2022
https://www.researchgate.net/publication/221078634_System_Architecture_for_a_Smart_University_Building
https://www.researchgate.net/publication/221078634_System_Architecture_for_a_Smart_University_Building
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165453/
https://www.iotforall.com/what-is-iot-device-management/
https://github.com/mqtt/mqtt.github.io/wiki
https://tools.ietf.org/html/rfc7252
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://blogs.windows.com/msedgedev/2018/02/06/welcoming-progressive-web-apps-edge-windows-10/
https://blogs.windows.com/msedgedev/2018/02/06/welcoming-progressive-web-apps-edge-windows-10/
https://developers.google.com/web/ilt/pwa/introduction-to-progressive-web-app-architectures
https://developers.google.com/web/ilt/pwa/introduction-to-progressive-web-app-architectures
https://clearbridgemobile.com/mobile-app-development-native-vs-web-vs-hybrid/
https://whatwebcando.today/

40

26 Lorenzo Sciandra. The new React Native Achitecture Explained. Part Three.
Available from: https://formidable.com/blog/2019/fabric-turbomodules-part-3/

27 Farhan Thawar. React Native is the Future of Mobile at Shopify. Available from:
https://engineering.shopify.com/blogs/engineering/react-native-future-mobile-
shopify

28 Evan Bacon. Making Desktop apps with Electron, React Native, and Expo.
Available from: https://dev.to/evanbacon/making-desktop-apps-with-electron-
react-native-and-expo-5e36

29 Core Components and Native Components. Available from:
https://reactnative.dev/docs/intro-react-native-components

30 Performance Overview. Available from:
https://reactnative.dev/docs/performance

31 Flutter vs Native vs React-Native: Examing performance. Available from:
https://medium.com/swlh/flutter-vs-native-vs-react-native-examining-
performance-31338f081980

32 Introduction to widgets. Available from:
https://flutter.dev/docs/development/ui/widgets-intro

33 State management. Available from: https://flutter.dev/docs/development/data-
and-backend/state-mgmt/intro

34 Tom Glider. Flutter’s Key Difference: Owning Every Pixel. Available from:
https://medium.com/flutter-community/flutters-key-difference-owning-every-pixel-
e2135b44c8a

35 The Good and The Bad of Xamarin Mobile Development. Available from:

https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/

36 Stock Exchange Release April 12, 2017. Available from:

https://investors.qt.io/releases/?release=A84F7B0247145FCF

37 Examples of Mobiles Apps in Qt. Available from:

https://developex.com/blog/%F0%9F%86%92-examples-of-mobile-apps-in-qt/

38 5 types of Software Licenses you need to understand. Available from:
https://www.synopsys.com/blogs/software-security/5-types-of-software-licenses-
you-need-to-understand/

https://formidable.com/blog/2019/fabric-turbomodules-part-3/
https://engineering.shopify.com/blogs/engineering/react-native-future-mobile-shopify
https://engineering.shopify.com/blogs/engineering/react-native-future-mobile-shopify
https://dev.to/evanbacon/making-desktop-apps-with-electron-react-native-and-expo-5e36
https://dev.to/evanbacon/making-desktop-apps-with-electron-react-native-and-expo-5e36
https://reactnative.dev/docs/intro-react-native-components
https://reactnative.dev/docs/performance
https://medium.com/swlh/flutter-vs-native-vs-react-native-examining-performance-31338f081980
https://medium.com/swlh/flutter-vs-native-vs-react-native-examining-performance-31338f081980
https://flutter.dev/docs/development/ui/widgets-intro
https://flutter.dev/docs/development/data-and-backend/state-mgmt/intro
https://flutter.dev/docs/development/data-and-backend/state-mgmt/intro
https://medium.com/flutter-community/flutters-key-difference-owning-every-pixel-e2135b44c8a
https://medium.com/flutter-community/flutters-key-difference-owning-every-pixel-e2135b44c8a
https://www.altexsoft.com/blog/mobile/pros-and-cons-of-xamarin-vs-native/
https://investors.qt.io/releases/?release=A84F7B0247145FCF
https://developex.com/blog/%F0%9F%86%92-examples-of-mobile-apps-in-qt/
https://www.synopsys.com/blogs/software-security/5-types-of-software-licenses-you-need-to-understand/
https://www.synopsys.com/blogs/software-security/5-types-of-software-licenses-you-need-to-understand/

Appendix: Source Code and Documentations

• REST API, Flask: https://github.com/juuisle/zocho-api

• Mobile Application, Flutter: https://github.com/juuisle/zocho-mobile

• Actuator, ESP-IDF FreeRTOS: https://github.com/juuisle/zocho-actuator

• Sensor, ESP-IDF FreeRTOS: https://github.com/juuisle/zocho-sensor

https://github.com/juuisle/zocho-api
https://github.com/juuisle/zocho-mobile
https://github.com/juuisle/zocho-actuator
https://github.com/juuisle/zocho-sensor

	1 Introduction
	2 What is a Smart System?
	2.1 Brief History of Smart System
	2.2 Characteristics of Smart Systems
	2.3 Trend and Challenges in Smart Systems

	3 Smart System Architectures and Protocols
	3.1 Four Basic Layers of Smart Systems
	3.2 Devices Manager in Smart Systems
	3.3 MQTT
	3.4 COAP and HTTP
	3.5 WebSocket

	4 Mobile Cross-Platform Technologies in Smart System
	4.1 Progressive Web Apps and Hybrid Web Apps.
	4.2 React Native Framework
	4.3 Flutter Framework
	4.4 Xamarin Framework
	4.5 Qt Framework

	5 Use Case: Community Smart Garden Ecosystem
	5.1 Project Description
	5.2 Design the Ecosystems
	5.3 The System’s Prototype
	5.4 Implementation Prerequisites
	5.5 Build and Deployment Process
	5.6

	6 Conclusion
	References

