
  

 

 

 

 

 

 

 

 

Elvis Gamua 

 

MULTI-LANGUAGE APP DEVELOPMENT - JAVA AND C++ 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thesis 

CENTRIA UNIVERSITY OF APPLIED SCIENCES 

Information Technology 

August 2020 



 
 
ABSTRACT 
 
Centria University 

of Applied Sciences 

 

Date 

August 2020 

Author 

Elvis Gamua 

Degree programme 

Information Technology 

Name of thesis 

MULTI-LANGUAGE APP DEVELOPMENT - JAVA AND C++ 

Instructor 

Dr Szewczyk Grzegorz 

Pages 

76+3 

Supervisor 

Dr Szewczyk Grzegorz 

 
Smartphones have become the most ubiquitous of consumer-electronic appliances. This is indicative of 
the importance these gadgets play in society. From calling, playing games, consulting credit information 
from the bank, these computationally powerful gadgets are used in many spheres in life. There exists 
an ever-increasing variety of apps to aid users perform a wide range of tasks. As usage increases for 
these gadgets, concerns arise for the best computational and security options. One way of solving this 
dual problem is to make hybrid apps using 2 or more programming languages. Such apps will optimize 
and exploit each programming language. 
 
The entirety of this thesis investigates the computational aspect of smart phones. It investigates how 
mobile apps can be made using two programming languages. An investigation is made on passing and 
retrieving different types of data structures from Java to C++ and from C++ back to Java. Threads are 
finally given a brief look towards the end of this thesis. 
 

 

 

 

 

 

 

Key words:  

Dalvik and ART, JNI, JVM, NDK, references, Structures, Threads  



 

ABBREVIATIONS 

 

 

              

              

             

              

              

              

              

             

             

              

              

              

                            

                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABI Application Binary Interface 

APK Android Package 

API Application Programming Interface 

ART Android Runtime 

CPU Central Processing Unit 

ELF Executable and Linkable Format 

IOS Iphone Operating System 

JNI Java Native Interface 

JVM Java virtual machine 

LLDB Low-Level Debugger 

NDK Native Development Kit 

OAT Of Ahead Time 

SDK Software Development Kit 

UI User Interface 



 

CONTENTS 

1 INTRODUCTION ................................................................................................................................ 1 

2 THE NATIVE DEVELOPMENT KIT (NDK) ................................................................................. 2 
2.1 Difference between C++ and Java and meaning of “native” ..................................................... 2 
2.2 Definition of the NDK .................................................................................................................... 3 
2.3 Reasons for using NDK .................................................................................................................. 3 
2.4 How to configure Android Studio ................................................................................................. 3 
2.5 CMake ............................................................................................................................................. 6 
2.6 JNI ................................................................................................................................................... 8 
2.7 ABIs ............................................................................................................................................... 10 
2.8 Dalvik and ART............................................................................................................................ 11 

3 THE STRUCTURE OF NATIVE PROGRAMS ............................................................................ 12 
3.1 Creating a basic C++ supported project .................................................................................... 12 

3.1.1 Loading of native library ................................................................................................... 13 
3.1.2 The native method, native-lib and other libraries........................................................... 16 

3.2 Mapping Java and native types .................................................................................................. 17 
3.3 The JNI interface pointer ............................................................................................................ 20 

4 PRIMITIVE TYPES AND ARRAYS OF PRIMITIVE TYPES ................................................... 21 
4.1 Brief look at relationship between classes .................................................................................. 21 
4.2 Detailed look at class diagrams ................................................................................................... 22 
4.3 Brief look at user interfaces ........................................................................................................ 25 

4.3.1 Array types ......................................................................................................................... 27 
4.4 Activity Diagrams ......................................................................................................................... 28 
4.5 Understanding the programs ...................................................................................................... 32 

4.5.1 String and primitive types ................................................................................................. 33 
4.5.2 Array type ........................................................................................................................... 34 

4.6 Memory ......................................................................................................................................... 37 
4.6.1 Primitive types .................................................................................................................... 37 
4.6.2 Array types ......................................................................................................................... 37 
4.6.3 JNI API ............................................................................................................................... 38 

4.7 Results ........................................................................................................................................... 38 

5 OBJECT TYPES AND ARRAYS OF OBJECTS ........................................................................... 42 
5.1 Brief look at relationship between classes .................................................................................. 42 
5.2 Detail look at classes..................................................................................................................... 43 
5.3 Brief look at user interface .......................................................................................................... 47 
5.4 Activity diagrams ......................................................................................................................... 49 
5.5 Forming the method name and signature of a Java method .................................................... 53 
5.6 Understanding the programs ...................................................................................................... 54 
5.7 Memory management .................................................................................................................. 57 
5.8 Results ........................................................................................................................................... 58 

6 THREADS .......................................................................................................................................... 62 
6.1 User interface ................................................................................................................................ 63 
6.2 Simple class diagram relationship .............................................................................................. 63 
6.3 Detail look at classes..................................................................................................................... 64 



 

6.4 Program description .................................................................................................................... 66 
6.4.1 In native-lib.cpp.................................................................................................................. 66 
6.4.2 On the Java side ................................................................................................................. 68 

6.5 Results ........................................................................................................................................... 69 

7 STRUCTURES ................................................................................................................................... 70 
7.1 User interface and activity diagram ........................................................................................... 70 
7.2 Brief look at relationship between classes .................................................................................. 71 
7.3 Detailed look at classes................................................................................................................. 72 
7.4 Program description .................................................................................................................... 73 
7.5 Results ........................................................................................................................................... 75 

8 CONCLUSION .................................................................................................................................. 76 
 
REFERENCES ...................................................................................................................................... 77 
 
FIGURES 
Figure 1. Project fails to build with classpath lower than or equal to 3.1.3 .............................................. 4 
Figure 2. Project builds when classpath is changed to a classpath higher than 3.1.3 ............................... 5 
Figure 3. How CMake Works pictorially .................................................................................................. 6 
Figure 4. Section of CMakeList.txt ........................................................................................................... 7 
Figure 5. Section of build.gradle (Module: app) ....................................................................................... 8 
Figure 6. JNI work flow 1 ......................................................................................................................... 9 
Figure 7. JNI Work Flow 2 ..................................................................................................................... 10 
Figure 8. native-lib loaded in MainActivity class and declaration of native method ............................. 14 
Figure 9. Corresponding native method of java class definition in native library .................................. 15 
Figure 10. Reference type mapping from java to native ......................................................................... 19 
Figure 11.  JNI interface Pointer ............................................................................................................. 20 
Figure 12. Relation between classes for both the PrimitiveType App and the ArrayType App ............ 21 
Figure 13. User interface to enter and retrieve primitive types .............................................................. 26 
Figure 14. User interface to enter and retrieve array types ..................................................................... 28 
Figure 15. Relationship between classes in the ObjectTypes app .......................................................... 42 
Figure 16. Relationship between classes in the arrayOfObject app ........................................................ 43 
Figure 17. User Interface of ObjectType App ........................................................................................ 48 
Figure 18. User interface of array of objects app .................................................................................... 49 
Figure 19. User interface for NativeThread app ..................................................................................... 63 
Figure 20. Simple Class Diagram Relationship ...................................................................................... 64 
Figure 21. User interface for CopyingStructInfo app ............................................................................. 70 
Figure 22 User interface for CopyingStructInfo app .............................................................................. 70 
Figure 23 Relationship between classes.................................................................................................. 71 
 



 

 

CODE SNIPPETS 
Code Snippet 1. Generating Code for specific ABI ................................................................................ 11 
Code Snippet 2. Definition of StringFromJNI Method in native-lib,cpp ............................................... 16 
Code Snippet 3. Function name in native-lib .......................................................................................... 17 
Code Snippet 4. Method declared with native keyword in a Java class ................................................. 17 
Code Snippet 5.  Native implementation of native Java method sendAndGetString in native-lib ......... 18 
Code Snippet 6. Native method wrapped and executed in created java thread ...................................... 62 
Code Snippet 7. Syntax to start native thread ......................................................................................... 67 
Code Snippet 8. start_routine  of native thread ....................................................................................... 67 
Code Snippet 10. Call to runOnUiThread in setUI method of MainActivity class ................................ 68 
 



1 
 

1 INTRODUCTION 

 

 

The advent of smart phones introduced a new dawn to programming with the introduction of the Android 

operating system. This operating system has been managed for years now by Java even though JetBrains 

in 2011 unveiled the Kotlin programming language. New Java APIs have been gradually added to help 

manage the capabilities of this now ubiquitous system. Java and its APIs are great, however, Google 

developers have utilized  the benefits of C/C++, working in tandem with Java and Kotlin, to procure 

greater processing power in the creation of games and other services in an effort to render the Android 

Operating System much more rewarding, productive and most of all, provide an interactive machine-

human environment with an exciting user-experience to their clients.  

 

This project is divided into six core parts. In chapters 2 and 3, a brief introduction will be made of the 

native development kid (NDK) and the Java native interface (JNI). In these two chapters, a look is taken 

at the basic configuration procedures for the development platform. Brief introductions will be made of 

CMake which is the build system generator that Android uses for the native platform, the Java native 

interface (JNI) which is a protocol on how Java code should call and be called from natively written 

code, the Application Binary Interface (ABI) which is information for the CPU instruction set to be used 

and Dalvik and ART. A look will also be taken at the structure of native programs. 

 

In chapters 4 and 5 an investigation will be made on how to pass/retrieve primitive types, array types, 

object types and array of object types to/from a native class. In chapter 6 an app will be made that 

launches a background thread to calculate prime numbers up to a certain value and the result of this 

operation received at the Java end. Chapter 7 will conclude the investigative chapters with an attempt at 

passing a C++ struct object to a Java object. The discussed code samples in this project are found in the 

writers Github account. A link to the pages containing the code samples can be found in the list of 

references of this project. On the landing page of the link, Project1 corresponds to the 

PrimitiveTypesApp app, Project2 to the arrayTypes app, Project3 to the ObjectTypes app, Project4 to 

the arrayOfObjects app and Project6 to the CopyingStructInfo app.  

 

 

 

 

  



2 

2 THE NATIVE DEVELOPMENT KIT (NDK) 

 

 

It is the intent of this chapter to explore the essence of NDK, which entails the configuration of Android 

Studio to accommodate the NDK with the written Java program. This chapter illuminates the justifica-

tion into the deployment of NDK, highlights how libraries are etched into the Android Studio system 

and ultimately accomplish the end product/system of choice. Moreover, an investigation will be 

launched into revealing the inner workings of the Java Native Interface (JNI), which is the protocol used 

in Java to establish a reversible/dynamic communication between C/C++ and Java. JNI spells out a 

specific procedure on how methods can be initialized from Java and detail how objects, methods, classes 

can be referenced and accessed from the native class, methods or libraries.  

 

 

2.1 Difference between C++ and Java and meaning of “native” 

 

One of the major differences apart from the language features of Java and C++ is that C++ compiles 

directly into the machine code thus the meaning of the word native. Native means that the source code 

has been compiled to the machine code which is native to the computer in question. The machine code 

is the format that permits the Central Processing Unit to execute instructions. Java on the other hand is  

both an interpreted and a semi compiled language. Java is semi compiled because it does not compile 

directly to machine code but instead compiles to an intermediary code called byte code. The Java source 

code is compiled to a Java bytecode. The bytecode then needs an interpreter to be able to convert it to 

machine readable code. (Liang 2015.)  

 

Apart from the differences in language features between Java and C++, there are some notable differ-

ences in representation of primitive types, arrays, objects and management of memory that make it dif-

ficult for code in these two languages to be mixed. Java has a single way to represent and use any systems 

memory but C++ has different ways. Using C++ therefore, one type can have different sizes on different 

platforms. The representation of arrays in memory for Java is also different. Java arrays are objects 

unlike C++ arrays that are primitive types. This means access of these types are inherently different. 

There is incompatible memory management in the two languages. Memory management in Java is the 

work of the garbage collector which performs an automatic task, but memory management in C++ is a 

job that has to be handled by the programmer. (University Of Princeton 2019.) 

 



3 

2.2 Definition of the NDK 

 
The native development kit (NDK) is a toolset that allows the use of C and C++ code with Android. It 

allows for the incorporation of this code into applications through the Java native interface (JNI). Many 

of the Android applications in the market use NDK and JNI. NDK can be useful in cases where there is 

need to achieve low latency or run computationally intensive applications, such as games or physics 

simulations. C++/C library reuse is another reason NDK could be useful. Starting from Android studio 

2.2, NDK can be used to compile C/C++ code into a native library and then embedded into the APK file 

with Gradle. The application can then make runs to the native library when it must use the Java Native 

Interface (JNI). Now, to compile C/C++ code Android uses CMake. It also uses NDK-build. The func-

tionality of CMake will be exploited in the course of this project.  ( Android Developers Documentation 

2019.)  

 

 

2.3 Reasons for using NDK 

 

There are many reasons why NDK could be used. Firstly, as mentioned in section 2.2, NDK could be 

used to run computationally intensive applications. Secondly, re-using existing C/C++ code in a new 

Android application could be yet another reason for using the NDK. Another reason again could be the 

need to develop an application that will run on other platforms like IOS and Windows. And finally, when 

need arises to use some processor features that are otherwise absent in the SDK or optimize critical code 

at assembly level. ( Android Developers Documentation 2019; Liang 1999.) 

 

 

2.4 How to configure Android Studio 

 

To be able to run native code, download of additional tools must be done. CMake, NDK and LLDB are 

tools that must be additionally downloaded. The SDK manager interface presents links for the download 

of these tools. Syncing problems may arise while configuring Android studio.  The classpath dependency 

under build Gradle, is a likely scenario in this light. The classpath is an Android configuration property 

that indicates to Gradle where to find the dependency files for a project in order for the classes in a 

project to make use of them.  While the initial program was under investigation it was discovered that 

Gradle always failed to sync the project as shown in Figure 1. It was discovered that a higher classpath 

was needed. The classpath was thus changed from classpath 'com.android.tools.build:gradle:3.1.3' to 



4 

classpath 'com.android.tools.build:gradle:3.2.1' as shown below in figure 2. ( Android Developers 

Documentation 2019.)  

 

 

 

 

 

 

 

FIGURE 1. Project fails to build with classpath lower than or equal to 3.1.3 



5 

 

 

 

            

 

 

 

 

FIGURE 2. Project builds when classpath is changed to a classpath higher than 3.1.3 



6 

2.5 CMake 

 

CMake is the build system generator that Android uses. CMake compiles CMake scripts (from 

CMakeList.txt) and feeds the output to Ninja which is the compiler that the NDK uses. Files are fed into 

CMake and CMake generates new files that build systems like Ninja, MakeFiles and Xcode can use. 

Instead of integrating files directly into all these native build tools, files can be integrated once into 

CMake and CMake will generate output files that all these systems can understand. This is useful when 

cross platform development is needed or when a developer needs to change compilers in a project. The 

developer will simply make use of CMake and describe a path for his files instead of adding all these 

files into the various build tools he is using. In case there is need to use a different native compiler, 

CMake will generate code for the new compiler in question. (CMake 2019.) 

 

 

 

CMake allows the description of a project in its CMakeList.txt as shown in figure 4.  The CMakeList.txt 

file is found in the External Build Files in the Android project directory. There, the minimum version of 

CMake can be set, what libraries to add, what libraries to target and what libraires to find. The add_li-

brary() provides a relative path to the source files that are being used. The target_link_library() specifies 

a target library that should be linked with the log library of the NDK  and finally the find_library() finds 

an NDK library and stores its location as a variable. The variable can be used later to refer to the library 

FIGURE 3. How CMake Works pictorially 



7 

in the build scripts. After configuration of a new CMake build script, Gradle needs to be configured to 

include the CMake project as a build dependency, so that Gradle builds and packages the native library 

with the app's APK. The path to allow Gradle find the CMakeList.txt has to be specified in the build.gra-

dle (Module: app) as shown in figure 5. ( Android Developers Documentation 2019; CMake 2019.)  

 

 

FIGURE 4. Section of CMakeList.txt 



8 

 

 

 

2.6 JNI 

 

The Java Native Interface (JNI) is the interface or protocol that Java uses to communicate to C/C++ and 

C/C++ uses to communicate to Java. The portability of code across many platforms is ensured when JNI 

is used.  JNI is a protocol that defines how methods can be called from Java and how from the native 

side class members, objects, methods, classes can be referenced and accessed. ART and Dalvik both 

have JNI in their systems. JNI defines the standards and procedures for calling code in C/C++ and send-

ing the result back to Java. The JNI framework is programmatically very versatile. Information about 

Java classes is derived from the native side. These classes can be loaded in the native side. Strings, arrays 

and primitive types can be created and then JNI can use these to do its tasks. Objects and primitive types 

can be created, updated and passed to be accessed between native side and Java side. The native side 

can also call a method that is only defined as native in the Java side and it can also call a pure Java 

FIGURE 5. Section of build.gradle (Module: app) 



9 

method. Parameters can be passed from Java to native method and back to Java. Exceptions are not left 

out as they can be thrown from the native side and handled from the Java side. (MIT Education 2019; 

Krajci & Cummings 2013.)  

  

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. JNI work flow 1 



10 

 

 

 

2.7 ABIs 

 

There are many different Android devices in the market and each of these devices have different CPUs 

and instructions sets. An Application Binary Interface (ABI) is information for the CPU instruction set 

to be used, the endianness of memory stores, convention for passing data between applications and sys-

tem, format for executable binaries and name mangling conventions for C++. There are 4 supported 

ABIs in Android vis Armeabi-v7a, arm64-v8a, x86, x86_64. Generating code for a specific ABI can be 

done in Gradle as shown in code snippet 1. The code in code snippet 1 builds for all 64-bit ABIs. By 

default, Gradle builds for all non-deprecated ABIs.  The default build is to include the binaries for each 

ABI in a single APK. (Android Developers Documentation 2019.)  

 

 

 

FIGURE 7. JNI Work Flow 2 



11 

 

 

 

 

2.8 Dalvik and ART 

 

When an application is made, the Java source codes are compiled to class files by the Java compiler. 

These class files are then further converted to a .dex file by a tool in the SDK called dx. The Android 

asset packaging tool then converts the resources, images, native codes and the .dex files to an .apk (An-

droid package) file. This is the file that is distributed. From Android 5.0, ART was the sole and exclusive 

run time used, but to maintain backward compatibility, ART used the original .dex files as input. This 

was intended to render devices that continue to use the Dalvik Virtual machine workable. The dex2aot 

tool in ART converts the .dex files to oat files and saves them in an ELF file. OAT is ahead of time, 

which means all the files are converted and saved in the device and not compiled each time the applica-

tion is to be run like the Dalvik machine does. ART uses a combination of ahead of time compilation 

and Just in Time compilation. (Android Developers Documentation 2019; Vogel & Scholz 2012.)  

  

CODE SNIPPET 1. Generating Code for specific ABI 



12 

3 THE STRUCTURE OF NATIVE PROGRAMS 

 
 

In this chapter a basic native application would be created. This application would be like the “Hello 

world” using NDK. After knowing how to create a hello world, it will be worth reviewing briefly the 

JNI ecosystem. A look will be taken at the signature of a native method in a Java class and how the 

corresponding method is declared and implemented in the native library. The conclusion of the chapter 

will look at the mapping of Java types to native language (C/C++) types. 

 

 

3.1 Creating a basic C++ supported project 

 

The steps are simple. As shown below (Table 1), support for C++ must initially be included. An “empty 

activity” should be selected. The definition of the C++ standard used should also be selected. This lets 

CMake set the relevant compiler and linker flags to use in building the project. The programmer should 

tick “exceptions support” if the Android project should have compatibility with versions of NDK earlier 

than NDKr5 and finally the programmer should tick “run time type information support” if there is need 

for run time support. On clicking “Finish”, the External build files under the Android Module will be 

displayed. This contains the CMakeList.txt file discussed earlier in section 2.5, as well as the native-lib, 

which exists in the cpp folder under the app module. 

 

TABLE 1. Steps to create a C++ based project 

a) C++ support included b) select empty activity 

                                                                                                                                            (continues) 



13 

TABLE 1. (Continued) 

c) Selecting C++ standard, exceptions and 

run time support d) External Build Files  

e) native-lib in cpp folder under the app 

module.  

 

 

3.1.1 Loading of native library 

 
The native library can be loaded anywhere there is need for usage of a native method as shown in figure 

8. Following object-oriented paradigm however, it is advisable to have a dedicated class where all the 

native methods are declared and the native library is loaded. As shown below (FIGURE 8), MainActivity 

class extends the AppCompatActivity class. The activity will work normally without the MainActivity 

class extending the AppCompatActivity class. This extends was intended to run the activity on earlier 



14 

versions of Android. Loading a native library in Java class allows native methods to be called in that 

class. Additionally the JNI_OnLoad() method is called when the native library is loaded.  (Android 

Developers Documentation 2019; MIT Education 2019; Oracle Documentation 2017.) 

 

 

 

                 

 

 

 

 

 

FIGURE 8. native-lib loaded in MainActivity class and declaration of native method 



15 

 

 

 

 

 

 

 

 

 

 

FIGURE 9. Corresponding native method of Java class definition in native library 



16 

3.1.2 The native method, native-lib and other libraries 

 
After loading a native library in a class, a method with the native keyword can then be declared in that 

class. If the native methods are declared in a dedicated class, an object of this class can be created in the 

current class to be used to access the native methods. The latter approach is used in this project. The 

native-lib can then be edited. If there is need for  .cpp files and .h files same may be created and  added. 

A path to the .cpp file should be included in the add_library() of the CMakeList.txt file. The native 

method has a declaration in the Java file which ends with a semicolon. In the native files, however, a 

native method has a definition. Its header is indicative of the package, class and return type of the 

method. ( Android Developers Documentation 2019; MIT Education 2019.)  

 
A native method can be declared when the native library is loaded into a Java class. The method must 

contain the native keyword as can be seen in the “HelloWorldC++” of figure 8. The native keyword 

specifies that this method is not a Java method but one which will be written or defined in another 

language. This declaration must be terminated with a semi-colon since the implementation is not done 

on the Java side. The code in code snippet 2 is a definition of stringFromJNI() method declared as shown 

in figure 8 and also defined in the native-lib as shown in figure 9. ( Android Developers Documentation 

2019; MIT Education 2019.)  

 

 

 

 

 

CODE SNIPPET 2. Definition of StringFromJNI Method in native-lib,cpp 



17 

extern "C" prevents name mangling. This is necessary in case there is need to link a C code to the native 

method using a C/C++ compatible header file. The compiler will not mangle the name and would there-

fore know that the C++ method defined in the C++ file and declared in the corresponding C header file 

are both the same. JNIEXPORT and JNICALL are necessary to register the method and be able to call 

it from the dynamic table of the built binary (.so file).  The native method name is concatenated as shown 

in code snippet 3. If fullPackageName is for example com.example.gamuatachu.helloworldc, then all 

the dots (.) have to be replaced by an underscore _ .(MIT Education 2019; Oracle Documentation 2017.) 

 

 

 

3.2 Mapping Java and native types 

  

The JNI provides a means to map Java types to native types. Mapping can be done for both primitive 

types and reference types. The native types provide a way to work with Java types. A primitive Java 

type is received on the native side as either a jboolean, a jbyte, a jchar, a jshort, a jint, a jlong, a jfloat, a 

jdouble or void. When sending a primitive variable types back to a Java class it should also be sent as 

one of  jboolean, jbyte, jchar, jshort, jint, jlong, jfloat, jdouble or void. Any of these could be used on 

the native side just as a boolean, byte, char, short, int, long, float, double or void without explicitly type 

casting. This is, however, not possible with arrays, strings and other objects sent from the Java side. 

Consider a method that has been declared as native in a Java class as below (CODE SNIPPET 4). Its 

corresponding native implementation will look like the code in code snippet 5. 

 

 

 

CODE SNIPPET 3. Function name in native-lib 

CODE SNIPPET 4. Method declared with native keyword in a Java class 



18 

 

 

CODE SNIPPET 5.  Native implementation of native Java method sendAndGetString in native-lib 

 

The JNI types also have sizes in bits (TABLE 2). These sizes permit usage of fixed width integer types 

which were defined since C++11. Definition and declaration of variables on the native side in the vari-

ous android projects in this thesis is carried out using these fixed width integer types. These types are 

int8_t, int16_t, int32_t, int64_t, uint8_t and uint16_t. (Gamua 2020.) 

 

TABLE 2. Primitive type mapping from Java to native 

Java type Native Type Size in bits 

boolean jboolean 8, unsigned 

byte jbyte 8 

Char jchar 16, unsigned 

short jshort 16 

int jint 32 

long jlong 64 

float jfloat 32 

double jdouble 64 

void jvoid - 



19 

Arrays, strings and other objects types are sent as reference types. These reference types must explicitly 

be converted by calling on the methods of the JNIEnv class through its pointer variable. All reference 

types are subclassed from the JNI jobject type. Arrays have other JNI sub types. These are the jintArray, 

jlongArray, jfloatArray, jdoubleArray, jbooleanArray, jbyteArray, jcharArray, jshortArray and jobjec-

tArray. Strings are sent and retrieved from the native side using the JNI jstring type. Class references are 

retrieved from the native side as a jclass which is an internal typdef of a jobject. It is worth mentioning 

that the jsize is a typedef of a jint. (Oracle Documentation 2017.) 

 

 
 

 

 

 

FIGURE 10. Reference type mapping from java to native 



20 

3.3 The JNI interface pointer 

 

The interface pointer is a pointer which is created per thread JNI data structure. It points to a thread local 

data which correspondingly points to the JNI function table shared by all threads. The interface pointer 

permits the manipulation of Java objects and arrays. Native methods receive the JNI interface pointer as 

their first parameter. Without the JNI interface pointer, native methods would not be able to access 

functions in the JNI function table. The JNI interface pointer also provides a way to access Java fields 

and call Java methods. Because it points to per thread created JNI data, it cannot be shared between two 

threads. (MIT Education 2019; Oracle Documentation 2017.)  

 

 

 

FIGURE 11.  JNI interface Pointer 



21 

4 PRIMITIVE TYPES AND ARRAYS OF PRIMITIVE TYPES 

 
 

This chapter concentrates on sending and retrieving primitive types and array types to and from the 

native libraries. Java Strings though not a primitive type, will be treated under primitive types. The 

Android Studio projects written in this chapter will attempt to send and retrieve Java primitives, strings 

and arrays to and from native code. These retrieved types will then be printed on the UI. Use shall be 

made of some basic JNI APIs concerned with primitive, string and array types. Because memory in the 

native side has to be managed, this will be another concern in this chapter. 

 

 

4.1 Brief look at relationship between classes 

 

In the PrimitiveTypesApp app there are 4 classes vis MainActivity, NativeMsClass, InfoDialog and 

InputValues (Gamua 2020). InputValues is the C++ class and therefore needs JNI to access some of its 

resources. Some types, however, like ints do not need JNI APIs. In the ArrayTypes app, there are also 4 

classes vis MainActivity, NativeMsClass, InfoDilaog and InputValues (Gamua 2020). The creation of 

the diagram in figure 12 is possible even though  2 languages are in use in this project. UML is language 

agnostic (Booch, Rumbaugh, Jacobson 2005). 

 

 

 

 

FIGURE 12. Relation between classes for both the PrimitiveTypeApp app and the ArrayType app 



22 

4.2 Detailed look at class diagrams 

 

Table 3 presents the details of the classes for the PrimitiveTypeApp and table 4 the classes of the Array-

Type app. The implementation of these classes in each app differ even though the main point is to send 

and retrieve data. On the native side which is of particular interest, the InputValues class of the Primi-

tiveType app has data members cBooleanValue, cByteValue, cCharValue, cDoubleValue. cFloatValue, 

cIntegerValue, cLongValue, cShortValue, inTypes and a cStringValue pointer type.  The inTypes vari-

able saves information about the type passed. The InputValues class also has constructors to set its data 

members when an object is instantiated in the native-lib. There are getters methods to get the saved 

values in the native-lib, a getType method to know the type information saved before calling a respective 

getter method and a deleteString method to help delete string references. The MainActivity class sends 

values to the native side via a sendPrimitiveType method that invokes a particular native method and 

gets values from the native side via a getPrimitiveType method that retrieves saved values from the 

native side. It also has MenuItem callback methods that either reset the user interface and free memory 

on the native side or bring up a user interface dialog. The NativeMsClass contains a declaration of all 

the native methods. The InfoDialog class has a StringBuilder object that helps to build a dialog to be 

displayed on the user interface. A detail description of how elements of one class interact with other 

elements of other classes is given in the section 4.7. (Gamua 2020.) 

  



23 

TABLE 3. (continued)                                                            

 

The InfoDialog class has a StringBuilder object 

that helps to build a dialog to be displayed on 

the user interface. The dialog button is found in 

the menu and can be displayed anytime the user 

wants. 

 

The NativeMsClass contains a declaration of all 

the native methods. 

 

This class also has constructors that are called 

when an object is instantiated in the native-lib. 

It also has methods to help save the values 

passed from java and methods to retrieve those 

values from the native side. There are also met-

hods to manage memory. 

 

On the native side of the Array type, the InputValues class has pointer types cBooleanArray, cByteArray, 

cCharArray, cDoubleArray. cFloatArray, cIntegerArray, cLongArray, cShortArray and cStringArray. It 

also has an inType variable to save information about the reference type passed, and a cLength variable 



24 

that saves information about the length of the array.   Its constructors set these various pointer type 

references when an object of this class is created in the native-lib. There are getter methods to get the 

saved pointed references in the native-lib and the length of the arrays, a getType method to know the  

type of reference saved before calling a getter method and a deleteStringArray method to help delete 

string array references. The MainActivity class sends values to the native side via a sendArray method 

that invokes a particular native method and gets values from the native side via a getArray method that 

retrieves saved values from the native side. It also has MenuItem callback methods that either reset the 

user interface and also frees memory on the native side or bring up a user interface dialog. The onAdd 

method adds values to an arrayList created in the generic NativeMsClass. The generic NativeMsClass 

contains a declaration of all the native methods. It also contains an addToList method that adds array 

values to the arrayList, a returnArrayList that returns the arrayList and a convertArrayList that formats 

values retrieved from the native side. The InfoDialog class has a StringBuilder object that helps to 

build a dialog to be displayed on the user interface. A detail description of classes and how elements of 

one class interact with elements of other classes is given in the section 4.7. (Gamua 2020.) 

 



25 

 

 

4.3 Brief look at user interfaces 

 
In this section, a brief look will be taken at the user interfaces.  How to enter values and types for both 

the PrimitiveTypeApp and the arrayType app will be looked at. Strings are treated under primitive 



26 

types.  For primitive types, values are entered under the value field and the type of value entered is se-

lected from the menu of the spinner. An integer value of 20 is entered as shown in table 5. (Gamua 

2020.)  

 

TABLE 5. How to Enter values into the PrimitiveTypeApp 

 

                        

 

 

For the PrimitiveType app, the SEND button is used to enter values one at a time. The SEND Button 

has an onClickListener attached that calls the sendPrimitiveType() method. Depending on the type cho-

sen the sendPrimitiveType() method will activate the required case. In case there is a mismatch of a 

value and its type, an exception will be caught, and the user will be informed that there is a mismatch of 

value and type. The GET button recovers the values that have been added from the native class through 

the getPrimitiveType() method and displays on the user interface. There are two items in the menu whose 

showAsAction is never. These are RESET and the INFO. RESET resets the user interface and cleans 

the memory on the C++ side. Figure 13 shows the user interface for the PrimitiveTypeApp. (Gamua 

2020.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

value 20 

Type Integer 

FIGURE 13. User interface to enter and retrieve primitive types 



27 

4.3.1 Array types 

 

Values are entered under the value field and the type of value entered is selected from the  menu of the 

spinner. Consider an integer array such as {20,40,80}. To enter this array, 20 is entered into the value 

field and the ADD button clicked. The same process is followed for 40 and 80 being careful to keep the 

type as IntegerArrayType. Table 6 shows the first input of the value 20. The ADD button must clicked 

after each entry as only then is the value added to the current array by the addToList method. (Gamua 

2020.)  

                     

TABLE 6.  First value in array entered and ADD button is clicked 

 

                        

  

The ADD button has an onClickListener that calls the onAdd() method that creates an array in the Na-

tiveMsClass. After creating the array with the ADD button, the SEND ARRAY should be pressed to 

send the array to the native side. The SEND ARRAY Button has an onClickListener attached that calls 

the sendArray method to send this created array. Depending on the type chosen the sendArray method 

will activate the required case that will then transfer the array data to the native class. In case there is a 

mismatch of a value and its type, an exception will be caught, and the user will be informed that there is 

a mismatch of value and type. The GET ARRAY button recovers values from the native class through 

the getArray method and displays on the user interface. There are two items in the menu whose 

showAsAction is never. These are RESET and the INFO. RESET resets the user interface and cleans 

the memory on the C++ side.  Figure 14 shows the user interface for the ArrayTypes app. (Gamua 2020.)  

 

 

 

 

value 20 

Type IntegerArrayType 



28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Activity Diagrams  

 

The activity diagrams are presented below. All activities have sub activities that are presented alongside. 

The activity diagrams are drawn for both the send and get use cases. If there is a mismatch for value and 

type in the send use case the user will be informed. If there are no values saved on the native side and 

the user clicks GET or GET ARRAY he will be informed no values are saved. The tables are given 

headings for each use case. 

 

 

 

 

FIGURE 14. User interface to enter and retrieve array types 



29 

 

 

 

 

 

 

 

 

 

 

 



30 

 

 

 

 

 

 

 

 

 

 

 



31 

 

 

 

 

 



32 

 

 

4.5 Understanding the programs 

 
Upon launching of the application, all parameters are initialized and in the init() method and InfoDialog 

class object is instantiated. A visible outcome of this is that there is a dialog window that pops up any 

time the app is launched. This window directs the user on how to use the app. The native-library is 

loaded in the NativeMsClass class. On the native side the JNI_onload is called once. It caches global 

variable settings. The version number which contains an integer is then returned. Version numbers can 

be JNI_VERSION_1_1, JNI_VERSION_1_2, JNI_VERSION_1_4, JNI_VERSION_1_6, JNI_VER-

SION_1_8, JNI_VERSION_1_9 and JNI_VERSION_1_10. The program in this project uses JNI_VER-

SION_1_6. (MIT Education 2003; Oracle Documentation 2017; Gamua 2020.) 

 

 



33 

4.5.1 String and primitive types 

 
After entering a value in the value field and selecting the type from the menu of the spinner, the SEND 

button is pressed/clicked to enter the value. The SEND button has an onClickListener attached that calls 

the sendPrimitiveType method. In this method there is a String array called checkType that keeps track 

of the types entered. The native class methods are called depending on the case and the countInput which 

counts the number of inputted values is incremented. (Gamua 2020.)  

 

For Boolean types myWorker.sendBooleanType() is called with arguments (true, countInput) or (false, 

countInput). The arguments depend on whether the user enters 1 or 0. The sendBooleanType method 

which is a natively declared method in the NativeMsClass calls its corresponding native method in na-

tive-lib.cpp. In native-lib.cpp, a new object is created. The jboolean type which is used as a parameter is 

automatically casted to its corresponding native type. The JVM ensures that true=1 and false=0. (MIT 

Education 2019; Oracle Documentation 2017; Gamua 2020.)  

 

For Byte types myWorker.sendByteType() is called with arguments (Byte.parseByte(inputString), 

countInput). On the native side the jbyte value nByte passed is simply casted when creating the new 

object. Floats, Integers, Longs, Short, and Double types all follow the same pattern as Byte types. On 

the native side, they are also casted to their respective types and there is no need to use JNI APIs to 

manipulate these types.  (MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)  

 

myWorker.sendCharType() is called with arguments (inputString.charAt(0), countInput) for Char types. 

On the native side the jchar value nChar passed is simply casted when creating the new object. 

myWorker.sendStringType(inputString, countInput) is called for String types. On the native side the JNI 

API must be called to manipulate the string reference passed. Java strings are objects so they cannot just 

be casted. To copy the JNI string to a native buffer use must be made of the JNI APIs 

GetStringUTFLength and GetStringUTFRegion. The first method gets the length of a string and the 

second copies it to a C++ memory buffer knowing the length and the buffer name. A ‘\0’ is appended to 

the buffer for string termination. (MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)  

 

If the GET button is pressed, the getPrimitiveType method is called to retrieve a primitive type. For 

Boolean types, myWorker.getBooleanType(i) is called if checkType[i] is a Boolean, i being a variable 

which increments to the number of entries. On the native side the incomingValue[jObjectNum] object 

gets its type and compares to see if the inTypes variable was set as a BooleanType when the object was 



34 

created. If yes, a 1 or 0 as jint is returned since Booleans are set as 1 or 0 on the C++ side. On the Java 

side, if 1 or 0 is returned, it is appended to the stringBuilder str. (MIT Education 2019; Oracle 

Documentation 2017; Gamua 2020.)  

 

If the GET button is pressed and a Byte type had been entered, myWorker.getByteType(i) is called if 

checkType[i] is a Byte, i being a variable which increments to the number of entries done. On the native 

side the incomingValue[jObjectNum] object gets its type and compares to see if the inTypes variable 

was set as a ByteType when the object was created. If yes, the Byte type is returned as a jbyte. On the 

Java side, it is appended to the stringBuilder str. Floats, Integers, Longs, Short, and Double types all 

follow the same pattern as Byte types albeit with their respective JNI types. (MIT Education 2019; 

Oracle Documentation 2017; Gamua 2020.)  

 

If the GET button is pressed and a Char type had been entered myWorker.getCharType(i) is called if 

checkType[i] is a Char. On the native side the incomingValue[jObjectNum] object gets its type and 

compares to see if the inTypes variable was set as a CharType when the object was created. If yes, the 

Char type is returned as a jchar. On the Java side, it is appended to the stringBuilder str. For String types, 

myWorker.getStringType(i) is called if a String had been entered and checkType[i] is a String. On the 

native side the incomingValue[jObjectNum] object gets its type and compares to see if the inTypes 

variable was set as a StringType when the object was created. If yes, a pointer variable that points to the 

returned C++ string of the object is created. Use is made of the JNI API method NewStringUTF() to 

create a jstring object that is returned. (Gamua 2020.)  

 

 

4.5.2 Array type  

 
For array types, there are not two but three buttons that permit the input and output of data. For any 

array, use is made of the ADD button to create and the SEND ARRAY button to send the array reference 

to the native side. Clicking on GET ARRAY button will retrieve the array from the native side. The 

ADD button has an onClickListener that calls the onAddType method. This method takes the primitive 

value to be added to the array and calls the addToList method of the NativeMsClass through the 

myWorker object. The ADD button must be clicked successfully after each primitive or string type 

which makes up the array. The NativeMsClass in this case is of generic type and the addToList method 

is also of generic type. The addToList method adds the primitive values to be added to an arrayList. 

After all the primitive types have been entered, clicking the SEND ARRAY button calls the sendArray 



35 

method. In that method the arrayList is returned through the myWorker object and the returnArrayList 

method that takes a generic class type. It returns only arrays of a particular type and not combinations 

of types. As an example, consider selecting to enter an integer array using the menu of the spinner. An 

integer array such as {4,7,10,4} will be accepted and not {4, 7, 10.9, 4}. The user only gets informed 

after clicking the SEND ARRAY button as an exception is caught and displayed. (Gamua 2020.)  

 

For Boolean types, myWorker object with the help of the returnArrayList method returns an arrayList 

of type Object if the “SEND ARRAY” button is clicked. The arrayList is then converted into Boolean 

types and saved in the newly created Boolean array. The Boolean array is then sent to the native class 

by calling the sendBooleanArrayType method. In the native-lib.cpp the corresponding method creates 

an array pointer of type uint8_t*. This points to Booleans on the heap with a length of length. The array 

elements are extracted into their JNI types using the GetBooleanArrayElements API and they are pointed 

to in memory by a pointer arrayTmp. To convert to a C++ bool type the elements pointed to by arrayTmp 

are compared to JNI_TRUE. A pointed jboolean element that is true will return a 1 while a jboolean that 

is false will return a 0. This is the easiest way to copy from the jboolean array type to a C++ bool array 

type. (Gamua 2020.)  

 

For Byte types, myWorker object with the help of the returnArrayList method returns an arrayList of 

type Object if the “SEND ARRAY” button is clicked. The arrayList is then converted into byte types 

and saved in the newly created Byte array. The Byte array is then sent to the native class by calling the 

sendByteArrayType method. On the native side the JNI API GetArrayLength is used to get the length 

of the JNI array type passed from the Java side. A byte array is then created with the new keyword 

having the exact same length as the array sent. This array is of type int8_t as this is the type that will 

rightly save a byte. The JNI array is copied to the array created using the GetByteArrayRegion method 

of the JNI API. A new object is created with constructor parameters being the copied array and its length. 

Floats, Integers, Longs, Short, and Double types all follow the same pattern as Byte types albeit with 

their respective JNI types and C++ types. (Gamua 2020.)  

 

For Char types, myWorker object with the help of the returnArrayList method returns an arrayList of 

type Object if the “SEND ARRAY” button is clicked. The arrayList is converted into chars and saved 

in the newly created char array. The char array is sent to the native class by calling the sendCharArray-

Type method. On the native side the JNI API GetArrayLength is used to get the length of the JNI array 

type passed from the Java side. A char pointer reference is created with the new keyword having the 

exact same length as the array received from Java. This pointer will point to types of uint16_t. uint16_t 



36 

is the right type to save a char. The JNI array is copied using the GetCharArrayRegion  to the heap and 

the pointer reference array created with “new” made to reference this string on the heap. A new object 

is created with constructor parameters being the copied array and its length. (Gamua 2020.)  

 
Java String types are not same as primitive types. Whether they be arrays or not, their treatment is dif-

ferent. In the case of String arrays, myWorker object with the help of the returnArrayList method returns 

an arrayList of type Object if the “SEND ARRAY” button is clicked. The arrayList is then converted to 

Strings and saved in the newly created String array. The String array reference is sent to the native side 

by calling the sendStringArrayType method. On the native side, the array length is first determined using 

the GetArrayLength API. A double char array pointer is created to house the individual strings in this 

array. Because a string is an object, use is made of the GetObjectArrayElement API method to extract 

the individual Strings in the for loop that follows. For each String in the array extracted, its length is 

determined using the GetStringUTFLength method. A reference of a string memory location on the heap 

with the new keyword is created using the array reference created before the for loop. The array reference 

refers to a char sequence of characters on the heap whose length is given by GetStringUTFLength plus 

1. Subsequent references in the for loop will refer to each string extracted. For example, array[0] refers 

to the first string extracted, array[1] refers to the second string extracted etc. A new object is then created 

with constructor parameters being the copied array reference and its length. (Gamua 2020.)  

 

If the GET ARRAY Button is clicked the getArray method is called. If one of arrays that were created 

prior and sent to the native side is a Boolean array, myWorker.getBooleanArrayType(i) is called if the 

null check is ruled out. On the native side, if the object is found to have been saved as a BooleanArray-

Type, a jbooleanArray is created using the NewBooleanArray API. This method takes the length of the 

array as one parameter. The array created is filled with Boolean elements using the SetBooleanArrayRe-

gion API method. The array reference is returned to the Java side as a jbooleanArray. Floats, Integers, 

Longs, Short, Double, Bytes and Chars all follow the same pattern albeit with their respective JNI types. 

(MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)  

 

If the GET ARRAY Button is clicked the getArray method is called. If one of arrays that were created 

prior and sent to the native side is a String array, myWorker.getBooleanArrayType(i) is called if the null 

check is ruled out. On the native side, a check is made to see if the object was saved as a StringArray-

Type. If so, a new jobjectArray is created with parameters being the length of the saved string and the 

jclass global variable StringClass which tells the API the class of array object to create. For each string 

reference that was saved on the heap, a new string is made from the returned pointed string. These strings 



37 

are then added subsequently to the jobjectArray variable. After this process finishes, the jobjectArray is 

returned. (MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)  

 

 

4.6 Memory  

 
Memory management is handled both on the Java side and on the native side. On the Java side, memory 

cleanup is the responsibility of the garbage collector. On the native side however, memory must be 

managed by the programmer. Management of memory on the native side is carried out using pointers, 

destructors and various JNI types. There exist JNI types for blocking the garbage collector from per-

forming a clean-up of memory references. (MIT Education 2019; Oracle Documentation 2017.)  

 

 

4.6.1 Primitive types  

 

There is just one pointer that is used on the native side. This is the char pointer which is used to create 

the string. After clicking/pressing the RESET menu button, this char pointer reference needs to be de-

leted and then subsequently the reference to the object must be deleted in case the object was a 

StringType. In case the object was not a StringType object, only the reference to the object is deleted. 

(Gamua 2020.)  

 

 

4.6.2 Array types  

 

Here the object is deleted with the help of a destructor. Options exist to delete the pointer references for 

all the types. For a String array type, the references are deleted with the help of the deleteStringArray() 

method. In the deleteStringArray() method, all the references pointing to the strings in the heap are first 

deleted and then the reference to the references is deleted. For all the other array types, the array refer-

ences are simply deleted. (Gamua 2020.)  

 

 

 

 



38 

4.6.3 JNI API  

 

The JNI family of methods Get<Primitive>ArrayElements creates a pointer to Java array elements. 

These pointers cannot be garbage collected. For example the GetBooleanArrayElements() creates a 

pointer to array elements of boolean type. In order to allow the garbage collector to clean the memory, 

a corresponding Release<Primitive>ArrayElements must be used after a Get<Primitive>ArrayElements. 

For example, for GetBooleanArrayElements, use is made of ReleaseBooleanArrayElements to allow the 

garbage collector to clean the memory. The garbage collector is also prevented from memory cleanup 

when use is made of GetStringUTFChars and GetStringChars. A corresponding use must be made of 

ReleaseStringUTFChars and ReleaseStringChars to allow the garbage collector to clean the memory 

(MIT Education 2019; Oracle Documentation 2017.)  

 

 

4.7 Results 

 
The results for the primitiveType app is presented below (Table 7).    The input and output operations 

are shown. RESET and INFO are in the menu. The initial output when the app is opened is shown with 

a display of a dialogue. The dialogue gives directives on app usage. Values are then inputted and re-

trieved. The RESET button clears the UI after each successive input-output operation. (Gamua 2020.)  

 

 



39 

 

 
 
 
 
 
 
 
 
 
 



40 

The results for the ArrayType app is presented below (TABLE 8).    The input and output operations 

are shown. In addition there is an “ADD” button to create an array before sending to the native side.  

The user is informed he has not created an array in case he clicks “SEND ARRAY” before “ADD”. 

The initial output when the app is opened is shown with a display of a dialogue. The dialogue gives 

directives on app usage. Values are then inputted and retrieved. The RESET button clears the UI after 

each successive input-output operation. (Gamua 2020.)  

 

 

 



41 

 

 

 

 

 

 

 

 



42 

5 OBJECT TYPES AND ARRAYS OF OBJECTS 

 

 

In this chapter manipulating Java objects and accessing Java data members by the JNI API will be ex-

plored. An attempt will be made to send and retrieve Java objects to and from the native side. Object 

arrays will also be sent and retrieved from the native side. To do these operations use shall be made of 

the various JNI APIs for manipulating Java objects and Java arrays of objects. JNI APIs will further 

permit us to manipulate Java objects and arrays of objects from the native side. Other APIs explored in 

this chapter will permit the access of an object’s data members from the native side. Memory manage-

ment will be the final concern in this chapter.                                                     

 

 

5.1 Brief look at relationship between classes 

 
In the ObjectTypes app there are 5 classes vis MainActivity, NativeMsClass, Language, InfoDialog and 

InputValues classes. InputValues is the C++ class and therefore needs JNI to set and access some of its 

resources. Worth noting is the fact that the InputValues class is an aggregator class to the Language 

class. The MainActivity class is also an aggregator class to the NativeMsClass class. The relationship 

between the classes is presented in Figure 15. (Gamua 2020.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15. Relationship between classes in the ObjectTypes app 



43 

In the arrayOfObjects app there are 5 classes vis MainActivity, NativeMsClass, Language, InfoDialog 

and InputValues. In addition, there is an interface called ComparingListener. Worth noting is the fact 

that the InputValues class is an aggregator class to the Language class. The NativeMsClass is a compos-

itor class to the ComparingLister interface. The MainActivity class is an aggregator class to the Na-

tiveMsClass class. It implements the ComparingLister interface. The relationship between the classes is 

presented below (Figure 16). (Gamua 2020.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Detail look at classes 

 
The details of the classes are shown in table 9 and table 10. MainActivity class of the ObjectType app 

has private members that reference the various Views that are shown on the user interface. The countIn-

put counts the number of inputs entered. MainActivity has MenuItem callback methods that either reset 

the user interface and free memory on the native side or bring up a user interface dialog. Memory is 

freed by calling the Java method onResetLanguage which further calls the native method resetNative. 

The sendLanguage and getLanguage methods are both used to send and retrieve information from the 

native end by respectively calling the sendLanguage and getLanguage native methods of the NativeM-

FIGURE 16. Relationship between classes in the arrayOfObject app 



44 

sClass. The Language class has members to count the object number entered, the name of the program-

ming language entered and the difficulty level. The InfoDialog class has a StringBuilder object that helps 

to build a dialog to be displayed on the user interface. The mLanguage variable in the InputValues class 

is of a type called a jobject. A jobject is a native reference to a Java object. This reference can be sent 

back to the Java side using the getLanguage method of the NativeMsClass. (Gamua 2020.)  

  

 
 



45 

 
 
 
 

The MainActivity class of the arrayOfObjects app has in addition a toggleKey variable that tracks if 

values have been entered. There is a vectorOfLanguages Vector variable used to aggregate a list of the 

objects. This is done using the onAddObect method. The getLanguageArray and sendLanguageArray 

are used to send and retrieve array references from the native side. The onResetValue resets the native 

side by deleting all array references and then clears the user interface. onObectCompare aggregates the 

most difficult language in each array after it has been compared on the native side and sends back via 

the use of ComparingListener interface. The maximums of each array are printed when the onCompare 

method is executed. The Language class is similar to the Language class of the objectType app. The 

NativeMsClass defines the native methods. The native method compareObect is called to compare ob-

jects each time an array of object is entered. Additionally, the NativeMsClass’ onObjectCompare method 

overrides the interface method onObjectCompare. The former method of the NativeMsClass is called 

from the Native-lib when the maximum in each array is computed. This information will then be sent to 

the MainActivity’s onObectCompare method to add to the vectorToCompare Vector variable. (Gamua 

2020.)  

 
 
 
 
 
 
 
 



46 

 
 
 



47 

 
 
5.3 Brief look at user interface 

 
The user interfaces are simple. The user interface of the ObjectTypes app is shown in figure 17. The 

input is a capture of a single object. There are two input fields both representing the data members of an 

object as shown in figure 17. Language is the type of programming language and Difficulty is the diffi-

culty level of the language. The SEND LANGUAGE button is used to enter values one at a time. The 

SEND LANGUAGE Button has an onClickListener attached that calls the sendLanguage method. The 

user will be informed if he fails to enter a value. The sendLanguage method with the help of myWorker 

object calls a native method to pass on the object reference to the native libraries. The GET LANGUAGE 

button displays the objects that have been added to the native C++ class through the NativeMsClass’ 

getLanguage method and the MainActivity’s   getLanguage method. There is RESET and INFO in the 

menu. RESET resets the app by deleting the references to all the objects and INFO gives information on 

app usage. (Gamua 2020.)  

 

 

 



48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The user interface of the arrayOfObjects app is shown in figure 18. On entering a language and its dif-

ficulty level, the ADD button is clicked to add this language to the current array of Language objects. 

This is done by adding to the vector of languages variable vectorOfLanguages. Upon adding a Language 

object reference, the SEND LANG button becomes enabled immediately but not the COM button which 

compares the language difficulty level in each array. On clicking SEND LANG, the language array 

references are sent to the native-lib and hence the native C++ class via the NativeMsClass 

sendLanguageArray method with the help of the myWorker object.  The compareObjects method also 

sends the references to the native-lib.cpp library where the objects are compared, and the most difficult 

languages sent back to be saved in the vectorToCompare vector variable of MainActivity class. Clicking 

the COM button displays the most difficult objects in an array. The GET LANGS button displays the 

saved object arrays. There are RESET and INFO items in the menu. RESET resets the app by deleting 

the references to all the objects and the arrays and INFO gives information on app usage. (Gamua 2020.)  

FIGURE 17. User Interface of ObjectType App 



49 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4 Activity diagrams  

  
The activity diagrams are presented below. All activities have sub activities that are presented alongside. 

The activity diagrams are drawn for both the send and get use cases. If the fields are not entered rightly 

and the user tries to send, he will be informed he is performing an illegal operation. If an array has not 

Figure 18. User interface of array of objects app 



50 

been created and the user attempts to send, he will also be informed the operation he is attempting to 

perform is illegal. The tables are given headings for each use case. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



51 

 

 
 
 
 
 
 
 
 
 
 
 



52 

 

 

 
 
 
 
 
 
 
 
 



53 

 

 
 
 
5.5 Forming the method name and signature of a Java method 

 
The understanding of this section is vital. Understanding of programs will be incomplete without men-

tioning how a Java method can be called from C/C++. Reference should be made to code usage in the 

native-libs of either the arrayOfObjects app or the NativeThreads app of chapter 6.  The JNI operations 

that permit calling Java methods belong either Call<type>Method Routines, Call<type>MethodA Rou-

tines or Call<type>methodV Routines. Methods from any of these families are used to call Java instance 

methods.  (MIT Education 2019; Oracle Documentation 2017.)  

 

In order to use any methods in the routines mentioned above a pointer to the GetMethodID method must 

be obtained. GetMethodID has as parameters a JREF index for the class in question, the name of the 



54 

method as a string and the internal type signature for that particular method. Constructor names are 

specified as <init>. The JREF index points to the class where the method belongs. This index is got by 

either using the FindClass or GetObjectClass API. To look up the particular method being called, the 

methods have type signatures which are treated in the next paragraph. In the native methods use is made 

of the methods in the family of operations above to call the Java method. The parameters to be passed 

to the family of operations are the JNI jobject representation of the object that called the native method 

in the first place, the methodID which is the returned ID upon use of the GetMethodID and the actual 

arguments of the Java method in question.   

 

For the Java Virtual Machine to look up the particular method being called, the methods have type sig-

natures. Type signatures ensure that the specific method is called. They include the input and return 

type of the method in question. The onObjectCompare method in the arrayOfObects app’s NativeM-

sClass has a Languages class variable as input parameter and void as return type. The method’s signa-

ture is Lcom/example/gamuatachu/arrayofobjects/Languages;)V where com/example/gamuatachu/ar-

rayofobjects represents the package name (Gamua 2020). The signatures are shown below (TABLE 

11).   (MIT Education 2019; Oracle Documentation 2017.)  

 

TABLE 11. JVM type signatures 

 
 
 
5.6 Understanding the programs 

 
After entering a value in the Language field and the Difficulty field in the objectTypes app, the SEND 

LANGUAGE button is pressed to enter the values. The SEND LANGUAGE button has an onClick-

Listener attached that calls the sendLanguage method. If both fields are entered rightly, the myWorker 

Signature Java Type 
Z Boolean 
B Byte 
C Char 
S Short 
I Int 
J Long 
F Float 
D Double 

L fully-qualified-class ; fully-qualified-class 
[ type type[] 

( arg-types ) ret-type method type 



55 

object calls the NativeMsClass’ native sendLanguage method and this method calls its corresponding 

method in the native-lib.cpp library. If the fields are entered wrongly a message is displayed indicating 

wrong entry of input type. The countInput variable is incremented each time an entry is successfully 

added. In the corresponding sendLanguage method in the native-lib.cpp a new global variable is created 

using the NewGlobalRef JNI API. This prevents the reference from being garbaged collected and also 

permits it to be seen outside its scope. A new object is created with this new globally created variable. 

The mLanguage member of this object cannot be NULL since the reference it refers to has been pre-

vented from being garbage collected by the use of NewGlobalRef. If there is no need for this reference 

to be kept global, the JNI API DeleteGlobalRef can be used as can be seen from the deleteLanguageRef 

method of objectType.cpp. The GET LANGUAGE button activates the getLanguage method. The ob-

jects saved are then appended to the MainActivity’s StringBuilder str by calling the NativeMsClass’ 

getLanguage method with the help of the myWorker object. The stringBuilder is then displayed on the 

UI using textView1. (Gamua 2020.)  

 

In the arrayOfObjects app the ADD button permits objects to be entered into the current array. The 

toggleKey ensures at least one object is entered into the array. The ADD button has an onClickListener 

attached. This listener activates the onAdd method to add the entered Language object to the vector of 

languages variable vectorOfLanguages. The SEND LANG button becomes enabled after an object is 

entered to an array but the COM button which compares the language difficulty level in each array 

remains disabled since it should only become enabled if there are objects that have been sent to the 

native-lib.cpp and hence the native C++ class. It is only when objects are present in the native side that 

comparison of objects in an array can be done. The Boolean variable toggleKey becomes true when an 

array is created. This variable checks if an object has been added to an array before it is sent to the native 

libraries. If toggleKey is false, a message will be generated upon a click/press on SEND LANG letting 

you know there are no arrays created. (Gamua 2020.)  

 

On clicking SEND LANG, the toggleKey variable is checked. If it is true, then a Language object has 

been added to an array. The vector of Language objects are then converted to an array of Language 

objects whose reference is passed to the Language array variable lan. The vector of Language variable 

is cleared. The myWorker object calls on the native method sendLanguageArray to pass on this reference 

of array objects to C++.  The same reference is also sent via the compareObjects method to the native-

lib.cpp library where the objects in each array are compared. The COM button becomes enabled. (Gamua 

2020.)  

 



56 

On the native side of the arrayOfObjects app two methods are called: Firstly, the sendLanguageArray 

method is called. In this method, the length of the array is determined by the GetArrayLength API. A 

pointer of type jobject is created using the length of the determined array. This pointer reference will be 

incremented as an array to hold a reference to the successive references of Language objects. The suc-

cessive Language references in an array are gotten using the GetObjectArrayElement. A new global 

reference variable is created for each reference. A new InputValue object reference is finally created 

with the reference of references (or the reference of the first array member) and the length of the array 

is passed to an IncomingValue array object. Secondly, the native-lib’s method compareObjects is called. 

This method allows for comparison of objects within an array each time an array of objects is entered 

by clicking the SEND LANGS button. In this method, the length of the array is first determined, the first 

object or reference within the array is also determined and saved as a jobject variable. In the for loop 

that proceeds a NULL reference is assigned to a second Language object variable. This variable will 

hold the reference of the second object in the array. Two jchar variables, languageValue1 and lan-

guageValue2 are declared. These can also be declared as jints. In order to access the Java int fields of 

Language objects, the field ID of the int field member intDiff has to be determined. This is done using 

the GetFieldID and the GetIntField APIs. In JNI each data member of a Java class is regarded as a field 

and is associated with an ID. This ID permits the getting (access) or the setting (changing) of data mem-

bers of objects. The GetFieldID gets the field ID of a class member (for example, its usage in this case 

returns the ID of intDiff) while the GetIntField gets the particular int field of an object. The if condition 

that follows guarantees that the object is not NULL. Inside the if statement, the int field of the second 

Language object in the array is extracted. This is then compared with the first to determine which is 

larger. This process to filter the larger value continues for all the elements in the Language array. The 

onObjectCompare method in the NativeMsClass is finally called to pass on the reference of the Lan-

guage object with the largest difficulty. In order to call the onObjectCompare method, use is made of 

one of JNI’s API CallVoidMethod methods. This method takes as parameters the environment variable, 

the method ID of the method to be called and whose value had been determined and cached in the 

JNI_onLoad method and the actual parameters to be passed to the called method. In the NativeMsClass, 

the onObjectCompare method passes this object to the MainActivity’s onObjectCompare where it is 

added to the vectorToCompare variable. (Gamua 2020.)  

 

The GET LANGS button permits the recovery of saved arrays.  myWorker.getLanguageArray(i) is 

called as many times as there are Language arrays. In the corresponding method on the native side, the 

incomingValue reference object for the jObjectNum being tested is checked to see if it returns a jobject 

reference to a Language array. If so, a jobjectArray reference is created with the help of the JNI API 



57 

NewObjectArray. One of the parameters of this API is the variable LanguagesClass which is a reference 

object to the Language class. This reference had been cached as a global variable in the JNI_onLoad 

method and in JNI, its type is a jclass. The jobjectArray reference is then set to reference the different 

array object elements using the SetObjectArrayElement API. The jobjectArray is finally returned, ap-

pended to the StringBuilder object str and displayed with the help of a TextView object when all arrays 

have been appended. (Gamua 2020.)  

 

After clicking the SEND LANG button, the COM button becomes activated permitting the printing on 

the UI of the most difficult Language object within each array. The most difficult Language objects are 

heretofore saved in the vectorToCompare vector variable. Clicking/pressing the COM button calls the 

onCompare() method which converts vectorToCompare to a Language array, appends a string version 

of each object in the array to the StringBuilder object str and finally prints on the UI. (Gamua 2020.)  

 

 
5.7 Memory management 

 
If the RESET menu item of the ObjectTypes app is clicked, the attached onClickListener activates the 

onResetLanguage method. This method verifies that there is an inputted Language object and calls the 

native method resetNative via the myWorker object. This call is made as many times as the number 

Language objects inputted. For each of those times, there is a verification in the native-lib’s resetNative 

method that an incomingValue object reference returns a jobject Language reference. If yes, it deletes 

the Language reference and then deletes the object. (Gamua 2020.)  

 

If the RESET menu item of the arrayOfObjects is clicked, the attached onClickListener activates the 

onResetValue method. This method verifies that there is an inputted array of Language objects and calls 

the NativeMsClass’ native resetNative method via the myWorker object. This call is made as many times 

as there were arrays entered. For each of those times, there is a verification in the native-lib.cpp’s method 

resetNative that an incomingValue object reference returns a jobject Language pointer reference. If yes, 

a call is made to the deleteLanguageArrayRef method to delete the object references that were pointed 

to by jobject pointer reference and in this same deleteLanguageArrayRef method the jobject pointer 

reference is deleted. After deleting these references, the incomingValue’s object reference is deleted in 

the native-lib.cpp’s resetNative method. (Gamua 2020.)  

 
 



58 

5.8 Results 

 
The results for the ObjectType app is presented below (TABLE 12).    The input and output operations 

are shown. RESET and INFO are in the menu. The initial output when the app is opened is shown with 

a display of a dialogue. The dialogue gives directives on app usage. Values are then inputted and re-

trieved. The RESET button clears the UI after each successive input-output operation. 

 

 
 
 



59 

 
 
 
The results for the ArrayOfObjects app is presented below (TABLE 13).    The input and output opera-

tions are shown. In addition there is an “ADD” button to create an array before sending to the native 

side and a COM Button to compare the difficulty of Language objects in an array.  The initial output 

when the app is opened is shown with a display of a dialogue. The dialogue gives directives on app us-

age. The RESET button clears the UI after each successive input-output operation. 

 

 

 



60 

 

 

 

 

 



61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 

6 THREADS 

 
 

Threads are particularly important in programming. In native development threads can only be explicitly 

created. When support for C++ is included in a project, the Java Native Interface (JNI) does not create 

a new thread. The Java thread that the Java method executes in, is the same thread that the native method 

executes in. In case there is need for a new thread, it must be explicitly created. Creation of a thread can 

be done in two ways. The first method is by wrapping the C++ method that needs to be executed in a 

thread in a created Java thread. This is shown below in code snippet 6. (MIT Education 2019; 

StackOverflow 2017.)  

 

 

 

 

 

 

 

 

 

 

 

 

The second variant of native thread creation is to create the thread on the native side using the POSIX 

PThread API. In this case, a new thread is created but it needs to be attached to the Java Virtual Machine 

and the interface pointer can then be extracted in case it is needed. This is the type that will be used in 

this project. Note should be made that the interface pointer cannot be shared between threads but the 

JavaVM can be shared. In this chapter a look is going to be taken at how a native thread can be created 

(MIT Education 2019; Emory College of Arts and Sciences 2020; IBM Documentation 2020.) 

 

 

 

 

CODE SNIPPET 6. Native method wrapped and executed in created java thread 



63 

6.1 User interface  

 

The user interface is simple and shown in figure 19. There is an EditText that allows the user to enter 

numbers. This number is the maximum number primes can be printed up to. After inputting the number, 

the user clicks on the START button and the system calculates the primes up to that number and presents 

on the user interface. There is no menu containing RESET and INFO as the apps treated in chapters 4 

and 5. There is however a RESET button on the main UI. The RESET button clears the main UI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2 Simple class diagram relationship 

 

The class diagram is shown in figure 20. The main points to note of here is that the NativeMsClass  

FIGURE 19. User interface for NativeThread app 



64 

declares the native methods and implements the NativeListener interface methods. In the NativeListener 

interface methods are declared and these methods will be implemented in the MainActivity class. The 

NativeMsClass is a compositor class to the NativeListener interface. There is a ThreadVariable struct 

on the native side that is used to hold some variables. These variables are used by the thread and the 

thread methods.(Gamua 2020.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.3 Detail look at classes 

 

The class diagrams are shown in table 14. MainActivity has private data members that reference the 

various Views that are shown on the user interface. The NUMBER PER LINE defines the number of 

primes to be outputted per line. The count variable keeps track of the total number of primes outputted. 

maxPrimeInt saves the highest number the computation will be done up to.  MainActivity also has Java 

methods that are used to call native methods from the NativeMsClass. The resetMainUI method clears 

the user interface. There is no need to free memory in the native side when the user interface is cleared 

as the ThreadVariable  struct’s pointer object defined in the runThread method of the native-lib is auto-

matically deleted after the thread created in the native-lib is detached. The startNativeThread starts the 

native method. The MainActivity class also implements NativeListener’s methods.  The NativeListener 

interface is implemented by the NativeMsClass. NativeMsClass also has a declaration of the native 

methods, a method to send information back to the MainActivity in order to build a string that holds all 

FIGURE 20. Simple Class Diagram Relationship 



65 

the primes and a method that would be called to output on the user interface. The ThreadVariables struct 

has members to hold the JNI interface pointer, a pointer to the Java Virtual Machine, a variable of the 

pthread_t class to hold the ID of the created thread and a variable to hold the upper computational limit 

which is entered by the user. Various methods exist in the native-lib to start the thread, run it and compute 

the prime. These methods are detailly explained in the section 6.4. (Gamua 2020.)  

 

 

 

 

 

 

 

 



66 

 

 

6.4 Program description 

 

Upon launching the application, the START button is enabled while the RESET button is disabled. There 

are onClickListeners attached to the START and RESET button. Upon entering an integer type greater 

than or equal to 2 and clicking the START button the onClickListener attached to the START button is 

called. This executes the method startNativeThread which calls the startNativeThread of the NativeM-

sClass with the help of the myWorker object. In the startNativeThread method of MainActivity, the 

START button is disabled. (Gamua 2020.)  

 

 

6.4.1 In native-lib.cpp 

 
The startNativeThread creates a global variable out of the current object. This global variable is saved 

in the myLock jobject. This will be used to synchronise or pass a monitor to in the critical section when 

the thread is started. The native thread is started with the method startThread. The JavaVM object must 



67 

be passed to this method as this will be used to retrieve the interface pointer. In the startThread(JavaVM, 

nInteger) method, the JavaVM object is saved in one of the members of the ThreadVariable struct. The 

number which the primes will be printed up to is also saved into one of the members of the ThreadVar-

iable struct. The lAttributes reference of the pthread_attr_t struct reference contains the properties of the 

new thread. The thread is then started using the syntax below (CODE SNIPPET 7).  (MIT Education 

2019; The Fossies Software Archive 2020; Gamua 2020.)   

 

                
 

 

 

 

 

The properties of the new thread are contained in the variable attr. The threadID is the identifier for the 

new thread. The start_routine is the name of the new function that the new thread will execute. In the 

case of this project it is runThread. The start_routine is passed a parameter of type void *. The return 

type of start_routine is void*. The argument that will be passed to the start_routine function is arg. In 

the case of this project the void pointer passed must be casted back to a ThreadVariable pointer. If the 

thread is created successfully, the pthread_create() method returns 0. (Emory College of Arts and 

Sciences 2020.) 

 
 
 

 

 

 

 

 

 

In the runThread method found in native-lib.cpp the void pointer is casted back to a ThreadVariable 

pointer. An object of the JavaVMAttachArgs structure is used to further input information about the 

thread.  If the thread is successfully created, AttachCurrentThread function returns JNI_OK and the JNI 

interface pointer is saved in the JNIEnv argument address specified in the AttachCurrentThread function.  

CODE SNIPPET 8. start_routine of native thread 

CODE SNIPPET 7. Syntax to start native thread 



68 

The GetMethodID API is then used to identify the setStringBuilder and setUI methods of the NativeM-

sClass. The parameters of the GetMethodID are a class descriptor jclass object which was heretofore 

made global and identifies a class, the name of the method and the signature of the method. In the while 

loop the monitor is passed to the myLock object to synchronise. Between the MonitorEnter and Moni-

torExit the primes are calculated, and a call is made using the JNI API CallVoidMethod to the setString-

Builder method of the NativeMsClass which then calls the setStringBuilder of the MainActivity class 

through the interface object cListener. In the setStringBuilder of the MainActivity class, the primes are 

added to the StringBuilder object str. In the last iteration of the while loop the setUI method of NativeM-

sClass is called. This method then calls the setUI method of the MainActivity through the cListener 

object. This call enables the RESET button and prints the calculated primes. On leaving the while loop, 

the JavaVM object must be called to detach the thread. (MIT Education, 2019; Oracle Documentation 

2017; Gamua 2020.)  

 

 

6.4.2 On the Java side 

 
On the Java side the init method of the MainActivity class resets the main variables when the app is 

launched.  In the startNativeThread method of the same class, the native method startNativeThread de-

clared in the NativeMsClass is called using the myWorker object. The setStringBuilder method of main-

Activity builds the stringBuilder that would be eventually displayed on the UI. There is one method 

worth mentioning in the MainActivity class. The setUI method.  This method needs to call the 

runOnUIThread method as shown below (CODE SNIPPET 10). This is the only way the view, in this 

case the RESET button can be touched.(Gamua 2020.)  

 

 

 

 

CODE SNIPPET 10. Call to runOnUiThread in setUI method of MainActivity class 



69 

6.5 Results 

 
Presented below in table 15 is a result. It shows the primes calculated up to 1000.  The primes are cal-

culated and displayed 10 per line. Upon launching the app, the START button is enabled, and the RESET 

button disabled. The START button is disabled after it is clicked, and the RESET button enabled. The 

RESET button clears the UI and cleans the memory on the native side. The results are displayed inside 

a ScrollView. 

 

TABLE 15. Results for native thread 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) limit entered b) output 



70 

7 STRUCTURES 

 
 
Copying or Mapping C or C++ struct members to Java is a feat worth achieving. Java does not have a 

struct data structure so copying the C++ struct data structure to a corresponding Java data structure 

cannot be talked of. An attempt can be made at mapping struct members to a corresponding Java class 

member. As this chapter will eventually show, there is no automatic way to copy C++ struct members 

to Java in such a way that the C++ struct variable can be referenced and manipulated from Java. Code 

has to be written manually that will copy or map each individual C++ field of the struct to a Java field 

class member. This is what is being attempted by this chapter. 

 

 

7.1 User interface and activity diagram 

 

The user interface on launching the activity is presented below (Figure 21).  In the user interface, there 

is a TextView that displays the output from a stringBuilder object. Below the TextView, there are three 

buttons. The first button PRINT OBJ prints the current object. The second button FILL N GET UPD 

OBJ passes this current Java object to the C++ native side so that the Java object’s field could be set by 

the struct’s members and sent back to the Java class to be printed.  The RESET button is the last button 

on the far right of the UI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 21. User interface for CopyingStructInfo app 



71 

In this final chapter, there is no need to create an activity diagram. The activity is simple and sequential 

following the pattern of the buttons from left to right. When the app is launched the PRINT OBJ button 

is active while the other 2 buttons are disabled. Clicking this button prints the current Java object of the 

ITDepartmentInfo class that was instantiated in the init() method of the Java’s MainActivity class. Im-

mediately thereafter the FILL N GET UPD OBJ button becomes enabled while the other two buttons 

are disabled. Clicking this button will send the current Java object to the native side for its members to 

copy or be set by the struct’s members. Clicking this button also enables the RESET button. Clicking 

the RESET clears the TextView and the Stringbuilder object, instantiates a new ITDepartmentInfo class 

object and deletes the current struct object. (Gamua 2020.)  

 
 
7.2 Brief look at relationship between classes 

 
The class diagram is shown below (Figure 23). The main points to note of here is that the NativeMsClass  

defines the native methods and implements the StructCopyListener. In the StructCopyListener interface 

methods are declared and these methods will be implemented in the MainActivity class and the Na-

tiveMsClass. The NativeMsClass is a compositor class to the StructCopyListener interface.  There is a 

LecturerInfo struct. This is found on the native side. (Gamua 2020.)  

 
 

 

FIGURE 23. Relationship between classes 



72 

7.3 Detailed look at classes 

 
The details of the classes are shown in table 16. The MainActivity’s resetNativeClrUI clears the user 

interface and calls the native method resetNative to clear the memory used in the native library. It also 

instantiates a new ITDepartmentInfo object. printJavaClsObject prints the information which is held by 

the pITInfo object. The fillAndGetStructInC calls the fillAndGetStructInNative. The later method is 

passed the pITInfo object. This object’s members will be edited in the native-lib by replacing them with 

the LecturerInfo struct object’s members. The MainActivity’s printStruct method is automatically called 

from the native side when this editing is over. This method prints the new state of the pITInfo object. 

MainActivity also implements the StructCopyListener interface. The ITDepartmentInfo is a simple class 

with members to hold the lecturer’s name and height. The NativeMsClass has a declaration of the native 

methods and implements the StructCopyListener interface. The LecturerInfo struct has a pointer to a 

constant char as member to hold the name of the lecturer and an int member for the height of the lecturer. 

Note should be made that there must be a one to one correspondence between the struct members and 

the members of the Java class receiving the struct’s members. This is the reason why the class ITDe-

partmentInfo has 2 class members just like the struct. (Gamua 2020.)  

 

 

 

 



73 

 

 

7.4 Program description 

 
On clicking the PRINT OBJ button program execution goes to the printJavaClsObject method because 

of the onClickListener attached to this button. Here the current Java object is added to the StringBuilder 

object str and printed on the textView textView1. This button immediately becomes disabled and the 

next button FILL N GET UPD OBJ becomes enabled while the RESET button stays disabled. A visible 

outcome of clicking this is that the current objects information is printed on the output. (Gamua 2020.)  

 

On clicking the FILL N GET UPD OBJ program execution goes to the fillAndgetStructInC method. 

Here 3 things happen. The myWorker object calls the NativeMsClass’ fillAndGetStructInNative 

method. This in turn launches the corresponding native method in the native-lib.cpp. The FILL N GET 

UPD OBJ button then becomes disabled and the RESET button becomes enabled. A corresponding result 



74 

on the user interface is that the struct members that have now been copied to the Java class object mem-

bers are printed on the output. (Gamua 2020.)  

 

On clicking the RESET button, program execution passes to the resetNativeClrUI method. Here the 

TextView object textview1 is cleared, the Stringbuilder object is cleared, a new ITDepartmentInfo class 

object instantiated, the native method resetNative is called and the RESET button is disabled while the 

PRINT OBJ is enabled. A visible outcome is that textView1 is cleared, therefore clearing the user inter-

face. (Gamua 2020.)  

  

The native-lib is connected with the mainActivity through the MainActivity’s fillAndgetStructInC 

method and the resetNativeClrUI methods that connect to the native-lib via methods from the nativeM-

sClass. Clicking the FILL N GET UPD OBJ launches the fillAndgetStructInC method. In this method 

the myWorker object calls the NativeMsClass’ fillAndGetStructInNative native method. On the native 

side a new LecturerInfo struct object is instantiated in the native-lib’s native fillAndGetStructInNative 

method. The fillInfo method is used to fill information about this struct variable. This information will 

be used to set the various members of the ITdepartmentInfo class’ object members that is being refer-

enced on the native side. In order to access the Java int field of the ITDepartmentInfo class, the field ID 

of the int field mHeight must be determined. This is done with the GetFieldID API which takes as pa-

rameters a reference object to the class in question. This reference had been cached as a global variable 

in the JNI_onLoad method. Its type is a jclass. The next parameter is the field name and finally the last 

parameter is a Java type of the field name indicated by the “I”. After getting the field ID, the setIntField 

API is used to set the particular int field of the object whose reference was passed in JNI. A new string 

is created using the NewStringUTF API. This takes as parameter the string that is being referenced by 

the pointer member of the struct object.  The GetFieldID is used to get the field ID of the Java String 

class member. The setObjectField API is used to set the String member to the string which was created 

using the NewStringUTF API. The CallVoidMethod method of the JNI API is then used to call the 

printStruct method of the NativeMsClass. The CallVoidMethod method takes as parameters the envi-

ronment variable, the method ID of the method to be called whose value had been determined and cached 

in the JNI_onLoad() method and the actual parameters to be passed to the called method. Clicking the 

RESET button will launch the resetNative method of the NativeMsClass which will then launch the 

corresponding native method in the native library native.lib. The function in this library does just one 

thing, delete the struct object.   (MIT Education 2019; Oracle Documentation 2017; Gamua 2020.)  

 



75 

7.5 Results 

 
Presented below is one result (TABLE 17). In the first image from the left, the PRINT OBJ button has 

been clicked displaying the current object.  This button becomes disabled immediately after it is clicked. 

The FILL N GET UPD OBJ button becomes enabled. Clicking this button generates the second image 

on the right. In the second image the object has been filled with the contents of the struct in C++ on the 

native side. The first 2 buttons are then disabled and only the RESET button is enabled. RESET clears 

the UI. 

 

 



76 

8 CONCLUSION 

 
 
In order to develop apps, a programmer can rely only on languages like Java or Kotlin. In these languages 

the programmer is presented with a vast development toolset to do almost anything he/she wants to do. 

Apps therefore can be programmed exclusively in these languages. But as mentioned in the introductory 

chapter, code leveraging to C++ adds more power to the programmer’s arsenal. In addition to the reasons 

given in the introductory chapter to use NDK for app development, other considerations need to be taken 

into account when developing apps. Such considerations may warrant the use of NDK. Such considera-

tions are explained in the following paragraphs. (Android Developers Documentation 2019). 

 

If an app were to be developed that has to intensively use the CPU for certain tasks, it will be a good 

idea to leverage part of the code that uses much CPU time to C++. If this is not done, this will affect the 

performance of the app as the CPU will run more cycles in the Java code and less for the hybrid code. 

Java compiles to bytecode and to run on an Android platform, a JVM has to be run contrary to C++ that 

is compiled to the machine code of the phone. This means the CPU has to work harder to run a Java only 

program than to run the hybrid program. 

 

The performance of apps that use much memory will be improved if sections of such apps are written in 

C/C++. If such apps were written purely in Java, more memory will be needed, and this will ultimately 

stand on the way of performance. A JVM has to periodically run the garbage collector and this is an 

expensive process that requires memory and takes up CPU time. In an app like a mobile game, the frames 

have to be updated periodically. This update requires more memory and CPU usage so if a JVM also 

has to run the garbage collector at the same time that a frame is being updated, the performance will 

surely be affected. This is also true for apps that perform physics simulations. 

 

If an encryption algorithm is to run on a mobile platform, it is evident that the prospects for such tradi-

tional Java source code protection to perform below the expected target, are quite considerable. Encryp-

tion in Java is accomplished with the custom class loader encryption and codes from the custom class 

loader can be easily decompiled. Encryption and decryption code algorithm, when run using C/C++ may 

be much safer and difficult to crack. In this light, it would be wise to draw on the loftier qualities of 

C/C++ to achieve a much reliable encryption and decryption, whenever the situation demands in mobile 

apps. 

 



77 

 

REFERENCES 

 

Android Developers Documentation, 2019. Android Runtime (ART) and Dalvik. Available at: 

https://source.android.com/devices/tech/dalvik/ Accessed:  22 October 2019. 

 
Android Developers Documentation, 2019. Getting Started with NDK. Available at: 

https://developer.android.com/ndk/guides Accessed:  20 October 2019. 

 
Android Developers Documentation, 2019. Configure Your Build. Available at: 

https://developer.android.com/studio/build Accessed:  20 October 2019. 

            
Android Developers Documentation, 2019. JNI Tips. Available  at: 
https://developer.android.com/training/articles/perf-jni Accessed:  11 January 2020. 

 
 

Booch, G., Rumbaugh, J. & Jacobson, I., 2005. Unified Modelling Language User Guide. Second 

edition. Palo Alto: Addison Wesley. 

 
CMake, 2019. Build with CMake. Build With Confidence. Available at: https://cmake.org/ Accessed:  

25 October 2019. 

 
Emory College of Arts and Sciences, 2020. Parallel Programming with PThread API.  

Available at: http://www.mathcs.emory.edu/~cheung/Courses/355/Syllabus/91-pthreads/join-

threads.html Accessed: 20 February 2020. 

 
Gamua, E., 2020. ElvisGamua/playing_with_jni. Available at: 

https://github.com/ElvisGamua/playing_with_jni 

Accessed:  3 July 2020. 

 
Geeks for Geeks , 2020. Unified Modeling Language (UML): Activity Diagram.  

Available at: https://www.geeksforgeeks.org/unified-modeling-language-uml-activity-diagrams/  

Accessed:  15 January 2020. 

 
IBM Documentation, 2020. Library Functions.  Available at: 

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.1.0/com.ibm.zos.v2r1.bpxbd00/keywo

rd.htm Accessed:  16 February 2020. 



78 

 
Krajci, I. & Cummings, D., 2013. Android on X86: An Introduction to Optimising for Intel 

Architecture. First edition. New York: Apress. 

 
         Liang, D., 2015. Introduction to Java Programming. 10th Edition. New Jersey: Prentice Hall. 

 

Liang, S., 1999. The Java Native Interface: A Programmers Guide and Specification. First edition. 

Palo Alto: Addison Wesley. 

 
MIT Education, 2019. Invoking Java Virtual Machine.  

Available at: https://web.mit.edu/javadev/doc/tutorial/native1.1/implementing/invo.html Accessed:  1 

February 2020. 

 
MIT Education, 2019. JNI Functions.  

Available at: https://web.mit.edu/java_v1.5.0_22/distrib/share/docs/guide/jni/spec/functions.html 

Accessed:  8 December 2019. 

 
MIT Education, 2019. The Java Native Interface.  

Available at: http://web.mit.edu/javadev/doc/tutorial/native1.1/implementing/index.html Accessed:  15 

October 2019. 

 
MIT Education, 2019. Threads and Native Methods.  

Available at: https://web.mit.edu/javadev/doc/tutorial/native1.1/implementing/sync.html Accessed:  8 

December 2019. 

 
Oracle Documentation, 2019. Java Native Interface Specification Contents.  

Available at: https://docs.oracle.com/javase/10/docs/specs/jni/index.html Accessed:  17 September 

2019. 

 
StackOverflow, 2017. JNI Thread Model?.  

Available at: https://stackoverflow.com/questions/38378901/jni-thread-model Accessed:  7 October 

2019. 

 
The Fossies Software Archive, 2020. Pthreads: Data Structures.  

Available at: https://fossies.org/dox/pthreads-3.14/annotated.html Accessed:  4 February 2020. 

 



 

Vogel, L. & Scholz, S., 2012. Building Android Applications with Gradle: Gradle Tutorial.  

Available at: https://www.vogella.com/tutorials/AndroidBuild/article.html. Accessed:  November 

2019. 

 


