Elvis Gamua

MULTI-LANGUAGE APP DEVELOPMENT - JAVA AND C++

Thesis
CENTRIA UNIVERSITY OF APPLIED SCIENCES

Information Technology

August 2020

¢ Centria

UNNERSITY OF APPLIED SCIEMNCES

ABSTRACT
Centria University Date Author
of Applied Sciences August 2020 Elvis Gamua

Degree programme

Information Technology

Name of thesis
MULTI-LANGUAGE APP DEVELOPMENT - JAVA AND C++

Instructor Pages
Dr Szewczyk Grzegorz 76+3
Supervisor

Dr Szewczyk Grzegorz

Smartphones have become the most ubiquitous of consumer-electronic appliances. This is indicative of
the importance these gadgets play in society. From calling, playing games, consulting credit information
from the bank, these computationally powerful gadgets are used in many spheres in life. There exists
an ever-increasing variety of apps to aid users perform a wide range of tasks. As usage increases for
these gadgets, concerns arise for the best computational and security options. One way of solving this
dual problem is to make hybrid apps using 2 or more programming languages. Such apps will optimize
and exploit each programming language.

The entirety of this thesis investigates the computational aspect of smart phones. It investigates how
mobile apps can be made using two programming languages. An investigation is made on passing and
retrieving different types of data structures from Java to C++ and from C++ back to Java. Threads are
finally given a brief look towards the end of this thesis.

Key words:
Dalvik and ART, JNI, JVM, NDK, references, Structures, Threads

ABBREVIATIONS

ABI
APK
API
ART
CPU
ELF
I0S
INI
JVM
LLDB
NDK
OAT
SDK
Ul

Application Binary Interface
Android Package

Application Programming Interface
Android Runtime

Central Processing Unit
Executable and Linkable Format
Iphone Operating System

Java Native Interface

Java virtual machine

Low-Level Debugger

Native Development Kit

Of Ahead Time

Software Development Kit

User Interface

CONTENTS

1 INTRODUCTION..ccoutiiiuiensnensnncsnecssnesssessssscssessssesssssssssssssssssesssssssassssassssssssssssassssassssssssssssassssasssssssssse 1
2 THE NATIVE DEVELOPMENT KIT (NDK) c.ccovviiiiiiniinsuiiniinseisnissnecsssicssesssnnsssessssscsssssssssssessans 2
2.1 Difference between C++ and Java and meaning of “native” 2
2.2 Definition of the NDKiiiiiininiiiniiniiinninnienninniiseiesseseiseesssssessesssseessssssssssasssss 3
2.3 Reasons for using ND Kiiciiuiiiiiiinniiccsssniicssssssnesssssssessssssssessssssssesss 3
2.4 How to configure Android Studio......cccecevvueicrcnricssricssnnisssnnissssnsssssresssncssssnsssssncsssssssssssssssssssssess 3
2.5 CMAKE ..uceeeecnnecinicnninniisncssessssicssessssesssesssssssstsssssssssssssssssessnssssssssnssassns 6
U0 INT ceeiieiiiicninneensnecstecsnessaeesseesssesssessssssssnssssesssesssassssesssassssessssssssesssassssesssassssssssassssesssssssansssassnne 8
. N & 3 TN 10
2.8 Dalvik and ART...ccuuiiiiiiiiiiiiniienininnnensnensnesssessssesssnsssseessessssssssasssssssssssssssssassssesssssssassssassssassssse 11

3 THE STRUCTURE OF NATIVE PROGRAMS.................. 12
3.1 Creating a basic C++ supported Project. ... ceiicnssricssricsssressssnessssnesssssssssssssssssesssssssssssssanss 12
3.1.1 Loading of native lIDIaryiceiiicnissnicssissnnicsssssssicssass 13
3.1.2 The native method, native-lib and other libraries 16

3.2 Mapping Java and NALIVE LYPES ...cciccrvrericisssnriccssssnsecsssssnsesss 17
3.3 The NI interface POINLETcccvveierrvereissrncssricssnncsssricssssecssssssssssesssssesssssesssssssssssssssssssssssssssssssnss 20

4 PRIMITIVE TYPES AND ARRAYS OF PRIMITIVE TYPES.....iiisircsiineensneccencnens 21
4.1 Brief look at relationship between classes 21
4.2 Detailed 100K at Class diAZramMIScccevveriecissniicssssnnrcsssssnressssssssess 22
4.3 Brief 100K at uSer iNterfacescueieenieniinnsenisnnnsninsnnnsensseccssecsssesssessssssssesssssssssssssssssassssessaans 25
4.3.1 ATXTAY CYPES werrierrrerresssssrecssssnssessssssssesss 27

4.4 ACtiVIty DIAGIamS...cuuciiersrieissrrcsssnncssnncssnncssssncssssecssssssssssssssssssssssesssssesssssessssssssssssssssssssssssssssssssnss 28
4.5 Understanding the Pro@ramscceereecicsnrecsssssssesssssssessssssssasss 32
4.5.1 String and primitive types 33

4.5.2 ATTAY CEYPC auuerrirrirnricsssssnrecsssnsss 34

4.6 Memory 37
4.6.1 Primitive types........... 37
4.6.2 ATYTAY CYPES weerrerrrricrsrrrcsssnecsssnesssssesssssesssssossssssssssssssssssssasssssssssssssessssssssssssssssssssssssssssssssssssses 37
4.6.3 JNI API 38

4T RESUILS couueeiinreiuennieisuenisnicsenssnesssnnsssesssnssssesssessssnsssassssssssassssessssssssessssssssssssassssesssssssassssassssasssssssaass 38

5 OBJECT TYPES AND ARRAYS OF OBJECTS 42
5.1 Brief look at relationship between classes 42
5.2 Detail 100K at ClaSSES...uuuuiiiiuiiiisiiiiineiiiiiensniecsniecsneissniesssneessseessssecsssssesssssssssssssssssssssnsssssssssssnes 43
5.3 Brief look at user interface 47
5.4 ACtIVILY dIAGTAIMS .cuuureriierisnricnsssnrecsssssssecsssssssesssssssessassssssse 49
5.5 Forming the method name and signature of a Java method.............ccovveeivvverinvverincnrcscnnrcscnnnes 53
5.6 Understanding the Programscceeiecnscsnrccsssssssesssasssssssss 54
5. 7Memory MAaNAZEIMENT c..ccccceeeeessssrrecssssssecssns 57
S8 RESUILS euueerinniiiiieiiieiiitiiiiiteniteesittesssteessnecsssnesssssssssssesssssesssssesssssessssssssssessssssssssssssssasssssasssssases 58

0 THREADS ...tiiiintiniintenntisneniiesseessissssessssssssesssassssesssasssssssssssssssssassssssssasssssssssssssssssassssssssssssassss 62
6.1 User Interface........eeeeveeeiseecnseecssneecssnencssnnecssneecsnneens 63
6.2 Simple class diagram relationShipccoveieivveiciisininisnicninicssnicssnicsssnissssnessssnesssssssssssesssssessssees 63

0.3 DEtAI] JOOK At ClASSES.cereruereerereereerernereerereesceressssessessessssesssssssasssssssasssssssssssssssssssssssasssssssasssssssssessssas 64

6.4 Program description

6.4.1 IN NAtIVE-TID.CPP.ceeeiiciiirriiiiinnnricsissnnricssssnnicsssssnssssssssssesss 66
60.4.2 ON the JAVA SIAE ...uueeeeeeeeiiecieirrcsrnnneeeeececcsssssnssssseccessssssnsasssssecssssssssnsssssssssssssssssasssssesssssssssns 68
0.5 RESUILS ..uueerineiiiniiiieiitiinitnesiteeninteesntecssstecsssneesssnesssssesssssesssssessssssssssssssssessssssssssssssssasssssasssssnses 69
7T STRUCTURESucouiitiiiiniiniceisecssicsssssnissicssissesssisssissssssesssssssssssssssssssssssssssssssssssssssasssssssssssssssssssss 70
7.1 User interface and activity dia@ramcccueiieeiivniiciscsnniccssssnnncsssssssecsssssssssssssssssssssssssssssssssssssnns 70
7.2 Brief look at relationship between classes 71
7.3 Detailed 100K At ClaSSES...cciuueicineiiisueiiisnieissneiisencssnecsssnecsssnecsssnesssssecsssssssssssssssesssssasssssssssssssssssecs 72
7.4 Program deSCIrIPLION c....ecicvveeeriserenssencsssicssnncssssncsssnscssssesssssesssssssssssesssssosssssossssssssssssssssssssssssssssese 73
TS RESUILS ouueiiinnieiitiiciieiiinninitnessneesssneesssseesssnesssssssssssssssssesssssesssssessssssssssesssssessssssssssssssssasssssasssssases 75
8 CONCLUSION ...uuiiiicniiensrecssissesssncssissssssesssasssssssssssssssssssss 76
REFERENCEScouiiiiiniiiniinnissicssinnissecssissssssiessessssssessssssssssssssssssssssssssssssssssssessssssssssssssssssssssssae 77
FIGURES
Figure 1. Project fails to build with classpath lower than or equal to 3.1.3......cccociiiiiiiieiie e, 4
Figure 2. Project builds when classpath is changed to a classpath higher than 3.1.3c.c.ccceei. 5
Figure 3. How CMake WOrks pictorially........ccccuiiiiiiiiiiii ettt 6
Figure 4. Section 0f CMaKeLIST.EXE.....ccccuiiiiiieiiie ettt st eesae e e seae e e saeeesseeensaeeneeas 7
Figure 5. Section of build.gradle (Module: app).......cceecvireriiiieiiieeiie et 8
Figure 6. NI WOTK fIOW 1eviiiiiiiiie ettt et et et e e e e e e b e e e nbe e e s nseeenseeenneas 9
Figure 7. INT WOTK FLOW 2 ..c..viiiiieiiee ettt ettt ettt et e esbe e st e enseensaeenneas 10
Figure 8. native-lib loaded in MainActivity class and declaration of native method.............c...c.ccec.e. 14
Figure 9. Corresponding native method of java class definition in native library.........c.cccoceeverienennen. 15
Figure 10. Reference type mapping from java t0 NAtIVE........ccueevuierieeiiieniieeiieie et 19
Figure 11. JNTINterface POINLET.......oiiiieiiiiiiieiie ettt ettt ettt e saaeenbeenneas 20
Figure 12. Relation between classes for both the PrimitiveType App and the ArrayType App 21
Figure 13. User interface to enter and retrieve primitive tYPES ...c.veecveereeeriienieeniienieeieeseeeieeseeeseennnes 26
Figure 14. User interface to enter and retrieVe array tYPESc.eeeeereeerreerveerieenieerieeseeesreesseeeseessnesnens 28
Figure 15. Relationship between classes in the ObjectTypes appcveeeveeeveeriieriieriienieeeee et 42
Figure 16. Relationship between classes in the arrayOfObject app......c.ceecveevieerieeiiienieeiieie e 43
Figure 17. User Interface of ObJECtTYPE APD «ouveeerveeeiiieeiiieeiieeeiteeeiteesteeesteeesreeessseeessseeessseesnsseesnns 48
Figure 18. User interface of array of ODJECtS apPP...ccvveeeciieeiiieeiieeie ettt e eaae e 49
Figure 19. User interface for NativeThread appcveeeeiieeiiieeiieceeeeeeee et e 63
Figure 20. Simple Class Diagram RelationShipcccuvieiiiiiiiiiiiiiecieceeece e 64
Figure 21. User interface for CopyingStructInfo appeeeevveeeeiieeiiieeiiece et 70
Figure 22 User interface for CopyingStructInfo appccveeeceeeeeiieeiiieeieeeeeee e 70
Figure 23 Relationship DEtWEEN CLASSES......cuviiiiiieciieeciieeciee ettt tee st e e s e e ssaeeessaeeenseeenns 71
TABLES
Table 1. Steps to create a C++ based profect. 12
Table 2. Pnmitive type mapping from Javatonative ... i 18
Table 3. Classes 11 the Prmative Ty e app oo 22
dable 4. Classes 0 e Ariay PVRe GDP oo sty sttt s i i s o iy e s e e 24
Table 5. How to Enter values into the Primative Type app oo i 2

Table 6. First value in array entered and ADD buttonisclicked 27

Tdble /- Results for the pometive TyYpeapp oo s s s s s s s s s i 38

Table 8. Results for the Array Type @D e 40
Table D Classes an the objectTVDe AP - i s e i i s et Lt 44
Table 10. Classes 1n the arrayOfObects app oo 46
Table 11 VM typeE Simnallires’ . oo n s e e i s s e 54
Table-12: Resulis for i tyectlyvpe app o e i s o s s s B s 58
Table 13- Resilts Tor amayCObectS aper......oovoevnena v s 39
Table 14. Details of classes NativeThread app......ccoooo o o i 65
Table 15. Results for native thread ... 69
Table 16 Classes m - CopymgStiactinfo app...... oo ipin i s i i 72
Table 17. Results of copying stoucts e 75
CODE SNIPPETS

Code Snippet 1. Generating Code for specific ABL.........ccoiiiiiiiiiiieieeee e 11
Code Snippet 2. Definition of StringFromJNI Method in native-1ib,cppcccveevveeecieiniieieieeeieeee, 16
Code Snippet 3. Function name in Native-1iD.........ccooviiiiiiiiiiiiie e e 17
Code Snippet 4. Method declared with native keyword in a Java classcccocceeecvienieniienieniieiee. 17
Code Snippet 5. Native implementation of native Java method sendAndGetString in native-lib......... 18
Code Snippet 6. Native method wrapped and executed in created java threadccccceevieeciiennnnen. 62
Code Snippet 7. Syntax to start native threadceeciieriiiiiiiiiecie e 67
Code Snippet 8. start_routine of native thread.............cccoeeiiiiiiiiiiiiie e 67

Code Snippet 10. Call to runOnUiThread in setUI method of MainActivity class

1 INTRODUCTION

The advent of smart phones introduced a new dawn to programming with the introduction of the Android
operating system. This operating system has been managed for years now by Java even though JetBrains
in 2011 unveiled the Kotlin programming language. New Java APIs have been gradually added to help
manage the capabilities of this now ubiquitous system. Java and its APIs are great, however, Google
developers have utilized the benefits of C/C++, working in tandem with Java and Kotlin, to procure
greater processing power in the creation of games and other services in an effort to render the Android
Operating System much more rewarding, productive and most of all, provide an interactive machine-

human environment with an exciting user-experience to their clients.

This project is divided into six core parts. In chapters 2 and 3, a brief introduction will be made of the
native development kid (NDK) and the Java native interface (JNI). In these two chapters, a look is taken
at the basic configuration procedures for the development platform. Brief introductions will be made of
CMake which is the build system generator that Android uses for the native platform, the Java native
interface (JNI) which is a protocol on how Java code should call and be called from natively written
code, the Application Binary Interface (ABI) which is information for the CPU instruction set to be used
and Dalvik and ART. A look will also be taken at the structure of native programs.

In chapters 4 and 5 an investigation will be made on how to pass/retrieve primitive types, array types,
object types and array of object types to/from a native class. In chapter 6 an app will be made that
launches a background thread to calculate prime numbers up to a certain value and the result of this
operation received at the Java end. Chapter 7 will conclude the investigative chapters with an attempt at
passing a C++ struct object to a Java object. The discussed code samples in this project are found in the
writers Github account. A link to the pages containing the code samples can be found in the list of
references of this project. On the landing page of the link, Projectl corresponds to the
PrimitiveTypesApp app, Project2 to the arrayTypes app, Project3 to the ObjectTypes app, Project4 to
the arrayOfObjects app and Project6 to the CopyingStructinfo app.

2 THE NATIVE DEVELOPMENT KIT (NDK)

It is the intent of this chapter to explore the essence of NDK, which entails the configuration of Android
Studio to accommodate the NDK with the written Java program. This chapter illuminates the justifica-
tion into the deployment of NDK, highlights how libraries are etched into the Android Studio system
and ultimately accomplish the end product/system of choice. Moreover, an investigation will be
launched into revealing the inner workings of the Java Native Interface (JNI), which is the protocol used
in Java to establish a reversible/dynamic communication between C/C++ and Java. JNI spells out a
specific procedure on how methods can be initialized from Java and detail how objects, methods, classes

can be referenced and accessed from the native class, methods or libraries.

2.1 Difference between C++ and Java and meaning of “native”

One of the major differences apart from the language features of Java and C++ is that C++ compiles
directly into the machine code thus the meaning of the word native. Native means that the source code
has been compiled to the machine code which is native to the computer in question. The machine code
is the format that permits the Central Processing Unit to execute instructions. Java on the other hand is
both an interpreted and a semi compiled language. Java is semi compiled because it does not compile
directly to machine code but instead compiles to an intermediary code called byte code. The Java source
code is compiled to a Java bytecode. The bytecode then needs an interpreter to be able to convert it to

machine readable code. (Liang 2015.)

Apart from the differences in language features between Java and C++, there are some notable differ-
ences in representation of primitive types, arrays, objects and management of memory that make it dif-
ficult for code in these two languages to be mixed. Java has a single way to represent and use any systems
memory but C++ has different ways. Using C++ therefore, one type can have different sizes on different
platforms. The representation of arrays in memory for Java is also different. Java arrays are objects
unlike C++ arrays that are primitive types. This means access of these types are inherently different.
There is incompatible memory management in the two languages. Memory management in Java is the
work of the garbage collector which performs an automatic task, but memory management in C++ is a

job that has to be handled by the programmer. (University Of Princeton 2019.)

2.2 Definition of the NDK

The native development kit (NDK) is a toolset that allows the use of C and C++ code with Android. It
allows for the incorporation of this code into applications through the Java native interface (JNI). Many
of the Android applications in the market use NDK and JNI. NDK can be useful in cases where there is
need to achieve low latency or run computationally intensive applications, such as games or physics
simulations. C++/C library reuse is another reason NDK could be useful. Starting from Android studio
2.2, NDK can be used to compile C/C++ code into a native library and then embedded into the APK file
with Gradle. The application can then make runs to the native library when it must use the Java Native
Interface (JNI). Now, to compile C/C++ code Android uses CMake. It also uses NDK-build. The func-
tionality of CMake will be exploited in the course of this project. (Android Developers Documentation

2019.)

2.3 Reasons for using NDK

There are many reasons why NDK could be used. Firstly, as mentioned in section 2.2, NDK could be
used to run computationally intensive applications. Secondly, re-using existing C/C++ code in a new
Android application could be yet another reason for using the NDK. Another reason again could be the
need to develop an application that will run on other platforms like IOS and Windows. And finally, when
need arises to use some processor features that are otherwise absent in the SDK or optimize critical code

at assembly level. (Android Developers Documentation 2019; Liang 1999.)

2.4 How to configure Android Studio

To be able to run native code, download of additional tools must be done. CMake, NDK and LLDB are
tools that must be additionally downloaded. The SDK manager interface presents links for the download
of these tools. Syncing problems may arise while configuring Android studio. The classpath dependency
under build Gradle, is a likely scenario in this light. The classpath is an Android configuration property
that indicates to Gradle where to find the dependency files for a project in order for the classes in a
project to make use of them. While the initial program was under investigation it was discovered that
Gradle always failed to sync the project as shown in Figure 1. It was discovered that a higher classpath

was needed. The classpath was thus changed from classpath 'com.android.tools.build:gradle:3.1.3' to

classpath 'com.android.tools.build:gradle:3.2.1' as shown below in figure 2. (Android Developers

Documentation 2019.)

t HelloWorldC [C:\Users\gamuatachu\Desktop\ThirdYear\Android\JniTrial9\HelloWorldC] - ..\app\src\main\java\com\example\gamuatachu\helloworldc\MainActivity.java - Android Studio = X

le Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

= HelloWorldC) 1 app) 1 src) B8 main) 1 java) £ com) £ example) £ gamuatachu) £ helloworldc) A v Gm gk Laq

B 5 i © 0% 1| vy manxm | © Menadviyjav |d

;‘i o";l::dksqi . Gradle project sync failed. Basic functionality (e.g. editing, debugging) will not work properly. Try Again Open 'Messages' View Show Log in Explorer gl

g‘> {fi it Bu‘i)ld Files package com.example.gamuatachu.helloworldc; 0"
+import ...

o1 Dpublic class MainActivity extends AppCompatActivity {

T

of protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState);
setContentView(R.layout.activity_main);

TextView tv = (TextView) findViewById(R.id.sample text);
tv.setText (stringFromINI()):

: Build: Sync &
E| v O HelloWorldC: sync failed 3t 29
- & Starting Gradle Daemon

Error configuring

bl

! ;db v @ Runbuild C:\Users\gamuatachu\Desktop\ThirdYear\Android\JniTrial9\HelloWorldC
> @ Load build = 4

| > @ Configure build . g
E & Apply plugin org.gradle.pIugins.@de‘@dea.ldeaplugin |3
E| X & Apply plugin org.gradle.plugins.ide.idea.ldeaPlugin =
s @ Resolve files of :classpath C) :
] @ Resolve files of :classpath o g
g > © allprojects 4ms o
| o Resolve dependencies of :app:debugRuntimeClasspath 1s 1ms |

[Terminal - M9 Build = 6:logcat < TODO 1) Event Log

radle sync failed (3m 9s 201ms ¢ + UTF-8¢ Context: <nocontext> b &
] Gradle sync failed (3m 95 201ms) 1:1 CRLFs UTF-8 8
=

FIGURE 1. Project fails to build with classpath lower than or equal to 3.1.3

% HelloWorldC [C:\Usersh gamuatachul Desktop! ThirdVear AndraidniTild\ HelloWardC] - HelloWarldC - Android Stugio = X
File Edit View Navigate Code Analyze Refactor Buld Run Tools VCS Window Help
 HelloWorkdC) AGw v/ P r 6 haBN L LRQ
= | 1§ Android v 8w 8 Ir| gty manaml © | 8 MeinAdiityjava | (& HelloWorldC i
g J d
7 17 Tem=lars] hinld F1le whavs van man add manfianvatian anEiane comman Faoall enhonyatask o
£ } . app 1 / Top-level buald file whers you cen add configurdCion options common fo all sub-project 3
;' v (8 Gradle Scripts 3
i {8 buld.gracle (Project: Helolorldc) buildscript |
D .
(7 build.gradle (Module: app
g 7 mdlgrae = rt.prlir e repositories |
- f I VErsion)

5 | gradle-wrapperprope |fs,¢|at e E.I an) qoogiell
5 & proguard-rulespro (ProGuard Rules for app) jeenter()
;;' 1 aradle properties (Project Properties) :]
i (8 settings.gredle (Project Settings) dependencies | i
, ! local properties (5D Locatir) fclasspath 'com.android,bools.build:gradle:3.1.3
= B ol clagspath 'com.android.tools.build:qradle:3.2.1'
=l ¥ External Build Files
g
® :

]

!
allprojects |
repositories |
google()
jcenter()
.]
)
&l buildscriptf] ! dependencies(}
ﬁ‘m i i
o | & v @ Build: completed successfully &t 29102012 1707 T E‘
E v @ Runbuild C:\Users\gamuatachu! Desktop! ThirdYear Android\niTrial%\HelloWorldC Im 54z 81ms | &
5| 3 6 Load build : ; iE
> e > @ Coriguehiid {0 Helpimprove Android Studio by sending usage s -. ;
E ¢ » @ Calculate task graph Please click | agree if you want to help make 3
$ 4 y @ Runtasks Android Studio betteror | don' agree otherwise... v |3
H
[E Terminal Em £ b Logaat Lc"i“;,‘TO[)D @EventLog

[Gradle build finished in 1m 35 230ms (4 minutes ago) 1157 CRLFs UTF-8% Content <nocontest> & ‘
L 9

FIGURE 2. Project builds when classpath is changed to a classpath higher than 3.1.3

2.5 CMake

CMake is the build system generator that Android uses. CMake compiles CMake scripts (from
CMakelList.txt) and feeds the output to Ninja which is the compiler that the NDK uses. Files are fed into
CMake and CMake generates new files that build systems like Ninja, MakeFiles and Xcode can use.
Instead of integrating files directly into all these native build tools, files can be integrated once into
CMake and CMake will generate output files that all these systems can understand. This is useful when
cross platform development is needed or when a developer needs to change compilers in a project. The
developer will simply make use of CMake and describe a path for his files instead of adding all these
files into the various build tools he is using. In case there is need to use a different native compiler,

CMake will generate code for the new compiler in question. (CMake 2019.)

Visual Studio
cross platform CMake code
Xcode
o
y Ninja
CMakelLists.txt » CMake | ——
N
Makefiles
cross platform CMake sode .
Eclipse

FIGURE 3. How CMake Works pictorially

CMake allows the description of a project in its CMakeList.txt as shown in figure 4. The CMakeList.txt
file is found in the External Build Files in the Android project directory. There, the minimum version of
CMake can be set, what libraries to add, what libraries to target and what libraires to find. The add li-
brary() provides a relative path to the source files that are being used. The target link library() specifies
a target library that should be linked with the log library of the NDK and finally the find_library() finds

an NDK library and stores its location as a variable. The variable can be used later to refer to the library

in the build scripts. After configuration of a new CMake build script, Gradle needs to be configured to
include the CMake project as a build dependency, so that Gradle builds and packages the native library
with the app's APK. The path to allow Gradle find the CMakeList.txt has to be specified in the build.gra-
dle (Module: app) as shown in figure 5. (Android Developers Documentation 2019; CMake 2019.)

| & Langga[g_eiiava -C'._ MainActi\ri.i_:y..iax-'a | I.:Tu_nath.re—Iib.q_:l;_:_l_. = CMakelists.tet -~ | & Project3 ':‘_qpp | & NativeMsCIass.iava

cmake minimum required (VERSION 3.4.1)

Creatss and names a library, sets it a3 either STATIC

or SHARED, and provides the relative paths to its source code.

You can define multiple libraries, and CMake builds them for you.
Gradle automatically packages shared libraries with your APE.

| 12 add library({ # Sets the name of the library.
11 native-lib

1€ $# Sets the library as a shared library.
SHARED

1a # Provides a relative path to your source file(s).
src/main/cpp/native-lib.cpp
src/main/cpp/objectIype.cER)

2z # Searches for a specified prebuilt library and stores the path as a

2 # variable. Becauss ({Make includes system librariss in the ssarch path by
default, you only need to specify the name of the public NDK library

26 # you want to add. CMake werifies that the library exists before

27 # completing its build.

find library{ # Sets the name of the path variable.

log-lib
|28 # Specifies the name of the NDK library that
| 33 # you want CMake to locate.
| 34 log)
I E5E

Specifies libraries CMake should link to your target library. You
can link multiple libraries, such as likraries you define in this
build script, prebuilt third-party likraries, or system libraries.

FIGURE 4. Section of CMakeList.txt

Projects = | = app | & MatrvehdsClazs.java

&

€ |anguagesjava £ Mainfctivibyjava e Native-lib.cpp = CMakelists.txt

Iapply plugin: 'com.android. apﬁic;:icn_'

android {
complileSdkVersion 28
defaultConfig {
applicationId "com.example.gamuatachu.objecttypes"
minSdkVersion 26
target3dkvVersion 28
versionCode 1
versionfName "1.0"
testInstrumentationBunner "android.support.test.runner.AndroiddUnitRunner"
externalNativeBuild {
cmake |
cppFlags "-std=c++11 -frtti -fexceptions"
}
}
}
buildTypes |
release |
minifyEnakled false
proguardFiles getDefaultProguardFile('proguard-andreid.txt'), 'proguard-rules.pro'
22 }
23 }
24 externalNativeBuild {
25 cmake |
2 path "CMakelLists.txt"
2 }
}
dependencies |

implementation fileTree{include: ['*.jar'], dir: 'libs')
implementation 'com.android.suppori:appcompat-v7:28.0.0'

FIGURE 5. Section of build.gradle (Module: app)

2.6 JNI

The Java Native Interface (JNI) is the interface or protocol that Java uses to communicate to C/C++ and
C/C++ uses to communicate to Java. The portability of code across many platforms is ensured when JNI
is used. JNI is a protocol that defines how methods can be called from Java and how from the native
side class members, objects, methods, classes can be referenced and accessed. ART and Dalvik both
have JNI in their systems. JNI defines the standards and procedures for calling code in C/C++ and send-
ing the result back to Java. The JNI framework is programmatically very versatile. Information about
Java classes is derived from the native side. These classes can be loaded in the native side. Strings, arrays
and primitive types can be created and then JNI can use these to do its tasks. Objects and primitive types
can be created, updated and passed to be accessed between native side and Java side. The native side

can also call a method that is only defined as native in the Java side and it can also call a pure Java

method. Parameters can be passed from Java to native method and back to Java. Exceptions are not left
out as they can be thrown from the native side and handled from the Java side. (MIT Education 2019;
Krajci & Cummings 2013.)

Java Code

-

Dalvik/ART VM JNI o Native Code

Ao

ANDROID OS

FIGURE 6. JNI work flow 1

C/C++ code

.50 dynamic libraries

Y

Native function

Java code

Java VM

FIGURE 7. JNI Work Flow 2

2.7 ABIs

There are many different Android devices in the market and each of these devices have different CPUs

Class Method

e
JNI header
call and
transfer =
parameters
Return Results f
/

10

and instructions sets. An Application Binary Interface (ABI) is information for the CPU instruction set

to be used, the endianness of memory stores, convention for passing data between applications and sys-

tem, format for executable binaries and name mangling conventions for C++. There are 4 supported

ABIs in Android vis Armeabi-v7a, arm64-v8a, x86, x86 64. Generating code for a specific ABI can be
done in Gradle as shown in code snippet 1. The code in code snippet 1 builds for all 64-bit ABIs. By

default, Gradle builds for all non-deprecated ABIs. The default build is to include the binaries for each

ABI in a single APK. (Android Developers Documentation 2019.)

11

android {
defaultConfig {
ndk {

abiFilters "armb4-vBa’', 'x86_64"

CODE SNIPPET 1. Generating Code for specific ABI

2.8 Dalvik and ART

When an application is made, the Java source codes are compiled to class files by the Java compiler.
These class files are then further converted to a .dex file by a tool in the SDK called dx. The Android
asset packaging tool then converts the resources, images, native codes and the .dex files to an .apk (An-
droid package) file. This is the file that is distributed. From Android 5.0, ART was the sole and exclusive
run time used, but to maintain backward compatibility, ART used the original .dex files as input. This
was intended to render devices that continue to use the Dalvik Virtual machine workable. The dex2aot
tool in ART converts the .dex files to oat files and saves them in an ELF file. OAT is ahead of time,
which means all the files are converted and saved in the device and not compiled each time the applica-
tion is to be run like the Dalvik machine does. ART uses a combination of ahead of time compilation

and Just in Time compilation. (Android Developers Documentation 2019; Vogel & Scholz 2012.)

12

3 THE STRUCTURE OF NATIVE PROGRAMS

In this chapter a basic native application would be created. This application would be like the “Hello
world” using NDK. After knowing how to create a hello world, it will be worth reviewing briefly the
JNI ecosystem. A look will be taken at the signature of a native method in a Java class and how the
corresponding method is declared and implemented in the native library. The conclusion of the chapter

will look at the mapping of Java types to native language (C/C++) types.

3.1 Creating a basic C++ supported project

The steps are simple. As shown below (Table 1), support for C++ must initially be included. An “empty
activity” should be selected. The definition of the C++ standard used should also be selected. This lets
CMake set the relevant compiler and linker flags to use in building the project. The programmer should
tick “exceptions support” if the Android project should have compatibility with versions of NDK earlier
than NDKTr5 and finally the programmer should tick “run time type information support” if there is need
for run time support. On clicking “Finish”, the External build files under the Android Module will be
displayed. This contains the CMakeList.txt file discussed earlier in section 2.5, as well as the native-lib,

which exists in the cpp folder under the app module.

TABLE 1. Steps to create a C++ based project

X

® Create New Project ® Create New Project X

Application name

[Helloworldc++|

Company domain

gamuatachu.example.com Add No Activity

Project location

Package name
Edit

[Include C++ support
[Include Kotlin support

Cancel Previous Cancel
a) C++ support included b) select empty activity

(continues)

13

TABLE 1. (Continued)

,u(Customize C++ Support 0 s &
Fe Edt View Novigstz Code Analyze Refactor 3ulc Fun Jools VCS Wirdow Hep
AGmv b i lal
1) (9 e Sripts
v Toemel Buld Files
. ardicidtoclznain.crake (o, CLsers gemustd
3 @ Cakelistste (spp, CiLsers\qarruatacku Des
2| platomsamate oy, s garuatechu Ape
C4+ Standard | Toolchain Defaut B 2
Wmmmm f
(ik CCeitt H
I %
Exceptions Support (-fexceptions)
Runtime Type information Support (-frit])
X
Concel Previous ve (TGN |: b
. . f @ Helpimprove Android
c) Selecting C++ standard, exceptions and | i
¥ Androic Stud o beter o
run time support d) External Build Files
® Project3[C: § L Proj ject3]
File Edit View Navigate Code Analyze Refactor Euild Run Tools VCS Window Hep
- Project})

> 1 manfests
> Bjwe
v Eg

2 rative-lt.cpp
i chjectType.cpp.

5% T Structure.

hchjectTypeh

> lires

> @ Gradle Seipts

v 4 Extemal Build Filss
& andmid toolchain,cmake (app, C:\Ustrs\gamzta
8 CMakeListsiet (app, C:\Usersgamuazachu\Deskis
& platforms.cmake (spp, C:\Users\gamuztachu App|

@ Capturs

- 2 Faverites

ants

¥ Build Vari

e) native-lib in cpp folder under the app

module.

3.1.1 Loading of native library

The native library can be loaded anywhere there is need for usage of a native method as shown in figure
8. Following object-oriented paradigm however, it is advisable to have a dedicated class where all the
native methods are declared and the native library is loaded. As shown below (FIGURE 8), MainActivity
class extends the AppCompatActivity class. The activity will work normally without the MainActivity

class extending the AppCompatActivity class. This extends was intended to run the activity on earlier

14

versions of Android. Loading a native library in Java class allows native methods to be called in that
class. Additionally the JNI OnLoad() method is called when the native library is loaded. (Android
Developers Documentation 2019; MIT Education 2019; Oracle Documentation 2017.)

1 HelloWorldC [C:\Users\gamuztachul Desktop\ ThirdVear\ Android\niTrial\HelloWorld C] - . \apphsrc\ main'java\com' example! gemuatachut helloworlde\MainActivity.java [app] - Android Studie - x
Eile Edit View Mavigate Code Analyze Refactor Build Run Tools VCS Window Help
- HelloWorldC » "7 app / " src) % main) © java) L0 com) L0 example) 0 gamuatachu ¢ £ helloworlde) € MainActivity) ‘\ [Eapp v ’ 4 h F; § El., j;, 0 Q
=| '® Android L O+ | % I"‘ e activity_mainxml € MainActivityjava | # HelloWaorldC ! il
a SRS
=
gi“' app 1 package com.exarple.gamuatachu.helloworlde; (1] 5
=3 [manifests 2 4 £
" 2
¢4 Y java 3 timport ...
Loy B ; . R -
= I 7 @w public class MainActivity extends AppCompatictivity |
2 s Native-lib.cpp)
i
% ? Bges] // Used to load the 'mative-1ib' i on n startup.
"'l\-‘ (& Gradle Scripts 19 static |
(@ build.gradle (7] 4C) 11 System. loadLibrary(libname "native-1ib");
ﬂ| & build.gradle (Madule: app) 2 !
g 1| gradle-wrapper.properties (Gradle Version) : M
= T) foverride
:;! = proguard-rules.pro (ProGuzrd fules for app] 5 8 protected void onCreate (Bundle savedInstanceState) |
1 gradle.properties (Project Properties] 15 super.onCreate [savedInstanceState) ;
O settings.gradle (Project Settings) 7 setContentView (R.layout.activity main);
il local.properties (SDK Location)
v #% Extemal Build Files SR EERIRREERE
T e (i CAUsed e w) findViewById(R.id.szample tewt);
= K ¥ (app. ChUsers\gamuatac =
ol CALE) il e 21 tv.setText (stringFromdNI{));
= (Makeliststxt (ap jamuatachu [)Ez.l.‘-ci 1 }
& platforms.cmake (app, C\Users\gamuatachu\Appl 2
E
> =
b} public native String stringFromiNI(); |
H }
H :
g
[a]
;
= =
3 my
m =
s pel
| ‘i:.
*| 5
e |
7000 = 6 logaat [WEuild [Terminal () Event Lag
[Gradle sync finished in 185 364ms (from cached state} (3 rinutes aga) 11 CRLFs UTF-B: Context<nocontets & &

FIGURE 8. native-lib loaded in MainActivity class and declaration of native method

15

) HelloWorlaC [C\Users\gamuatachul Desktop! Third¥ear\Andraid\UniTrial9\HelloWorldC] - .\ apphsrc\main' cpp\native-lib.cpp [app] - Android Studi - X
File Edt View Mavigate Code Analyze Refactor Buld Run Tools VCE Window Help
= HelloWorldC) |- app) = src) " main 7 ¢pp) e native-fibucpp) A -f:l'iEFF vpirgel gL LGQ
5 '8 Android v @ % | f I | gactivity mainaml | © MainActivity,ava |Wnati\te-hb‘cpp (& HelloWorldC ‘ &
_!. 1 E -
£v Nap L | fincluge <jnib Y3
=y [manifests 2 finclude <stringy %
bl
o v
Ll Tatri

J v g extern "C" JNIEKPORT jatring
g | o+ native-lib.cpp JICAL
a ' B Java_com_exanple_garuatachu helloworlde Mainhctivity stringFromdI(
;:‘v & Gradle Sripts] MEw *enw,
i (8 build.grade (Project: HelloWorld) g jobject /' this) |
“ (& buid gradle (Mocule zpp) std::steing hello = "Hello from C+';
g . S s b return env->NewStringUTF(hello.c stz{));
i | aradle-wrapper properties [Grzdle Version) } =
g = proguard-rules.pra (ProGuard Rules for app)
L |1 gradlepropeties (Project Properizs)

® settings.gradle (Project Settings)

\1 local properties (50K Location)

v A External Build Files

= android toolchain.cmake (app, T Users\gamuatac

B CMakeListset (app, C\Users\gamuatachu! Deskto

& platforms.cmake (app, CUsers\gamuatachu\ App
i
2
-
a
. 1
r'i o

g
;
E e
El m
s 7
2 g
7000 Zgloget [FEuild T Temina () Event Lng

[Gradle sync finishedl in 13 36dms (from cached state) (12 minutes ago) 11 CRIFs UTF8: Contert <rocontet> o 8 Q

FIGURE 9. Corresponding native method of Java class definition in native library

16

3.1.2 The native method, native-lib and other libraries

After loading a native library in a class, a method with the native keyword can then be declared in that
class. If the native methods are declared in a dedicated class, an object of this class can be created in the
current class to be used to access the native methods. The latter approach is used in this project. The
native-lib can then be edited. If there is need for .cpp files and .h files same may be created and added.
A path to the .cpp file should be included in the add library() of the CMakeList.txt file. The native
method has a declaration in the Java file which ends with a semicolon. In the native files, however, a
native method has a definition. Its header is indicative of the package, class and return type of the

method. (Android Developers Documentation 2019; MIT Education 2019.)

A native method can be declared when the native library is loaded into a Java class. The method must
contain the native keyword as can be seen in the “HelloWorldC++" of figure 8. The native keyword
specifies that this method is not a Java method but one which will be written or defined in another
language. This declaration must be terminated with a semi-colon since the implementation is not done
on the Java side. The code in code snippet 2 is a definition of stringFromJNI() method declared as shown
in figure 8 and also defined in the native-lib as shown in figure 9. (Android Developers Documentation

2019; MIT Education 2019.)

extern "C" JNIEXPORT jstring
JNICALL
Java_com_example gamuatachu_helloworldc MainActivity_stringFromJNI|
INIEnv *env,
jobject fFthis */)
{
std::string hello ="hello from C++";

return env->NewStringUTF(hello.c_str());

CODE SNIPPET 2. Definition of StringFromJNI Method in native-lib,cpp

17

extern "C" prevents name mangling. This is necessary in case there is need to link a C code to the native
method using a C/C++ compatible header file. The compiler will not mangle the name and would there-
fore know that the C++ method defined in the C++ file and declared in the corresponding C header file
are both the same. INIEXPORT and JNICALL are necessary to register the method and be able to call
it from the dynamic table of the built binary (.so file). The native method name is concatenated as shown
in code snippet 3. If fullPackageName is for example com.example.gamuatachu.helloworlde, then all

the dots (.) have to be replaced by an underscore .(MIT Education 2019; Oracle Documentation 2017.)

Java fullPackageMName FullClassName functionName()

i
}

CODE SNIPPET 3. Function name in native-lib

3.2 Mapping Java and native types

The JNI provides a means to map Java types to native types. Mapping can be done for both primitive
types and reference types. The native types provide a way to work with Java types. A primitive Java
type is received on the native side as either a jboolean, a jbyte, a jchar, a jshort, a jint, a jlong, a jfloat, a
jdouble or void. When sending a primitive variable types back to a Java class it should also be sent as
one of jboolean, jbyte, jchar, jshort, jint, jlong, jfloat, jdouble or void. Any of these could be used on
the native side just as a boolean, byte, char, short, int, long, float, double or void without explicitly type
casting. This is, however, not possible with arrays, strings and other objects sent from the Java side.
Consider a method that has been declared as native in a Java class as below (CODE SNIPPET 4). Its

corresponding native implementation will look like the code in code snippet 5.

public native String sendAndGetString(String pStringl, String

g8tringd) ;

CODE SNIPPET 4. Method declared with native keyword in a Java class

18

The type jstring 15 the native implementation of the Java type String. The jstrings pStringl and gStringl
represents a JNI reference to the Java string objects pString() and qString(). The jobject pThis 15 a refer-
ence to the object that calls the method sendAndGetString(String pString(), String qString(); in Java.
Table 2 and figure 10 summarize the primitive types and reference type mapping. (MIT Education 2019;

Oracle Documentation 2017.)

extern "C"
JNIEXPCRT jstring JNICALL
Java_com example gamuatachu jnitrial4 PrimitiveTypes sendAndGetString

(JNIEnv* pEnv, jobject pThis, jstring pStringl, jstring gStringl) {

J//Implementation;

CODE SNIPPET 5. Native implementation of native Java method sendAndGetString in native-lib

The JNI types also have sizes in bits (TABLE 2). These sizes permit usage of fixed width integer types
which were defined since C++11. Definition and declaration of variables on the native side in the vari-
ous android projects in this thesis is carried out using these fixed width integer types. These types are

int8 t, intl6_t, int32 t, int64 t, uint8 t and uintl6 t. (Gamua 2020.)

TABLE 2. Primitive type mapping from Java to native

Java type Native Type Size in bits
boolean jboolean 8, unsigned
byte jbyte 8

Char jchar 16, unsigned
short jshort 16

int jint 32

long jlong 64

float jfloat 32

double jdouble 64

void jvoid -

19

Arrays, strings and other objects types are sent as reference types. These reference types must explicitly
be converted by calling on the methods of the JNIEnv class through its pointer variable. All reference
types are subclassed from the JNI jobject type. Arrays have other JNI sub types. These are the jintArray,
jlongArray, jfloatArray, jdoubleArray, jbooleanArray, jbyteArray, jcharArray, jshortArray and jobjec-
tArray. Strings are sent and retrieved from the native side using the JNI jstring type. Class references are
retrieved from the native side as a jclass which is an internal typdef of a jobject. It is worth mentioning

that the jsize is a typedef of a jint. (Oracle Documentation 2017.)

Jobject
All Java objects

iclass jstring jthrowable
Java.lang.String jarray Java.lang.Throwable
.Javac.‘lte:jr;%.tglass objects exceptions

Y

int arrays-jintArray jobjectArray-array of objects

jbooleanArray-array of

long arrays-jlongArray booleans

float arrays-jfloatArray jbyteArray-array of bytes

double arrays-jdoubleArray jcharArray-array of chars

[T
LD LD

jshortArray-array of shorts

LN W W N S

FIGURE 10. Reference type mapping from java to native

20

3.3 The JNI interface pointer

The interface pointer is a pointer which is created per thread JNI data structure. It points to a thread local
data which correspondingly points to the JNI function table shared by all threads. The interface pointer
permits the manipulation of Java objects and arrays. Native methods receive the JNI interface pointer as
their first parameter. Without the JNI interface pointer, native methods would not be able to access
functions in the JNI function table. The JNI interface pointer also provides a way to access Java fields
and call Java methods. Because it points to per thread created JNI data, it cannot be shared between two

threads. (MIT Education 2019; Oracle Documentation 2017.)

Native methods
with interface Thread local data

JNI Function table JNI Functions
pointer

JNI
Function

."__—‘—————-- JNI Function

Thread 1
local data

Thread 2
local data

Thread n
local data

Key: @ =pointer

FIGURE 11. JNI interface Pointer

21

4 PRIMITIVE TYPES AND ARRAYS OF PRIMITIVE TYPES

This chapter concentrates on sending and retrieving primitive types and array types to and from the
native libraries. Java Strings though not a primitive type, will be treated under primitive types. The
Android Studio projects written in this chapter will attempt to send and retrieve Java primitives, strings
and arrays to and from native code. These retrieved types will then be printed on the UL Use shall be
made of some basic JNI APIs concerned with primitive, string and array types. Because memory in the

native side has to be managed, this will be another concern in this chapter.

4.1 Brieflook at relationship between classes

In the PrimitiveTypesApp app there are 4 classes vis MainActivity, NativeMsClass, InfoDialog and
InputValues (Gamua 2020). InputValues is the C++ class and therefore needs JNI to access some of its
resources. Some types, however, like ints do not need JNI APIs. In the ArrayTypes app, there are also 4
classes vis MainActivity, NativeMsClass, InfoDilaog and InputValues (Gamua 2020). The creation of
the diagram in figure 12 is possible even though 2 languages are in use in this project. UML is language

agnostic (Booch, Rumbaugh, Jacobson 2005).

MainActivity NativeMsClass

InfoDialog InputValues

FIGURE 12. Relation between classes for both the PrimitiveTypeApp app and the ArrayType app

22

4.2 Detailed look at class diagrams

Table 3 presents the details of the classes for the Primitive TypeApp and table 4 the classes of the Array-
Type app. The implementation of these classes in each app differ even though the main point is to send
and retrieve data. On the native side which is of particular interest, the InputValues class of the Primi-
tiveType app has data members cBooleanValue, cByteValue, cCharValue, cDoubleValue. cFloatValue,
cIntegerValue, cLongValue, cShortValue, inTypes and a cStringValue pointer type. The inTypes vari-
able saves information about the type passed. The InputValues class also has constructors to set its data
members when an object is instantiated in the native-lib. There are getters methods to get the saved
values in the native-lib, a getType method to know the type information saved before calling a respective
getter method and a deleteString method to help delete string references. The MainActivity class sends
values to the native side via a sendPrimitiveType method that invokes a particular native method and
gets values from the native side via a getPrimitiveType method that retrieves saved values from the
native side. It also has Menultem callback methods that either reset the user interface and free memory
on the native side or bring up a user interface dialog. The NativeMsClass contains a declaration of all
the native methods. The InfoDialog class has a StringBuilder object that helps to build a dialog to be
displayed on the user interface. A detail description of how elements of one class interact with other

elements of other classes is given in the section 4.7. (Gamua 2020.)

TAELE 3. Classes in the PrimitiveTvpelpp

Class Functions in Brief
MainActivity The MainActivity class sends values to the na-

- myWorker:NativeMsClass
-mVIEdit Txt: EditText
-mTypSpin: Spinner

tive side via the sendPnmitiveType method that

-mGetBin: Button invokes a particular native method and gets val-
-mSetBtn: Button B . . o
-mReselBin: Button ues from the native side via the getPrimitive-
-textViewl: TextView ;

-countinput: int Tyvpe method that retrieves saved values from
-5ir: StringBuilder

s ik the native side. It also has Menultem callback
onCreate(Bundle):void ; :
+onCreateOptionshMenu(Menu): boolean methods that either reset the user interface and
+onQptionslitemSelected(Menultern): boolean

+imit()-void 5 , i y
+onitemSelected{AdapterView<7>, View, int, long): ﬁﬂf‘. TEaary.on thf_‘ native Sldﬂ o bl’lﬂg v
void

+onMaothingSelected(Adapter\View<7>). void user interface dlalcg'

+onResetPrimitve Types(): void
+getPrimitneType(): voud
+sendPrimitive Type(): void
+showhMessage(): vobd

(Continues)

TABLE 3. (continued)

23

InfoDialog

-str: StringBuilder

+ onCreateDialog(Bundle): Dialog

The InfoDialog class has a StringBuilder object
that helps to build a dialog to be displayed on

the user interface. The dialog button is found in
the menu and can be displayed anytime the user

wants.

NativeMsClass

+<<native>>getBooleanType(int): (int): int
+<<native>>getByteType(int): byte
+<<native>>getCharType(int): char
+<<native>>getDoubleType(int): double
+<<native>>getFloatType(int): float
+<<native>>getintegerType(int): int
+<<native>>getLongType(int): long
+<<native>>getShortType(int): short
+<<native>>getStringType(int): String

+<<native>>sendBooleanType(boolean, int): void
+<<native>>sendByteType(byte, int): void
+<<native>>sendCharType(byte, int): void
+<<native>>sendDoubleType(byte, int): void
+<<native>>sendFloatType(byte, int): void
+<<native>>sendIntegerType(byte, int): void
+<<native>>sendLongType(byte, int): void
+<<native>>sendShortType(byte, int): void
+<<native>>sendStringType(byte, int): void
+<<native>>resetNative(int): void

The NativeMsClass contains a declaration of all

the native methods.

InputValues

-cByteValue: int8_t
-cCharValue:uintl6_t
-cDoubleValue:double
-cFloatValue:float
-clntegervalue:int32_t
-cLongValue:int64_t
-cShortValue:intl6_t
-cStringVvalue: char*
-inTypes:string

+<<constructor>>InputValues(int8_t)
+<<constructor>>InputValues(uintd_t)
+<<constructor>>InputValues(uintl6_t)
+<<constructor>>InputValues(double)
+<<constructor>>InputValues(float)
+<<constructor>>InputValues(int32_t)
+<<constructor>>InputValues(int64_t)
+<<constructor>>InputValues(intl6_t)
+<<constructor>>InputValues(char*)

+getType();string

+deleteString();void +getBoolean();uint8_t
+getByte();int8_t

+getChar();uintlé_t

+getDouble();double

+ getFloat();float

+getinteger();int32_t

+getLong(); inté4_t

+getShort(); int16_t

+getString();char*

This class also has constructors that are called
when an object is instantiated in the native-lib.
It also has methods to help save the values
passed from java and methods to retrieve those
values from the native side. There are also met-

hods to manage memory.

On the native side of the Array type, the InputValues class has pointer types cBooleanArray, cByteArray,

cCharArray, cDoubleArray. cFloatArray, cIntegerArray, cLongArray, cShortArray and cStringArray. It

also has an inType variable to save information about the reference type passed, and a cLength variable

24

that saves information about the length of the array. Its constructors set these various pointer type
references when an object of this class is created in the native-lib. There are getter methods to get the
saved pointed references in the native-lib and the length of the arrays, a getType method to know the
type of reference saved before calling a getter method and a deleteStringArray method to help delete
string array references. The MainActivity class sends values to the native side via a sendArray method
that invokes a particular native method and gets values from the native side via a getArray method that
retrieves saved values from the native side. It also has Menultem callback methods that either reset the
user interface and also frees memory on the native side or bring up a user interface dialog. The onAdd
method adds values to an arrayList created in the generic NativeMsClass. The generic NativeMsClass
contains a declaration of all the native methods. It also contains an addToList method that adds array
values to the arrayList, a returnArrayList that returns the arrayList and a convertArrayList that formats
values retrieved from the native side. The InfoDialog class has a StringBuilder object that helps to
build a dialog to be displayed on the user interface. A detail description of classes and how elements of

one class interact with elements of other classes is given in the section 4.7. (Gamua 2020.)

TAEBLE 4. Classes in the ArravTvpe app

Class Functions in Brief
! MainActivity | The MaimnActivity class sends values to the na-
| - myWorker NatveMsClass i i }]
| -eVIE it Tt EditText trve side via the sendArray method that imvokes
| mAT TypSpinn. Spinnes =
| -meGatBan: Bumon = -
| -mSetBin: Button a particular native method and gets values from
i smiResetBin: Buiicn
maddTodrrBin: Bt - - -
i pracarlonednasides] the native side via the getArray method that re-
-COUITNDL
| . 3 . <
Pl trieves saved values from the native side. There
| e {
| ® onCreate{Bundie)void | - -
| +cnCreateOptonsMenuiMenu): bodiean are methods that help build arravs by calling on
i soniDpdnsiemSeleciadiManuliem) Boolaan
| +nit(j-void T = 335
B otk e s i methods 1n the generic NativeMsClass. It also
| void
| +oniicthingSelected{AdapterView=7>). void has Menmultem callback methods that either re-

|

| *onAddTypeowoid

| +vonResetAl(): voud : :

| +gessmay(): void set the user interface and thereby freeing
| +sendAmay(): void

| +=hoat } d g . = 5
srewlessage memory on the native side or bring up a user in-

terface dialog.
InfoDralog The InfoDhalog class has a StringBuilder object
-str: StringBuilder that helps to build a dialog to be displayed on

the user interface. The dialog button 1s found in

+ onCreateDialog(Bundie): Dialog the menu and can be displaved anytime the user

watits.

(Continues)

TABLE 4. (Continued)

25

=sgeneric>>MativeMsClass

-asrayList ArrayList<obpect=

+esconstructor==NativieMsClass()
+addToLst(Th: woid
+returnAmrayList{Class<T>): object

+ehearList); woid

+lengthCALEst(): im

+comvertArray(Siring) : String
+oonative>»getBooteansmay Typeling): { ing): in]]
+eonatives>getByteArray Type(int }; byte]]
+eanativessgetCharamay Type(it) char]
+eanativessgetDoublesrray Typey int) double(]
+conative>>getFloatArray Type(int) float])
+eanatives>getinegeninmay Typel it) in[]
+enate=getlongArray Type] int J; long(]
+esnative>>gatShonAmay Type(int): short]]
+onative>=getStingAmay Typel int) Strng(]

woid

+cnatives>send Bytesrmay Type| bytef], int) void
+enatves>aend CharArrayType(charf], it) voud
+eanatives>>send DoubbeArray Type{ doublef), int)
woid

e iathves>send Floatarmay Type| foatf], int): vod
+eanatives>aendintegerfrayTypel ing], int) woid
+esnativie>=sendLongarmay Type(lang(], int) void
+eanates>send ShartArray Type{ short[]. int) void

+ecnatives>réesetiative] mt) void

+e<native=>send BooleanAsray Type(boolean(], int .

voonatie=>sendSringArray Type(Sring(], in) void

The generic NativeMsClass contains a declara-
tion of all the native methods. It also contains
an addTolist method that adds array values to
the arrayList, a returnArrayList that returns the
arrayList and a convertArrayList that formats
values retrieved from the native side.

Inpuivalues
CEylmAray. s _
< CharArray wnlf 1=
= Dbl Aoy doutle

cFloatasmay float *
-giniegerArmayint32 o *
~cLongAsringinpb4E 1 *

cShorthrmayintls_
~cSiringarray: char® *

ATy sing
~cLengthiint32 1
seCponsiruciors=nputialues()
+sogesirucioninpuivialues()
+ L CONSINCIon=Inpudalues(intl_r°, mi32 1)
sCCEAREIrUCons=Inpulifalues(unti e, N2 1)
+<eepnstructors>inpuiValues{entls t=, mEa2 ¢)
+CCCONSITLCr=Inpuivalues(doubie* , nt32 1)
S CCCOMSINICHOr = irputyalues oo, im32_1)
so<oomstrucion>inpuiyalues(ingde 1, nt32 _t)
+o<consinscor==npulvalues(inted_t*, int32_t)
s COCORSIrUCIo=inpuifiues(ingle_r*, 32 1)
s ORI LEIOr> = Inpuliialues{char™, mEX2 1)

et Typa{):siring
peiLengihcingda_1
dhefebe Sirmguirrayy]) - wond
schieteOthar Artays{string) v
~getBooleanfamn) uintg_t*
+getBytefrray(iims ¢+
sgetCharArray () uintle "
=petDoublessray () double *
satFloatAst oy Noat”
=gatintegerArmayjni32_t*
~getLongAmay(iniea_t *
spetShortsmray]) 16 1°
et StringAsray():char =

Thus class also has constructors to set values
when an object of this class iz created in the na-
tive-lib. It also has methods to help save the
values passed from java and methods to retrieve
those values from the native side. It has met-
hods to manage memory

4.3 Brieflook at user interfaces

In this section, a brief look will be taken at the user interfaces. How to enter values and types for both

the PrimitiveTypeApp and the arrayType app will be looked at. Strings are treated under primitive

26

types. For primitive types, values are entered under the value field and the type of value entered is se-
lected from the menu of the spinner. An integer value of 20 is entered as shown in table 5. (Gamua

2020.)

TABLE 5. How to Enter values into the PrimitiveTypeApp

value 20

Type Integer

For the PrimitiveType app, the SEND button is used to enter values one at a time. The SEND Button
has an onClickListener attached that calls the sendPrimitiveType() method. Depending on the type cho-
sen the sendPrimitiveType() method will activate the required case. In case there is a mismatch of a
value and its type, an exception will be caught, and the user will be informed that there is a mismatch of
value and type. The GET button recovers the values that have been added from the native class through
the getPrimitiveType() method and displays on the user interface. There are two items in the menu whose
showAsAction is never. These are RESET and the INFO. RESET resets the user interface and cleans
the memory on the C++ side. Figure 13 shows the user interface for the PrimitiveTypeApp. (Gamua

2020.)

11:58 (O M 1= -

PrimitiveTypesApp

Value

Type Sstring -

GET SEND

1 &) <

FIGURE 13. User interface to enter and retrieve primitive types

27

4.3.1 Array types

Values are entered under the value field and the type of value entered is selected from the menu of the
spinner. Consider an integer array such as {20,40,80}. To enter this array, 20 is entered into the value
field and the ADD button clicked. The same process is followed for 40 and 80 being careful to keep the
type as IntegerArrayType. Table 6 shows the first input of the value 20. The ADD button must clicked
after each entry as only then is the value added to the current array by the addToList method. (Gamua
2020.)

TABLE 6. First value in array entered and ADD button is clicked

value 20

Type IntegerArrayType

The ADD button has an onClickListener that calls the onAdd() method that creates an array in the Na-
tiveMsClass. After creating the array with the ADD button, the SEND ARRAY should be pressed to
send the array to the native side. The SEND ARRAY Button has an onClickListener attached that calls
the sendArray method to send this created array. Depending on the type chosen the sendArray method
will activate the required case that will then transfer the array data to the native class. In case there is a
mismatch of a value and its type, an exception will be caught, and the user will be informed that there is
a mismatch of value and type. The GET ARRAY button recovers values from the native class through
the getArray method and displays on the user interface. There are two items in the menu whose
showAsAction is never. These are RESET and the INFO. RESET resets the user interface and cleans

the memory on the C++ side. Figure 14 shows the user interface for the ArrayTypes app. (Gamua 2020.)

28

1311 & & @ -

ArrayTypes
Value
Type StringArrayType -

GET ARRAY SEND ARRAY ADD

I O <

FIGURE 14. User interface to enter and retrieve array types

4.4 Activity Diagrams

The activity diagrams are presented below. All activities have sub activities that are presented alongside.
The activity diagrams are drawn for both the send and get use cases. If there is a mismatch for value and
type in the send use case the user will be informed. If there are no values saved on the native side and
the user clicks GET or GET ARRAY he will be informed no values are saved. The tables are given

headings for each use case.

29

SEND use case for PrimitiveTypeApp app

i

Get type and value infmnatiay

enter value and type

I

i didk SEN inform user :’ save type information
L

[}
+
Uh‘"

{ send value to

yalue and type correct?

iswutch to required case j

;

GII required native meﬂwﬁ
no

¥ES

®

a) Activity Diagram to send to the native side b) Send value to C++ sub activity

30

GET use case for PimitiveTypeApp app

dick GET button

<

YEs

values saved in C++2 or not null returned

(infol :
refrieve values from C4++ inform user
o0

(system display values j

a) activity diagram on clicking GET

ched zaved
et

b, S

(cal native mathod

Conﬁrm parbicular type was saved n£+ﬁ

U

Eﬂ getter method to get vak ™

J

b) retrieve values from C++ sub activity

31

SEND ARFAY use case for ArravTvpes app

enter array value

value entered?

(ad:! value into array with add buuon>

more values in array?

click SEND ARRAY

send array
]

array cormect?

infon

a) Activity Diagram to send to the na-

trve side

conversion succ%

.--

value field empiy?

i

<

YES

no

W
E switch to required case j
i get arraylist :
Cumert arraylist to particular t@

inform user

call required native methodfset amray in HD

<L
®

b) send Array sub activity

32

GET ARFAY use case for ArrayTvpes app

dick GET ARFI‘.A‘r__")

values saved in C++7 or not null returned

B no

'Fn-r\.
/ retrieve arrays from C++ :‘) NIRRT LR)

he oo

—_—
(:v:tc—m display .:u'ral.l:)

-r‘::_ i
.--"'Ii
@
a) Activity Dhagram on clicking GET AR-
RAY

)Q call native method U

i
(Tc:lnﬁrm particudar type was saved in C++)

i
(cnnv:r# array in native to jobject ﬂnqy)

¥
return array

more arrays?

yes

.a-'-f_“-__a
i

6

b) retrieve values from C++ sub activity

4.5 Understanding the programs

Upon launching of the application, all parameters are initialized and in the init() method and InfoDialog

class object is instantiated. A visible outcome of this is that there is a dialog window that pops up any

time the app is launched. This window directs the user on how to use the app. The native-library is

loaded in the NativeMsClass class. On the native side the JNI onload is called once. It caches global

variable settings. The version number which contains an integer is then returned. Version numbers can
be JNI_VERSION 1 1, JNI VERSION 1 2, JNI VERSION 1 4, JNI VERSION 1 6, JNI VER-
SION 1 8,JNI VERSION 1 9and JNI VERSION 1 10. The program in this project uses JNI_VER-
SION 1 6. (MIT Education 2003; Oracle Documentation 2017; Gamua 2020.)

33

4.5.1 String and primitive types

After entering a value in the value field and selecting the type from the menu of the spinner, the SEND
button is pressed/clicked to enter the value. The SEND button has an onClickListener attached that calls
the sendPrimitiveType method. In this method there is a String array called checkType that keeps track
of the types entered. The native class methods are called depending on the case and the countInput which

counts the number of inputted values is incremented. (Gamua 2020.)

For Boolean types myWorker.sendBooleanType() is called with arguments (true, countlnput) or (false,
countlnput). The arguments depend on whether the user enters 1 or 0. The sendBooleanType method
which is a natively declared method in the NativeMsClass calls its corresponding native method in na-
tive-lib.cpp. In native-lib.cpp, a new object is created. The jboolean type which is used as a parameter is
automatically casted to its corresponding native type. The JVM ensures that true=1 and false=0. (MIT
Education 2019; Oracle Documentation 2017; Gamua 2020.)

For Byte types myWorker.sendByteType() is called with arguments (Byte.parseByte(inputString),
countlnput). On the native side the jbyte value nByte passed is simply casted when creating the new
object. Floats, Integers, Longs, Short, and Double types all follow the same pattern as Byte types. On
the native side, they are also casted to their respective types and there is no need to use JNI APIs to

manipulate these types. (MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)

myWorker.sendCharType() is called with arguments (inputString.charAt(0), countInput) for Char types.
On the native side the jchar value nChar passed is simply casted when creating the new object.
myWorker.sendStringType(inputString, countInput) is called for String types. On the native side the JNI
API must be called to manipulate the string reference passed. Java strings are objects so they cannot just
be casted. To copy the JNI string to a native buffer use must be made of the JNI APIs
GetStringUTFLength and GetStringUTFRegion. The first method gets the length of a string and the
second copies it to a C++ memory buffer knowing the length and the buffer name. A “\0’ is appended to

the buffer for string termination. (MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)

If the GET button is pressed, the getPrimitiveType method is called to retrieve a primitive type. For
Boolean types, myWorker.getBooleanType(i) is called if checkType[i] is a Boolean, i being a variable
which increments to the number of entries. On the native side the incomingValue[jObjectNum] object

gets its type and compares to see if the inTypes variable was set as a BooleanType when the object was

34

created. If yes, a 1 or 0 as jint is returned since Booleans are set as 1 or 0 on the C++ side. On the Java
side, if 1 or O is returned, it is appended to the stringBuilder str. (MIT Education 2019; Oracle
Documentation 2017; Gamua 2020.)

If the GET button is pressed and a Byte type had been entered, myWorker.getByteType(i) is called if
checkType[i] is a Byte, i being a variable which increments to the number of entries done. On the native
side the incomingValue[jObjectNum] object gets its type and compares to see if the inTypes variable
was set as a ByteType when the object was created. If yes, the Byte type is returned as a jbyte. On the
Java side, it is appended to the stringBuilder str. Floats, Integers, Longs, Short, and Double types all
follow the same pattern as Byte types albeit with their respective JNI types. (MIT Education 2019;
Oracle Documentation 2017; Gamua 2020.)

If the GET button is pressed and a Char type had been entered myWorker.getCharType(i) is called if
checkType[i] is a Char. On the native side the incomingValue[jObjectNum] object gets its type and
compares to see if the inTypes variable was set as a CharType when the object was created. If yes, the
Char type is returned as a jchar. On the Java side, it is appended to the stringBuilder str. For String types,
myWorker.getStringType(i) is called if a String had been entered and checkType[i] is a String. On the
native side the incomingValue[jObjectNum] object gets its type and compares to see if the inTypes
variable was set as a StringType when the object was created. If yes, a pointer variable that points to the
returned C++ string of the object is created. Use is made of the JNI API method NewStringUTF() to

create a jstring object that is returned. (Gamua 2020.)

4.5.2 Array type

For array types, there are not two but three buttons that permit the input and output of data. For any
array, use is made of the ADD button to create and the SEND ARRAY button to send the array reference
to the native side. Clicking on GET ARRAY button will retrieve the array from the native side. The
ADD button has an onClickListener that calls the onAddType method. This method takes the primitive
value to be added to the array and calls the addToList method of the NativeMsClass through the
myWorker object. The ADD button must be clicked successfully after each primitive or string type
which makes up the array. The NativeMsClass in this case is of generic type and the addToList method
is also of generic type. The addToList method adds the primitive values to be added to an arrayList.

After all the primitive types have been entered, clicking the SEND ARRAY button calls the sendArray

35

method. In that method the arrayList is returned through the myWorker object and the returnArrayList
method that takes a generic class type. It returns only arrays of a particular type and not combinations
of types. As an example, consider selecting to enter an integer array using the menu of the spinner. An
integer array such as {4,7,10,4} will be accepted and not {4, 7, 10.9, 4}. The user only gets informed
after clicking the SEND ARRAY button as an exception is caught and displayed. (Gamua 2020.)

For Boolean types, myWorker object with the help of the returnArrayList method returns an arrayList
of type Object if the “SEND ARRAY” button is clicked. The arrayList is then converted into Boolean
types and saved in the newly created Boolean array. The Boolean array is then sent to the native class
by calling the sendBooleanArrayType method. In the native-lib.cpp the corresponding method creates
an array pointer of type uint8 t*. This points to Booleans on the heap with a length of length. The array
elements are extracted into their JNI types using the GetBooleanArrayElements API and they are pointed
to in memory by a pointer arrayTmp. To convert to a C++ bool type the elements pointed to by arrayTmp
are compared to JNI TRUE. A pointed jboolean element that is true will return a 1 while a jboolean that
is false will return a 0. This is the easiest way to copy from the jboolean array type to a C++ bool array

type. (Gamua 2020.)

For Byte types, myWorker object with the help of the returnArrayList method returns an arrayList of
type Object if the “SEND ARRAY™ button is clicked. The arrayList is then converted into byte types
and saved in the newly created Byte array. The Byte array is then sent to the native class by calling the
sendByteArrayType method. On the native side the NI API GetArrayLength is used to get the length
of the JNI array type passed from the Java side. A byte array is then created with the new keyword
having the exact same length as the array sent. This array is of type int8 t as this is the type that will
rightly save a byte. The JNI array is copied to the array created using the GetByteArrayRegion method
of the JNI API. A new object is created with constructor parameters being the copied array and its length.
Floats, Integers, Longs, Short, and Double types all follow the same pattern as Byte types albeit with
their respective JNI types and C++ types. (Gamua 2020.)

For Char types, myWorker object with the help of the returnArrayList method returns an arrayList of
type Object if the “SEND ARRAY™ button is clicked. The arrayList is converted into chars and saved
in the newly created char array. The char array is sent to the native class by calling the sendCharArray-
Type method. On the native side the JNI API GetArrayLength is used to get the length of the JNI array
type passed from the Java side. A char pointer reference is created with the new keyword having the

exact same length as the array received from Java. This pointer will point to types of uint16 t. uint16 t

36

is the right type to save a char. The JNI array is copied using the GetCharArrayRegion to the heap and
the pointer reference array created with “new” made to reference this string on the heap. A new object

is created with constructor parameters being the copied array and its length. (Gamua 2020.)

Java String types are not same as primitive types. Whether they be arrays or not, their treatment is dif-
ferent. In the case of String arrays, myWorker object with the help of the returnArrayList method returns
an arrayList of type Object if the “SEND ARRAY” button is clicked. The arrayList is then converted to
Strings and saved in the newly created String array. The String array reference is sent to the native side
by calling the sendStringArray Type method. On the native side, the array length is first determined using
the GetArrayLength API. A double char array pointer is created to house the individual strings in this
array. Because a string is an object, use is made of the GetObjectArrayElement API method to extract
the individual Strings in the for loop that follows. For each String in the array extracted, its length is
determined using the GetStringUTFLength method. A reference of a string memory location on the heap
with the new keyword is created using the array reference created before the for loop. The array reference
refers to a char sequence of characters on the heap whose length is given by GetStringUTFLength plus
1. Subsequent references in the for loop will refer to each string extracted. For example, array[0] refers
to the first string extracted, array[1] refers to the second string extracted etc. A new object is then created

with constructor parameters being the copied array reference and its length. (Gamua 2020.)

If the GET ARRAY Button is clicked the getArray method is called. If one of arrays that were created
prior and sent to the native side is a Boolean array, myWorker.getBooleanArrayType(i) is called if the
null check is ruled out. On the native side, if the object is found to have been saved as a BooleanArray-
Type, a jbooleanArray is created using the NewBooleanArray API. This method takes the length of the
array as one parameter. The array created is filled with Boolean elements using the SetBooleanArrayRe-
gion API method. The array reference is returned to the Java side as a jbooleanArray. Floats, Integers,
Longs, Short, Double, Bytes and Chars all follow the same pattern albeit with their respective JNI types.
(MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)

If the GET ARRAY Button is clicked the getArray method is called. If one of arrays that were created
prior and sent to the native side is a String array, myWorker.getBooleanArrayType(i) is called if the null
check is ruled out. On the native side, a check is made to see if the object was saved as a StringArray-
Type. If so, a new jobjectArray is created with parameters being the length of the saved string and the
jclass global variable StringClass which tells the API the class of array object to create. For each string

reference that was saved on the heap, a new string is made from the returned pointed string. These strings

37

are then added subsequently to the jobjectArray variable. After this process finishes, the jobjectArray is
returned. (MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)

4.6 Memory

Memory management is handled both on the Java side and on the native side. On the Java side, memory
cleanup is the responsibility of the garbage collector. On the native side however, memory must be
managed by the programmer. Management of memory on the native side is carried out using pointers,
destructors and various JNI types. There exist JNI types for blocking the garbage collector from per-

forming a clean-up of memory references. (MIT Education 2019; Oracle Documentation 2017.)

4.6.1 Primitive types

There is just one pointer that is used on the native side. This is the char pointer which is used to create
the string. After clicking/pressing the RESET menu button, this char pointer reference needs to be de-
leted and then subsequently the reference to the object must be deleted in case the object was a
StringType. In case the object was not a StringType object, only the reference to the object is deleted.
(Gamua 2020.)

4.6.2 Array types

Here the object is deleted with the help of a destructor. Options exist to delete the pointer references for
all the types. For a String array type, the references are deleted with the help of the deleteStringArray()
method. In the deleteStringArray() method, all the references pointing to the strings in the heap are first
deleted and then the reference to the references is deleted. For all the other array types, the array refer-

ences are simply deleted. (Gamua 2020.)

38

4.6.3 JNIAPI

The JNI family of methods Get<Primitive>ArrayElements creates a pointer to Java array elements.
These pointers cannot be garbage collected. For example the GetBooleanArrayElements() creates a
pointer to array elements of boolean type. In order to allow the garbage collector to clean the memory,
a corresponding Release<Primitive>ArrayElements must be used after a Get<Primitive>ArrayElements.
For example, for GetBooleanArrayElements, use is made of ReleaseBooleanArrayElements to allow the
garbage collector to clean the memory. The garbage collector is also prevented from memory cleanup
when use is made of GetStringUTFChars and GetStringChars. A corresponding use must be made of
ReleaseStringUTFChars and ReleaseStringChars to allow the garbage collector to clean the memory
(MIT Education 2019; Oracle Documentation 2017.)

4.7 Results

The results for the primitiveType app is presented below (Table 7). The input and output operations
are shown. RESET and INFO are in the menu. The initial output when the app is opened is shown with
a display of a dialogue. The dialogue gives directives on app usage. Values are then inputted and re-

trieved. The RESET button clears the Ul after each successive input-output operation. (Gamua 2020.)

TABLE 7. Results for the primitiveType app

ajmitial dialog b) integer input

(Continues)

TABLE 7. (Continued)

39

) string input

B e T oy o s

-

d) double input

i ashie

L G

e) clicking “GET”

f) clicking “"RESET™

40

The results for the ArrayType app is presented below (TABLE 8). The input and output operations
are shown. In addition there is an “ADD” button to create an array before sending to the native side.
The user is informed he has not created an array in case he clicks “SEND ARRAY” before “ADD”.
The initial output when the app is opened is shown with a display of a dialogue. The dialogue gives
directives on app usage. Values are then inputted and retrieved. The RESET button clears the UI after

each successive input-output operation. (Gamua 2020.)

TABLE 8. Eesults for the ArrayType app

i Sakarl
Tyyrii SIS T s -
DRET AsShny BHEF AMShAY At
Hose b e this App
1, S Tymes ol Anray
a) mitial dialog b) string array input
Wit Groargaa wibh = o Tr - |
Tyne =id T A e Ty = Vi Sarireg Ay Tygie =
GET AN 118 B A Ay A GET AREAY BENT AN A
) string array input d) string array input

(Continues)

TABLE $. (continued)

41

Artay Typas

Twiie EdmgmrArray Typs =

GET ARELAY B DR SRR RAY Al

£) integer array input

Ty Eteger Array Type =

DET ARPLAY B R T AL

f) integer array mput

Ay Ty pes

i L CHOEY
] IrrogarAre my Typo

GET ANEY TR ANSAY gt

g} integer array input

Array Typan ¥
W L 1 LHIR
irpess limlnges durmy Ty po -

OUT ARNAY THCHTE ANTLAY AT

h} after clicking "GET AREAY™

42

5 OBJECT TYPES AND ARRAYS OF OBJECTS

In this chapter manipulating Java objects and accessing Java data members by the JNI API will be ex-
plored. An attempt will be made to send and retrieve Java objects to and from the native side. Object
arrays will also be sent and retrieved from the native side. To do these operations use shall be made of
the various JNI APIs for manipulating Java objects and Java arrays of objects. JNI APIs will further
permit us to manipulate Java objects and arrays of objects from the native side. Other APIs explored in
this chapter will permit the access of an object’s data members from the native side. Memory manage-

ment will be the final concern in this chapter.

5.1 Brieflook at relationship between classes

In the ObjectTypes app there are 5 classes vis MainActivity, NativeMsClass, Language, InfoDialog and
InputValues classes. InputValues is the C++ class and therefore needs JNI to set and access some of its
resources. Worth noting is the fact that the InputValues class is an aggregator class to the Language
class. The MainActivity class is also an aggregator class to the NativeMsClass class. The relationship

between the classes is presented in Figure 15. (Gamua 2020.)

Language InputValues
MainActivity NativeMsClass
InfoDialog

FIGURE 15. Relationship between classes in the ObjectTypes app

43

In the arrayOfObjects app there are 5 classes vis MainActivity, NativeMsClass, Language, InfoDialog
and InputValues. In addition, there is an interface called ComparingListener. Worth noting is the fact
that the InputValues class is an aggregator class to the Language class. The NativeMsClass is a compos-
itor class to the ComparingLister interface. The MainActivity class is an aggregator class to the Na-
tiveMsClass class. It implements the ComparingLister interface. The relationship between the classes is

presented below (Figure 16). (Gamua 2020.)

Language
<<interface>>
ComparinglListener
MainActivity NativeMsClass
<=
InfoDialog
InputValues

FIGURE 16. Relationship between classes in the arrayOfObject app

5.2 Detail look at classes

The details of the classes are shown in table 9 and table 10. MainActivity class of the ObjectType app
has private members that reference the various Views that are shown on the user interface. The countIn-
put counts the number of inputs entered. MainActivity has Menultem callback methods that either reset
the user interface and free memory on the native side or bring up a user interface dialog. Memory is
freed by calling the Java method onResetLanguage which further calls the native method resetNative.
The sendLanguage and getlL.anguage methods are both used to send and retrieve information from the

native end by respectively calling the sendLanguage and getLanguage native methods of the NativeM-

44

sClass. The Language class has members to count the object number entered, the name of the program-
ming language entered and the difficulty level. The InfoDialog class has a StringBuilder object that helps
to build a dialog to be displayed on the user interface. The mLanguage variable in the InputValues class
is of a type called a jobject. A jobject is a native reference to a Java object. This reference can be sent

back to the Java side using the getLanguage method of the NativeMsClass. (Gamua 2020.)

TABLE 9. Classes in the objectTvpe app

Class

Functions m Brief

MainActivity

- myWorker NativeMsClass
-mLangEdit EditText
-misMEdit: EditText
smGetBin: Button
-mSetBin: Button
-mReésetBin: Bution
-mAddToAsrBin: Bin
fextViewl: TextView
-COUnNIINDUL ol

sir: StnngBudder

onCreate(Bundle)-vwoid
+onCreateOptionshenu(Menu): boclean
+onOptionsiiemSelected{Menuliem): boolean
+ i) woid

+onResetLanguage(): void

+getLanguage() void

+sendLanguage(): void

+showhessage(). voud

The MainActivity class of the ObjectType app
has private members that reference the various
Views that are shown on the user interface. The
countlnput counts the number of inputs entered.
MaimnActivity also has Menultem callback
methods that either reset the user interface and
free memory on the native side or bring up a
user interface dialog. Memory 1s freed by call-
ing the Java method onResetlLanguage which
further calls the native method resetNative. The
sendLanguage and getlanguage methods are
both used to send and retrieve values from the
natrve end by respectively calling the
sendLanguage and getLanguage native methods
of the NativeMsClass

Infabualog

I StringBuider

+ onCreateDinkogBundke). Dialog

The InfoDhalog class has a StringBuilder object
that helps to build a dialog to be displayed on

the user interface. The dialog button 15 found in
the menu and can be displayved anytime the user

wants.

NativeMsClass

+e=native>>gellangauge(int). { int): Language
+<<native >>sendLanguage(int, Language }; void

+<<native>>resetMativel int) void

The NativeMsClass contains a declaration of all
the native methods.

(Continues)

45

TABLE 9. (Continued)

Language The Language class has members to count the

anguage: Siing object number entered, the name of the pro-
obectNumber. int

ot bnguege(Srim, Sing } gramming language entered and the difficulty

+oString() String

level.

Inputvialues This class also has constructors to make an ob-
=LA K. ject in the native-lib. It has methods to help
+<<constructor>InputVakses() save the objects passed from java and methods
+ecgdestructons>Inputvaluss()
+<cponstructor>>Inputvaluesjobject) to retrieve thosze Clb_] ects from the native side.
+getLanguage() object
+deletel anguapeRelINIENV*)void There are also methods to manage memory

The MainActivity class of the arrayOfObjects app has in addition a toggleKey variable that tracks if
values have been entered. There is a vectorOfLanguages Vector variable used to aggregate a list of the
objects. This is done using the onAddObect method. The getLanguageArray and sendLanguageArray
are used to send and retrieve array references from the native side. The onResetValue resets the native
side by deleting all array references and then clears the user interface. onObectCompare aggregates the
most difficult language in each array after it has been compared on the native side and sends back via
the use of ComparingListener interface. The maximums of each array are printed when the onCompare
method is executed. The Language class is similar to the Language class of the objectType app. The
NativeMsClass defines the native methods. The native method compareObect is called to compare ob-
jects each time an array of object is entered. Additionally, the NativeMsClass’ onObjectCompare method
overrides the interface method onObjectCompare. The former method of the NativeMsClass is called
from the Native-lib when the maximum in each array is computed. This information will then be sent to
the MainActivity’s onObectCompare method to add to the vectorToCompare Vector variable. (Gamua

2020.)

TABLE 10. Classes in the arrayOfObects app

46

Class

Functions in Brief

MainActivity

- myWorker NativeMsClass
-miLangAddEdit Ed Ten
~mLangDiffEdy: EdTex
-mizelBn: Bulion
mSelBin: Buton
-mHeseBine Bution
-mAddObjeciBin: Bin
-mCompObiBin: Bin
Aedviewl: TextView
SRunine i

AeciorQfL anguages: Vechor<L anguapess
“vector ToCompare: Veclor<Languages>

7 onCreate{Bundie) void
onCreateOphonsienuiMeny): bookean
«onDptionsiemSelected{Menuliem): boclean
winit]) woid

sonCompare(): void

+onAddObject(): void

+onResetvalused): void
spetlanguagerrayl): void
+sendLanguagedrray(]): void
«showMessage(): void
sonDbecCompare(Languages)void

The MainActivity class of the arrayOfObjects
app has a toggleKeyv variable that tracks if val-
ves have been entered. There 1s a vector-
OfLanguages Vector vanable used to aggregate
a list of the objects. This is done using the
onAddObject method. The getlanguageArray
and sendlanguageArray are used to send and
retrieve array references from the native side.
The onFesetValue resets the native side by de-
leting all array references and then clears the
user interface. onObectCompare aggregates the
most difficult language in each array after it has
been compared on the native side and sends
back via the use of Comparingl istener inter-
face. These maximums of each array are printed

when the onCompare method 1s executed.

ceinterfacess
ComparingListener

+ onObjectCompare{Languages)void

Interface implemented by MamActivity and
NativeMsClass

MNativeMsClass

-cListener: CompanngListener

NativeMsClass declares the natrve methods and
overrides the interface method onObjectCom-

pare. The later method of the NativeMsClass 1s
called from the Wative-lib when the maximum

+<=nativer>gellanguagesrray(int): { int): Language(]
+a<nalves>sendLanguageirray(Languages[]. mt): woid
+ocnative>>resetMativel int) void
+echalvesscompareObgects(Languages]]): voud
+anObjectCompare({Languages):void

in each array 1s computed. The information
about the maximum will then be sent to the
MainActivity’ s onObectCompare method to
add to the vectorToCompare Vector variable.

(Continues)

TABLE 10. (Continued)

47

Infolxakog

-sir; SirngBudder

+ anCreateDukog(Bundle)’ Dwmlog

The InfoDhalog class has a StringBuilder object
that helps to build a dialog to be displayed on

the user interface. The dialog button 1s found 1n
the menu and can be displayed anytime the user

wants.

Language

Infuage; Sanng

<< CONSINECIors =Landuage{Sinng, Sinng)

The Language class has members to count the

object number entered, the name of the pro-

= mLanguagefray®; johject
mLength; int32 1t
-mLanguage: jobject

+CLCONSTUCtor=>inputvalues()
+agestructons>Inpulvalees()
+esponstructor=>InputValuesjobject® ,int32_t)

+geilanguageArray () jobject*

+geiLength: 32 e
+deletelanguagedmayRe{INIEny=, m32_1):wvoud

*taSuing(). Sirng gramming language entered and the difficulty
level.
InputValues This class also has constructors to make an ob-

1ect of the class in the native-lib. It has methods
to help save the array of objects passed from

java and methods to retrieve those arrays of ob-
jects from the native side. There are also meth-

ods to manage memory

5.3 Brieflook at user interface

The user interfaces are simple. The user interface of the ObjectTypes app is shown in figure 17. The

input is a capture of a single object. There are two input fields both representing the data members of an

object as shown in figure 17. Language is the type of programming language and Difficulty is the diffi-

culty level of the language. The SEND LANGUAGE button is used to enter values one at a time. The

SEND LANGUAGE Button has an onClickListener attached that calls the sendLanguage method. The

user will be informed if he fails to enter a value. The sendLanguage method with the help of myWorker

object calls a native method to pass on the object reference to the native libraries. The GET LANGUAGE

button displays the objects that have been added to the native C++ class through the NativeMsClass’

getLanguage method and the MainActivity’s getLanguage method. There is RESET and INFO in the

menu. RESET resets the app by deleting the references to all the objects and INFO gives information on

app usage. (Gamua 2020.)

48

1859 M -

ObjectTypes

Language

Difficulty

GET LANGUAGE SEND LANGUAGE

I O <

FIGURE 17. User Interface of ObjectType App

The user interface of the arrayOfObjects app is shown in figure 18. On entering a language and its dif-
ficulty level, the ADD button is clicked to add this language to the current array of Language objects.
This is done by adding to the vector of languages variable vectorOfLanguages. Upon adding a Language
object reference, the SEND LANG button becomes enabled immediately but not the COM button which
compares the language difficulty level in each array. On clicking SEND LANG, the language array
references are sent to the native-lib and hence the native C++ class via the NativeMsClass
sendLanguageArray method with the help of the myWorker object. The compareObjects method also
sends the references to the native-lib.cpp library where the objects are compared, and the most difficult
languages sent back to be saved in the vectorToCompare vector variable of MainActivity class. Clicking
the COM button displays the most difficult objects in an array. The GET LANGS button displays the
saved object arrays. There are RESET and INFO items in the menu. RESET resets the app by deleting

the references to all the objects and the arrays and INFO gives information on app usage. (Gamua 2020.)

49

19:00 © @ & e =l 15%
arrayOfObjects
Language
Difficulty
GETLANGS SEND LANG ADD coM

1l @ <

Figure 18. User interface of array of objects app

5.4 Activity diagrams

The activity diagrams are presented below. All activities have sub activities that are presented alongside.
The activity diagrams are drawn for both the send and get use cases. If the fields are not entered rightly

and the user tries to send, he will be informed he is performing an illegal operation. If an array has not

50

been created and the user attempts to send, he will also be informed the operation he is attempting to

perform is illegal. The tables are given headings for each use case.

Activity Diagram to send for the ObjectType app

g

{enter Language and Diffiaty field :J

v @

.-'-'—‘-\-\‘ il
(’-:Iid< SEND LANGUAGE Y rf inform user ‘:I
)]
P \T/ one field empty?
send object o C++ < yes inform user
) o f:l
no

call native method

languape and difficuity field valid?

a) Activity Diagram to send an object to native side b) send object to C++ sub activity

51

Activity Diagram on Clicking GET LANGUAGE for ObjectType app

chick GET LANGUAGE

countinput=0

" retrieve object values from C++
==
i
@'st&m display object value?

——l

a
e
o

@®

a) Activity Diagram on clicking GET LAN-
GUAGE

call native metod

W

Gturn Language Ohjev:D

b) retrieve object from C++ sub activity

52

Activity Diagram to send for arrayOfObjects app

fnrer object of array in u?“}

e

k!
click ADD

object vakse entered?

s
yes
i

< : [more values in array |

[mx mare values in array 1

object set succesfuly in C++7

na

a) Activity Diagram to send to the native side

-
e

togdle key fate?
< =
no
(c-:rr\.'ert vector array of ohjects to aray :}fnbjec?

G&I nakive method to send array reﬁfm)

y

(/— 2=t array reference in C++)

\h

b) Send array sub activity

Y

53

Activity Dhagram on Clicking GET LANGS for arrayOfObjects app

]

i B it
I.fv:l.:k GET LANGS ™

L)
e

o
wvalues saved in C++7 or not null returmed -"'{ cal native method \:I
X #

- e -
ez -
= - 3

e o ;
e {'-/:_:-mrrt array in native to jobject a'.'a@
S b -
7 retrieve ohject vales from C++ = e)
(oy (=

-~

0

P oy
(wsm digplay vaﬁuee) /l\mc BITAYS?

YES

-
T
< ot o
@
=
(-

b) retrieve object values from C++ sub activity
a) Actrvity Diagram omn clicking GET
LANGUAGE

5.5 Forming the method name and signature of a Java method

The understanding of this section is vital. Understanding of programs will be incomplete without men-
tioning how a Java method can be called from C/C++. Reference should be made to code usage in the
native-libs of either the arrayOfObjects app or the NativeThreads app of chapter 6. The JNI operations
that permit calling Java methods belong either Call<type>Method Routines, Call<type>MethodA Rou-
tines or Call<type>methodV Routines. Methods from any of these families are used to call Java instance

methods. (MIT Education 2019; Oracle Documentation 2017.)

In order to use any methods in the routines mentioned above a pointer to the GetMethodID method must

be obtained. GetMethodID has as parameters a JREF index for the class in question, the name of the

54

method as a string and the internal type signature for that particular method. Constructor names are
specified as <init>. The JREF index points to the class where the method belongs. This index is got by
either using the FindClass or GetObjectClass API. To look up the particular method being called, the
methods have type signatures which are treated in the next paragraph. In the native methods use is made
of the methods in the family of operations above to call the Java method. The parameters to be passed
to the family of operations are the JNI jobject representation of the object that called the native method
in the first place, the methodID which is the returned ID upon use of the GetMethodID and the actual

arguments of the Java method in question.

For the Java Virtual Machine to look up the particular method being called, the methods have type sig-
natures. Type signatures ensure that the specific method is called. They include the input and return
type of the method in question. The onObjectCompare method in the arrayOfObects app’s NativeM-
sClass has a Languages class variable as input parameter and void as return type. The method’s signa-
ture is Lcom/example/gamuatachu/arrayofobjects/Languages;)V where com/example/gamuatachu/ar-
rayofobjects represents the package name (Gamua 2020). The signatures are shown below (TABLE
11). (MIT Education 2019; Oracle Documentation 2017.)

TABLE 11. JVM type signatures

Signature Java Type
Z Boolean
B Byte
C Char
S Short
I Int
J Long
F Float
D Double

L fully-qualified-class ; fully-qualified-class
[type type[]
(arg-types) ret-type method type

5.6 Understanding the programs

After entering a value in the Language field and the Difficulty field in the objectTypes app, the SEND
LANGUAGE button is pressed to enter the values. The SEND LANGUAGE button has an onClick-
Listener attached that calls the sendLanguage method. If both fields are entered rightly, the myWorker

55

object calls the NativeMsClass’ native sendLanguage method and this method calls its corresponding
method in the native-lib.cpp library. If the fields are entered wrongly a message is displayed indicating
wrong entry of input type. The countlnput variable is incremented each time an entry is successfully
added. In the corresponding sendLanguage method in the native-lib.cpp a new global variable is created
using the NewGlobalRef JNI API. This prevents the reference from being garbaged collected and also
permits it to be seen outside its scope. A new object is created with this new globally created variable.
The mLanguage member of this object cannot be NULL since the reference it refers to has been pre-
vented from being garbage collected by the use of NewGlobalRef. If there is no need for this reference
to be kept global, the JNI API DeleteGlobalRef can be used as can be seen from the deleteLanguageRef
method of objectType.cpp. The GET LANGUAGE button activates the getLanguage method. The ob-
jects saved are then appended to the MainActivity’s StringBuilder str by calling the NativeMsClass’
getLanguage method with the help of the myWorker object. The stringBuilder is then displayed on the
Ul using textView1. (Gamua 2020.)

In the arrayOfObjects app the ADD button permits objects to be entered into the current array. The
toggleKey ensures at least one object is entered into the array. The ADD button has an onClickListener
attached. This listener activates the onAdd method to add the entered Language object to the vector of
languages variable vectorOfLanguages. The SEND LANG button becomes enabled after an object is
entered to an array but the COM button which compares the language difficulty level in each array
remains disabled since it should only become enabled if there are objects that have been sent to the
native-lib.cpp and hence the native C++ class. It is only when objects are present in the native side that
comparison of objects in an array can be done. The Boolean variable toggleKey becomes true when an
array is created. This variable checks if an object has been added to an array before it is sent to the native
libraries. If toggleKey is false, a message will be generated upon a click/press on SEND LANG letting

you know there are no arrays created. (Gamua 2020.)

On clicking SEND LANG, the toggleKey variable is checked. If it is true, then a Language object has
been added to an array. The vector of Language objects are then converted to an array of Language
objects whose reference is passed to the Language array variable lan. The vector of Language variable
is cleared. The myWorker object calls on the native method sendLanguageArray to pass on this reference
of array objects to C++. The same reference is also sent via the compareObjects method to the native-
lib.cpp library where the objects in each array are compared. The COM button becomes enabled. (Gamua

2020.)

56

On the native side of the arrayOfObjects app two methods are called: Firstly, the sendLanguageArray
method is called. In this method, the length of the array is determined by the GetArrayLength API. A
pointer of type jobject is created using the length of the determined array. This pointer reference will be
incremented as an array to hold a reference to the successive references of Language objects. The suc-
cessive Language references in an array are gotten using the GetObjectArrayElement. A new global
reference variable is created for each reference. A new InputValue object reference is finally created
with the reference of references (or the reference of the first array member) and the length of the array
is passed to an IncomingValue array object. Secondly, the native-lib’s method compareObjects is called.
This method allows for comparison of objects within an array each time an array of objects is entered
by clicking the SEND LANGS button. In this method, the length of the array is first determined, the first
object or reference within the array is also determined and saved as a jobject variable. In the for loop
that proceeds a NULL reference is assigned to a second Language object variable. This variable will
hold the reference of the second object in the array. Two jchar variables, languageValuel and lan-
guageValue2 are declared. These can also be declared as jints. In order to access the Java int fields of
Language objects, the field ID of the int field member intDiff has to be determined. This is done using
the GetFieldID and the GetIntField APIs. In JNI each data member of a Java class is regarded as a field
and is associated with an ID. This ID permits the getting (access) or the setting (changing) of data mem-
bers of objects. The GetFieldID gets the field ID of a class member (for example, its usage in this case
returns the ID of intDiff) while the GetIntField gets the particular int field of an object. The if condition
that follows guarantees that the object is not NULL. Inside the if statement, the int field of the second
Language object in the array is extracted. This is then compared with the first to determine which is
larger. This process to filter the larger value continues for all the elements in the Language array. The
onObjectCompare method in the NativeMsClass is finally called to pass on the reference of the Lan-
guage object with the largest difficulty. In order to call the onObjectCompare method, use is made of
one of JNI’s API CallVoidMethod methods. This method takes as parameters the environment variable,
the method ID of the method to be called and whose value had been determined and cached in the
JNI_onLoad method and the actual parameters to be passed to the called method. In the NativeMsClass,
the onObjectCompare method passes this object to the MainActivity’s onObjectCompare where it is

added to the vectorToCompare variable. (Gamua 2020.)

The GET LANGS button permits the recovery of saved arrays. myWorker.getLanguageArray(i) is
called as many times as there are Language arrays. In the corresponding method on the native side, the
incomingValue reference object for the jObjectNum being tested is checked to see if it returns a jobject

reference to a Language array. If so, a jobjectArray reference is created with the help of the JNI API

57

NewObjectArray. One of the parameters of this API is the variable LanguagesClass which is a reference
object to the Language class. This reference had been cached as a global variable in the JNI onLoad
method and in JNI, its type is a jclass. The jobjectArray reference is then set to reference the different
array object elements using the SetObjectArrayElement API. The jobjectArray is finally returned, ap-
pended to the StringBuilder object str and displayed with the help of a TextView object when all arrays
have been appended. (Gamua 2020.)

After clicking the SEND LANG button, the COM button becomes activated permitting the printing on
the UI of the most difficult Language object within each array. The most difficult Language objects are
heretofore saved in the vectorToCompare vector variable. Clicking/pressing the COM button calls the
onCompare() method which converts vectorToCompare to a Language array, appends a string version

of each object in the array to the StringBuilder object str and finally prints on the UI. (Gamua 2020.)

5.7 Memory management

If the RESET menu item of the ObjectTypes app is clicked, the attached onClickListener activates the
onResetLanguage method. This method verifies that there is an inputted Language object and calls the
native method resetNative via the myWorker object. This call is made as many times as the number
Language objects inputted. For each of those times, there is a verification in the native-lib’s resetNative
method that an incomingValue object reference returns a jobject Language reference. If yes, it deletes

the Language reference and then deletes the object. (Gamua 2020.)

If the RESET menu item of the arrayOfObjects is clicked, the attached onClickListener activates the
onResetValue method. This method verifies that there is an inputted array of Language objects and calls
the NativeMsClass’ native resetNative method via the myWorker object. This call is made as many times
as there were arrays entered. For each of those times, there is a verification in the native-lib.cpp’s method
resetNative that an incomingValue object reference returns a jobject Language pointer reference. If yes,
a call is made to the deleteLanguageArrayRef method to delete the object references that were pointed
to by jobject pointer reference and in this same deleteLanguageArrayRef method the jobject pointer
reference is deleted. After deleting these references, the incomingValue’s object reference is deleted in

the native-lib.cpp’s resetNative method. (Gamua 2020.)

58

5.8 Results

The results for the ObjectType app is presented below (TABLE 12). The input and output operations
are shown. RESET and INFO are in the menu. The initial output when the app is opened is shown with
a display of a dialogue. The dialogue gives directives on app usage. Values are then inputted and re-

trieved. The RESET button clears the UI after each successive input-output operation.

TABLE 12. Results for ObjectType app

et Typas

L oreganne Colusplys
[EELTE =

BET LA RSDALA TELRE A R A

How b use thkbds App

¥ v = Ty

b) object input

Drbsj et Ty i

Lungeiags Sl

=

ST LAMTPLLAON R A b T

11} £ : 1]

c) object input d) object input

(Continues)

59

TABLE 12. (Continued)

B

Diect Typen

FiTecnsinp

GET LaFsunsy LR L LA

e) after pressing GET LANGUAGE

The results for the ArrayOfObjects app is presented below (TABLE 13). The input and output opera-
tions are shown. In addition there is an “ADD” button to create an array before sending to the native
side and a COM Button to compare the difficulty of Language objects in an array. The initial output
when the app is opened is shown with a display of a dialogue. The dialogue gives directives on app us-

age. The RESET button clears the Ul after each successive input-output operation.

TABLE 13. Results for arrayOfObjects app

aFrayOTO bR TS

1T LI sjiaigp i

Shinid h3ariory el LU
this infoary o
[

a) mitial dialog b) first object entered into 1% array

(Continues)

TABLE 13. (Continued)

60

& 4 .

arrayOfObjects

LT

EneTouing

GET LAMGS SEMND Lakia

Cofuppiua

= |

c) second object entered into 1* array

arrnyOTObjecta

o g G

Entirainy

Y LAanog FHE R WA MO

=R

CEIRA

d) first object entered into 2™ array

= A . -

arrapOlObjects

L

it ey

TR Labis

ELAL S)

Ecrklin
4
Ll S

e) second object entered into 2°? array

A rayOObjects

e

ey

T LARCIN

A L P

Forilin

=L

f) after pressing "GET LANGS”™

(Continues)

TABLE 15. (Continued)

61

LSRR Fearthiry

g) after pressing “COM™

62

6 THREADS

Threads are particularly important in programming. In native development threads can only be explicitly
created. When support for C++ is included in a project, the Java Native Interface (JNI) does not create
a new thread. The Java thread that the Java method executes in, is the same thread that the native method
executes in. In case there is need for a new thread, it must be explicitly created. Creation of a thread can
be done in two ways. The first method is by wrapping the C++ method that needs to be executed in a
thread in a created Java thread. This is shown below in code snippet 6. (MIT Education 2019;
StackOverflow 2017.)

native void cphisplusFunction();

new Thread()
{
Public void run()

{
native void cphusplusFunction();

CODE SNIPPET 6. Native method wrapped and executed in created java thread

The second variant of native thread creation is to create the thread on the native side using the POSIX
PThread API. In this case, a new thread is created but it needs to be attached to the Java Virtual Machine
and the interface pointer can then be extracted in case it is needed. This is the type that will be used in
this project. Note should be made that the interface pointer cannot be shared between threads but the
JavaVM can be shared. In this chapter a look is going to be taken at how a native thread can be created

(MIT Education 2019; Emory College of Arts and Sciences 2020; IBM Documentation 2020.)

63

6.1 User interface

The user interface is simple and shown in figure 19. There is an EditText that allows the user to enter
numbers. This number is the maximum number primes can be printed up to. After inputting the number,
the user clicks on the START button and the system calculates the primes up to that number and presents
on the user interface. There is no menu containing RESET and INFO as the apps treated in chapters 4

and 5. There is however a RESET button on the main Ul. The RESET button clears the main Ul

1727 ® N @ ---

NativeThreads

Prime Numbers Up To

START

[l O <

FIGURE 19. User interface for NativeThread app

6.2 Simple class diagram relationship

The class diagram is shown in figure 20. The main points to note of here is that the NativeMsClass

64

declares the native methods and implements the NativeListener interface methods. In the NativeListener
interface methods are declared and these methods will be implemented in the MainActivity class. The
NativeMsClass is a compositor class to the NativeListener interface. There is a ThreadVariable struct
on the native side that is used to hold some variables. These variables are used by the thread and the

thread methods.(Gamua 2020.)

MainActivity <<interface>>

.................. D Nativelistener

: <<struct> >
NativeMsClass ThreadVariables

FIGURE 20. Simple Class Diagram Relationship

6.3 Detail look at classes

The class diagrams are shown in table 14. MainActivity has private data members that reference the
various Views that are shown on the user interface. The NUMBER PER LINE defines the number of
primes to be outputted per line. The count variable keeps track of the total number of primes outputted.
maxPrimelnt saves the highest number the computation will be done up to. MainActivity also has Java
methods that are used to call native methods from the NativeMsClass. The resetMainUI method clears
the user interface. There is no need to free memory in the native side when the user interface is cleared
as the ThreadVariable struct’s pointer object defined in the runThread method of the native-lib is auto-
matically deleted after the thread created in the native-lib is detached. The startNativeThread starts the
native method. The MainActivity class also implements NativeListener’s methods. The NativeListener
interface is implemented by the NativeMsClass. NativeMsClass also has a declaration of the native

methods, a method to send information back to the MainActivity in order to build a string that holds all

65

the primes and a method that would be called to output on the user interface. The ThreadVariables struct
has members to hold the JNI interface pointer, a pointer to the Java Virtual Machine, a variable of the
pthread t class to hold the ID of the created thread and a variable to hold the upper computational limit
which is entered by the user. Various methods exist in the native-lib to start the thread, run it and compute

the prime. These methods are detailly explained in the section 6.4. (Gamua 2020.)

TABLE 14. Details of classes NativeThread app

Class

Functions in Brief

MainActivity

- myWorker: NativeMsClass
-mVIEditTxt: EditText
-textViewl: Text\View
-mResetBin: Button
-mStartBtn: Button
-NUMBER PER LINE: int

-count: int
- rimeint: i
-str: StringBuilder

onCreate(Bundle):void
-init()-void
-resetMainUI{View): void
-startMative Thread(View): void
-showMessage(String): void

MainActivity has private data
members that reference the vari-
ous Views that are shown on the
user interface. The NUMBER
PEE. LINE defines the number of
primes to be outputted per line.
The count variable keeps track of
the total number of primes out-
putted. maxPrimelnt saves the
highest number the computation
will be done up to. MammActivity
also has Java methods that call
native methods from the Na-
tiveMsClass. The reset©MainUI
method clears the user interface.

<<interface>>
MativelListener

+ selStringBuilder(int):void
+ setUi(): void

Interface implemented by Main-
Activity and NativeMsClass.

(Continues)

66

TABLE 14. (continued)

MativeMsClass NativeMsClass has a declaration
-cListener: NativeListener of the native methods, an over-
+<<native>>sianMative Thread(int): void 24 imddiotiaseniink fion

back to the MamnActivity in order
to build a string that holds all the
primes and another overrided
method that will be called from

native-lib to output.

<<struct>>ThreadVariables The ThreadVariables struct has
+pEnv: JNIEnv® members to hold the JNI interface
+ mJavavmM: Javavm* ‘ : -
+mThread: pthread_t pointer, a pointer to the Java Vir-
+mUpperLimiti: int32_t D
pthread t class to hold the ID of

the created thread and a vanable
to hold the upper computational

limit which 1s entered by the user.

6.4 Program description

Upon launching the application, the START button is enabled while the RESET button is disabled. There
are onClickListeners attached to the START and RESET button. Upon entering an integer type greater
than or equal to 2 and clicking the START button the onClickListener attached to the START button is
called. This executes the method startNativeThread which calls the startNativeThread of the NativeM-
sClass with the help of the myWorker object. In the startNativeThread method of MainActivity, the
START button is disabled. (Gamua 2020.)

6.4.1 In native-lib.cpp

The startNativeThread creates a global variable out of the current object. This global variable is saved
in the myLock jobject. This will be used to synchronise or pass a monitor to in the critical section when

the thread is started. The native thread is started with the method startThread. The JavaVM object must

67

be passed to this method as this will be used to retrieve the interface pointer. In the startThread(JavaVM,
nlnteger) method, the JavaVM object is saved in one of the members of the ThreadVariable struct. The
number which the primes will be printed up to is also saved into one of the members of the ThreadVar-
iable struct. The IAttributes reference of the pthread attr t struct reference contains the properties of the
new thread. The thread is then started using the syntax below (CODE SNIPPET 7). (MIT Education
2019; The Fossies Software Archive 2020; Gamua 2020.)

int pthread_create(pthread_t *threadID,
const pthread_attr_t *attr,
void *(*start_routine)(void*®),
void *arg);

CODE SNIPPET 7. Syntax to start native thread

The properties of the new thread are contained in the variable attr. The threadID is the identifier for the
new thread. The start routine is the name of the new function that the new thread will execute. In the
case of this project it is runThread. The start routine is passed a parameter of type void *. The return
type of start routine is void*. The argument that will be passed to the start routine function is arg. In
the case of this project the void pointer passed must be casted back to a ThreadVariable pointer. If the
thread is created successfully, the pthread create() method returns 0. (Emory College of Arts and
Sciences 2020.)

void * start_routine(void * arg)

{

CODE SNIPPET 8. start_routine of native thread

In the runThread method found in native-lib.cpp the void pointer is casted back to a ThreadVariable
pointer. An object of the JavaVMAttachArgs structure is used to further input information about the
thread. If the thread is successfully created, AttachCurrentThread function returns JNI_ OK and the JNI

interface pointer is saved in the JNIEnv argument address specified in the AttachCurrentThread function.

68

The GetMethodID API is then used to identify the setStringBuilder and setUI methods of the NativeM-
sClass. The parameters of the GetMethodID are a class descriptor jclass object which was heretofore
made global and identifies a class, the name of the method and the signature of the method. In the while
loop the monitor is passed to the myLock object to synchronise. Between the MonitorEnter and Moni-
torExit the primes are calculated, and a call is made using the NI API CallVoidMethod to the setString-
Builder method of the NativeMsClass which then calls the setStringBuilder of the MainActivity class
through the interface object cListener. In the setStringBuilder of the MainActivity class, the primes are
added to the StringBuilder object str. In the last iteration of the while loop the setUI method of NativeM-
sClass is called. This method then calls the setUl method of the MainActivity through the cListener
object. This call enables the RESET button and prints the calculated primes. On leaving the while loop,
the JavaVM object must be called to detach the thread. (MIT Education, 2019; Oracle Documentation
2017; Gamua 2020.)

6.4.2 On the Java side

On the Java side the init method of the MainActivity class resets the main variables when the app is
launched. In the startNativeThread method of the same class, the native method startNativeThread de-
clared in the NativeMsClass is called using the myWorker object. The setStringBuilder method of main-
Activity builds the stringBuilder that would be eventually displayed on the UI. There is one method
worth mentioning in the MainActivity class. The setUl method. This method needs to call the
runOnUIThread method as shown below (CODE SNIPPET 10). This is the only way the view, in this
case the RESET button can be touched.(Gamua 2020.)

runOnUiThread{new RBunnable() {
@ Crhwverride
public wvoid run() {
textWiewl . setText|{str);
mBesetBtn.setEnabled{trua);
¥
i F

CODE SNIPPET 10. Call to runOnUiThread in setUI method of MainActivity class

69

6.5 Results

Presented below in table 15 is a result. It shows the primes calculated up to 1000. The primes are cal-
culated and displayed 10 per line. Upon launching the app, the START button is enabled, and the RESET
button disabled. The START button is disabled after it is clicked, and the RESET button enabled. The
RESET button clears the UI and cleans the memory on the native side. The results are displayed inside

a ScrollView.

TABLE 15. Results for native thread

21:33 & — -

2133 & - & --

NativeThreads

NativeThreads

Prime Numbers Up To 1000 Prime Numbers Up To 1000

START E F RESET

1] o < 1] (@) <

a) limit entered b) output

70

7 STRUCTURES

Copying or Mapping C or C++ struct members to Java is a feat worth achieving. Java does not have a
struct data structure so copying the C++ struct data structure to a corresponding Java data structure
cannot be talked of. An attempt can be made at mapping struct members to a corresponding Java class
member. As this chapter will eventually show, there is no automatic way to copy C++ struct members
to Java in such a way that the C++ struct variable can be referenced and manipulated from Java. Code
has to be written manually that will copy or map each individual C++ field of the struct to a Java field

class member. This is what is being attempted by this chapter.

7.1 User interface and activity diagram

The user interface on launching the activity is presented below (Figure 21). In the user interface, there
is a TextView that displays the output from a stringBuilder object. Below the TextView, there are three
buttons. The first button PRINT OBJ prints the current object. The second button FILL N GET UPD
OBJ passes this current Java object to the C++ native side so that the Java object’s field could be set by
the struct’s members and sent back to the Java class to be printed. The RESET button is the last button
on the far right of the UL

1814 ® @ & ---

CopyingStructinfo

PRINT OBJ

FIGURE 21. User interface for CopyingStructInfo app

71

In this final chapter, there is no need to create an activity diagram. The activity is simple and sequential
following the pattern of the buttons from left to right. When the app is launched the PRINT OBJ button
is active while the other 2 buttons are disabled. Clicking this button prints the current Java object of the
ITDepartmentInfo class that was instantiated in the init() method of the Java’s MainActivity class. Im-
mediately thereafter the FILL N GET UPD OBJ button becomes enabled while the other two buttons
are disabled. Clicking this button will send the current Java object to the native side for its members to
copy or be set by the struct’s members. Clicking this button also enables the RESET button. Clicking
the RESET clears the TextView and the Stringbuilder object, instantiates a new ITDepartmentInfo class

object and deletes the current struct object. (Gamua 2020.)

7.2 Brieflook at relationship between classes

The class diagram is shown below (Figure 23). The main points to note of here is that the NativeMsClass
defines the native methods and implements the StructCopyListener. In the StructCopyListener interface
methods are declared and these methods will be implemented in the MainActivity class and the Na-
tiveMsClass. The NativeMsClass is a compositor class to the StructCopyListener interface. There is a

LecturerInfo struct. This is found on the native side. (Gamua 2020.)

<<interface>>
ITDepartmentinfo StructCopylistener

MainActivity NativeMsClass

<<struct>>
LecturerInfo

FIGURE 23. Relationship between classes

72

7.3 Detailed look at classes

The details of the classes are shown in table 16. The MainActivity’s resetNativeCIlrUI clears the user
interface and calls the native method resetNative to clear the memory used in the native library. It also
instantiates a new [TDepartmentInfo object. printJavaClsObject prints the information which is held by
the pITInfo object. The fillAndGetStructInC calls the fillAndGetStructinNative. The later method is
passed the pITInfo object. This object’s members will be edited in the native-lib by replacing them with
the LecturerInfo struct object’s members. The MainActivity’s printStruct method is automatically called
from the native side when this editing is over. This method prints the new state of the pITInfo object.
MainActivity also implements the StructCopyListener interface. The ITDepartmentInfo is a simple class
with members to hold the lecturer’s name and height. The NativeMsClass has a declaration of the native
methods and implements the StructCopyListener interface. The LecturerInfo struct has a pointer to a
constant char as member to hold the name of the lecturer and an int member for the height of the lecturer.
Note should be made that there must be a one to one correspondence between the struct members and
the members of the Java class receiving the struct’s members. This is the reason why the class ITDe-

partmentInfo has 2 class members just like the struct. (Gamua 2020.)

TABLE 16. Classes in CopvingStructInfo app

class

Functions in Brief

MainActvity

- myWorker: MatneMsClass
-mVIEdNTxt: EditText
-tewtViewl: TextView
-mFillGetUpdatedBin: Button
-mPrintObjectBin: Button

- mResetBin :Buiton
-piTinfo: ITDepartmentinfo
-sir: StringBuilder

onCreale(Bundile):void

-nit{) -void

-reseiiNatveClirUI(View): void
-printJavaClsObject(View): void
fillAndGetStructinC{View): void
-print Struct(ITDeparimentinfo): void

The MainActivity’s resetNativeClrUI clears the
user interface and calls the native method re-
setNative to clear the memory used in the native
library. It also instantiates a new [TDepart-
mentInfo object. printlavaClsObject prints the
information which 1s held by the pITInfo object.
The fillAndGetStructInC calls the fil-
1AndGetStructlnNative of the NativeMsClass.
The later method 1s passed the pITInfo object.
This object will be edited 1n the native-lib and

sent back to Java

(Continues)

73

TABLE 16. (Continued)
NatveMsClass The NativeMsClass has a declaration of the na-

-- tive methods and implements the StructCopyLis-

+oonathvessreseiiatve() void 4
+ prniSinuct(| TDepanmentinfo pvialue)vold tener interface.

I E— Interface implemented by MaimnActivity and Na-

StructCopyListener tiveMsClass
+ printStruct(ITDepartmentinfo pValue):void

ITDepartmentinio The ITDepartmentInfo 1s a simple class with

#mHeght: nt
fname. String
~textviewl: Textview

members to hold the lecturer’s name and height.

This information will be sent to the native -lib to

+<copnstructor==ITDepartmentinfo() be edited
+toStang(): Stnng
+toStringl(): String
<<struct>>Lecturerinfo The LecturerInfo struct has a pointer to a con-
+mLectkey: char const* stant char as member to hold the name of the lec-

+ mLength: int32_t] y
turer and an int member for the height of the lec-

turer.

7.4 Program description

On clicking the PRINT OBJ button program execution goes to the printJavaClsObject method because
of the onClickListener attached to this button. Here the current Java object is added to the StringBuilder
object str and printed on the textView textViewl. This button immediately becomes disabled and the
next button FILL N GET UPD OBJ becomes enabled while the RESET button stays disabled. A visible

outcome of clicking this is that the current objects information is printed on the output. (Gamua 2020.)

On clicking the FILL N GET UPD OBJ program execution goes to the fillAndgetStructinC method.
Here 3 things happen. The myWorker object calls the NativeMsClass’ fillAndGetStructInNative
method. This in turn launches the corresponding native method in the native-lib.cpp. The FILL N GET
UPD OBJ button then becomes disabled and the RESET button becomes enabled. A corresponding result

74

on the user interface is that the struct members that have now been copied to the Java class object mem-

bers are printed on the output. (Gamua 2020.)

On clicking the RESET button, program execution passes to the resetNativeClrUI method. Here the
TextView object textviewl] is cleared, the Stringbuilder object is cleared, a new ITDepartmentInfo class
object instantiated, the native method resetNative is called and the RESET button is disabled while the
PRINT OBJ is enabled. A visible outcome is that textViewl is cleared, therefore clearing the user inter-

face. (Gamua 2020.)

The native-lib is connected with the mainActivity through the MainActivity’s fillAndgetStructInC
method and the resetNativeClrUI methods that connect to the native-lib via methods from the nativeM-
sClass. Clicking the FILL N GET UPD OBJ launches the fillAndgetStructInC method. In this method
the myWorker object calls the NativeMsClass’ fillAndGetStructInNative native method. On the native
side a new LecturerInfo struct object is instantiated in the native-lib’s native fillAndGetStructInNative
method. The filllnfo method is used to fill information about this struct variable. This information will
be used to set the various members of the ITdepartmentInfo class’ object members that is being refer-
enced on the native side. In order to access the Java int field of the ITDepartmentInfo class, the field ID
of the int field mHeight must be determined. This is done with the GetFieldID API which takes as pa-
rameters a reference object to the class in question. This reference had been cached as a global variable
in the JNI_onLoad method. Its type is a jclass. The next parameter is the field name and finally the last
parameter is a Java type of the field name indicated by the “I”. After getting the field ID, the setIntField
APl is used to set the particular int field of the object whose reference was passed in JNI. A new string
is created using the NewStringUTF API. This takes as parameter the string that is being referenced by
the pointer member of the struct object. The GetFieldID is used to get the field ID of the Java String
class member. The setObjectField API is used to set the String member to the string which was created
using the NewStringUTF API. The CallVoidMethod method of the JNI API is then used to call the
printStruct method of the NativeMsClass. The CallVoidMethod method takes as parameters the envi-
ronment variable, the method ID of the method to be called whose value had been determined and cached
in the JNI onLoad() method and the actual parameters to be passed to the called method. Clicking the
RESET button will launch the resetNative method of the NativeMsClass which will then launch the
corresponding native method in the native library native.lib. The function in this library does just one

thing, delete the struct object. (MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)

7.5 Results

Presented below is one result (TABLE 17). In the first image from the left, the PRINT OBJ button has
been clicked displaying the current object. This button becomes disabled immediately after it is clicked.
The FILL N GET UPD OBJ button becomes enabled. Clicking this button generates the second image
on the right. In the second image the object has been filled with the contents of the struct in C++ on the
native side. The first 2 buttons are then disabled and only the RESET button is enabled. RESET clears

the UL

TABLE 17. Results of copying structs

= .

CapyingStraciinio

WHLL M GET LD
[U

a) Orginal object in Java

CopyhrgStructinte

BESET

b)object filled with struct in C++

CopyingSiruciinio

RN D

c) reset

76

8 CONCLUSION

In order to develop apps, a programmer can rely only on languages like Java or Kotlin. In these languages
the programmer is presented with a vast development toolset to do almost anything he/she wants to do.
Apps therefore can be programmed exclusively in these languages. But as mentioned in the introductory
chapter, code leveraging to C++ adds more power to the programmer’s arsenal. In addition to the reasons
given in the introductory chapter to use NDK for app development, other considerations need to be taken
into account when developing apps. Such considerations may warrant the use of NDK. Such considera-

tions are explained in the following paragraphs. (Android Developers Documentation 2019).

If an app were to be developed that has to intensively use the CPU for certain tasks, it will be a good
idea to leverage part of the code that uses much CPU time to C++. If this is not done, this will affect the
performance of the app as the CPU will run more cycles in the Java code and less for the hybrid code.
Java compiles to bytecode and to run on an Android platform, a JVM has to be run contrary to C++ that
is compiled to the machine code of the phone. This means the CPU has to work harder to run a Java only

program than to run the hybrid program.

The performance of apps that use much memory will be improved if sections of such apps are written in
C/C++. If such apps were written purely in Java, more memory will be needed, and this will ultimately
stand on the way of performance. A JVM has to periodically run the garbage collector and this is an
expensive process that requires memory and takes up CPU time. In an app like a mobile game, the frames
have to be updated periodically. This update requires more memory and CPU usage so if a JVM also
has to run the garbage collector at the same time that a frame is being updated, the performance will

surely be affected. This is also true for apps that perform physics simulations.

If an encryption algorithm is to run on a mobile platform, it is evident that the prospects for such tradi-
tional Java source code protection to perform below the expected target, are quite considerable. Encryp-
tion in Java is accomplished with the custom class loader encryption and codes from the custom class
loader can be easily decompiled. Encryption and decryption code algorithm, when run using C/C++ may
be much safer and difficult to crack. In this light, it would be wise to draw on the loftier qualities of

C/C++ to achieve a much reliable encryption and decryption, whenever the situation demands in mobile

apps.

71

REFERENCES

Android Developers Documentation, 2019. Android Runtime (ART) and Dalvik. Available at:
https://source.android.com/devices/tech/dalvik/ Accessed: 22 October 2019.

Android Developers Documentation, 2019. Getting Started with NDK. Available at:
https://developer.android.com/ndk/guides Accessed: 20 October 2019.

Android Developers Documentation, 2019. Configure Your Build. Available at:
https://developer.android.com/studio/build Accessed: 20 October 2019.

Android Developers Documentation, 2019. JNI Tips. Available at:
https://developer.android.com/training/articles/perf-jni Accessed: 11 January 2020.

Booch, G., Rumbaugh, J. & Jacobson, 1., 2005. Unified Modelling Language User Guide. Second
edition. Palo Alto: Addison Wesley.

CMake, 2019. Build with CMake. Build With Confidence. Available at: https://cmake.org/ Accessed:
25 October 2019.

Emory College of Arts and Sciences, 2020. Parallel Programming with PThread API.
Available at: http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/91-pthreads/join-
threads.html Accessed: 20 February 2020.

Gamua, E., 2020. ElvisGamua/playing with jni. Available at:
https://github.com/ElvisGamua/playing_with_jni
Accessed: 3 July 2020.

Geeks for Geeks , 2020. Unified Modeling Language (UML): Activity Diagram.
Available at: https://www.geeksforgeeks.org/unified-modeling-language-uml-activity-diagrams/

Accessed: 15 January 2020.

IBM Documentation, 2020. Library Functions. Available at:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/keywo
rd.htm Accessed: 16 February 2020.

78

Krajci, I. & Cummings, D., 2013. Android on X86: An Introduction to Optimising for Intel

Architecture. First edition. New York: Apress.

Liang, D., 2015. Introduction to Java Programming. 10th Edition. New Jersey: Prentice Hall.

Liang, S., 1999. The Java Native Interface: A Programmers Guide and Specification. First edition.

Palo Alto: Addison Wesley.

MIT Education, 2019. Invoking Java Virtual Machine.
Available at: https://web.mit.edu/javadev/doc/tutorial/nativel.l/implementing/invo.html Accessed: 1

February 2020.

MIT Education, 2019. JNI Functions.
Available at: https://web.mit.edu/java v1.5.0 22/distrib/share/docs/guide/ini/spec/functions.html
Accessed: 8 December 2019.

MIT Education, 2019. The Java Native Interface.
Available at: http://web.mit.edu/javadev/doc/tutorial/nativel.l/implementing/index.html Accessed: 15

October 2019.

MIT Education, 2019. Threads and Native Methods.
Available at: https://web.mit.edu/javadev/doc/tutorial/nativel.l/implementing/sync.html Accessed: &

December 2019.

Oracle Documentation, 2019. Java Native Interface Specification Contents.
Available at: https://docs.oracle.com/javase/10/docs/specs/jni/index.html Accessed: 17 September

2019.

StackOverflow, 2017. JNI Thread Model?.
Available at: https://stackoverflow.com/questions/38378901/ini-thread-model Accessed: 7 October
2019.

The Fossies Software Archive, 2020. Pthreads: Data Structures.
Available at: https://fossies.org/dox/pthreads-3.14/annotated.html Accessed: 4 February 2020.

Vogel, L. & Scholz, S., 2012. Building Android Applications with Gradle: Gradle Tutorial.
Available at: https://www.vogella.com/tutorials/AndroidBuild/article.html. Accessed: November

2019.

