

Animal Observation Using Motion and Object Detection

Bachelor’s thesis

Valkeakoski, Electrical and Automation Engineering

Fall 2020

Hung Le

Khang Truong

ABSTRACT

Bachelor of Electrical and Automation Engineering
Valkeakoski

Author Hung Le, Khang Truong Year 2020

Subject Animal Observation Using Motion and Object Detection

Supervisor(s) Raine Lehto

ABSTRACT

This thesis project was commissioned by Tentrio Oy. In the project, hours-
long videos that were taken by a fixed camera, often overlooking a room,
were processed. The goal was to make a program that would take these
video files and based on certain criteria, would output edited videos that
were essentially relevant sections of the input videos. More specifically,
the primary goal of this project was to make a program that could detect
the presence of motion in video frames. Additionally, as a secondary
objective, the program was to also look for the presence of cats or dogs.
Any segment of the video featuring these elements was to be combined
into a single output video. The timestamps of wherein the relevant video
segment took place in the video were also to be recorded.

To achieve this, Python 3.6 was used as the main programming language
along with several libraries. Motion detection was implemented using
OpenCV and FFmpeg. On the other hand, the part of the program that
handled animal detection was done using TensorFlow, an open source
machine learning library. The program needed to be set up as an online
service running from a server that would process any video file uploaded
by an authenticated user. The server would also allow the user to
download the output videos and timestamps. The hardware in which the
server ran on was a remote machine provided by the commissioning party.
The server was written in Python with Django as the web framework.

In the end, a motion detection program running on a remote server was
created. On the other hand, object detection was not implemented due to
time constraints. Properly integrating object detection into the program
would likely take too much time. Moreover, the commissioning party was
satisfied with the results which was why object detection was left out in
the final product.

Keywords Animal observation, machine learning, object detection, video editing

Pages 35 pages including appendices 1 page

CONTENTS

1 INTRODUCTION ... 1

2 MOTION DETECTION ... 2

2.1 Introduction... 2

2.2 Operation .. 2

2.2.1 Frame skipping .. 3

2.2.2 Delay timer .. 3

2.2.3 Error ... 5

2.3 Frame differencing .. 5

2.3.1 Frame difference ... 5

2.3.2 Filters ... 6

3 OBJECT DETECTION ... 7

3.1 Theory ... 8

3.1.1 Introduction ... 8

3.1.2 Deep learning .. 8

3.1.3 Faster-RCNN .. 10

3.1.4 Model operation .. 11

3.2 Methodology ... 12

3.2.1 Dataset ... 13

3.2.2 Configuring training process .. 15

3.2.3 Training and evaluation process .. 15

3.2.4 Process summary ... 20

3.2.5 Results ... 20

4 VIDEO TRIMMING .. 23

4.1 FFmpeg .. 23

4.2 Trimming ... 23

5 EXTRA FEATURES ... 24

5.1 First part skipping .. 24

5.2 Period before and after motion .. 24

6 SERVER ... 24

7 CONCLUSION ... 27

REFERENCES .. 28

Appendices
Appendix 1 Example XML File

1

1 INTRODUCTION

With the rise of CCTV and video surveillance, more and more people
decide to equip their houses with a home security camera system.
However, due to the fact that the system is mostly required when there is
nobody home, the majority of the footage is of empty rooms. Therefore, a
motion detector could be used in order to sort out the important parts of
the video. This detector would be managed by OpenCV, an open source
library mainly aimed at computer vision and would be capable of operating
in a Linux environment, where the bulk of the project would be written
and operated on according to the wish of the third-party company. Python
is a robust and flexible programming language, with many options
supporting image and video processing and manipulating. Linux is an open
source operating system, allowing many customized features tailored to
each user’s needs.

Furthermore, if the house owner has pets, more attention is demanded to
keep track of them. Thus, an object detector might be applied to solve this
issue. The object detection would be handled by TensorFlow through the
use of machine learning. TensorFlow is a free and open source software
library with many applications such as language detection, voice
recognition and, relating to this project, image processing.

Afterwards, since just knowing when things happen still requires one to
search for them in the videos, some kind of video processing program was
needed to trim out the unnecessary parts. Hence, FFmpeg was used to
manipulate the files in this project to get the desired results. Ffmpeg is a
free and open source software project that includes tools which can be
used for transcoding, streaming and playing multimedia files.

Finally, the goal of the project was to have a website where unprocessed
videos could be uploaded, and be able to download the finished videos
after they had been processed by the program. For this task, the company
provided access to their server, while Django was used as the web
framework. Django is a free and open source web framework based on
Python.

This project was conducted by two people, Hung Le and Khang Truong. Mr
Le was in charge of object detection and web server section. Mr Truong
was responsible for the motion detection and video trimming segment.
Both managed the data annotation for object detection.

2

2 MOTION DETECTION

The first part of this project deals with motion detection. In particular, an
algorithm was used to pick out any movements during the length of the
video. Most importantly, the main point of this was to trim down the video
to the relevant parts. OpenCV, a free and open source computer vision and
machine learning software library, on Python 3.6 was used to read and
process the video in order to find the movements. (OpenCV team, 2020)

2.1 Introduction

Motion detection is the use of one or multiple technologies and software
algorithms to detect moving objects within a specific area. There are
various ways to detect motion, like using sensors to measure changes in
light, infrared, sound, ultrasound, vibration, magnetism or even radio and
microwave. In the case of motion detection in videos, frames differencing
or background subtraction is used there instead.

Motion detection has many applications in everyday life, such as automatic
doors, lightings, sinks, flushers, dryers, to something like intruder alarms.
In the field of computer vision, such things as traffic controlling, intelligent
video surveillance and even human behavior identification are possible.
(Motion Detection, 2020)

2.2 Operation

Figure 1. Flowchart of how motion detection works

A basic frame by frame comparison was used in order to detect motions.
First the video was read one frame at a time. Then, the absolute difference
between two adjacent frames, if there was any, was found. Next, the

3

frame difference image got converted into grayscale, then Gaussian Blur
for easier processing. Afterwards, the image was transformed into purely
black and white, any pixel that had a value higher than a predetermined
threshold was assigned white while the rest as black, in order for the
contrast to stand out more.

The final comparison picture was essentially the way to determine
whether there were motions or not. If the number of white pixels was
higher than a limit, it means the second frame was different enough from
the first frame to say that there was motion happening.

2.2.1 Frame skipping

The videos used for this task often had high file sizes, usually many hours
long, and processing them tended to take several times the length of the
videos. In order to cut down the procedure time, a frame skipping
technique was employed. Basically, the program would only check and
work on the video frames after an interval of predetermined number of
frames.

2.2.2 Delay timer

Figure 2. Time delay relay

4

Motion detection worked using a threshold, meaning if the number of
pixels in the difference frame was higher than the threshold then there
was motion, and no motion if lower. Usually, the pixel numbers would
jump above and below the threshold a lot and make the recordings and
videos look choppy and disjointed. Therefore, in order to smooth them out,
A kind of time delay was used.

As demonstrated in Figure 2, while checking for motion, whenever the
detector could not find any movement, instead of immediately concluding
that it did not find anything, the program would keep observing for a bit
longer. If the detector discovered any motion during this time, it would
reset the timer and start looking again.

However, if the detector still had not noticed any movement after the
timer had finished, then the program could now declare that the current
motion had ended and stop noting down this section. Then the program
would wait until the detector picked up the next sign of movement again.

Figure 3. Running status of motion detection

The program ran detection and printed out the frame position of the start
and end of motion on the terminal for easy tracking. The timestamps were
then extracted into a log file.

Figure 4. A timestamp log

5

2.2.3 Error

For unknown reasons, the built-in timestamp tracker of OpenCV did not
work correctly. The videos given by the third-party company had two types,
30 fps and 50 fps. The tracker worked accurately for the videos with 30 fps,
but did not do the same with the 50 fps ones. The timestamps were two
times slower than the true time of the videos in the latter situation.

A temporary solution was devised. If the video has 30 fps, then the
timestamp log will record it as normal. If the video has 50 fps, the
timestamp will be multiplied by two and then be recorded to the log.

2.3 Frame differencing

Motion was detected by using frame differencing, alongside with some
filters. Frame differencing is a technique where the computer compares
the difference between two video frames. If there are differences,
something has changed. Most of the time, these are just “noise” from the
environment like shadows, lighting, or a part of the camera devices
themselves like auto focus, and brightness correction. Therefore, blur and
threshold should be used in conjunction in order to filter out the
unnecessary parts.

2.3.1 Frame difference

Comparing frames is a common method of detecting motion. Two frames
are put under scrutiny in order to check for the absolute difference
between them. Changes mean something happens, filters and thresholds
are used to sort out the noise.

Figure 5. Empty room (left) and a room with an animal (right)

As seen in Figure 5, since the camera is fixed, the background is the same
in both pictures; therefore, any difference while comparing the frames
means that something is moving.

6

Figure 6. Frame difference (left) and Frame after filters(right)

2.3.2 Filters

Figure 7. Grayscale of difference image

Normally, comparison images taken by using the frame differencing
method often have only the sections with movements visible, since the
camera is fixed and thus the background is the same between the frames.

Figure 8. Grayscale of difference image with noise

However, occasionally the camera can pick up minute differences created
by something like lighting or focus shift, and thus create a lot of extra
unnecessary details.

7

Figure 9. Image after using Gaussian smoothing

This can be dealt with by using Gaussian smoothing. It is an image
processing technique via the Gaussian function, it can smooth out the
image and reduce noise and detail.

Figure 10. Image after filtering through thresholding

After that, further cleaning can be done through thresholding. It is another
image processing technique where each pixel currently on the grayscale is
replaced with completely black and white pixels according to a fixed
constant.

3 OBJECT DETECTION

The other half of this project relates to machine learning. More specifically,
machine learning was used to teach the computer to recognize and
identify instances of cats and dogs whenever and wherever they are in the
video. This part of the program would work in conjunction with the motion
detection aspect of the program as another metric to consider during
video editing. TensorFlow 1.14 on Python 3.6 was used as the training
framework for the machine learning model which then will be imported by

8

OpenCV’s DNN library where the model would perform object detection
on videos.

3.1 Theory

3.1.1 Introduction

Machine learning is a field of study in which a computer is trained using
existing data to make predictions or calculations. The aim of the training
process is essentially creating and modifying mathematical algorithms
until the computer can do these tasks satisfactorily. This collective of
algorithms is called a “model”. With this model, the computer can then
perform these tasks on its own without any additional input from human
operators.

Machine learning has a wide variety of applications such as recognizing e.g
speech or text patterns, machine translation, predicting economic trends,
object classification and detection.

3.1.2 Deep learning

For this project, deep learning was utilized to teach the machine learning
model how to recognize the presence of dogs and cats in videos. Deep
learning is a subset of machine learning, which uses (amongst others)
“deep neural networks” (DNN), a type of model architecture.

9

Figure 11. Typical topology of a deep neural network (Artificial neural
network, 2020)

Generally, DNNs consist of many layers. They are, in order of appearance,
the “input layer”, the “hidden layer” and the “output layer”. Each of these
contains many “nodes” or “neurons”. These individual nodes are simple
numbers or variables. All the nodes of a layer are connected to all the
nodes of the previous and next layer, forming a large interconnected
network. The structure of these models somewhat mimics the structure of
the human brain hence the term “neural network”.

DNNs begin with the input layer where the models would receive inputs.
The inputs are then passed through to the hidden layer where they are
transformed as they go. Though the hidden layer may consist of a single
layer (as implied by the above diagram), the hidden layer actually typically
consists of hundreds, if not thousands of layers of neurons. Truly advanced
DNNs may contain thousands of layers with millions of nodes. Each of the
nodes contain variables or their own “weights” and “biases”. Using the
resulting outputs in the “output layer”, the model can then make a
prediction.

From a purely mathematical standpoint, the model is a single massive
equation where every node is a variable with its own weight and bias.

10

Fundamentally, by iteratively adjusting these individual values, the model
can learn to make accurate predictions.

3.1.3 Faster-RCNN

In this project, a model that could perform object detection on videos was
needed, meaning it would scan each frame for objects of interest and
determine their presence in the frame with decent accuracy. For the
project, pre-trained models were chosen because they were already quite
good at detecting whatever object they were trained on and objects in
general. Moreover, making a model from scratch is not only difficult but
quite time-consuming. There are a number of publicly available machine
learning models commonly used for object detection that are pre-trained
using public datasets (such as COCO, and Open Images).

The chosen model was of type “Faster RCNN”, a type of DNN. RCNN stands
for “region convolutional neural network”. Faster RCNN is a tried and
proven object detection model type, the third iteration of the RCNN type
architecture. Faster RCNN was picked for a number of reasons:

• Generally, when using object detection models, one has to strike a
balance between speed and accuracy. Faster RCNN performs excellently
for current needs in both categories.

• The data that is used to train is marked with bounding boxes and the data
that is needed to continue training should be the same. This makes it
easier to adapt other datasets into a suitable format. For example, The
Mask RCNN model type is indeed more advanced but requires “masks”
that have to be more clearly defined and therefore more difficult to
prepare data for.

• The team already had personal experience using this particular model
and were satisfied with the result.

Figure 12. Images marked with masks (left) and bounding boxes (right)
(Everingham, Gool, Williams, Winn, & Zisserman, 2012)

11

3.1.4 Model operation

Figure 13. General outline of Faster RCNN architecture (Ren, He,
Girshick, & Sun, 2016)

The general operations of the model can be outlined based on the
following reports: “Speed/accuracy trade-offs for modern convolutional
object detectors” which contains a general summary of different object
detector architectures and “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks” written by the creators of
Faster-RCNN. (Huang, et al., 2017) (Ren, He, Girshick, & Sun, 2016)

The inputs for these models are images which can be represented by
multidimensional arrays (tensors). Each pixel in an image has a R, G, B value
corresponding to the 3 color channels. For example, an image with the
height of 800 and the width of 600 would be represented by the tensor
[800x600x3]. The desired output is that the objects of interest are
accurately classified as well as localized by bounding boxes coordinates.

The input begins by passing through layers of convolutional networks to
generate feature maps. These layers do this by using “kernels” or “filters”
to summarize the images without losing the general topological details of
the image. The result has a much smaller dimension compared to the
original, reducing the computational burden for later calculations.

12

The feature map is passed to the region proposal network. In the network,
the image is processed by a feature extractor, which is essentially an
internal pre-trained neural network. The choice of the feature extractor
can really set models’ performance apart from each other. Here the
feature extractor uses what are called “anchors” of different scales and
aspect ratios. These anchors will then “slide” over the feature
map. Looking through the anchors, the model chooses anchors that are
likely to contain the object and outputs region proposals as a set of
bounding boxes, each with a score of how sure the model thinks there is
an object inside. Note that the model still hasn’t classified what the object
inside the bounding box is, just that something is there.

Figure 14. Max pooling example (Stanford University, 2020)

In the earlier iteration of the architecture, each region proposal would
have to be cropped out of the feature map and pass them through to the
classifier. It can be a very computationally expensive operation as an image
can have many proposals. The model mitigates this with “region of interest
pooling”. Using the region proposals, crops are made from the feature map
from the previous step. These crops are all scaled to a predefined size using
“max pooling”. They are then passed as feature maps to the classifier
where their object class is determined and their bounding boxes adjusted
to fit the object in the frame better.

3.2 Methodology

The model was pre-trained using the COCO (Common Object in COntext)
dataset that covers 80 classes of objects such as person, airplane,
computer, apple, etc. It contains about 123,000 images with about
886.000 instances of those objects in the images. (COCO Consortium,
2020) Most notably, those classes include cats and dogs. This means the
pre-trained model was already trained to detect these animals. However,
empirical data had shown that even though the model was decent at what
it does, it could be improved by continuing to train the model further,
aiming to specialize in detecting cats and dogs, which could result in better
performance, improving processing speed and accuracy.

13

TensorFlow Object Detection API (TF OD API) was used to train the model.
It is an open source framework built on top of TensorFlow, a machine
learning library for Python. It is an open source repository containing
various tools to ease the training and deployment of object detection
models. The tools are written in Python. The TensorFlow version used was
1.14 running on Python 3.6. The pre-trained model is also taken from
TensorFlow’s object detection model zoo, specifically: “Faster RCNN
Inception V2 COCO” (Google LLC, 2020). The name means that the model
is using the Faster RCNN architecture with Inception V2 as its feature
extractor, and the model was trained using the COCO dataset.

3.2.1 Dataset

In order to train the model, a dataset was needed. The building blocks of
the dataset were images with bounding box annotations. In machine
learning, these bounding boxes in training examples are often referred to
as “ground-truths”. A training example could be created with “LabelImg”,
an open source image annotation tool (Tzutalin, 2020).

Figure 15. LabelImg example

The images were loaded into the program where the user could draw
bounding boxes which indicated the object’s location and assigned a class
to each of those boxes. Having done so, the changes could be saved. The
program outputted these annotations as xml files in PASCAL VOC format.
Most notably, the xml file contained the coordinates (upper left and lower

14

right points) of the bounding boxes. Refer to Appendix 1 as an example
XML file.

There are many freely available datasets that can be used. The datasets
that were chosen are:

• PASCAL VOC 2012 Challenge (Everingham, Gool, Williams, Winn, &
Zisserman, 2012): A public dataset for the 2012 PASCAL VOC competition
which contains 17,125 images with annotation, both bounding boxes and
segmentation masks. The PASCAL VOC’s dataset contains classes (a total
of 20) and examples that were irrelevant and thus were removed. After
filtering out the unnecessary data, there were 2,434 images left for usage.

• Stanford Dogs Dataset (Stanford University, 2020): A public dataset which
contains 20,580 images of 120 breeds of dogs. Each breed had an its own
label. Stanford’s dataset already came with the bounding box
annotations though some adjustments were still needed to be made.
There was no need for the classification of individual dog breeds and so
the label names were all changed to simply “dog”. The “filename” xml
element referred to something else rather than the name of the image.
This problem was rectified.

• Kaggle Dogs Vs. Cats (Kaggle, 2020): A public dataset provided for an
image classification contest. The dataset consisted of 25,000 images in
total with 12,500 images of cats and 12,500 images of dogs. Because
Kaggle’s dataset was originally used for image classification, it did not
have annotations. Therefore, the bounding box annotations had to be
made image by image with LabelImg. During this process, some images
that were thought to be unsuitable (too pixelated, corrupted, etc.) were
removed. A good part of the dog images also went unused as it was
considered that there were sufficient dog related data from Stanford’s
dataset. In the end, 12,426 cat images and 2,501 dog images were
annotated, a total of 14,927 examples.

All in all, the dataset contained about 37,940 images of cats and dogs. In
machine learning, data is often split into a train set and a validation set.
The train set is used to teach the model how to do its task properly. The
model would try to make predictions on an example, which are then
compared with the actual bounding boxes coordinates. The model’s
parameters are then adjusted accordingly. On the other hand, the
validation data is used to evaluate the model’s ability against unfamiliar
data. This set should not have any overlap with the training set and should
not be used in training as it will create biases. As a general rule of thumb,
the train/validation set ratio should be 80/20. However, depending on a
variety of factors (such as model architecture, data variations, etc), the
ideal ratio could be 70/30 or 95/5. Often the ratio which works best for the
problem at hand can only be found by experimenting. During training, the
ratio of about 80/20(for the train and the validation set respectively) was
observed to be what works best for the model. With the same ratio applied
to all the individual datasets, there were 30.500 training examples and
7.440 evaluation examples.

15

Additionally, TF OD API required the dataset to be in TFRecord (TensorFlow
record) format. In this format, the training examples were serialized into
large “record” files (100-200 MB) which marginally improved processing
efficiency. The conversion was done with a Python script.

3.2.2 Configuring training process

With the dataset ready, configuration of the training job was needed.
Notably, configuration could have major impact on the model’s
performance. The training process takes a “config” file to set parameters
for the training process. There were many parameters that can be set such
as numbers of classes, paths to external files, set anchor boxes’ size and
aspect ratios, etc. The most important parameters (also known as
hyperparameters) are as follow:

• Number of training steps: determined the number of training steps
the model will go through. During each step the model would
process as many training examples as the “batch size” parameter.
The model was updated at the end of each step. It was important
to tune this parameter so that the model did not underfit or overfit
(concepts that will be explained later).

• Batch size: the number of examples the model would train during
each step. The larger the batch size, the more data was being fed
into the model before update. In general, a larger batch size led to
better model performance but the training process would be
slower and memory consumption would increase. It was generally
recommended that the batch size should be as high as the
hardware can allow.

• Learning rate: determined how much the model should adjust itself
after each training pass. A learning rate that was too high means
adjustments may overshoot. If it was set too low, the model would
have taken too long to reach the target accuracy. The learning rate
could be set to change under certain conditions.

Although there are general rules of thumb as to how a user should set
these parameters, fine-tuning the configuration for a specific machine
learning problem could be a major obstacle during the training process
since there can be many factors affecting the outcome. Arriving at the
optimal training parameters was often a matter of trial and error.

3.2.3 Training and evaluation process

Having configured the training parameters and preparing a dataset, the
training can begin. Using “model_main.py” in the TF OD API repository, the
process can be initiated from the command line where training progress
and status can be monitored (Google LLC, 2020). Periodically the program

16

would output “ckpt” (checkpoint) files which contain the values of the
model’s parameters at that point. If for any reason, the training process
was interrupted, it could be continued from that checkpoint file. The
program also continuously outputs “events” files which can be loaded
using TensorBoard, TensorFlow’s visualization toolkit (Google LLC, 2020).
Using TensorBoard, the model’s training progress could be viewed in real-
time.

Figure 16. Example of training output

TensorBoard provides various measurements and visualizations. Various
things could be viewed, such as the model’s structure, its weight values
and their distribution, prediction output examples and most importantly,
the evaluation metrics for the model. These metrics are also displayed on
the command line every time it saves a checkpoint file which is rather
inconvenient. TensorBoard can plot these data points into graphs, allowing
the user to view these metrics in a more visually-intuitive manner. These
metrics are:

• Mean average precision (mAP)

• Mean average recall (mAR)

• Loss

AP and AR are defined by Pascal VOC. To understand what these metrics
mean, it is necessary to understand how the model’s prediction is being
evaluated. First is the concept of Intersection over Union (IoU). IoU is the
area in which the model’s bounding box prediction of the object overlaps
with the ground-truth in the training example divided by the combined
area of both the boxes. The higher the IoU, the more accurately the
model’s prediction of the location of the object was.

𝐼𝑜𝑈 =
Area of Overlap

Area of Union

Whenever the model makes a prediction, it places bounding boxes where
it thinks the object of interest is. Attached to each of them is a class and a

17

“confidence score” (a value between 0.0 and 1.0) which is how sure the
model is about that prediction. Any box with a score lower than a certain
threshold is filtered out. For any box that remains, using the ground-truth
as a comparison, if its predicted class is correct and its IoU value is over a
threshold, it is considered a “true positive”. If the prediction fails to meet
any of the 2 criteria, it is considered a “false positive”. If the model fails to
identify the presence of an object where it should have, it is considered a
“false negative”.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP

Precision is defined as the number of true positives divided by the sum of
true positives and false positives. In other words, the higher the precision,
the more likely the model’s prediction is correct. On the other hand, recall
is defined as the number of true positives divided by the sum of true
positives and false negatives.

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN

In this case, recall measures whether the model has detected all the
relevant objects or not.

There is an inverse relation between precision and recall. At each
confidence score threshold value there is a corresponding pair of precision
and recall value which can be arranged as a measure called the
precision/recall curve. Although assessing the model’s performance using
this curve is possible, it is not intuitive for comparing different models or
monitoring performance over time. A numerical value would be better for
these tasks which is what AP is. It is the averaged value of precision across
all recall levels. More specifically, AP is defined as the area under an
interpolated precision/recall curve. Similarly, AR is also used for model
performance assessment. In short, AR is calculated by averaging recall
values at IoU threshold from 0.5 to 1. The higher the AP and AR value, the
more accurate the model. In addition, there are also the metrics mAP
which is defined as the AP value averaged over all object classes. Same as
mAP, mAR is defined as the mean of AR over all object classes. mAR and
mAP are 2 of the metrics that TF OD API outputs.

18

Figure 17. Average precision(mAP) on TensorBoard

TF OD API uses COCO object detection evaluation metrics as the evaluation
metrics which is a variation of PASCAL VOC’s own metrics. (COCO
Consortium, 2020) They are:

• mAP at IoU = .5:.05:.95: metric calculated by averaging 10 mAP
values. Each value is taken from the IoU thresholds between 0.5 to
0.95 with a 0.05 increment between each threshold value i.e 0.5,
0.55, 0.6...,0.95. This is the metric that COCO considers the most
important. The reasoning is that the way the metric is calculated
would reward models with more accurate object localization more
and penalize ones that don't more.

• mAP at IoU = .5: mAP at IoU threshold of 0.5. This is the metric used
by PASCAL VOC.

• mAP at IoU = .75: mAP at IoU threshold of 0.75. This is the “strict
metric”.

• mAR at Max = 1: mAR given over 1 detection per image, averaged
over classes and IoUs.

• mAR at Max = 10: mAR given over 10 detections per image.

• mAR at Max = 100: mAR given over 100 detections per image.

• mAP and mAR small: mAP and mAR for small objects (area < 32^2
pixels).

• mAP and mAR medium: mAP and mAR for medium objects (32^2 <
area < 96^2 pixels).

• mAP and mAR large: mAP and mAR for large objects (area > 96^2
pixels).

Loss, TF OD API’s third evaluation metric, measures how much the model’s
predictions deviated from the ground-truths. More specifically, things like
how much the model’s prediction bounding boxes overlap with the
ground-truths, how often the model assigns the wrong class to its
prediction, etc. all contribute to loss. The lower the loss, the fewer

19

mistakes are made. TF OD API outputs multiple kinds of loss which are loss
values related to region proposals, loss values related to classification, and
loss in general. In addition, TensorBoard allows the user to compare these
evaluation metrics between different models which is quite a useful
feature.

Figure 18. TensorBoard loading multiple event files at the same time
for comparisons

Figure 19. TensorBoard displaying examples of model predictions

With these metrics, a good idea of how the model was performing could
be had. However, in machine learning, one should be aware of overfitting
and underfitting. Overfitting occurs when the model learns the data too
well, often occurring when it is trained longer than necessary. The model
misinterprets the random noises and variations in the data as learnable
patterns where no such pattern exists. The model may get very good at its

20

task on the training data but would perform worse on the testing data.
Underfitting is the opposite problem. Models suffering from underfitting
have poor performance due because it has not learned the underlying
patterns and features of the objects of interest. Underfitting is generally
rectified with more training. The end goal for the training is achieving an
optimal state where the model is trained just well enough, neither
underfitted nor overfitted, performing well on unfamiliar data.

The training process would repeat many times as needed. After several
training iterations, each with some differences in parameter, the resulting
models’ evaluation data could be examined and observed what changes
worked best and what didn’t. It was a process of continuous refinement.
When a model was found to work well, because the plan was to use it in
OpenCV, the model was need to be exported into a usable format. One of
TF OD API tools would facilitate to do just that.
“export_inference_graph.py” would take in checkpoint files and a training
configuration file and outputs a “frozen inference graph” (.pb extension)
which would contain the model’s architecture and variables, ready to be
deployed to other platforms and programs (Google LLC, 2020).

3.2.4 Process summary

Having established the necessary machine learning concepts, the general
workflow could be summarized. The task was to detect cats and dogs
whenever they are in the image frame. First, a pre-trained object detection
model was chosen that was appropriate. In this case, it was Faster RCNN
pre-trained on the COCO dataset. The model can be trained using one’s
own dataset. A dataset consists of a training set where the model would
learn the features and patterns of the object classes in question (cats and
dogs in this case) and a validation set where the model’s performance
would be evaluated by performing object detection on the examples. The
training process itself was done using TensorFlow Object Detection API and
was both time and computationally intensive. Completing a training run of
a model often took a whole day to complete and would take up most of
the computer processing power. TensorBoard was used to monitor the
model’s training progress as well as evaluation metrics. Based on these
metrics, the training parameters was fine-tuned to try and improve the
model’s effectiveness at the task at hand. Having chosen the model that
achieved the best results, the model was then imported into OpenCV after
a format conversion so that it could be used in the program.

3.2.5 Results

After multiple training iterations, a model that performed well was chosen.
The general axiom of hyperparameters having major influence on training
results held true. When the general configuration of the training process
was figured out, it was a matter of tweaking the batch size, number of

21

training steps and learning rate to achieve the best results. Here are some
examples of the object detection model in action. The number is the
confident score from the model.

Figure 20. Example of the model functioning correctly

Figure 21. Example of the model functioning correctly

22

Figure 22. Example of the model functioning correctly

Figure 23. Example of the model failing to detect the object

The model performed well in general. It was able to detect dogs and cats
from the multiple angles. However, the model was not perfect. It
sometimes had problem detecting animals from behind. The reason was
that the dataset was somewhat lacking in this regard, something that could
be rectified in later versions.

Even with this issue, the more important problem was how object
detection should be integrated into the existing program. Running object
detection was quite resource intensive, requiring a somewhat decent
hardware to run smoothly. Even with good hardware, the process was not
fast. The time it took for the model to process 1 image frame was about

23

1,5 seconds. Given that there could be at least 24 frames for every second
in a video, processing time could be high if it was left running as is.

Cursory steps were taken to alleviate these problems and some
preliminary testing was done. Unfortunately, there was not enough time
in the end, with the other parts of the project taking longer to complete
than expected. Even though the research and the training for the object
detection model had been done, it had to be left out in the end.

4 VIDEO TRIMMING

The original goal of this project was to make a program that can take out
relevant sections of a video and stitch them together into a new file. The
detection algorithms were used in order to pinpoint the location of the
pertinent parts. Those segments were then extracted and merged into a
video containing only what were needed.

4.1 FFmpeg

The video cutting and merging are handled by FFmpeg, a free and open-
source software used for manipulating video, audio and other multimedia
files. FFmpeg stands for Fast Forward Motion Picture Expert Group. Many
common software and websites use FFmpeg in order to deal with audio-
visual files, such as VLC, Google Chrome, YouTube and many more.
(FFmpeg team, 2020)

4.2 Trimming

Because FFmpeg didn’t have a built-in trimming function, some extra steps
were taken to achieve the desired results.

Figure 24. Individual sections of motion cut from the original video

24

First, the video was cut into smaller parts according to the timestamps
taken from the detection section. Then those sections were concatenated
into the final video. Thus, creating the effect that the video got trimmed of
the unnecessary parts.

Figure 25. Output folder

As seen in Figure 25, the output folder had a temporary folder, containing
the cut sections and other logs, which would be deleted afterwards. The
trimmed and original video were put side by side in order to show the
difference of before and after trimming.

5 EXTRA FEATURES

The commissioning party requested several additional features for their
own reasons.

5.1 First part skipping

The commissioning party required that the first 90 minutes of the videos
are not to be processed. Therefore, before processing the videos, a new
video was created without the first 90 minutes, then performing detection
on the shorter video.

5.2 Period before and after motion

The commissioning party required that when detecting motions, there
should be a 30-second buffer zone before and after each motion section
in order to observe motion better. In order to achieve this, when writing
down the timestamps for the beginning and ending of motion, the
numbers were pushed forward 30 seconds for the former and 30 seconds
backwards for the latter.

6 SERVER

With the main program figured out, it needed to be set up to work on a
web server. A system for users to upload videos to the server was also

25

needed. The main program had to automatically and periodically run on a
predetermined folder on the server, which would process any video files
in it using motion detection and would output the result into a separate
folder. It was also decided that with appropriate credentials, the server can
be accessed to view the program’s logs as a web page as one way to
determine its status as the video processing could take a long time. Hence
the need for a frontend and backend for the web server.

In order to create the web server, Django was chosen, a popular Python
web framework (Django Software Foundation, 2020). This helped simplify
the programming process for the server a bit. Django still provided useful
features out of the box for the server such as a built-in users and passwords
system with related administrator tools. The frontend of the server was a
simple web page that allowed users to log in and view log files and see
what the server had been doing. On the backend side of things, the server
would look for new video files and process them at set intervals. However,
the web server cannot serve static files (i.e. CSS files) with just Django as
the framework. A full-stack solution like nginx + Gunicorn + Django would
be needed to do so. In the end, only Gunicorn was used as the HTTP server
and Django as the framework. The problem was too trivial to add
unnecessary complexity to a simple server.

Figure 26. Web server’s log in page

Figure 27. User’s page

26

Figure 28. Django’s administrative tools

To facilitate file upload and download for the server, SFTP was used as the
file transfer protocol. SFTP stands for SSH File Transfer Protocol. It would
allow encrypted (and therefore secure) file transfers between machines. A
SFTP server was implemented using rspivak’s stub SFTP server code as the
base which was using the Python library “paramiko” and would work
alongside the web server (Pointer & Forcier, 2020; rspivak, 2017). With the
right credentials, users could log in using a SFTP client to access the SFTP
server. On the server, there were three folders: “input” which would be
where the user should upload video files for the main program to process,
“output” which contained the processed video and “log” which contained
the video timestamps of events of interest. Early on, a server using FTP,
which is SFTP’s preceding file transfer protocol, was briefly used but
eventually discarded due to security concerns.

Figure 29. SFTP server accessed from WinSCP, a free SFTP client

Through this, all the individual pieces that made up the project had been
put together. The process would begin with the user uploading a video file
through the SFTP server. The web server would then process the video
with the motion detection component, a task that it would do regularly.

27

The user could view the progress on the web page and could download the
output videos through the same SFTP server.

7 CONCLUSION

The goal of this project was to make a web server where the
commissioning party could upload videos of home security and be able to
retrieve newly generated videos with just the parts of the original videos
containing motions.

As for the web server, a simple HTTP web page was made where users can
login to view the program logs. The main program periodically ran in the
background, looking for any new videos in the SFTP server’s directory. An
SFTP server was also made and it used the same user credentials as the
web server.

The program has the ability to read through all the files in the input folder,
pick out the media files and then perform motion detection on them.
Afterwards new videos were produced and was put into the output folder.
Furthermore, logs were put into the log folder, including timestamps for
the videos, a list composed of the names of the videos which had been
processed, and a log file containing the information on the events of the
program.

Research on object detection was done and a working prototype was built.
However due to the long duration of processing time, extensive testing had
not been done. Therefore, it was decided that it was left out of the main
program. If the program can be continued to be developed, integrating
object detection would be one way the program could be expanded upon.

After working through this project, a better understanding of the inner
workings of multiple pieces of software like OpenCV, TensorFlow, Django
was gained, as well as more experience working with web development
and video processing.

28

References
Artificial neural network. (2020). Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Artificial_neural_network
COCO Consortium. (2020). Detection Evaluation. Retrieved from COCO - Common

Objects in Context: https://cocodataset.org/#detection-eval
Django Software Foundation. (2020). Django. Retrieved from Github:

https://github.com/django/django
Everingham, M., Gool, L. v., Williams, C., Winn, J., & Zisserman, A. (2012). Visual Object

Classes Challenge 2012 (VOC2012) . Retrieved from
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html

FFmpeg team. (2020). FFmpeg. Retrieved from Github:
https://github.com/FFmpeg/FFmpeg

Google LLC. (2020). TensorBoard. Retrieved from Github:
https://github.com/tensorflow/tensorboard

Google LLC. (2020). TensorFlow Object Detection API. Retrieved from Github:
https://github.com/tensorflow/models/tree/master/research/object_detectio
n

Heinisuo, O.-P. (2020, October). skvark/opencv-python: Automated CI toolchain to
produce precompiled opencv-python, opencv-python-headless, opencv-contrib-
python and opencv-contrib-python-headless packages. Retrieved from Github:
https://github.com/skvark/opencv-python

Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., . . . Research, G. (2017,
April 25). Speed/accuracy trade-offs for modern convolutional object detectors.
Retrieved from https://arxiv.org/pdf/1611.10012.pdf

Kaggle. (2020). Dogs Vs. Cats. Retrieved from https://www.kaggle.com/c/dogs-vs-
cats/data

Motion Detection. (2020). Retrieved from Wikipedia:
https://en.wikipedia.org/wiki/Motion_detection

OpenCV team. (2020). opencv/opencv: Open Source Computer Vision Library. Retrieved
from Github: https://github.com/opencv/opencv

Pointer, R., & Forcier, J. (2020). Paramiko. Retrieved from Github:
https://github.com/paramiko/paramiko

Ren, S., He, K., Girshick, R., & Sun, J. (2016, January 6). Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. Retrieved from
https://arxiv.org/pdf/1506.01497.pdf

rspivak. (2017). sftpserver. Retrieved from Github:
https://github.com/rspivak/sftpserver

Stanford University. (2020). Retrieved from CS231n Convolutional Neural Networks for
Visual Recognition: https://cs231n.github.io/convolutional-networks/

Stanford University. (2020). Stanford Dogs dataset for Fine-Grained Visual
Categorization. Retrieved from
http://vision.stanford.edu/aditya86/ImageNetDogs/

Tzutalin. (2020). LabelImg. Retrieved from Github: https://github.com/tzutalin/labelImg

29

Appendix 1

Example XML File

 <annotation verified="yes">
 <folder>test</folder>
 <filename>0_c.jpg</filename>
 <path>F:\kagglecatsanddogs_3367a\PetImages\test\0_c.jpg</path>
 <source>
 <database>Unknown</database>
 </source>
 <size>
 <width>500</width>
 <height>375</height>
 <depth>3</depth>
 </size>
 <segmented>0</segmented>
 <object>
 <name>cat</name>
 <pose>Unspecified</pose>
 <truncated>0</truncated>
 <difficult>0</difficult>
 <bndbox>
 <xmin>119</xmin>
 <ymin>18</ymin>
 <xmax>358</xmax>
 <ymax>241</ymax>
 </bndbox>
 </object>

</annotation>

