

Mikhail Bobretsov

DISPERSED CLOUD RENDERING

Bachelor’s thesis

Information Technology

2020

Author (authors) Degree title

Time

Mikhail Bobretsov Bachelor of
Engineering

May 2020

Thesis title
Dispersed cloud rendering 66 pages

Commissioned by

Observis Oy
Supervisor

Timo Hynninen
Abstract

The main goal of this bachelor's thesis was to improve the existing solution of rendering the
three-dimensional dispersed clouds for a flagship product developed at the commissioner
company Observis Oy. The current solution shows the 2D flat layers of a three-dimensional
cloud, where every layer is switched by a button. The thesis was aimed to creating the
Electron web application with the Mapbox map system and an extra layer of 3D clouds on
top of it. In this case, the cloud will be shown as a whole 3D object with no need to switch
layers and lose attention to perform unwanted actions. It should have interaction
capabilities like observing the cloud state in a different point of time and automatic cloud
animation.

The project’s core development stack was Electron framework, React UI library and
TypeScript programming language. The main visualization technologies were Mapbox for a
map providing and deck.gl for rendering a three-dimensional point cloud layer. A special
algorithm for processing multidimensional raw data was created. It prepared coming
information to separated points of data with the exact geographical coordinate, material
concentration value and calculated colour in multichannel mode. The interpolation
technique was studied and implemented in practice. However, the Electron environment
could not handle the interpolation workload and the whole codebase was migrated to a
website environment with no rewriting code. A custom algorithm for interpolating cloud
points was created, it successfully applied linear interpolation within three phases for three-
dimensional clouds. The applied technique improved the visualization of clouds by
generating more points between existing ones. It makes clouds to be denser and to look
more realistic and appealing.

The resulting application delivered a new vision of the same data. Every dispersed cloud is
represented as a set of thousands of coloured spheres all together forming the realistic
cloud shape. Moreover, a unique user experience came true in observing cloud state for
different time periods with manual hour slider and automatic animation.

Keywords

Dispersed clouds, deck.gl, Mapbox, React, TypeScript, WebGL, linear interpolation,
SILAM, point cloud

CONTENTS

1 INTRODUCTION .. 5

2 THEORY PART .. 6

2.1 SILAM ... 7

2.2 Project environment .. 9

2.2.1 Electron ... 9

2.2.2 React .. 11

2.2.3 TypeScript ... 14

2.3 Visualization tools ... 15

2.3.1 WebGL .. 16

2.3.2 Mapbox GL JS .. 17

2.3.3 Deck.gl .. 19

2.4 Point cloud .. 20

3 PROJECT IMPLEMENTATION .. 22

3.1 Application planning .. 22

3.2 Project setup ... 24

3.3 Preparation of visualization tools .. 27

3.4 Frontend setup .. 28

3.5 Understanding SILAM data ... 31

3.6 Data processing .. 35

3.6.1 Defining data types ... 36

3.6.2 Data processing functions ... 38

3.7 Data transfer ... 41

3.8 Visualizing the processed data ... 44

3.9 Generating more data ... 48

3.9.1 Interpolation .. 49

3.9.2 Linear interpolation for a cloud of points ... 51

3.9.3 Interpolating SILAM data .. 53

3.10 Visualizing the interpolated data ... 56

3.11 Evaluation of the created visualization .. 58

4 CONCLUSION .. 60

REFERENCES .. 63

5

1 INTRODUCTION

Modern technologies are generating tons of complex data around the world. This

data by itself may seem pointless, but the latest openings in data science show

that it can hide very useful statistical information. It can explain uncertain events

in the past or predict upcoming changes in the future. The main problems are

how to appropriately process the data and then comprehensively show the result.

Data handling is developing now actively, but the problem of showing the result is

still opened. The difficulty here is that most solutions show plain tables with

calculated outcome lacking interaction and the possibility to look on it from a

different angle. Recently, big IT companies have started creating open-source

software for visualization, which is capable of working with huge chunks of

information, especially for web applications. One of the known cases is vis.gl

open-sourced data visualization library set by Uber. Right now, the development

of new solutions is opening a new horizon for data understanding.

Observis Oy’s flagship product is the Situational Awareness System (SAS)

software. It implements many innovative features, one of them is rendering

dispersed clouds of different gases right on top of the map. It helps to detect the

contaminated areas by showing the location of the cloud. Also, the cloud is

divided into different coloured sectors depending on the concentration of the gas.

It helps to better estimate the situation and make the right choice. However, the

current solution for visualizing dispersed clouds is made in 2D where every layer

is switched by a button. It cannot show the cloud as the whole object and force a

user for unwanted extra actions. This thesis investigates the way to improve

visualization of dispersed clouds by rendering them in true 3D. Algorithms for

implementing visual part and data processing will be created.

The SAS product contains many modules and the main one is the map. This

component provides a lot of essential information for a user and every new

element on it should be clear to understand. The utilized map is web-based

Mapbox system which supports 3D layers. My motivation is the possibility to work

with the map system and to find a way to process and organize the existing data.

6

Another reason is to get experience with 3D data visualization toolset for web-

based applications and to use gained knowledge in future work.

The main goal of this thesis is to improve the Observis Oy existing solution by

rendering 3D clouds out of the same data that is used in the current solution. The

second goal is to deliver better user experience with extra interactions, add the

possibility to explore clouds at a different point of time or even animate it. Overall,

web-based application with Mapbox map system and data visualization toolset

will be developed. The purpose of the whole project is not to be a final solution

but to be a next step in the evolution of the current approach and deliver a new

better experience.

The theory part describes the software providing data for forming a dispersed

cloud, the project environment with mentioning key frontend and backend

libraries and frameworks, visualization tools and the technology that makes it

possible and the main visualization concept which will be used for visualizing

dispersed clouds.

The practical part gives an introduction of the project setup and the visualization

tools configuration. Next, the data processing technique is explained in high

details. After the implementing data processing algorithm, resulting visualization

is shown. Lastly, cloud visualization goes beyond available data with the

proposed way of generating more data.

2 THEORY PART

The theory part bases on the definition and description of the main technologies

used in the project. At first, an introduction is given for the software providing data

for the thesis project. What data it can calculate, which configuration files are

needed and how the result is formatted? Next, the project environment is

explained along with the programming language and backend and frontend

setup. It introduces core frameworks and libraries on top of which the whole

functionality is built. Further, tools for data visualization and technology what they

based on are described. It gives showcases of the technology used and explains

7

how it is already changing ways of interacting with web apps. Finally, an

approach for the dispersed cloud dataset visualization to achieve 3D experience

is specified. A detailed description of the visualization technique and how it

correlates with existing data of dispersed clouds is explained.

2.1 SILAM

The following section gives an introduction to software that produces the data

which is used in this project. It is used for creating the clouds and it has all the

essential information like coordinates and material concentration. This software

will not be used in this project, but it is important to understand where the data

comes from.

Data for dispersed cloud rendering is provided by SILAM. A dispersed cloud

represents unevenly dispersed material in the air. Therefore, the cloud is shown

not as one object, but a bunch of smaller clouds of the same material. SILAM

(System for integrated modelling of atmospheric composition) is open-code

software provided by Finnish Meteorological Institute with free use for research

applications. It is a global mesoscale model which uses mathematical equations

for determining atmospheric physics and dynamics. Based on this, SILAM is a

dispersion model for computing atmospheric composition which, for example, can

be used for calculating air quality, emergency alarm applications and inverted

dispersion modelling software. (Finnish Meteorological Institute 2014a.)

SILAM documentation says that it can calculate “496 different nuclides, together

with their radioactive decays and transformations; inert and chemically active

size-specific aerosol; biological material (pollen grains); chemically active gases”.

Also, it can estimate the measurement on-site using previously collected

measurements. Figure 1 illustrates the forecast for SO2 gas over Europe. In this

case, the system predicts the situation for three days in future. (Finnish

Meteorological Institute 2014b.)

8

Figure 1. Forecast for SO2 concentration (Finnish Meteorological Institute 2014)

Single material or a mix of dispersed materials are defined as “cocktail” in SILAM.

Additionally, it needs to contain some mandatory configuration files for a proper

run such as the control file for run parameters, the source term file for emission

sources and the output configuration file for output setup. The standard
cocktail file defines the standard and user-created cocktails. Moreover, a

configuration can contain nuclide, optical and chemical properties, and based on

all that provided information the system is creating the simulated data. (Finnish

Meteorological Institute 2020.)

After the successful run, the output file is represented in netCDF (Network

Common Data Form) format, it is an open standard for creating, accessing and

sharing multi-dimensional scientific data. This format contains a header which

defines the layout of the data arrays and metadata with additional information in

key/value form. (Unidata 2020.)

The SILAM output data is already processed to JSON format for this thesis. It

gives better integration with web tools as it is a common format for exchanging

the data between web applications. Moreover, the JSON format saves the data in

a key/value form as the netCDF format. Therefore, not a single piece of important

data will be lost.

9

2.2 Project environment

This section provides a description of base technologies for creating the project

environment. Huge chunks of data need to be both easy to handle and visualize.

The project environment is illustrated in Figure 2. The Electron environment is the

base for everything. It has two main sections. The backend side will be

responsible for the data processing logic. It will read the SILAM data from the

JSON file, apply processing algorithms to it and send the prepared data to the

frontend side. The frontend side, on the other hand, will take processed data and

put it to the rendered graphical content in the application window. The

communication between the frontend and the backend is organized by the

Electron runtime, because it runs two separate processes, one for application

internal logic, another one for UI rendering. They cannot communicate directly,

but the Electron environment takes this responsibility.

Figure 2. Project environment

Tools for the project must base on web technologies. It makes further integration

to Observis’ product easy and reduces development time with the well-known

pipeline. Therefore, technologies for project accomplishment will be selected with

high attention.

2.2.1 Electron

Electron is an open-source library created and developed by GitHub. Under the

hood, it combines Chromium and Node.js to make building cross-platform apps

possible in a single runtime with HTML, CSS and JavaScript. This stack of

10

technologies allows building the application for three main platforms: Windows,

Mac and Linux. (GitHub 2020a.) In a few words, the Electron application opens a

website shell which looks like a distinct program. It has access to the operating

system’s native API. All the content is rendered in the Chromium open-sourced

browser, that is why the web technologies are used. Therefore, there is no need

to be bothered about supporting other operating systems, the Electron framework

makes it out of the box.

At first in 2013 Electron started as a dedicated framework for Atom code editor. It

was popular for the very easy approach of creating extensions, as it does not

require any prior knowledge besides some experience of web technologies.

Later, Electron became so popular that many big IT companies created their

applications based on it. For example, the text editor Visual Studio Code and

messaging application Skype by Microsoft are created as separate programs,

running similarly on different systems and utilizing web technologies for their

logic.

Nevertheless, Electron has some drawbacks like application size and code

security. Firstly, for a relatively small program, its dependencies can take a

sensible amount of space. Secondly, as the app runs in a browser shell anyone

can read the code. Nonetheless, these are just specific of Electron, since modern

computers have a big amount of storage and source code is obfuscated for every

program build.

Fortunately, the technology tandem in Electron suits the project needs

appropriately. For example, Node.js runtime is working fully asynchronously and

makes the user experience smooth even under high loads. Chromium, on the

other hand, is the open-sourced browser from Google. It allows creating user

interfaces with well-known web technologies which look the same on different

operating systems. Moreover, Electron can separate the main process and

rendering processes for every screen, so that they don’t interfere with each other

and use system resources effectively. Additionally, it supports native APIs for

operating systems in managing folders and files. (GitHub 2020b.)

11

With Electron it is possible to use the well-known web development technology

stack due to Chromium UI rendering engine. Moreover, it gives a boost in logic

processing as the runtime is separated from the renderer. Therefore, web apps

have more delay in data calculation and handling in comparison with Electron

apps. However, a project based on Electron has a single main process managing

all windows, interactions and operations inside the app. In case of heavy CPU

task, it can be blocked and the app will be non-operational until the task is

completed.

Overall, Electron intensive capabilities will help on every project step from data

handling to its visualization. The main logic for data processing will be created in

the Electron runtime.

2.2.2 React

As the solution for backend implementation was chosen in the previous section.

In this section will be observed a technology for creating UI.

An interface for the project application can be built with a plain HTML, CSS and

JavaScript stack. Nevertheless, almost all average user’s web apps are created

with some external frontend framework. They make a web app more reactive and

smoother, use fewer system resources and advance web app development.

One of the popular and heavily used frontend frameworks is React. It started as

an internal library for Facebook products and became open-source in 2013. On

the release the Facebook development team propose some key benefits that

React brings for UI development:

1. React does not use a template approach for building an interface. Every UI
element is represented as a separate instance called “component”, it is
built with JavaScript. Also, they introduced an extension with the enhanced
syntax for JavaScript called JSX.

2. By unifying markup with following view logic, React is making it easier to
extend and maintain views.

3. Unified UI logic into JavaScript doesn’t allow manual string concatenation
and by this reduce the possibility for XSS (Cross-site scripting) attack. The

12

closed vulnerability enables the attacker to inject malefic script for later
execution on client side.

Additionally, React implements a new approach in DOM manipulation, different

from traditional JavaScript web applications. DOM (Document Oriented Model)

represents a hierarchy of all interface elements with their content in web

application. React uses so-called “virtual DOM”, it doesn’t refresh the whole DOM

for single element update but inserts the visual changes to the existing DOM tree

in the correct place. This process is so fast that explicit data binding is not

needed. This approach helps to create modern web solution faster and easier

with React. (Pete, Hunt, 2013.)

One of the main approaches of React is props and state use. Props (short for

“properties”) characterized as data, hierarchically passed from a parent

component to a child component. Props is a read-only data that can be modified

only by the parent component. When props change, it triggers the child

component to automatically re-render so that present data is automatically shown

to the user. State, on the other hand, is the data that personal for every

component and it can be modified. State change also triggers a component to re-

render and state update may happen asynchronously. Moreover, state data from

the parent component can be passed as props to a child component what makes

data handling very flexible. (Facebook, 2020.)

According to Facebook, each React element has lifecycle methods for executing

code in the exact time at triggered events, each of them can be overridden. The

main lifecycle method is render. This method aims to display the passed data

and return the result. The returned data type from render can be a React

element or an array of React elements, string and numbers, or nothing at all. The

React element lifecycle is divided into four phases that can happen multiple times

or never at all, every phase contains its method for execution. Following

Facebook React documentation, these phases are as follows:

1. Mounting methods called when a component is about to be created and
put into the DOM

2. Updating methods called when the update is about to happen, and the
object is being re-rendered

13

3. Unmounting method called when the component will be removed from
the DOM

4. Error Handling methods executes when there is an error during
component rendering

During component lifecycle it is not necessary to implement all the methods.

However, there are some methods that very often implemented and mostly used

for working with data:

• constructor() is called right before mounting the component. The good spot
for the state initialization and data binding.

• componenDidMount() is invoked after the component is mounted. The
right place for data loading and initializing network requests.

• componentDidUpdate() is called after updating occurs. It can be either
props or state update. At initial render this method is not called. Good
opportunity for conditional code execution as it allows comparing current
state and props with previous ones.

• componentWillUnmount() is invoked before the component is unmounted
and destroyed. It is the place for implementing any necessary clean up like
stoping timers and cancelling active network requests.

Figure 3 the best illustrates when described above lifecycle methods are called.

Figure 3. React component lifecycle diagram for version 16.4 (Wojciech Maj 2020)

Understanding of described above phases will help in organizing data

communication logic between components. As a result, all these strategies for

creating UI provided by Facebook in React library makes it easy to deliver good

looking and fast web applications without any struggle.

14

2.2.3 TypeScript

Observis is always aiming to produce reliable software. It is impossible without

creating a strong and understanding code base. Therefore, all the code instead of

JavaScript is written with TypeScript.

TypeScript is an open-source programming language created by Microsoft.

Syntactically it is a subset of JavaScript, which is adding static typing to the code.

One of the characteristics of JavaScript is that it is dynamically typed.

Dynamically typed languages are those where an interpreter assigns a type to a

variable during a runtime when the value is set to the variable. Therefore, it adds

more flexibility in handling one variable by assigning different types of data, but

also it adds difficulty for software developers. It makes difficult to accurately

evaluate variable data type at the development process. For example, some

function receives a variable called “book”, immediately developer raises

questions like: “Is it a name of the book or what?”, “Is this an object with

arguments?”, “If it is an object, what are types for its arguments?”. Eventually, it

leads to more errors in the code, more debugging and unnecessary comments.

However, all these inaccuracies are eliminated with TypeScript. (Microsoft

2020a.)

The major difference between TypeScript and JavaScript is that this language

adds static typing. For statically typed programming languages, the data type

associated with the variable is known at compilation before the actual program

runtime. In the result, code written with TypeScript tends to fewer human errors, it

is easier to read and maintain, less unnecessary testing is required, and all of

these is possible in the same JavaScript ecosystem. To achieve it, the TypeScript

code is transcompiled to JavaScript. Transcompile operation means the process

of translating source code from one programming language to another. (Microsoft

2020b.)

TypeScript compilation is handled by own compiler called tsc. It can compile files

locally with the provided instructions or apply its default parameters. To unleash

the whole compiler potential, it is a recommended approach to include

15

configuration file “tsconfig.json”. It defines compile options like paths to the

source file and paths for output files, source code error checks, modules

importing rules and many more. In the result, all TypeScript files with “.ts”

extension are easily transcompiled to JavaScript files with “.js” extension.

(Microsoft 2020c.)

Moreover, TypeScript supports libraries written in plain JavaScript. For making

them operational the declaration files must be included. Declared variables and

functions are reachable for the tsc compiler and act as the bridge between

compiler and JavaScript library code. Unfortunately, major changes in the library

should be checked and sometimes rewritten in declaration files, otherwise, it can

lead to code malfunction or unpredicted results. (Microsoft 2020d.)

Use of TypeScript will ease the understanding of data structure from SILAM

output. TypeScript will help in creating a more predictable and secured code

base. Also, it can reduce the time for the possible code migration to Observis

product.

As a result, the choice in favour of the TypeScript should be fully justified. With

predictable and secure code behaviour it adds an extra abstraction level and

sacrifices JavaScript code flexibility. Nevertheless, TypeScript helps in Observis’

intend of delivering reliable software and this choice is fully reasonable.

2.3 Visualization tools

This section describes two major components for visualizing the processed data

and the technology which they are based on. Visualization needs to be

represented as full 3D objects on the map. It should be interactable from the box

and integrable to the project. Therefore, visualization must respond to the user’s

actions like zooming or tilting the view. In this case, it shows the whole potential

of 3D clouds, when the user can see it from another angle or zoom to the desired

area of the cloud.

16

Both of them are React compatible JavaScript libraries and can easily work in a

thesis project’s environment. Moreover, for view rendering they are using the

promising and game-changing WebGL technology. Alongside with new

capabilities for web developers, its feature set is bringing a new experience for

web users which was never unattainable before.

2.3.1 WebGL

WebGL (Web Graphics Library) is a JavaScript API for rendering resource-

intense 3D and 2D graphics natively in the modern web browsers. It is possible

by using OpenGL ES (OpenGL for Embedded Systems) in canvas element

introduced in HTML5. Canvas supports drawing graphics, it can combine

pictures, draw graphs or create different animations usually with JavaScript.

(Mozilla Corporation, 2019.)

OpenGL ES is a subset of desktop OpenGL, a specially designed API for

rendering advanced 2D and 3D graphics on embedded systems like phones,

game consoles, tablet and car computers. It can be used on low-powered

systems and supports hardware-accelerated rendering using GPU (Graphics

Processing Unit). WebGL is available in two versions: WebGL 1.0 supports

OpenGL ES 2.0 API and WebGL 2.0 supports OpenGL ES 3.0 API. OpenGL ES

3.0 is a noticeable update. For example, it adds new texture capabilities and can

handle multiple rendering targets. (Khronos Group, 2020.)

Today WebGL is a worldwide standard supported by all major web browsers, and

giant IT companies like Apple, Google, AMD, ARM, Epic Games, Intel, Nvidia

and Qualcomm. They actively participate in the development and have voting

right in Khronos Board (Khronos Group 2020). Therefore, the ease of use and

openness of this technology makes it available for smaller companies and

individuals for creating their products and tools based on WebGL.

WebGL is used in various software. One of the known appliances is Google

Maps. It started using WebGL as an experiment in 2011 and already the pre-

release version achieved true 3D buildings, smooth transitions in zoom levels and

17

StreetView, and now the whole map is a one canvas web element with rendered

graphics. (Google 2020.) Other interesting cases are IKEA’s planning tools. They

allow creating kitchens from scratch in pure 3D with hundreds of furniture models

made by IKEA, and all happens natively on the web. (IKEA 2020.) Such

examples are just a quick peek into a new market of the web projects introduced

by extensive capabilities of WebGL and community support. Showcases are

varying from a pixeled game in VR built with a real game engine up to anatomy

accurate human brain models with head and neck muscles which consists of

more than three hundred structures illustrated in Figure 4. (Open Anatomy

Project 2020.)

Figure 4. Brain MRI (Open Anatomy Project 2017)

For importing WebGL technology there is no need to work with its bare API.

Based on this technology advanced libraries for 3D and 2D rendering are

created, such as Three.js for object rendering and Luma for data visualization.

They bring all WebGL capabilities in an accessible way for everyone without the

need for any prior knowledge about textures, shaders and render engines.

2.3.2 Mapbox GL JS

Maps are heavily used in every Observis product, especially in the software this

thesis is aimed to. In this software the Mapbox system is used. The map is

18

placed exactly in the centre when the user launches the app (see Figure 5). The

map is a very important source of information for customers, it shows the updated

and detailed overview of the current situation in the desired area.

Figure 5. Observis SAS application

It should be not only detailed but clear for a user. For this software, a special

colour palette is used that reflects the situation status for the area. With this

approach, it is enough just for a quick glimpse on the map to estimate the

situation based on the objects’ colour. For a more detailed overview, a customer

can zoom the map and see more custom made objects that look distinct and all

together illustrate a better perspective on the situation. Summing all up the

above, the map solution needs to be very flexible and to be built with modern

technologies. One of the best solutions meeting the requirements is Mapbox GL

JS.

Mapbox GL JS is a JavaScript library based on WebGL for rendering interactive

maps. It is one product from the Mapbox GL ecosystem. The ecosystem includes

solutions for Qt, Unity, iOS and Android. Alongside with powerful maps API, there

is a Mapbox Studio application for creating fully custom maps. All these provided

solutions are created by a private American company Mapbox. Dozens of

customers are integrating Mapbox software into their applications and websites.

19

The most famous cases are Facebook, Snapchat, The New York Times and The

Washington Post. (Mapbox 2020a.)

This map system widespread use is based not only on distribution for different

operating systems or on SDK variety but also on the flexibility of working with

different kinds of data. For any web application Mapbox GL JS can be imported,

as it is based on WebGL technology and all of the map renderings are created on

a single canvas web element. Moreover, the Mapbox development team made it

possible to render custom or premade map layers for showing any geolocation

data more clearly. They are rendered on the same canvas web element with the

map. Additionally, due to WebGL integration, map layers can be rendered in full

3D with object perspective and simulated light. These features give full immersive

experience for map users, which varies from finding new friends on the map in

Snapchat or observing integrated map in a news article which is showing states

vote distribution for a new American president. (Mapbox 2020b.)

Nevertheless, available premade layers lack a point cloud layer for displaying

dispersed data. Fortunately, extensive Mapbox GL JS API allows enthusiasts and

other companies to create their map layers. One of the companies which will be

described below has developed a map layers library that fulfils the requirements

for this thesis.

2.3.3 Deck.gl

Deck.gl is a high-performance WebGL framework for visualizing big data in 3D

and 2D. It is one of the main frameworks from vis.gl ecosystem developed by

American public company Uber. (Deck.gl 2020.)

Key emphasized features of deck.gl are: 1) resource efficient rendering of big

datasets 2) event handlers for interacting with rendered objects 3) integration with

major map providers 4) library of well-tested layers. Deck.gl can be imported into

a project as a standalone JavaScript library or as a React component. (Uber,

2020a.)

20

Fortunately, right from the box, deck.gl has integration with Mapbox GL JS. It can

add any available deck.gl layer as a custom layer to an existing map. Also, the

deck.gl development team created a custom wrapper for a Mapbox map in a

React environment. In this case, it creates a second transparent canvas element

on top of the map, which renders all the layers in a more efficient way

independently of the map. (Uber 2020b.)

Deck.gl has an extensive customizable layers library. A layer is represented as

additional information floated on top of the map, it can be 2D or 3D objects, lines

or text. Multiple layers can be rendered on the same map element as each has a

unique identifier. Moreover, deck.gl has integration with Mapbox, which is used

as the map solution for the project. Also, the essential part for the thesis project is

deck.gl support for the point cloud layer that shows every piece of data as a 3D

sphere on a certain position. (Uber 2020c.)

2.4 Point cloud

Provided data by the SILAM software may seem hard to process if to look on it

one by one value, but altogether it forms a logical shape. Resulting data is

represented in a grid system in 4 dimensions: longitude, latitude, altitude and

time. Values for dimensions are the same for every dispersed material, only the

actual material’s concentration value is different. Resulting data can be illustrated

as points lying on a concrete coordinate in space. This approach better correlates

with the point cloud technique.

A point cloud is representing the number of data points forming figures in space.

This approach for data visualizing gained huge popularity for lidar systems. The

lidar system rotates a laser on high speed and scans it surrounding resulting in a

3D picture of space around. Nowadays it is heavily used by autonomous driving

vehicles and allows them to better understand the environment around them. For

example, Figure 6 shows how the car sees its surrounding with the lidar

system alongside with camera output. Objects on the map are distinguished and

correlate to camera output, but everything on the map is represented as a set of

21

points forming end objects. Also, this example is built with Mapbox GL JS and

deck.gl. (Uber 2020.)

Figure 6. Autonomous Visualization System (AVS) demo (Uber 2020)

Moreover, the point cloud is great for comparing data values. Data difference, for

example, can be illustrated with the point colour, transparency or size. Figure 7

shows the point cloud representation of a tea pod with the colour map where

higher points are yellow and lower points are violet.

Figure 7. 3D point cloud of tea pod (MathWorks 2020)

The main benefit of this approach for the thesis project is that SILAM data can be

easily represented as a cloud point layer. As it was mentioned, the data about

every material is stored as numerical values of the material’s concentration on a

set of the coordinates. This set of coordinates is saved in a grid form and it is the

22

same for every material, while only the material’s concentration is different. Every

concentration value can be represented as a single sphere point in the space on

predefined coordinates. The concentration value can be shown, for example, with

point colour or point size. Finally, all these rendered spheres will take a form of

the cloud, like points in Figure 7 take a form of the tea pod. This technique will

make every piece of important data to be actually used and to be visible with tiny

3D spheres forming a real size cloud in the air. It will improve the user experience

by allowing a user to fly over the cloud, zoom in to the specific area and finally

make the right choice in a critical situation.

3 PROJECT IMPLEMENTATION

This chapter will cover the implementation of the project application. At first, in

Section 3.1 the planned application will be described. After that, in Section 3.2

the project setup will be explained. Next, Section 3.3 and Section 3.4 will be

about visualization tools integration. Description and explanation of the provided

data will be given in detail in Section 3.5. Following section will be about data

handling and algorithms for processing provided data. The result of the

processed data will be shown in Section 3.8. An attempt at generating more data

will be described in Section 3.9. The result of generated dispersed clouds will be

shown in Section 3.10. Finally, Section 3.11 will compare the resulted

visualization to the current solution by the commissioner company.

3.1 Application planning

The initial idea is directly referred to as the dispersed cloud implementation on

the map in Observis’ SAS software. Resulting data from the SILAM system is

represented as a heatmap on the map. Heatmap is a 2D graphical representation

of data, where every data value is shown with different colour depending on the

maximum value. In this case, the user does not see the whole cloud on the map

but its rough 2D representation from the above. Figure 8 shows how SILAM data

is represented in the SAS software. There is a 2D layer of the cloud in the centre

and the control centre on the bottom of the picture. The layer is a completely flat

rendered figure which shows the concentration of the material on some height.

23

The control centre is defined as a set of six buttons for changing the materials,

time period and height of the layer.

Figure 8. The SILAM data heatmap

In Observis’ solution the cloud is horizontally divided into many layers

represented as different altitudes. By tapping a button on a screen a user can

change the layers and see how data shifts from one layer to another. This

approach has these problems as follows:

• 2D layers. It is hard to quickly and correctly estimate the whole situation.
There is a need to switch for every layer to get the whole picture of the
cloud.

• Extra actions. It is impossible to see the whole cloud. A user has to switch
from layer to layer by performing unwanted actions.

• Lack of interaction. Cloud layers were static rendered graphics that show
data only in a selected hour without any animation or transition.

These problems led to rethinking the current solution of Observis. At first, it was

decided that cloud representation will be in full 3D. In this way, the user will see

the whole cloud instantly and situation analysis will be drastically reduced in time.

24

Also, it frees customers from extra actions by changing cloud layers for every

height value. Next, a good idea would be to add a new feature by animating the

cloud in time. In this way, the cloud would change shape automatically showing

the cloud during available hours. With this in mind, it was decided to create a web

app with a map in the centre and the control centre in the screen corner. The

map will display the generated cloud from SILAM data as a cloud of points.

Points will have different colours depending on their value. The control centre

should include:

• Gas data change as a dropdown list
• Hour slider
• Animation toggle

The application will be introduced not as a ready to ship product. It will be a

proof-of-concept application trying to solve the current solution’s problems. It

involves new ideas related to 3D graphics that were not implemented by Obsevis’

SAS software competitors. As any new creation, it will show another idea for

showing a rendered cloud on the map and introduce new possibilities and

problems. Next chapters describe the journey of creating the thesis project

application and give answers on questions about the project structure, UI setup

and data processing. Also, show the result of an attempt to enhance visualization

by generating more data. Finally, the created application will be demonstrated.

3.2 Project setup

This section covers the architecture of the application. It describes the way of

integrating the main technologies. Also, it shows how the source code is divided

into different files correspondingly to the Electron runtime logic.

The project will be created with the Visual Studio Code text editor by Microsoft. It

supports syntax highlight for programming languages used in the project, has an

integrated terminal for easy code execution and advanced flexibility in editor

setup. In the beginning of the project a boilerplate project will be used that

already has all core components like Electron, React and TypeScript integrated

and working. Also, it includes a Webpack component that can update the content

25

of running an application on the fly at code change and bundle all the code to one

package. All this is aimed to accelerate development speed and gives more time

to concentrate on project goals. The project folder structure is presented in Figure

9 consists of several folders and configuration files.

Figure 9. Project folder structure

The first folder is dist. It contains a compiled project and on every compilation its

files are updated to the latest code changes. All imported modules and their

dependencies are stored in node_modules. Folders public and src are very

common in web-based applications. In public an html base file is stored that

imports all the content from the src folder. More precisely, the src folder has all

the application logic and UI that is exported to the html base file. Folders main
and renderer inside src are common for Electron applications. The application

main logic is usually stored inside main. It is aimed to application windows

rendering, windows lifecycle managing and preparing content for UI. Also, the

root folder has the file resultdata.json which is a SILAM output data file.

Additionally, it is essential to cover how Webpack performs. The Webpack main

function is to combine all separate code files and assets to several files in smaller

size and quantity. Webpack runs its own server which looks for code changes

and on every “Save” action it recompiles the project. Moreover, Webpack has an

26

intelligent packing system. It automatically detects imported third-party libraries

and does not adds the whole library, but includes to bundle only the used

components of that library. In this way, the code contains only the needed

imported packages reducing the size of the content which needs to be shipped to

a potential user. Figure 10 shows the piece of code responsible for bundling

source code.

Figure 10. Webpack bundling configuration (webpack.config.js)

These instructions include target files and output files, compiler targets and

additional plugins. For example, in the second chunk of code from Figure 10

“HtmlWebpackPlugin” plugin is used. It takes the html base file

public/index.html as a template to automatically generate links to all the assets

for final UI rendering. Finally, generated files are saved in the dist folder and take

much less space than the whole project.

27

3.3 Preparation of visualization tools

This section introduces the way of adding the external libraries to the project.

More precisely, the process of integrating visualization libraries is described here.

Also, it shows the minor problem of working with TypeScript, when there are no

official typing modules for the desired libraries.

To start working with deck.gl and Mapbox they must be imported to the project.

For adding these libraries script tool npm is used. It is one of the command line

package managers used for creating a web-based application. It can install any

available package with its dependencies from open repositories. Every imported

package and its dependencies are saved to the node_modules folder. For

example, for installing deck.gl the command “npm install deck.gl” was used.

Instead of using plain Mapbox GL JS package preferences were given to the

Mapbox wrapper from Uber called “react-map-gl”. Both deck.gl and react-map-gl

are from the same developer and have better integration with each other. react-

map-gl is the same Mapbox GL JS library with an extra React component

wrapper. This system better performs rendering 2D and 3D visualization graphics

on the map. It adds an extra layer holding all rendered visualization that overlays

the actual map and synchronizes the camera movements. In this approach,

visualization is rendered independently from the map and can use its own

optimized algorithms. react-map-gl is installed with the very similar command

“npm install react-map-gl”.

To make deck.gl and react-map-gl operational in the project environment extra

steps are required. TypeScript needs declaration files for making libraries

reachable to it. They are installed in the same way as libraries, just with npm
commands. In the time of writing this thesis deck.gl has no official global typing

module. In this case, a module created by deck.gl development community was

used. However, the use of non-official libraries can lead to less reliable

performance and poor support. For example, in this module, a bug related to the

layer coordinate system was fixed during the application development.

Installation of this module is performed with the “npm install

28

@danmarshall/deckgl-typings” command. react-map-gl on other hand has official

typing modules and its installation is done with the “npm install @types/react-

map-gl” command.

Finally, all the needed modules are imported and visualization tools are ready for

the integration. The next chapter will be about building a frontend part and

visualization tools setup.

3.4 Frontend setup

After integrating all the visualization libraries, they become operational in the

project. This section shows how visualization tools are arranged and how they

integrate into the application user interface. Also, there is a description of

properties which are needed for displaying the cloud point layer. It gives an

understanding of how the data should be processed in the backend for the later

easy use by visualization tools.

The frontend for the project is built completely with React. Nevertheless, the

application has the html base file public/index.html that will render all the

interface inside a single div element. Figure 11 shows its code and div element

with the id “app” which will be used by a parent React component to link with it.

Figure 11. Base HTML file (public/index.html)

Code for UI rendering is placed in the src/renderer folder. It has two files

main.tsx and renderer.tsx. The extension “tsx” of these files indicates that both

are React files with code written in TypeScript language. The file renderer.tsx is

a starting point for UI code. It holds the initial code that renders React element to

29

DOM. The following Figure 12, shows a “ReactDOM.render()” function from the

React package that injects a rendered component inside the supplied container.

In this case, it renders a “div” element with another React element inside called

“Main” imported from the src/renderer/main.tsx file. After that, a renderer “div”

with all its content is inserted to the element with the id “app” inside the

public/index.html base html file.

Figure 12. Starting point for React rendered UI (src/renderer/renderer.tsx)

The biggest part of code for UI rendering is held in main.tsx. It has a functional

React component Main performing the most of UI rendering instructions. The

following Figure 13 shows how little needs to be configured for running

visualization tools. React component Main renders the Mapbox map and the

deck.gl layer on top of it. To make the map operational it needs an API token

which is given after registration on Mapbox website. The point cloud layer from

the deck.gl package has some following properties used in the project:

• id – unique layer name, which in this case, can be anything as only one
layer will be drawn

• data – an array of data used for point drawing
• getPosition() – the function that iterates through data and returns

retrieved coordinates in number array format with the order: longitude,
latitude, altitude

• getColor() – a function that iterates through data and returns retrieved
point colour in array format with RGBA value format

• pointSize – setting radius for all points in pixel format by default
Also, the “DeckGL” component has the property “initialViewState” holding a layer

size and default values for view positioning.

30

Figure 13. The required minimum for rendering visualization tools (src/renderer/main.tsx)

The execution of the Electron application is handled by npm commands. For

web-based applications they are usually located inside a package.json
configuration file. They can be fully modified for application needs. The execution

of this application is performed by two commands, one after another: “npm run

dev” and “npm start” in Figure 14. The first command runs the Webpack server

that compiles the application and puts the compiled code to the dist folder. The

second command reads the dist folder content and opens a window of the

compiled Electron application.

Figure 14. Project npm scripts (package.json)

31

Executing written UI code will result in a Mapbox map and a point cloud layer,

both on set coordinates. Figure 15 demonstrates the executed application’s

window after visualization tools initial setup.

Figure 15. Application after initial visualization tools setup

After understanding how visualization works in the project, it is time for observing

SILAM output data. The next section will describe how SILAM data is organized

and typed.

3.5 Understanding SILAM data

When the frontend is ready for applying the data, the next step is to process the

data appropriately. However, before designing the data processing logic, it is an

essential step to understand how the raw data is organized. This section will

explain how the SILAM output data is written, which format is used and how the

data is actually stored.

Initially, SILAM output data is written in the netCDF format that is an open-

sourced format for exchanging multi-dimensional scientific data. However,

reading this format can be an extra task during programming. To make it easier

32

for understanding and processing, data have been formatted to JSON with the

Linux script ncsk. After described instructions data have been given from the

commission company for the thesis project.

JSON is a popular format for data distribution among software. It keeps all data in

nested key-value pairs format making it human-readable and easy to process.

Respectively, SILAM data is divided into key-value pairs, too. Root keys are

dimensions, variables, attributes. Figure 16 shows the diagram of the main

keys and the data saved under them.

Figure 16. Main keys in the SILAM source file

All the important data is stored under variables key. Nevertheless, it is worth to

mention the rest. Attributes key keeps data about SILAM version, model

creation date and grid type. In this case, data about dispersed material is stored

in a grid type “lonlat” which is longitude and latitude. Longitude is a geographic

coordinate specifies a east-west position, while latitude specifies a north-south

position. Also, SILAM includes altitude data which is known as a height

coordinate. On a flat surface like world map, they are perpendicular to each other

forming a grid system or coordinate system. With this knowledge, SILAM

software writes data in a grid system where for each longitude-latitude-altitude

coordinate there is some numeric value for every dispersed material.

Nevertheless, grid type called “lonlat” because longitude and latitude values

difference is the same within its coordinates, while height values difference is

different from value to value. Coordinate data is stored under variables key in the

format illustrated in Figure 17. Key “data” keeps coordinate values for every three

coordinates.

33

Figure 17. SILAM coordinate data (resultdata.json)

Dimensions hold the number of values for each dimension coordinate and time.

Time data is stored under the variables key in the same way as dimension

coordinates. Dimensions data is shown in Figure 18.

Figure 18. SILAM dimensions list (resultdata.json)

All important data is placed under the variables key. It is not only coordinates

and time but all the dispersed materials information. Figure 19 illustrates a piece

of data from the variables key. On the picture information about three dispersed

materials is shown: “U_wind_10m”, “V_wind_10m” and “cnc_PM2_5_m6_0”.

Each one has its data under keys:

34

• shape string array describes the data value nested array, indicates in
which dimension and time the data is written

• type data type of array under the data key
• attributes material’s additional information
• data nested array of material’s values, nesting order is defined in value

array of shape key
Also, some of the materials do not have information about height. For example, in

Figure 19 materials “U_wind_10m” and “V_wind_10m” do not have a record

“height” in the array under the shape key. Moreover, the value of the key data is

a 3-dimensional array which corresponds to 3 records in the shape array “[“time”,

“lat”, “lon”]”. On another hand, material “cnc_PM2_5_m6_0” has a record “height”

in its shape array. In this case, the value of key data is a 4-dimensional array

which corresponds to 4 records in the shape array “ [“time”, “height”, “lat”, “lon”] ”.

Figure 19. SILAM data under "variables" key (resultdata.json)

Figure 20 shows how the material’s concentration data can be unwrapped from

the multidimensional array. The data inside the array is encapsulated in a way

35

like a matryoshka doll has smaller dolls inside a bigger doll until the smallest doll

is out. In this case, every “doll” represents the coordinate or time value until the

smallest doll is reached which is the concentration value. The array "shape"

defines the order of the encapsulation and helps to understand how deep the

unwrapping algorithm needs to go.

Figure 20. Unwrapping the SILAM data

From this information, it is now possible to estimate what data will be needed for

correct visualization. For drawing the cloud point layer important information is

the point coordinate for correct placement and the value for calculating its colour.

Next chapter will cover data processing algorithms.

3.6 Data processing

This important section will be dedicated to data processing. After understanding

how raw data is organized, the first step is to set the types for the desired data. It

helps to clarify what data is really essential for the point cloud layer. It is a very

important part because the data types form the whole architecture of how data

will be processed and stored inside the application memory. After defining the

data types, the second step is to implement the algorithm for data processing. It

will apply the same logic described in Figure 20. It will unwrap the

36

multidimensional array for retrieving the most important pieces of data like

coordinates, time value and the concentration value.

It is a good habit to logically separate source code to different files. With this

motivation, a separate file src/main/utils.ts was created for code related to

processing data, while file src/main/main.ts contains only Electron application

code. It helps divide code to smaller modules that easier to maintain and debug.

Also, it is faster to locate a malfunction and fix it without touching unrelated code.

Data processing algorithm will read the value of the key variables from the

SILAM output data file. Specifically, longitude, latitude, height and time values will

be used. Then for every material, the data will be taken from keys data, shape

and attributes.long_name. This is enough data to make the point cloud layer.

Moreover, this choice of data is trying to minimize the processing of unwanted

data like all attributes values to reduce the amount of processed data and

execution time.

3.6.1 Defining data types

First thing is to define data types used for reading SILAM data. It will help to

organize a process of raw data and later use of end data. This subsection will

explain each created data type and describe how they will be used.

The first is type Variables in Figure 21, it is used for processing only needed data

from the file “resultdata.json”. It includes every material and information about

dimensions and time. It will be not an end data because for a deck.gl point cloud

layer it needs to be an array of objects with coordinates and colour values.

Variables, on the other hand, stores coordinates and values in separate

locations. Moreover, materials’ value data is still in the multidimensional array

which makes it hard to read.

37

Figure 21. Type Variables (src/main/utils.ts)

Then, interface GasNames in Figure 22 is used for keeping a list of all available

materials read from raw data in type Variables.

Figure 22. Interface GasNames (src/main/utils.ts)

After, interface Point in Figure 23 is used for saving every individual point with

value, colour and coordinates. An array of this type forms completely ready data

for the deck.gl point cloud layer as it has all important information to draw the

layer.

Figure 23. Interface Point (src/main/utils.ts)

Next, interface ResultData in Figure 24 saves an array of data points in a

specific point of time with the material’s maximum value. As provided SILAM data

has information about 6 hours (see Figure 16), it will be 6 variables of

ResultData for every time period and with an absolutely different array of points.

38

Figure 24. Interface ResultData (src/main/utils.ts)

Finally, class Result in Figure 25 is gathering all essential information about

dispersed material: its name, array of data point for different periods and nested

dictionary of all used coordinates. Enum DataKeys is supplementary, it used in

coordinates’ nested dictionary inside Result to indicate the order of nesting and

acts as dictionary keys for coordinate data.

Figure 25. Class Result and enum DataKeys (src/main/utils.ts)

Class Result defines fully processed data for a dispersed material. Next step

covers how data will be processed using described custom-made data types.

3.6.2 Data processing functions

Data processing algorithms will be divided into functions. With this approach, it is

easier to maintain them and remember their functionality after some time. They

39

will be created in the same file as custom-made data types, inside the file

src/main/utils.ts.

The first step before processing the data is to read it and to save it into the

application memory. The function of Figure 26 is designed for that process. It

reads the data from the “resultdata.json” file and returns it in the object with the

data type Variables.

Figure 26. Function for reading SILAM data (src/main/utils.ts)

When data is accessible from the program’s memory, the next step is to work

with it. Figure 27 shows a function that returns a name list of all available

dispersed materials from the data saved to the application memory. To name

materials which have information about height three asterisk characters are

added. Later, this compiled list will be used for selecting the desired material to

view its data.

Figure 27. Function for retrieving a list of all dispersed materials (src/main/utils.ts)

The most important and responsible task is to get all the needed data for a

selected dispersed material and prepare it right for the point cloud layer. Values’

data for every material is stored in a multidimensional array. Figure 28 shows the

first half of the function that unravels a multidimensional array and generates

40

points’ data out of it. The second half of the function is doing the same thing

except not reading height information, because it is not present for some

materials. The function takes two parameters: dispersed materials’ name and raw

SILAM data. It reads a multidimensional data array and for every value creates a

point with value and its coordinates. Also, it takes record of the maximum value

for generating the colour of the point later. At the end of the function, colour is set

for every point with another function. Finally, out of all the points made with

coordinates and values, this function returns the object type Result.

Figure 28. Function for generating point data out of SILAM data multidimensional array
(src/main/utils.ts)

41

The functions in Figure 29 are used when data points are generated for applying

colour value to them. The second function reads the point’s value and maximum

value for colour and opacity calculation based on the difference from a point’s

value to the maximum value. Closer value to the maximum value, the redder it

will be, and vice versa. The smaller the value relative to the maximum value, the

greener it will be. Opacity has four levels, the smaller the value relative to the

maximum value, the more transparent the point will be.

Figure 29. Functions for generating colour for passed points (src/main/utils.ts)

Finally, these functions with custom made data types are ready for reaching all

the needed information from SILAM data about any available dispersed material

and prepare it for visualization. The next part will describe a workflow of passing

ready data to the visual interface.

3.7 Data transfer

When the processed data is ready, the next step is to visualize it. At first, the data

needs to be transferred from the backend straight to the frontend. However, due

to specifics of the Electron environment, the communication between two

application’s sides is organized by an integrated API. It is needed because the

Electron application runs two separate processes: one for the application logic,

42

another one for UI rendering. Their communication is set by pairs of listening and

triggering functions on both frontend and backend side. This section describes

how to set the communication channels and pass the data between two main

Electron processes.

The architecture of Electron applications is built on top of two types of processes.

The main process is the starting point for a whole application. It initializes the

application and calls the GUI to render the content. An Electron application runs

only one main process.

Rendering the UI, on the other hand, is handled by other processes. Since

Electron uses Chromium, displaying the UI is made with multi-process

architecture. Each window for an Electron application runs its own renderer
process.

Data transfer between two separate processes can be a problem, but not for an

Electron application. The Electron development team has created a special API

with two main modules for this kind of communication: ipcRenderer and

ipcMain. Figure 30 illustrates how asynchronous communication takes place.

Every time communication starts from the renderer process. At first,

ipcRender.send() triggers a listener ipcMain.on() by passing a string channel

value. Then, ipcMain sends data back to the renderer process with another

channel. The renderer listens to this channel by ipcRenderer.on() and retrieves

passed data.

43

Figure 30. Asynchronous communication between processes inside Electron application

The code for the main process of the project is placed in the file

src/main/main.ts. It initializes the application, opens the application windows

and manages application lifecycle events like closing application windows or

terminating an app. It is the right place for inserting code for sending data to the

renderer process. Figure 31 illustrates two listeners for sending different data to

the renderer. At first, SILAM output data is read and saved to the variable “data”.

Next, the first listener sends a list of all available dispersed materials. The last

listener sends all data about the passed dispersed material’s name. Both of them

always reads data from the variable “data” to process its value and to send back

desired data.

Figure 31. Data transfer from the main process to the renderer process (src/main/main.ts)

Now data is processed and listeners are ready for sending the desired data. The

next part is to set triggers for listeners, retrieve the data and pass it to the point

cloud layer.

44

3.8 Visualizing the processed data

When the data is accessible for the frontend, the last step is to visualize it. This

section covers how the data is saved and stored. Then, the description of passing

data to the point cloud layer is given. Lastly, the application window shows how

the visualization is rendered and what problem was discovered about rendering

3D clouds.

Before visualizing processed data, it needs to be retrieved. The first step is to

initialize variables for keeping the passed data. Figure 32 shows state variables

in the React component Main for saving passed data and managing map

interactions.

The brief description of created variables is as follows:

• gasNames holds a list of all available dispersed materials. It is used for
selecting material from the dropdown list in the control centre.

• selectedGas saves a selected dispersed material. On the initial run its
value is the first material’s name from a gasNames list.

• layer keeps a ready point cloud layer that is applied by the deck.gl
component.

• gasData holds all data about selectedGas material name. It is used for
generating a point cloud layer.

• selectedTime saves the selected hour. It is used for viewing a cloud in a
different point of time.

• isAnimating automatically changes selectedTime.

Figure 32. State variables (src/renderer/main.tsx)

The next step is to set message senders from the renderer process to the main to

trigger data processing functions. Figure 33 shows two senders: the first is asking

for a list of available dispersed materials, the second function is asking for

precise data about the desired material. The first sender is triggered right after

application launch when the variable “gasNames” is empty. The second sender is

wrapped in a function that is called automatically after retrieving the dispersed

45

materials’ name list and on user change of selected material.

Figure 33. Message sending functions for establishing communication between processes
(src/renderer/main.tsx)

When messages are sent, the answers should be retrieved. Figure 34 shows two

functions waiting for data from the main process. The first listener on the channel

“sendGasNames” is waiting for a list of available dispersed materials to save

them and calls another function to get information about the first material from the

list. The second listener on the channel “sendGasData” is getting processed data

about dispersed material to compose a point cloud layer.

Figure 34. Message retrieving functions from the main process (src/renderer/main.tsx)

The last step is to set a control centre. The implementation in Figure 35 is very

straightforward. It has a dropdown list for selecting dispersed material and a

button for submitting the choice, an hour slider and a checkbox for animating a

cloud.

46

Figure 35. Visualization control centre (src/renderer/main.tsx)

Finally, the application can be built to show how visualization is handled.

Application execution starts with two already familiar commands “npm start dev”

and “npm start”. Figure 36 shows how visualization works for 2D clouds.

47

Figure 36. Point cloud of 2D cloud from SILAM data

Visualization of the 3D cloud is shown in Figure 37.

Figure 37. Point cloud of the 3D cloud from SILAM data

If the cloud in Figure 36 is somehow visible, then the cloud in Figure 37 is almost

not noticeable. It reveals a problem with the SILAM coordinate grid, where the

data points are physically very far away from each other. A possible workaround

is to make point size bigger. However, it is not fixing the problem. Clouds in

48

Figure 38 looks slightly better. By trying to make the points bigger and bigger,

they will start touching each other losing the cloud shape.

Figure 38. 2D point cloud (left) and 3D point cloud (right)

The application is fully working with all its features as it was planned. Data is

read, processed and visualized. Visualization tools work perfectly, every point is a

sphere that forms a true 3D figure of different colouring on the world map. The

control centre does its job of changing dispersed material, hour slider shows the

cloud in a different point of time and animation adds unique interactivity.

Nevertheless, it was decided with the commissioner company to go further by

trying to generate more data out of the available data to make 3D clouds denser.

It will decrease the physical space between dots to give 3D clouds a more

realistic look. Also, the enhancement of the cloud’s shape will make it easier to

notice.

The next sections will be a sequel to the journey of making this application. A

new algorithm for generating more points between the existing points will be

developed to try to make 3D clouds more noticeable and real.

3.9 Generating more data

There is no sense to lie that at first this idea of generating more data out of

existing data seemed complex. There are so many data, how to collect them all

correctly and what algorithm to apply for generating? These were the first

questions to which could not find answers. Nevertheless, the solution to this

problem was found quickly. Geographic coordinates on which points of the cloud

49

are lying forms a very familiar coordinate system. Coordinates longitude, latitude

and altitude are perpendicular to each other what correlates to a three-

dimensional coordinate system with “xyz” axes. Every data point is like points on

the plot and if there is a plot, it is possible to calculate the equation to it. A plot

can be built between any two points and between these two points it is possible

to set more points with a graph equation. This conclusion led to the use of the

interpolation technique.

3.9.1 Interpolation

Interpolation is the method of finding new values within the range of discrete

values set. For example, in Figure 39 is illustrated linear graph, assume that

known “y” values are only for orange dots and desired values are the green point.

It is possible to calculate the value with the linear interpolation formula.

Figure 39. Graph for showing the interpolation

There are many formulas for interpolation, each is trying to minimize the error in

value estimation. The easiest is linear interpolation, it just draws the line

between two points for any value between them. More sophisticated techniques

are polynomial and spline interpolation that have different formulas, but both

take all available points for calculating an equation, not only two. Also,

interpolation can be applied in multidimensional space, there are bilinear and

bicubic interpolation for two dimensions and trilinear interpolation for three

50

dimensions. Of course, there are even more forms, but all of them are making the

same thing of calculating intermediate value between known values.

As the first time working with interpolation, it was decided to pick linear

interpolation. The goal of applying this technique is not to find a perfectly

accurate interpolation form but to try to make 3D clouds look more natural with

generated extra points. Moreover, different materials can dissolve differently, for

example, nuclides due to natural subdivision might be hard to accurately estimate

with only one formula.

The formula for linear interpolation is given on the example of unknown “y”

value for the green point in Figure 39. The “y” value for the desired point can be

defined with the linear interpolation Equation 1.

 𝑦𝑦 = 𝑦𝑦1 + (𝑥𝑥 − 𝑥𝑥1)
𝑦𝑦2 − 𝑦𝑦1
𝑥𝑥2 − 𝑥𝑥1

 (1)

where y “y” value for unknown point [-]

𝑦𝑦1 “y” value for the first point in the range [-]

x “x” value for unknown point [-]

𝑥𝑥1 “x” value for the first point in the range [-]

𝑦𝑦2 “y” value for the last point in the range [-]

𝑥𝑥2 “x” value for the last point in the range [-]

After weeks of brainstorming the whole idea, an algorithm of calculating desired

extra points was created. The whole concept is built on aligning two points on the

same two coordinates when only third will be different, out of it the point value

can be calculated with the linear interpolation. This approach correlates to the

example in Figure 39, when for different known coordinate “x” will be different

unknown value “y”.

51

3.9.2 Linear interpolation for a cloud of points

This subsection is describing the process of applying linear interpolation to the

three-dimensional cloud of points. It involves creating a three-phased

interpolation algorithm.

The interpolation will go in three different phases. For better understanding

Figure 40 shows a fully interpolated cube. It displays how it would look like, if the

desired number of interpolated points between known points is two. At first, let’s

imagine that there are no coloured points, but only black points. They represent

initial data points of SILAM output data.

Figure 40. Graphical representation of the linear algorithm for the point cloud (Vadim Morozov,
Mikhail Bobretsov)

52

The interpolation algorithm is done in three phases one after another, and the

phases’ description will refer to Figure 40:

1. Longitude interpolation. Every point starts looking for the closest
neighbour on the left for a longitude coordinate, so that both points have
same coordinates for altitude and latitude, but a different longitude
coordinate. It forms pairs 5-6, 8-7, 1-2, 4-3. For every pair a graph for
linear interpolation with axes “longitude – value” can be built. Figure 41
shows how longitude interpolation is working for the point pair 4-3. The
same procedure goes for the rest of the point pairs, resulting in 8 orange
points.

Figure 41. Longitude interpolation graph

2. Latitude interpolation. For the beginning, there are 16 points in total: 8
initial black coloured points and 8 interpolated orange coloured points. In
this phase, every point will look for the closest neighbour point on the
different latitude coordinate, but the same longitude and altitude
coordinates. For black points it will form the following pairs: 8-5, 7-6, 4-1,
3-2. For every pair only the value and the latitude are different. Therefore,
it is possible to create the graph “latitude – value” for linear interpolation.
Figure 42 shows how latitude interpolation works for the pair 4-1. The
same procedure is happening for orange points, resulting in overall
interpolated 16 cyan coloured points.

Figure 42. Latitude interpolation graph

53

3. Altitude interpolation. At first, there are 32 points in total: 8 black, 8
orange and 16 cyan coloured. In this last phase, every point will look for
the closest neighbour above it on the bigger altitude coordinate, while
longitude and latitude remain the same. For black points, this phase will
form the following pairs: 1-5, 2-6, 3-7, 4-8. For every pair only the value
and altitude are different. Therefore, it is possible to create a graph
“altitude – value” for linear interpolation. Figure 43 shows how altitude
interpolation works for pair 4-8. The same procedure takes place for
orange and cyan points, resulting in interpolated 32 green coloured points.

Figure 43. Altitude interpolation graph

Finally, after the described method it was managed to interpolate additional 56

points from 8 initial points with the total number of 64 points. The next step is to

transfer the algorithm into code implementation and to see how it performs.

3.9.3 Interpolating SILAM data

The interpolation algorithm will be implemented inside the src/main/utils.ts file

as a separate function. This function will take resulting data for desired material

as parameter and unprocessed SILAM data under ”variables” key. In the end, it

will return the same resulting data for the material but with extra interpolated

points in the data points array. Figure 44 shows a piece of function that performs

interpolation algorithm.

The following piece handles longitude interpolation. It implements the same

algorithm described in the previous subsection. It has a variable

“howManyPointsToAdd” that indicates how many points it will generate between

two existing ones. Then it loops for every array of data points for all hours. Next,

54

it takes each point and tries to find a neighbouring point on the coordinates from

the longitude array in unprocessed SILAM data. It prevents possible error, when

there is no neighbouring point, but the next point is too far away, it could lead to

inconsistency in the placement of generated data. Then by using Equation 1 a

new point’s value is calculated and the generated point is saved to a separate

array. When the loop ends, all generated points are saved to start the same

process for latitude interpolation, and lastly, for altitude interpolation.

Figure 44. Piece of the function for interpolating SILAM data points (src/main/utils.ts)

55

The interpolation function will be invoked in the src/main/main.ts file for the main

process with familiar a ipcMain and ipcRender Electron function tandem. Figure

45 illustrates how interpolation function will be called.

Figure 45. Function to transfer interpolated data to the renderer process (src/main/main.ts)

Figure 46 shows Electron functions that ask for the interpolated data and then

apply the resulting data to the point cloud layer. Resulting data has the same type

“Results” which frees from extra post-processing.

Figure 46. Functions that ask for interpolation and apply resulting data to the point cloud layer
(src/renderer/main.tsx)

Unfortunately, after executing the code with the interpolation algorithm it throws

an error and terminates the whole application. Figure 47 shows the error code

and message. There is no description for the following code without any

instructions on for dealing with it. It might be an internal Electron application error

referred to the application lifecycle.

Figure 47. Error after executing the interpolation algorithm

However, code debugging revealed a bit of light on the problem. First of all, data

is interpolated successfully on the main process, but the error occurs in trying to

move the data from the main process to the renderer. Figure 48 shows a

message about successful interpolation in the main process. The initial number of

56

data points is 2,300 and they were interpolated to the total number of 223,940

points. It is a lot of data, certainly more than 100 megabytes.

Figure 48. Command line output after interpolation

A possible problem could be that the generated data exceeded a memory buffer

or after such an intense task some problem happened to the application lifecycle

management. It is, however, certain that the Electron environment alone can’t

handle this algorithm of interpolating points. Some solutions are to run a separate

REST web server that will interpolate points and send it back to the Electron

application or to run a separate process in the same Node.js runtime.

However, there is still a chance that the interpolation algorithm will work in a

different environment. For example, almost without changing any code, it is

possible to execute this application code in a browser as a website.

3.10 Visualizing the interpolated data

This section will describe the process of migrating code from the Electron

application to the React web application with subsequent visualization of the

interpolated data.

A website for migrating frontend code will be built on React technology. This

approach allows reducing a code rewriting to a minimum. The UI instructions and

utility functions will be copied completely. The only difference is that for a web

application all utility functions for processing SILAM data and interpolation will be

called straightaway on the frontend side. All that is possible, because Electron

shares the same technologies as modern websites do.

The React development community has created different project templates as a

start for an application. For downloading a template an “npm” command will be

used. Template with TypeScript and React is installed with the command “npm

init react-app thesis-project --template typescript”.

57

Figure 49 shows the project structure after executing a template script. The file

App.tsx holds all the frontend code like src/renderer/main.tsx, while index.tsx

links the React component code to the website’s DOM like

src/renderer/renderer.tsx in the Electron application.

Figure 49. React web application structure

The execution of the migrated code is performed with the “npm start” command.

It opens a browser window with a web application on URL “http://localhost:3000/”.

Fortunately, it was managed to handle such a load and visualize all the

interpolated data. To make a real test, the number of interpolated points between

two existing ones was set to 15. It took 2 minutes 15 seconds to interpolate all

the points and show it on the screen. The total number of points was 1,530,000.

The code was executed flawlessly and the result in Figure 50 was the same as

expected.

The cloud looks a lot denser and real. Now it is easier to notice red areas of high

concentration. Animation works smoothly drawing every second from 60,000 to

650,000 points. The performance of the visualization tools is at the highest level.

All the movements around the map work without any shuttering keeping all points

on the screen.

58

Figure 50. Successfully interpolated the cloud of points

Finally, this experiment with interpolating more points for a cloud is considered

successful. The algorithm was created and implemented in code. Although it was

not possible to run such a heavy task in the Electron application environment, all

the code was migrated into the website environment where it worked perfectly.

Visualization results fully met the expectation by enhancing 3D cloud’s shape.

3.11 Evaluation of the created visualization

This section will compare the created visualization to the current solution of the

commissioner company’s SAS software. However, before the actual comparison,

let’s figure out how each solution is built. Figure 51 will help in the evaluation

process. It shows the same cloud represented by both solutions.

Figure 51. A comparison picture of the current solution and thesis project developed solution

59

The thesis solution uses thousands of rendered 3D spheres that all together form

the cloud. Every sphere has a different colour and opacity based on the

maximum value of the material’s concentration. In this way, red areas of the high

concentration are still visible at the bottom of the cloud. The control centre allows

changing the selected material from a dropdown list and selecting the desired

hour for the observation. Moreover, the control centre allows animating the cloud,

so that, it will automatically change the cloud’s shape during available hours.

Furthermore, clouds rendering is performed by the deck.gl visualization library. It

renders all figures in a separate canvas web element that overlays the map. In

this case, all rendering is happening independently from the used map system.

The commissioner company’s solution uses tools which are integrated into the

map system. The visualization is performed by rendering the heatmap on top of

the map. The heatmap is represented as a flat 2D layer of the coloured area. The

area is divided into sectors of different colours. The colour choice is based on the

maximum value of the material’s concentration. The control centre is represented

as a set of six buttons for switching the desired material, height layer of the cloud

and observation time. The heatmap is rendered in the same canvas web element

as the map system.

After understanding how each solution is built, the final step is to compare them

and point out important differences. The list of developed solution’s key

differences is formed as follows:

• 3D clouds. The developed solution shows the cloud as a full 3D object,
while the commissioner company’s solution shows the cloud as a set of 2D
cloud’s layers. These layers are switched by two buttons and represent the
cloud state at a different height. In this, case it is much harder to estimate
the whole situation because the cloud is not visible as one object but a set
of switchable layers.

• New interactions. The developed solution has the control centre with the
slider for changing an observed hour and the toggle for animating the
cloud. The commissioner company’s solution has only two buttons for
changing the hour. In this case, the slider brings a more intuitive
experience for a user. The desired hour can be set with a move of the
mouse without the need to make several clicks to different buttons.
Moreover, the automatic cloud animation delivers a real-life experience of

60

the moving cloud in the sky. This mode helps quickly see the cloud states
at different time to make a prediction where it will go next.

• Take a look from a different angle. The 3D render of the cloud in the
developed solution allows observing the cloud from different angles. A
user can tilt the camera and fly over the cloud. Moreover, the user can
zoom in to the specific area inside the cloud or zoom out to see it whole.
While the commissioner company’s solution shows only the 2D layer
represented as a view on the cloud from above.

• Separate render. The deck.gl library renders its layers on a separate
canvas web element independently from the map system. This approach
adds support of GPU hardware-accelerated render method as deck.gl can
use its own optimized algorithms for rendering complex 3D and 2D figures.
While the commissioner company’s solution renders data visualization on
a single canvas web element and relies on render algorithms provided by
the map system.

• Potential for improvements. Except for the point’s colour change, the
point cloud layer from deck.gl library also allows changing point’s size or
even adding a custom lighting. The use of these capabilities can improve
the user experience by more flexible visualization. While the commissioner
company’s solution can only change the gradation colour of the heatmap.

The created solution has a lot of advantages compared to the previous version.

Now, it can truly show the whole realistic cloud, not only the switchable layers. It

is the next step of the current solution for visualizing the three-dimensional

clouds. However, it can still be improved, for example, by increasing the size of

points with high material's concentration. In this way, it will be much easier to

notice the dangerous situation and to act properly. Nonetheless, this solution

satisfies the requirements of this thesis and greatly improves cloud visualization.

4 CONCLUSION

The initial idea of the whole project was just to improve the existing solution of

rendering three-dimensional clouds on the map from 2D layers to true 3D objects

using the same data. Also, extra interaction capabilities were requested like

showing a cloud in a different point of time and animating over available hours.

Nevertheless, the described project became something more for the thesis author

than just a solution to stated problems. It was a nonstop learning process with its

failures and achievements.

61

The resulting application gathers all essential and required capabilities. The

provided solution renders clouds as a set of thousands of separate dots with the

different filling colour right on the map. Colour mapping implements smart

technique where dots with low material concentration are more transparent to

decrease distraction factor and leave highlighted what really needs to be taken

into the account. Moreover, it allows observing clouds’ state in different points of

time with manual hour selection or automatic animation. The application brings

totally unique user experience with absolute interaction: a customer can zoom in

to the specific area of the cloud and zoom out to see the whole picture or even tilt

the camera to estimate the situation from another angle. All of these is true with

new web tools aimed at data visualization. Their capabilities allow presenting

data sets with complex 2D and 3D objects together with customizable lighting,

textures and shaders. Moreover, it is all available in the browser window without

any prior driver or software installation.

After developing the main application new challenge was faced, three-

dimensional clouds start fading and lose its shape due to the far physical

distance between points. The provided solution implements the three stepped

interpolation algorithm designed to generate any desired number of points.

However, it was not the end, Electron environment started working unstable and

killed the application for trying to pass generated data between processes. To

overcome this problem, the whole codebase with its libraries was migrated to the

website environment in a matter of minutes. The simplicity of this process once

again proves how versatile and powerful modern web technologies are. Finally,

the website with the same UI and codebase as Electron application successfully

interpolated three-dimensional cloud by increasing the number of points up to

661 times. Resulting visualization shows unattainable before the result, three-

dimensional clouds started looking denser and got a more realistic look. Now, it is

easier to detect areas with material’s high concentration, then evaluate the

situation and make the right choice out of it.

During application development, thesis author opened to himself a new set of

web tools for data visualization. New knowledge was gained about WebGL itself

62

and WebGL based libraries. Better understanding about processing complexed

packed data was practised. Moreover, the unique and interesting experience was

gained during developing the algorithm for point interpolation. Thesis author gets

a lot of new skills and knowledge that wants to apply and improve in future work.

Finally, the thesis author and the commissioner company are sure about the

success of the thesis project. However, some things can be improved and be a

new start for another project. For example, it may be an installation of additional

server for data interpolation to the Electron application or testing different

interpolation algorithms is a good option, too. Also, a new algorithm can be

developed that will be aimed to point extrapolation of clouds' edges to round

corners and give clouds a more smooth look. Despite all this, provided thesis

project is definitely the next step in the evolution of the previous approach and

gives a fresh 3D visualization for the same data.

63

REFERENCES

Brigham and Women’s Hospital. 2020. Slicer 4.10.2 released. WWW document.

Available at https://www.slicer.org/

[Accessed 4 March 2020].

Finnish Meteorological Institute. 2014. SILAM v.5.5. WWW document. Available

at http://silam.fmi.fi/index.html

[Accessed 10 March 2020].

Finnish Meteorological Institute. 2020. User-guide for SILAM chemical transport

model. PDF document. Available at

http://silam.fmi.fi/doc/SILAM_v5_userGuide_general.pdf

[Accessed 10 March 2020].

Facebook. 2013. Why did we build React? WWW document. Available at

https://reactjs.org/blog/2013/06/05/why-react.html

[Accessed 24 March 2020].

Facebook. 2020a. Components and Props. WWW document. Available at

https://reactjs.org/docs/components-and-props.html

[Accessed 24 March 2020].

Facebook. 2020b. State and Lifecycle. WWW document. Available at

https://reactjs.org/docs/state-and-lifecycle.html

[Accessed 24 March 2020].

GitHub. 2020a. Electron. WWW document. Available at

https://www.electronjs.org/

[Accessed 11 March 2020].

GitHub. 2020b. Electron documentation. WWW document. Available at

https://www.electronjs.org/docs/tutorial/about

https://www.slicer.org/
http://silam.fmi.fi/index.html
http://silam.fmi.fi/doc/SILAM_v5_userGuide_general.pdf
https://reactjs.org/blog/2013/06/05/why-react.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/state-and-lifecycle.html
https://www.electronjs.org/
https://www.electronjs.org/docs/tutorial/about

64

[Accessed 11 March 2020].

IKEA. 2020. Make your dream room a reality. WWW document. Available at

https://www.ikea.com/ms/en_US/rooms_ideas/splashplanners_new.html

[Accessed 4 March 2020].

Jack Tomaszewski. 2018. Why TypeScript is the best way to write Front-end in

2019. WWW document. Available at

https://medium.com/@jtomaszewski/why-typescript-is-the-best-way-to-write-front-

end-in-2019-feb855f9b164

[Accessed 12 April 2020].

Khronos Group. 2020a. Khronos Members. WWW document. Available at

https://www.khronos.org/members/list

[Accessed 2 March 2020].

Khronos Group. 2020b. WebGL Overview. WWW document. Available at

https://www.khronos.org/webgl/

[Accessed 1 March 2020].

Mozilla Corporation. 2019a. Canvas tutorial. WWW document. Available at

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial

[Accessed 1 March 2020].

Mozilla Corporation. 2019b. WebGL: 2D and 3D graphics for the web. WWW

document. Available at https://developer.mozilla.org/en-

US/docs/Web/API/WebGL_API

[Accessed 1 March 2020].

Medevel. 2019. 15 WebGL Medical Visualization Projects. WWW document.

Available at https://medevel.com/15-webgl-medical-visualization-projects/

[Accessed 4 March 2020].

https://www.ikea.com/ms/en_US/rooms_ideas/splashplanners_new.html
https://medium.com/@jtomaszewski/why-typescript-is-the-best-way-to-write-front-end-in-2019-feb855f9b164
https://medium.com/@jtomaszewski/why-typescript-is-the-best-way-to-write-front-end-in-2019-feb855f9b164
https://www.khronos.org/members/list
https://www.khronos.org/webgl/
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://medevel.com/15-webgl-medical-visualization-projects/

65

Microsoft. 2020a. Introduction. WWW document. Available at

https://www.typescriptlang.org/docs/handbook/declaration-files/introduction.html

[Accessed 12 April 2020].

Microsoft. 2020b. tsconfig.json. WWW document. Available at

https://www.typescriptlang.org/docs/handbook/tsconfig-json.html

[Accessed 12 April 2020].

Microsoft. 2020c. TypeScript. WWW document. Available at

https://www.typescriptlang.org/index.html

[Accessed 12 April 2020].

Mapbox. 2020a. Built with Mapbox. WWW document. Available at

https://www.mapbox.com/showcase/

[Accessed 17 April 2020].

Mapbox. 2020b. Mapbox GL JS. WWW document. Available at

https://docs.mapbox.com/mapbox-gl-js/api/

[Accesssed 17 April 2020].

NCO 4.9.3-alpha02 User Guide. No date. WWW document. Available at

http://nco.sourceforge.net/nco.html#ncks

[Accessed 10 March 2020].

Open Anatomy Project. 2017. SPL/NAC Brain Atlas. WWW document. Available

at https://www.openanatomy.org/atlas-pages/atlas-spl-nac-brain.html

[Accessed 4 March 2020].

Observis. 2020. ObSAS Situational Awareness. WWW documents. Available at

https://observis.fi/index.php/products/obsas-software

[Accessed 10 May 2020].

Uber. 2020a. AVS. WWW document. Available at https://avs.auto/#/

https://www.typescriptlang.org/docs/handbook/declaration-files/introduction.html
https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://www.typescriptlang.org/index.html
https://www.mapbox.com/showcase/
https://docs.mapbox.com/mapbox-gl-js/api/
http://nco.sourceforge.net/nco.html#ncks
https://www.openanatomy.org/atlas-pages/atlas-spl-nac-brain.html
https://observis.fi/index.php/products/obsas-software
https://avs.auto/#/

66

[Accessed 20 April 2020].

Uber. 2020b. Deck.gl. WWW document. Available at https://deck.gl/#/

[Accessed 20 April 2020].

Uber. 2020c. PointCloudLayer. WWW document. Available at

https://deck.gl/#/documentation/deckgl-api-reference/layers/point-cloud-layer

[Accessed 20 April 2020].

Uber. 2020d. React-map-gl. WWW document. Available at

http://visgl.github.io/react-map-gl/

[Accessed 20 April 2020].

Unidata.2020. Network Common Data Form (NetCDF). WWW document.

Available at https://www.unidata.ucar.edu/software/netcdf/

[Accessed 10 March 2020].

https://deck.gl/#/
https://deck.gl/#/documentation/deckgl-api-reference/layers/point-cloud-layer
http://visgl.github.io/react-map-gl/
https://www.unidata.ucar.edu/software/netcdf/

	1 INTRODUCTION
	2 Theory part
	2.1 SILAM
	2.2 Project environment
	2.2.1 Electron
	2.2.2 React
	2.2.3 TypeScript

	2.3 Visualization tools
	2.3.1 WebGL
	2.3.2 Mapbox GL JS
	2.3.3 Deck.gl

	2.4 Point cloud

	3 Project implementation
	3.1 Application planning
	3.2 Project setup
	3.3 Preparation of visualization tools
	3.4 Frontend setup
	3.5 Understanding SILAM data
	3.6 Data processing
	3.6.1 Defining data types
	3.6.2 Data processing functions

	3.7 Data transfer
	3.8 Visualizing the processed data
	3.9 Generating more data
	3.9.1 Interpolation
	3.9.2 Linear interpolation for a cloud of points
	3.9.3 Interpolating SILAM data

	3.10 Visualizing the interpolated data
	3.11 Evaluation of the created visualization

	4 Conclusion
	REFERENCES

