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ABSTRACT 
 

This thesis project was commissioned by Tentrio Oy. In the project, hours-
long videos that were taken by a fixed camera, often overlooking a room, 
were processed. The goal was to make a program that would take these 
video files and based on certain criteria, would output edited videos that 
were essentially relevant sections of the input videos. More specifically, 
the primary goal of this project was to make a program that could detect 
the presence of motion in video frames. Additionally, as a secondary 
objective, the program was to also look for the presence of cats or dogs. 
Any segment of the video featuring these elements was to be combined 
into a single output video. The timestamps of wherein the relevant video 
segment took place in the video were also to be recorded. 

 

To achieve this, Python 3.6 was used as the main programming language 
along with several libraries. Motion detection was implemented using 
OpenCV and FFmpeg. On the other hand, the part of the program that 
handled animal detection was done using TensorFlow, an open source 
machine learning library.  The program needed to be set up as an online 
service running from a server that would process any video file uploaded 
by an authenticated user. The server would also allow the user to 
download the output videos and timestamps. The hardware in which the 
server ran on was a remote machine provided by the commissioning party. 
The server was written in Python with Django as the web framework. 

 
In the end, a motion detection program running on a remote server was 
created. On the other hand, object detection was not implemented due to 
time constraints. Properly integrating object detection into the program 
would likely take too much time. Moreover, the commissioning party was 
satisfied with the results which was why object detection was left out in 
the final product. 
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1 INTRODUCTION 

With the rise of CCTV and video surveillance, more and more people 
decide to equip their houses with a home security camera system. 
However, due to the fact that the system is mostly required when there is 
nobody home, the majority of the footage is of empty rooms. Therefore, a 
motion detector could be used in order to sort out the important parts of 
the video. This detector would be managed by OpenCV, an open source 
library mainly aimed at computer vision and would be capable of operating 
in a Linux environment, where the bulk of the project would be written 
and operated on according to the wish of the third-party company. Python 
is a robust and flexible programming language, with many options 
supporting image and video processing and manipulating. Linux is an open 
source operating system, allowing many customized features tailored to 
each user’s needs. 
 
Furthermore, if the house owner has pets, more attention is demanded to 
keep track of them. Thus, an object detector might be applied to solve this 
issue. The object detection would be handled by TensorFlow through the 
use of machine learning. TensorFlow is a free and open source software 
library with many applications such as language detection, voice 
recognition and, relating to this project, image processing. 
 
Afterwards, since just knowing when things happen still requires one to 
search for them in the videos, some kind of video processing program was 
needed to trim out the unnecessary parts. Hence, FFmpeg was used to 
manipulate the files in this project to get the desired results. Ffmpeg is a 
free and open source software project that includes tools which can be 
used for transcoding, streaming and playing multimedia files. 
 
Finally, the goal of the project was to have a website where unprocessed 
videos could be uploaded, and be able to download the finished videos 
after they had been processed by the program. For this task, the company 
provided access to their server, while Django was used as the web 
framework. Django is a free and open source web framework based on 
Python. 
 
This project was conducted by two people, Hung Le and Khang Truong. Mr 
Le was in charge of object detection and web server section. Mr Truong 
was responsible for the motion detection and video trimming segment. 
Both managed the data annotation for object detection.     
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2 MOTION DETECTION 

The first part of this project deals with motion detection. In particular, an 
algorithm was used to pick out any movements during the length of the 
video. Most importantly, the main point of this was to trim down the video 
to the relevant parts. OpenCV, a free and open source computer vision and 
machine learning software library, on Python 3.6 was used to read and 
process the video in order to find the movements. (OpenCV team, 2020) 

2.1 Introduction 

Motion detection is the use of one or multiple technologies and software 
algorithms to detect moving objects within a specific area. There are 
various ways to detect motion, like using sensors to measure changes in 
light, infrared, sound, ultrasound, vibration, magnetism or even radio and 
microwave. In the case of motion detection in videos, frames differencing 
or background subtraction is used there instead. 
 
Motion detection has many applications in everyday life, such as automatic 
doors, lightings, sinks, flushers, dryers, to something like intruder alarms. 
In the field of computer vision, such things as traffic controlling, intelligent 
video surveillance and even human behavior identification are possible. 
(Motion Detection, 2020) 

2.2 Operation 

 

 

Figure 1. Flowchart of how motion detection works 

A basic frame by frame comparison was used in order to detect motions. 
First the video was read one frame at a time. Then, the absolute difference 
between two adjacent frames, if there was any, was found. Next, the 
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frame difference image got converted into grayscale, then Gaussian Blur 
for easier processing. Afterwards, the image was transformed into purely 
black and white, any pixel that had a value higher than a predetermined 
threshold was assigned white while the rest as black, in order for the 
contrast to stand out more. 
 
The final comparison picture was essentially the way to determine 
whether there were motions or not. If the number of white pixels was 
higher than a limit, it means the second frame was different enough from 
the first frame to say that there was motion happening. 

2.2.1 Frame skipping 

The videos used for this task often had high file sizes, usually many hours 
long, and processing them tended to take several times the length of the 
videos. In order to cut down the procedure time, a frame skipping 
technique was employed. Basically, the program would only check and 
work on the video frames after an interval of predetermined number of 
frames. 

2.2.2 Delay timer 

 

 

Figure 2. Time delay relay 
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Motion detection worked using a threshold, meaning if the number of 
pixels in the difference frame was higher than the threshold then there 
was motion, and no motion if lower. Usually, the pixel numbers would 
jump above and below the threshold a lot and make the recordings and 
videos look choppy and disjointed. Therefore, in order to smooth them out, 
A kind of time delay was used. 

 

As demonstrated in Figure 2, while checking for motion, whenever the 
detector could not find any movement, instead of immediately concluding 
that it did not find anything, the program would keep observing for a bit 
longer. If the detector discovered any motion during this time, it would 
reset the timer and start looking again. 

 

However, if the detector still had not noticed any movement after the 
timer had finished, then the program could now declare that the current 
motion had ended and stop noting down this section. Then the program 
would wait until the detector picked up the next sign of movement again. 
 

 

Figure 3. Running status of motion detection 

The program ran detection and printed out the frame position of the start 
and end of motion on the terminal for easy tracking. The timestamps were 
then extracted into a log file. 
 

 

Figure 4. A timestamp log 
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2.2.3 Error 

For unknown reasons, the built-in timestamp tracker of OpenCV did not 
work correctly. The videos given by the third-party company had two types, 
30 fps and 50 fps. The tracker worked accurately for the videos with 30 fps, 
but did not do the same with the 50 fps ones. The timestamps were two 
times slower than the true time of the videos in the latter situation. 
 
A temporary solution was devised. If the video has 30 fps, then the 
timestamp log will record it as normal. If the video has 50 fps, the 
timestamp will be multiplied by two and then be recorded to the log. 

2.3 Frame differencing 

Motion was detected by using frame differencing, alongside with some 
filters. Frame differencing is a technique where the computer compares 
the difference between two video frames. If there are differences, 
something has changed. Most of the time, these are just “noise” from the 
environment like shadows, lighting, or a part of the camera devices 
themselves like auto focus, and brightness correction. Therefore, blur and 
threshold should be used in conjunction in order to filter out the 
unnecessary parts. 

2.3.1 Frame difference 

Comparing frames is a common method of detecting motion. Two frames 
are put under scrutiny in order to check for the absolute difference 
between them. Changes mean something happens, filters and thresholds 
are used to sort out the noise. 

 

Figure 5. Empty room (left) and a room with an animal (right) 

As seen in Figure 5, since the camera is fixed, the background is the same 
in both pictures; therefore, any difference while comparing the frames 
means that something is moving. 
 

 



6 
 

 
 

Figure 6. Frame difference (left) and Frame after filters(right) 

2.3.2 Filters 

 

Figure 7. Grayscale of difference image 

Normally, comparison images taken by using the frame differencing 
method often have only the sections with movements visible, since the 
camera is fixed and thus the background is the same between the frames. 
 

 

Figure 8. Grayscale of difference image with noise 

However, occasionally the camera can pick up minute differences created 
by something like lighting or focus shift, and thus create a lot of extra 
unnecessary details. 
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Figure 9. Image after using Gaussian smoothing 

This can be dealt with by using Gaussian smoothing. It is an image 
processing technique via the Gaussian function, it can smooth out the 
image and reduce noise and detail. 
 

 

Figure 10. Image after filtering through thresholding 

After that, further cleaning can be done through thresholding. It is another 
image processing technique where each pixel currently on the grayscale is 
replaced with completely black and white pixels according to a fixed 
constant. 

3 OBJECT DETECTION 

The other half of this project relates to machine learning. More specifically, 
machine learning was used to teach the computer to recognize and 
identify instances of cats and dogs whenever and wherever they are in the 
video. This part of the program would work in conjunction with the motion 
detection aspect of the program as another metric to consider during 
video editing. TensorFlow 1.14 on Python 3.6 was used as the training 
framework for the machine learning model which then will be imported by 



8 
 

 
 

OpenCV’s DNN library where the model would perform object detection 
on videos. 

3.1 Theory 

3.1.1 Introduction 

Machine learning is a field of study in which a computer is trained using 
existing data to make predictions or calculations. The aim of the training 
process is essentially creating and modifying mathematical algorithms 
until the computer can do these tasks satisfactorily. This collective of 
algorithms is called a “model”. With this model, the computer can then 
perform these tasks on its own without any additional input from human 
operators.  
 
Machine learning has a wide variety of applications such as recognizing e.g 
speech or text patterns, machine translation, predicting economic trends, 
object classification and detection. 

3.1.2 Deep learning 

For this project, deep learning was utilized to teach the machine learning 
model how to recognize the presence of dogs and cats in videos. Deep 
learning is a subset of machine learning, which uses (amongst others) 
“deep neural networks” (DNN), a type of model architecture. 
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Figure 11. Typical topology of a deep neural network (Artificial neural 
network, 2020) 

 
Generally, DNNs consist of many layers. They are, in order of appearance, 
the “input layer”, the “hidden layer” and the “output layer”. Each of these 
contains many “nodes” or “neurons”. These individual nodes are simple 
numbers or variables. All the nodes of a layer are connected to all the 
nodes of the previous and next layer, forming a large interconnected 
network. The structure of these models somewhat mimics the structure of 
the human brain hence the term “neural network”. 
 
DNNs begin with the input layer where the models would receive inputs. 
The inputs are then passed through to the hidden layer where they are 
transformed as they go. Though the hidden layer may consist of a single 
layer (as implied by the above diagram), the hidden layer actually typically 
consists of hundreds, if not thousands of layers of neurons.  Truly advanced 
DNNs may contain thousands of layers with millions of nodes. Each of the 
nodes contain variables or their own “weights” and “biases”. Using the 
resulting outputs in the “output layer”, the model can then make a 
prediction. 
 
From a purely mathematical standpoint, the model is a single massive 
equation where every node is a variable with its own weight and bias. 
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Fundamentally, by iteratively adjusting these individual values, the model 
can learn to make accurate predictions. 
 

3.1.3 Faster-RCNN 

In this project, a model that could perform object detection on videos was 
needed, meaning it would scan each frame for objects of interest and 
determine their presence in the frame with decent accuracy. For the 
project, pre-trained models were chosen because they were already quite 
good at detecting whatever object they were trained on and objects in 
general. Moreover, making a model from scratch is not only difficult but 
quite time-consuming. There are a number of publicly available machine 
learning models commonly used for object detection that are pre-trained 
using public datasets (such as COCO, and Open Images).  
 

The chosen model was of type “Faster RCNN”, a type of DNN. RCNN stands 
for “region convolutional neural network”. Faster RCNN is a tried and 
proven object detection model type, the third iteration of the RCNN type 
architecture. Faster RCNN was picked for a number of reasons: 

• Generally, when using object detection models, one has to strike a 
balance between speed and accuracy. Faster RCNN performs excellently 
for current needs in both categories. 

• The data that is used to train is marked with bounding boxes and the data 
that is needed to continue training should be the same. This makes it 
easier to adapt other datasets into a suitable format. For example, The 
Mask RCNN model type is indeed more advanced but requires “masks” 
that have to be more clearly defined and therefore more difficult to 
prepare data for.  

• The team already had personal experience using this particular model 
and were satisfied with the result.  

 
 

 

Figure 12. Images marked with masks (left) and bounding boxes (right) 
(Everingham, Gool, Williams, Winn, & Zisserman, 2012) 
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3.1.4 Model operation 

 

Figure 13. General outline of Faster RCNN architecture (Ren, He, 
Girshick, & Sun, 2016) 

The general operations of the model can be outlined based on the 
following reports: “Speed/accuracy trade-offs for modern convolutional 
object detectors” which contains a general summary of different object 
detector architectures and “Faster R-CNN: Towards Real-Time Object 
Detection with Region Proposal Networks” written by the creators of 
Faster-RCNN. (Huang, et al., 2017) (Ren, He, Girshick, & Sun, 2016) 
 
The inputs for these models are images which can be represented by 
multidimensional arrays (tensors). Each pixel in an image has a R, G, B value 
corresponding to the 3 color channels. For example, an image with the 
height of 800 and the width of 600 would be represented by the tensor 
[800x600x3]. The desired output is that the objects of interest are 
accurately classified as well as localized by bounding boxes coordinates. 
 
The input begins by passing through layers of convolutional networks to 
generate feature maps. These layers do this by using “kernels” or “filters” 
to summarize the images without losing the general topological details of 
the image. The result has a much smaller dimension compared to the 
original, reducing the computational burden for later calculations. 
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The feature map is passed to the region proposal network. In the network, 
the image is processed by a feature extractor, which is essentially an 
internal pre-trained neural network. The choice of the feature extractor 
can really set models’ performance apart from each other. Here the 
feature extractor uses what are called “anchors” of different scales and 
aspect ratios. These anchors will then “slide” over the feature 
map.  Looking through the anchors, the model chooses anchors that are 
likely to contain the object and outputs region proposals as a set of 
bounding boxes, each with a score of how sure the model thinks there is 
an object inside. Note that the model still hasn’t classified what the object 
inside the bounding box is, just that something is there. 
 

 

Figure 14. Max pooling example (Stanford University, 2020) 

In the earlier iteration of the architecture, each region proposal would 
have to be cropped out of the feature map and pass them through to the 
classifier. It can be a very computationally expensive operation as an image 
can have many proposals. The model mitigates this with “region of interest 
pooling”. Using the region proposals, crops are made from the feature map 
from the previous step. These crops are all scaled to a predefined size using 
“max pooling”. They are then passed as feature maps to the classifier 
where their object class is determined and their bounding boxes adjusted 
to fit the object in the frame better. 

3.2 Methodology 

The model was pre-trained using the COCO (Common Object in COntext) 
dataset that covers 80 classes of objects such as person, airplane, 
computer, apple, etc. It contains about 123,000 images with about 
886.000 instances of those objects in the images. (COCO Consortium, 
2020) Most notably, those classes include cats and dogs. This means the 
pre-trained model was already trained to detect these animals. However, 
empirical data had shown that even though the model was decent at what 
it does, it could be improved by continuing to train the model further, 
aiming to specialize in detecting cats and dogs, which could result in better 
performance, improving processing speed and accuracy.  



13 
 

 
 

 
TensorFlow Object Detection API (TF OD API) was used to train the model. 
It is an open source framework built on top of TensorFlow, a machine 
learning library for Python. It is an open source repository containing 
various tools to ease the training and deployment of object detection 
models. The tools are written in Python. The TensorFlow version used was 
1.14 running on Python 3.6. The pre-trained model is also taken from 
TensorFlow’s object detection model zoo, specifically: “Faster RCNN 
Inception V2 COCO” (Google LLC, 2020). The name means that the model 
is using the Faster RCNN architecture with Inception V2 as its feature 
extractor, and the model was trained using the COCO dataset. 

3.2.1 Dataset 

In order to train the model, a dataset was needed. The building blocks of 
the dataset were images with bounding box annotations. In machine 
learning, these bounding boxes in training examples are often referred to 
as “ground-truths”. A training example could be created with “LabelImg”, 
an open source image annotation tool (Tzutalin, 2020). 
 

 

Figure 15. LabelImg example 

The images were loaded into the program where the user could draw 
bounding boxes which indicated the object’s location and assigned a class 
to each of those boxes. Having done so, the changes could be saved. The 
program outputted these annotations as xml files in PASCAL VOC format. 
Most notably, the xml file contained the coordinates (upper left and lower 
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right points) of the bounding boxes. Refer to Appendix 1 as an example 
XML file. 
 
There are many freely available datasets that can be used. The datasets 
that were chosen are: 

• PASCAL VOC 2012 Challenge (Everingham, Gool, Williams, Winn, & 
Zisserman, 2012): A public dataset for the 2012 PASCAL VOC competition 
which contains 17,125 images with annotation, both bounding boxes and 
segmentation masks. The PASCAL VOC’s dataset contains classes (a total 
of 20) and examples that were irrelevant and thus were removed. After 
filtering out the unnecessary data, there were 2,434 images left for usage. 

• Stanford Dogs Dataset (Stanford University, 2020): A public dataset which 
contains 20,580 images of 120 breeds of dogs. Each breed had an its own 
label. Stanford’s dataset already came with the bounding box 
annotations though some adjustments were still needed to be made. 
There was no need for the classification of individual dog breeds and so 
the label names were all changed to simply “dog”. The “filename” xml 
element referred to something else rather than the name of the image. 
This problem was rectified. 

• Kaggle Dogs Vs. Cats (Kaggle, 2020): A public dataset provided for an 
image classification contest. The dataset consisted of 25,000 images in 
total with 12,500 images of cats and 12,500 images of dogs. Because 
Kaggle’s dataset was originally used for image classification, it did not 
have annotations. Therefore, the bounding box annotations had to be 
made image by image with LabelImg. During this process, some images 
that were thought to be unsuitable (too pixelated, corrupted, etc.) were 
removed. A good part of the dog images also went unused as it was 
considered that there were sufficient dog related data from Stanford’s 
dataset. In the end, 12,426 cat images and 2,501 dog images were 
annotated, a total of 14,927 examples. 

 

All in all, the dataset contained about 37,940 images of cats and dogs. In 
machine learning, data is often split into a train set and a validation set. 
The train set is used to teach the model how to do its task properly. The 
model would try to make predictions on an example, which are then 
compared with the actual bounding boxes coordinates. The model’s 
parameters are then adjusted accordingly. On the other hand, the 
validation data is used to evaluate the model’s ability against unfamiliar 
data. This set should not have any overlap with the training set and should 
not be used in training as it will create biases. As a general rule of thumb, 
the train/validation set ratio should be 80/20. However, depending on a 
variety of factors (such as model architecture, data variations, etc), the 
ideal ratio could be 70/30 or 95/5. Often the ratio which works best for the 
problem at hand can only be found by experimenting. During training, the 
ratio of about 80/20(for the train and the validation set respectively) was 
observed to be what works best for the model. With the same ratio applied 
to all the individual datasets, there were 30.500 training examples and 
7.440 evaluation examples.  
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Additionally, TF OD API required the dataset to be in TFRecord (TensorFlow 
record) format. In this format, the training examples were serialized into 
large “record” files (100-200 MB) which marginally improved processing 
efficiency. The conversion was done with a Python script. 
 

3.2.2 Configuring training process 

With the dataset ready, configuration of the training job was needed. 
Notably, configuration could have major impact on the model’s 
performance. The training process takes a “config” file to set parameters 
for the training process. There were many parameters that can be set such 
as numbers of classes, paths to external files, set anchor boxes’ size and 
aspect ratios, etc. The most important parameters (also known as 
hyperparameters) are as follow: 

• Number of training steps: determined the number of training steps 
the model will go through. During each step the model would 
process as many training examples as the “batch size” parameter. 
The model was updated at the end of each step. It was important 
to tune this parameter so that the model did not underfit or overfit 
(concepts that will be explained later). 

• Batch size: the number of examples the model would train during 
each step.  The larger the batch size, the more data was being fed 
into the model before update. In general, a larger batch size led to 
better model performance but the training process would be 
slower and memory consumption would increase. It was generally 
recommended that the batch size should be as high as the 
hardware can allow.  

• Learning rate: determined how much the model should adjust itself 
after each training pass. A learning rate that was too high means 
adjustments may overshoot. If it was set too low, the model would 
have taken too long to reach the target accuracy. The learning rate 
could be set to change under certain conditions. 
 

Although there are general rules of thumb as to how a user should set 
these parameters, fine-tuning the configuration for a specific machine 
learning problem could be a major obstacle during the training process 
since there can be many factors affecting the outcome. Arriving at the 
optimal training parameters was often a matter of trial and error. 

3.2.3 Training and evaluation process 

Having configured the training parameters and preparing a dataset, the 
training can begin. Using “model_main.py” in the TF OD API repository, the 
process can be initiated from the command line where training progress 
and status can be monitored (Google LLC, 2020). Periodically the program 
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would output “ckpt” (checkpoint) files which contain the values of the 
model’s parameters at that point. If for any reason, the training process 
was interrupted, it could be continued from that checkpoint file. The 
program also continuously outputs “events” files which can be loaded 
using TensorBoard, TensorFlow’s visualization toolkit (Google LLC, 2020). 
Using TensorBoard, the model’s training progress could be viewed in real-
time. 
 

 

Figure 16. Example of training output 

TensorBoard provides various measurements and visualizations. Various 
things could be viewed, such as the model’s structure, its weight values 
and their distribution, prediction output examples and most importantly, 
the evaluation metrics for the model. These metrics are also displayed on 
the command line every time it saves a checkpoint file which is rather 
inconvenient. TensorBoard can plot these data points into graphs, allowing 
the user to view these metrics in a more visually-intuitive manner. These 
metrics are: 

• Mean average precision (mAP) 

• Mean average recall (mAR) 

• Loss 
 
AP and AR are defined by Pascal VOC. To understand what these metrics 
mean, it is necessary to understand how the model’s prediction is being 
evaluated. First is the concept of Intersection over Union (IoU). IoU is the 
area in which the model’s bounding box prediction of the object overlaps 
with the ground-truth in the training example divided by the combined 
area of both the boxes. The higher the IoU, the more accurately the 
model’s prediction of the location of the object was. 
 

𝐼𝑜𝑈 =
Area of Overlap

Area of Union
 

 
Whenever the model makes a prediction, it places bounding boxes where 
it thinks the object of interest is. Attached to each of them is a class and a 
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“confidence score” (a value between 0.0 and 1.0) which is how sure the 
model is about that prediction. Any box with a score lower than a certain 
threshold is filtered out. For any box that remains, using the ground-truth 
as a comparison, if its predicted class is correct and its IoU value is over a 
threshold, it is considered a “true positive”. If the prediction fails to meet 
any of the 2 criteria, it is considered a “false positive”. If the model fails to 
identify the presence of an object where it should have, it is considered a 
“false negative”. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 

 
Precision is defined as the number of true positives divided by the sum of 
true positives and false positives. In other words, the higher the precision, 
the more likely the model’s prediction is correct. On the other hand, recall 
is defined as the number of true positives divided by the sum of true 
positives and false negatives.  
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 

 
In this case, recall measures whether the model has detected all the 
relevant objects or not. 
 
There is an inverse relation between precision and recall. At each 
confidence score threshold value there is a corresponding pair of precision 
and recall value which can be arranged as a measure called the 
precision/recall curve. Although assessing the model’s performance using 
this curve is possible, it is not intuitive for comparing different models or 
monitoring performance over time. A numerical value would be better for 
these tasks which is what AP is. It is the averaged value of precision across 
all recall levels. More specifically, AP is defined as the area under an 
interpolated precision/recall curve. Similarly, AR is also used for model 
performance assessment. In short, AR is calculated by averaging recall 
values at IoU threshold from 0.5 to 1. The higher the AP and AR value, the 
more accurate the model. In addition, there are also the metrics mAP 
which is defined as the AP value averaged over all object classes. Same as 
mAP, mAR is defined as the mean of AR over all object classes. mAR and 
mAP are 2 of the metrics that TF OD API outputs. 
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Figure 17. Average precision(mAP) on TensorBoard 

TF OD API uses COCO object detection evaluation metrics as the evaluation 
metrics which is a variation of PASCAL VOC’s own metrics. (COCO 
Consortium, 2020) They are: 

• mAP at IoU = .5:.05:.95: metric calculated by averaging 10 mAP 
values. Each value is taken from the IoU thresholds between 0.5 to 
0.95 with a 0.05 increment between each threshold value i.e 0.5, 
0.55, 0.6...,0.95. This is the metric that COCO considers the most 
important. The reasoning is that the way the metric is calculated 
would reward models with more accurate object localization more 
and penalize ones that don't more. 

• mAP at IoU = .5: mAP at IoU threshold of 0.5. This is the metric used 
by PASCAL VOC. 

• mAP at IoU = .75: mAP at IoU threshold of 0.75. This is the “strict 
metric”. 

• mAR at Max = 1: mAR given over 1 detection per image, averaged 
over classes and IoUs. 

• mAR at Max = 10: mAR given over 10 detections per image. 

• mAR at Max = 100: mAR given over 100 detections per image. 

• mAP and mAR small: mAP and mAR for small objects (area < 32^2 
pixels). 

• mAP and mAR medium: mAP and mAR for medium objects (32^2 < 
area < 96^2 pixels). 

• mAP and mAR large: mAP and mAR for large objects (area > 96^2 
pixels). 

 
Loss, TF OD API’s third evaluation metric, measures how much the model’s 
predictions deviated from the ground-truths. More specifically, things like 
how much the model’s prediction bounding boxes overlap with the 
ground-truths, how often the model assigns the wrong class to its 
prediction, etc. all contribute to loss. The lower the loss, the fewer 
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mistakes are made. TF OD API outputs multiple kinds of loss which are loss 
values related to region proposals, loss values related to classification, and 
loss in general. In addition, TensorBoard allows the user to compare these 
evaluation metrics between different models which is quite a useful 
feature. 
 
 
 
 

 

Figure 18. TensorBoard loading multiple event files at the same time 
for comparisons 

 

Figure 19. TensorBoard displaying examples of model predictions 

With these metrics, a good idea of how the model was performing could 
be had. However, in machine learning, one should be aware of overfitting 
and underfitting. Overfitting occurs when the model learns the data too 
well, often occurring when it is trained longer than necessary. The model 
misinterprets the random noises and variations in the data as learnable 
patterns where no such pattern exists. The model may get very good at its 
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task on the training data but would perform worse on the testing data.  
Underfitting is the opposite problem. Models suffering from underfitting 
have poor performance due because it has not learned the underlying 
patterns and features of the objects of interest. Underfitting is generally 
rectified with more training. The end goal for the training is achieving an 
optimal state where the model is trained just well enough, neither 
underfitted nor overfitted, performing well on unfamiliar data. 
 
The training process would repeat many times as needed. After several 
training iterations, each with some differences in parameter, the resulting 
models’ evaluation data could be examined and observed what changes 
worked best and what didn’t. It was a process of continuous refinement. 
When a model was found to work well, because the plan was to use it in 
OpenCV, the model was need to be exported into a usable format. One of 
TF OD API tools would facilitate to do just that. 
“export_inference_graph.py” would take in checkpoint files and a training 
configuration file and outputs a “frozen inference graph” (.pb extension) 
which would contain the model’s architecture and variables, ready to be 
deployed to other platforms and programs (Google LLC, 2020). 

3.2.4 Process summary 

Having established the necessary machine learning concepts, the general 
workflow could be summarized. The task was to detect cats and dogs 
whenever they are in the image frame. First, a pre-trained object detection 
model was chosen that was appropriate. In this case, it was Faster RCNN 
pre-trained on the COCO dataset. The model can be trained using one’s 
own dataset. A dataset consists of a training set where the model would 
learn the features and patterns of the object classes in question (cats and 
dogs in this case) and a validation set where the model’s performance 
would be evaluated by performing object detection on the examples. The 
training process itself was done using TensorFlow Object Detection API and 
was both time and computationally intensive. Completing a training run of 
a model often took a whole day to complete and would take up most of 
the computer processing power. TensorBoard was used to monitor the 
model’s training progress as well as evaluation metrics. Based on these 
metrics, the training parameters was fine-tuned to try and improve the 
model’s effectiveness at the task at hand. Having chosen the model that 
achieved the best results, the model was then imported into OpenCV after 
a format conversion so that it could be used in the program. 

3.2.5 Results 

After multiple training iterations, a model that performed well was chosen. 
The general axiom of hyperparameters having major influence on training 
results held true. When the general configuration of the training process 
was figured out, it was a matter of tweaking the batch size, number of 
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training steps and learning rate to achieve the best results. Here are some 
examples of the object detection model in action. The number is the 
confident score from the model. 
 

 

Figure 20. Example of the model functioning correctly 

 

Figure 21. Example of the model functioning correctly 
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Figure 22. Example of the model functioning correctly 

 

 

Figure 23. Example of the model failing to detect the object 

The model performed well in general. It was able to detect dogs and cats 
from the multiple angles. However, the model was not perfect. It 
sometimes had problem detecting animals from behind. The reason was 
that the dataset was somewhat lacking in this regard, something that could 
be rectified in later versions.  
 
Even with this issue, the more important problem was how object 
detection should be integrated into the existing program. Running object 
detection was quite resource intensive, requiring a somewhat decent 
hardware to run smoothly. Even with good hardware, the process was not 
fast. The time it took for the model to process 1 image frame was about 
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1,5 seconds. Given that there could be at least 24 frames for every second 
in a video, processing time could be high if it was left running as is. 
 
Cursory steps were taken to alleviate these problems and some 
preliminary testing was done. Unfortunately, there was not enough time 
in the end, with the other parts of the project taking longer to complete 
than expected. Even though the research and the training for the object 
detection model had been done, it had to be left out in the end. 

4 VIDEO TRIMMING 

The original goal of this project was to make a program that can take out 
relevant sections of a video and stitch them together into a new file. The 
detection algorithms were used in order to pinpoint the location of the 
pertinent parts. Those segments were then extracted and merged into a 
video containing only what were needed. 

4.1 FFmpeg 

The video cutting and merging are handled by FFmpeg, a free and open-
source software used for manipulating video, audio and other multimedia 
files. FFmpeg stands for Fast Forward Motion Picture Expert Group. Many 
common software and websites use FFmpeg in order to deal with audio-
visual files, such as VLC, Google Chrome, YouTube and many more. 
(FFmpeg team, 2020) 

4.2 Trimming 

Because FFmpeg didn’t have a built-in trimming function, some extra steps 
were taken to achieve the desired results. 
 

 

Figure 24. Individual sections of motion cut from the original video 
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First, the video was cut into smaller parts according to the timestamps 
taken from the detection section. Then those sections were concatenated 
into the final video. Thus, creating the effect that the video got trimmed of 
the unnecessary parts. 
 

 

Figure 25. Output folder 

As seen in Figure 25, the output folder had a temporary folder, containing 
the cut sections and other logs, which would be deleted afterwards.  The 
trimmed and original video were put side by side in order to show the 
difference of before and after trimming. 
 

5 EXTRA FEATURES 

The commissioning party requested several additional features for their 
own reasons. 

5.1 First part skipping 

The commissioning party required that the first 90 minutes of the videos 
are not to be processed. Therefore, before processing the videos, a new 
video was created without the first 90 minutes, then performing detection 
on the shorter video. 

5.2 Period before and after motion 

The commissioning party required that when detecting motions, there 
should be a 30-second buffer zone before and after each motion section 
in order to observe motion better. In order to achieve this, when writing 
down the timestamps for the beginning and ending of motion, the 
numbers were pushed forward 30 seconds for the former and 30 seconds 
backwards for the latter. 

6 SERVER 

With the main program figured out, it needed to be set up to work on a 
web server. A system for users to upload videos to the server was also 
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needed. The main program had to automatically and periodically run on a 
predetermined folder on the server, which would process any video files 
in it using motion detection and would output the result into a separate 
folder. It was also decided that with appropriate credentials, the server can 
be accessed to view the program’s logs as a web page as one way to 
determine its status as the video processing could take a long time. Hence 
the need for a frontend and backend for the web server.  
 
In order to create the web server, Django was chosen, a popular Python 
web framework (Django Software Foundation, 2020). This helped simplify 
the programming process for the server a bit. Django still provided useful 
features out of the box for the server such as a built-in users and passwords 
system with related administrator tools. The frontend of the server was a 
simple web page that allowed users to log in and view log files and see 
what the server had been doing. On the backend side of things, the server 
would look for new video files and process them at set intervals. However, 
the web server cannot serve static files (i.e. CSS files) with just Django as 
the framework. A full-stack solution like nginx + Gunicorn + Django would 
be needed to do so. In the end, only Gunicorn was used as the HTTP server 
and Django as the framework. The problem was too trivial to add 
unnecessary complexity to a simple server. 
 

 

Figure 26. Web server’s log in page 

 

Figure 27. User’s page 
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Figure 28. Django’s administrative tools 

 
To facilitate file upload and download for the server, SFTP was used as the 
file transfer protocol. SFTP stands for SSH File Transfer Protocol. It would 
allow encrypted (and therefore secure) file transfers between machines. A 
SFTP server was implemented using rspivak’s stub SFTP server code as the 
base which was using the Python library “paramiko” and would work 
alongside the web server (Pointer & Forcier, 2020; rspivak, 2017). With the 
right credentials, users could log in using a SFTP client to access the SFTP 
server. On the server, there were three folders: “input” which would be 
where the user should upload video files for the main program to process, 
“output” which contained the processed video and “log” which contained 
the video timestamps of events of interest. Early on, a server using FTP, 
which is SFTP’s preceding file transfer protocol, was briefly used but 
eventually discarded due to security concerns. 
 

  

Figure 29. SFTP server accessed from WinSCP, a free SFTP client 

Through this, all the individual pieces that made up the project had been 
put together. The process would begin with the user uploading a video file 
through the SFTP server. The web server would then process the video 
with the motion detection component, a task that it would do regularly. 
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The user could view the progress on the web page and could download the 
output videos through the same SFTP server. 

7 CONCLUSION 

The goal of this project was to make a web server where the 
commissioning party could upload videos of home security and be able to 
retrieve newly generated videos with just the parts of the original videos 
containing motions. 

 

As for the web server, a simple HTTP web page was made where users can 
login to view the program logs. The main program periodically ran in the 
background, looking for any new videos in the SFTP server’s directory. An 
SFTP server was also made and it used the same user credentials as the 
web server. 

 

The program has the ability to read through all the files in the input folder, 
pick out the media files and then perform motion detection on them. 
Afterwards new videos were produced and was put into the output folder. 
Furthermore, logs were put into the log folder, including timestamps for 
the videos, a list composed of the names of the videos which had been 
processed, and a log file containing the information on the events of the 
program. 

 

Research on object detection was done and a working prototype was built. 
However due to the long duration of processing time, extensive testing had 
not been done. Therefore, it was decided that it was left out of the main 
program. If the program can be continued to be developed, integrating 
object detection would be one way the program could be expanded upon. 

 

After working through this project, a better understanding of the inner 
workings of multiple pieces of software like OpenCV, TensorFlow, Django 
was gained, as well as more experience working with web development 
and video processing. 
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Appendix 1 

Example XML File 
  
 <annotation verified="yes"> 
 <folder>test</folder> 
 <filename>0_c.jpg</filename> 
 <path>F:\kagglecatsanddogs_3367a\PetImages\test\0_c.jpg</path> 
 <source> 
  <database>Unknown</database> 
 </source> 
 <size> 
  <width>500</width> 
  <height>375</height> 
  <depth>3</depth> 
 </size> 
 <segmented>0</segmented> 
 <object> 
  <name>cat</name> 
  <pose>Unspecified</pose> 
  <truncated>0</truncated> 
  <difficult>0</difficult> 
  <bndbox> 
   <xmin>119</xmin> 
   <ymin>18</ymin> 
   <xmax>358</xmax> 
   <ymax>241</ymax> 
  </bndbox> 
 </object> 

</annotation> 
 

 
 
 
 

 


